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ABSTRACT
Underplatform Dampers are commonly used in aircraft en-

gines to limit the risk of High-Cycle Fatigue of turbine blades.
The latter is located in a groove between two consecutive blades.
The dry friction contact interface between the damper and the
blades dissipates energy and so reduces the vibration amplitudes.
Two common geometries of dampers are used nowadays, namely
wedge and cylindrical dampers, but their efficiency is limited
when the blades have an in-phase motion (or a motion close to
it), since the damper tends to have a pure rolling motion. The
objective of the present study is to analyse a new damper ge-
ometry, based on a conical shape, which prevents from this pure
rolling motion of the damper and ensures a high kinematic slip.
The objective of this study is to demonstrate the damping effi-
ciency of this geometry. Hence, in a first part, the kinematic slip
is approximated with analytical considerations. Then, a nonlin-
ear dynamic analysis is performed, and the damping efficiency of
this new geometry is compared to the wedge and the cylindrical
geometries. The results demonstrate that the conical damper has
a high damping capacity and is more efficient and more robust
than the two others.

INTRODUCTION
Industrial requirements in the aerospace industry for gas

turbine engines are becoming more stringent in terms of mass

and efficiency, so that many components of such structures have
reached their structural limits [1]. This is particularly true for
turbines blades which are highly loaded, are subjected to high
thermal, centrifugal stresses and vibrational stress [2]. The lat-
ter can lead to High Cycle Fatigue (HCF) and so to the failure
of the blades [3]. Since the aero-engines have a large operating
speed range and the modal density of bladed disk is high, it is
impossible to avoid all critical resonances in the system. Hence,
reducing the vibrations levels at these resonances is crucial, and
solutions based on friction damping have been the most widely
used over the years [4–6].

Dry friction can be introduced in different locations to limit
the vibration levels, such as at the shrouds, the roots and blade
tips. However, the most effective solution relies on the use of
Underplatform Dampers (UPD) [6, 7]. They consist in a metal-
lic device placed in the groove under the platforms of two ad-
jacent blades. The centrifugal loading keeps them in place dur-
ing operation. If the blades vibrate, then the relative displace-
ment between the platforms and the damper creates friction at
the contact interface and so, energy is dissipated, and the system
is damped [8, 9].

The identification of the most efficient UPD geometry is still
an active research topic. Nevertheless, two main geometries have
largely been studied and employed until now. The first shape
is based on a wedge geometry [10–15] and the second shape
is based on a cylindrical geometry [12, 16, 17]. Some studies



present a combination of the two shapes [18–20] and how to op-
timise it [21].

The wedge geometry is the shape that is the most widely
used over the years. It is easy to manufacture, install and replace,
and it seals the platforms. However, with this shape, the predic-
tion of the contact locations and conditions is difficult, which
makes the modelling complex and the behaviour of the structure
difficult to predict [15,22]. Moreover, each damper is loaded in a
different way, which complicates even more the global dynamic
of the system. The interesting feature of a cylindrical geome-
try is that the contact pressure is controllable and so the global
behaviour of the structure is more predictable. However, both
shapes have the same limitation. Indeed, when the blades have
an in-phase motion, then the damper tends to have a pure rolling
motion and no more frictional dissipation occurs. The dissipated
energy is null or low, and the damping efficiency is limited.

The objective of the present study is to present a new damper
geometry based on a conical shape. This geometry makes it im-
possible for the damper to have a pure rolling motion when the
blades have an in-phase motion. In fact, to maintain contact with
the two platforms, sliding is required so friction occurs. This
friction is directly related to the kinematic motion of the damper
created by the in-phase motion of the platform. Hence, the en-
ergy dissipated by friction is expected to be high as well as the
damping efficiency.

The paper is organized as follows. In a first part, an ap-
proximation of the expected kinematic slip of this new damper is
determined. It is based on an analytical analysis with a few as-
sumptions. It gives quickly an approximation of the efficiency of
the damper with regards to its geometrical characteristics. Then,
for more accurate results, a dynamic analysis based on the Multi
Harmonic Balance Method (HBM) is done, where the wedge,
cylindrical and conical dampers are compared. The nonlinear
receptances as well as the energy dissipated at the contact inter-
face are considered to compare the efficiencies of the different
dampers.

NEW GEOMETRY PRESENTATION AND ANALYTIC
PERFORMANCES

Bladed disks are composed of a disc on which blades are
fixed, and UPD are located under the platforms of adjacent
blades. In this study, the focus is put on a system composed
of two blades and one damper. If one considers the first bending
mode of the blades, two extreme cases exist: an in-phase motion
of the two blades and an out-of-phase motion. It is worth notic-
ing that in reality, the blades have a mix of these two motions,
but in the following, only these two ”fundamental” conditions
will be considered to study the behaviour of the damper. Con-
sidering these two cases, the kinematic of the platforms can be
simplified, respectively, by a pure vertical or a pure horizontal
motion of the platforms as illustrated Figure 1. For a horizontal

Neutral position

Platform horizontal motion (blades OOP)

Platform vertical motion (blades IP)

FIGURE 1: Illustration of movement of the platforms and the
rolling motion

motion of the platforms, sliding occurs between the damper and
the platforms, so energy is dissipated. However, in the case of a
vertical motion, the damper tends to have a pure rolling motion
and so the damper efficiency is very limited.

To cope with this issue, a different geometry is presented
here. It is based on a conical shape as represented Figure 2. The
damper is in blue and the planes defined by the platforms are in
grey. The main feature of this geometry is that the rolling motion
is not possible when a vertical motion of the platforms occurs.
Indeed, to keep the contact with the two platforms and to keep
its axis parallel to the platforms, the damper cannot have a pure
rolling motion and so some sliding must occur. The latter creates
friction and so energy is dissipated. This dissipation relies on the
pure kinematic motion of the platforms and so a high efficiency
of the damper is expected. The study is aimed to demonstrate
and illustrate this basic idea. Moreover, this shape presents the
advantage to have a robust description of the contact. Indeed
the latter is reduced to a line which is easier to model, locate
and gives a more controllable behaviour. This section is more
specifically dedicated to analytical considerations.

Axial Inclination of the Damper
When the damper is positioned between the two platforms,

its axial inclination is fully determined by the cone angle and the
angle between the platforms. Moreover, the contact between the
damper and each platform corresponds to a line which is also
a generator of the cone. An illustration is given Figure 2. To
determine the cone axial inclination, a few parameters need to be
defined:

- γ represents the axial inclination of the damper relative to
the vertical. It is the angle between the plane formed by a
section of the damper and the vertical,

- β is the characteristic angle between the two platforms,
- α1 corresponds to the projection of the platform angle on the

plane formed by the large horizontal section of the damper,



FIGURE 2: Illustration of the new damper geometry in contact
with the platforms and the angles involved in the geometrical
problem

- αc is the semi angle of the cone.

The different angles are represented Figure 2.
From geometrical considerations, two relations can be ob-

tained to relate the damper inclination γ to the platform angle β

and the cone angle αc:

{
tan(αc) = tan(γ) · sin(α1)
tan(α1) = tan(β ) · cos(γ) (1)

From some manipulations it comes:

sin(γ) tan(β ) = tan(αc)
√
(1+(cos(γ) tan(β ))2) (2)

which gives the following expression of the damper inclination γ

in function of the geometrical characteristic of the problem:

γ(αc,β ) = arccos

(√
(1− tan2(αc)cot2(β ))√

tan2(αc)+1

)
(3)

From Equation 3, the effect of the platform angle β and of the
cone angle αc on the damper inclination can be determined. For
example, Figure 3 gives the evolution of the damper inclination
depending of the cone angle αc for different platform angles β .
As expected, when the damper is cylindrical, the inclination an-
gle is null, and so the damper horizontal. On the opposite, when
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FIGURE 3: Damper inclination γ versus the damper cone angle
for different platform angles β : β1 = 36◦ (blue) - β2 = 45◦ (or-
ange) - β3 = 60◦ (yellow)

the cone angle becomes equal to the platform angle, then the
damper sits in a vertical position at 90 degrees with respect to
the platforms.

Kinematic Slip
Once the damper inclination is determined, it is possible to

get an approximation of the kinematic slip that will occur be-
tween the damper and the platforms. The latter is determined
when a vertical motion of the platforms occurs, i.e. for the in-
phase family of modes of the blades. From this analytical ap-
proximation, it is possible to determine the influence of the dif-
ferent parameters on the expected damping efficiency. In order
to estimate the kinematic slip, a few assumptions are necessary:

- the blades in-phase family of modes is simplified as a pure
translational vertical motion between the platforms and the
angle between the platforms cannot change,

- the damper and the platforms are always in contact,
- the damper and the platforms are perfectly rigid, and no elas-

tic deformation is allowed,
- the middle of the damper is supposed to have a pure rolling

motion.

The second and the last points are strong assumptions. The full-
contact assumption between the damper and the platforms comes
from the idea that from the loading and the conical shape, the
damper will always stay stuck to the platforms (no lift-off). The
pure rolling motion of the middle section of the damper comes
from the idea that the damper tends to have a symmetric motion
to have similar displacements at each extremity. It is worth point-
ing out that these assumptions simplify significantly the problem
and are only here to get a quick estimation of the kinematic slip
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FIGURE 4: Kinematic slip determination and position of the
damper

in a preliminary process, rather than giving an accurate estima-
tion of the damping potential for which simulations and tests are
required.

Assuming a vertical motion of the platforms v, the vertical
component in the plane of the middle section of the damper is
vt = v ·cos(γ), illustrated Figure 4a. So, if the middle section has
a pure rolling motion, then a rotation θ appears with:

θ ≈ vt

Rm cos(α1)
(4)

where Rm is the radius of the middle section. The smaller radius
is denoted R1 and the large radius R2. The angle θ is assum-
ing to be small, which is justified by the fact that the vibration
amplitudes are extremely small compared to the geometrical di-
mensions. At the same time, each extreme section of the damper
rotates of the same angle θ . However, the distances travelled by
the small and the large sections are different than the distance
travelled by the middle section. The difference between the dis-
tance travelled by the middle section and the small (resp. large)
section of the damper is equal to δ1 (resp. δ2):

δ1 = vt −
R1

Rm
vt δ2 = vt −

R2

Rm
vt (5)

Once the distance δ1 (resp. δ2) is travelled by the small
(resp. large) section, the latter is not in contact with the other
platform. In order to maintain contact with both platforms, it
must slip the remaining distance denoted s1 (resp. s2). The dif-
ferent configurations of an extreme section of the damper are rep-
resented Figure 4b. The black configuration corresponds to the
initial configuration, the red configuration to the configuration
after travelling the distance δ and the blue configuration to the
final configuration (i.e. δ and s travelled). Hence, the kinematic

slip corresponds to s1 (resp. s2) in Figure 4b and is equal to:

s1 =
(1− R1

Rm
)

cos(α1)
vt s2 =

(1− R2
Rm

)

cos(α1)
vt (6)

A longitudinal kinematic slip sl also appears and is equal to sl =
vs cos(αc).

As an illustration, the absolute value of the kinematic slip
at each position of the damper for different cone angles αc is
given Figure 5. The length of the damper is L = 40 mm and the
platform angle is β = 45o. The kinematic slip is maximum at the
extremities of damper and null at the centre as expected. Indeed,
the main assumption if that the centre of the damper has a pure
rolling motion, and so does not slip. The evolution is linearly
dependent to the distance to the centre.

More generally, the maximum expected kinematic slip for
different cone angles and for different configuration of the sys-
tem can be determined. The influence of different parameters
is illustrated Figure 6. In Figure 6a, the influence of the plat-
form angle β is studied. The evolution of the maximum of the
kinematic slip is similar in each case. More precisely, the maxi-
mum normalized kinematic slip increases first when the cone an-
gle increases, then it reaches a maximum before decreasing and
becoming null when the cone angle is higher than the platform
angle (i.e. when the damper has a vertical position). Hence, an
increase of the platform angle tends to increase the maximum of
the kinematic slip. Moreover, the maximum is reached for differ-
ent values of the cone angle. Indeed, if β = 36o, the maximum is
reached when αc is around 55% of the platform angle, whereas if
β = 60o the maximum is reached around 44% of the platform an-
gle. The influence of the radius of the large section R1 and of the
damper length L are given Figures 6b and 6c, respectively. The
evolution of the maximum of the kinematic slip is similar than in
the case presented previously. However, an increase of the radius
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FIGURE 5: Evolution of the kinematic slip at each point of the
damper for different cone angle - αc = 5◦ (blue) - αc = 10◦ (or-
ange) - αc = 15◦ (yellow)



R1 tends to decrease the maximum of expected slip: if R1 = 5 mm
then the maximum is around 0.7, whereas if R1 = 20 mm the
maximum is around 0.3. Concerning the length of the damper,
an increase of the latter tends to increase the maximum of the
kinematic slip: if L = 40 mm then the maximum is around 0.4,
whereas if L = 60 mm then the maximum is around 0.6.

These different analytical considerations provide a coarse
estimation of the expected kinematic slip and so of the damper
efficiency. Moreover, they allow in a preliminary process to test
and compare quickly the impact of some design parameters as
the length of the damper, the cone angle or the radius of the sec-
tions.

COMPARISON WITH OTHERS DAMPERS
The analytical results given in the first part can be very use-

ful in a first design process to identify the main characteristics
of a damper. However, nonlinear dynamic simulations must be
performed to get the real damping performances. The following
part is devoted to the analysis of the performances of the con-
ical damper to validate the analytical approach presented previ-
ously. The latter will be compared to a cylindrical and to a wedge
damper.

Model Presentation
Blades Model The model used is the model of an underplat-

form test rig, used in previous works [15]. It has been designed to
experimentally study the effect of UPDs on blade-like structure.
The Finite Element Model (FEM) of the model is represented
Figure 7a and is composed of two pseudo beam-like blades that
are fixed on a common base which simulates a rigid disk. The
dimensions of the model are chosen to mimic the behaviour
of the dynamic response of a real HPT blade. The interested
reader is invited to refer to [15] for more information. The mesh
is composed of 54972 quadratic hexahedral elements and a
stainless-steel material is used, i.e. the Young modulus is equal
to 197 GPa and the density is equal to 7800 kg/m3. The first
two modes of the structure correspond to the first bending mode
of the blades, that can be in-phase or out-of-phase. The mode
shapes are represented Figure 7b and Figure 7c respectively.

Damper Models Three damper geometries are considered
for this part of the study, they are represented Figure 7. The
first one is the wedge damper studied in [15] and represented
Figure 7d. The second one is a conical damper of cone angle
10◦ represented Figure 7e. Finally, the third one is a cylindrical
damper with a radius equal to the mean radius of the conical
damper, and is represented Figure 7f. The meshes are con-
structed so that the contact points are matching the blades mesh.

Contact Pressure In all cases, a uniform contact pressure
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(a) Maximum kinematic slip versus the cone angle for dif-
ferent platform angles: β1 = 36◦ (blue) - β2 = 45◦ (orange)
- β3 = 60◦ (yellow)
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(b) Maximum kinematic slip for different radius R1 of the
cone: R1 = 5 mm (blue) - R1 = 10 mm (orange) - R1 =
20 mm (yellow)
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(c) Maximum kinematic slip for different length L of the
damper: L = 40 mm (blue) - L = 50 mm (orange) - L =
60 mm (yellow)

FIGURE 6: Influence of different parameters on the maximum
kinematic slip with regard to the cone angle αc

is assumed. For a wedge damper, the contact pressure due the
centrifugal loading CF is modelled by a constant value [11] and



(a) Mesh of the platforms model

(b) In-phase mode
fIP = 269.9 Hz

(c) Out-of-phase mode
fOOP = 269.8 Hz

(d) Wedge (e) Conical (f) Cylindrical

FIGURE 7: Finite element model of the blades model (a) and the
first two modes of the structure (b,c) - FEM of the wedge (d),
conical (e) and cylindrical (f) dampers

the initial pressure σ0 on each side of the damper is equal to:

σ0 =
1
2

CF

A(cosα +µ sinα)
(7)

where CF is the radial centrifugal force, A is the contact area on
each side, µ is the friction coefficient and α is the damper angle.
For the cylindrical and the conical damper, it is assumed that the
total contact force remains the same. Since the contact between
the damper and the platform is a line in these cases, the total
contact force is divided by the number of points (the points are
regularly positioned).

Contact Formulation A node-to-node contact formulation
is used to solve the problem. Thus, the contact surface of the
wedge damper is reduced to 146 points as in [15], and the contact
line for both the cylindrical damper and the conical damper is
composed of 23 points (i.e. 46 in total).

The dynamic contact behaviour is described at each contact
node by the 3D friction contact shown in Figure 8. This contact
model is composed of two decoupled Jenkins elements [4] allow-
ing for 2D in plane displacements, and a third spring is added
to allow normal load variations. Hence, each element is char-
acterized by four parameters, namely the friction coefficient µ ,
the initial pre-load N0, the tangential stiffness kt and the normal
stiffness kn. The normal pre-load and the stiffnesses are normal-
ized by unit of area, so each contact element has its own char-
acteristics. The contact formulation is the same for the different
dampers and allows four different states for each point, namely
stuck, stick/slip, partial separation and full separation.

x(t)
y(t)

z(t)kt

kn

�

gap=-N0/kn

kt

FIGURE 8: Contact model

Harmonic Balance Method
The numerical strategy used for the prediction of the vi-

brations levels of the system is based on the Multi-Harmonic
Balance Method (MHBM) coupled with a model reduction tech-
nique included in the in-house code FORSE (FOrced Response
SuitE), which is presented in details in [23–25]. The friction
forces from the contact interface bring non-linearities in the sys-
tem. The dynamic equation of the system can be written as:

MẌ+CẊ+KX+Fnl(Ẋ,X) = P(t) (8)

where M, C and K are the mass, damping and stiffness matri-
ces respectively. X is the vector of displacements and the dot
corresponds to the derivative with respect to time. P is the vec-
tor of the external excitation and Fnl are the non-linear contact
forces, that depend of the relative motion of nodes in contact at
the interface.

The main idea of the MHBM consists in considering that the
response of each DOF is periodic and so can be decomposed on



a Fourier series which is truncated at the nth harmonic:

q(t) = Q0 +
n

∑
j=1

Qc
j cosm jωt +Qs

j sinm jωt (9)

where Q0, Qc
j and Qs

j are the Fourier coefficients. By injecting
Eq. 9 into Eq. 8, and projecting on each harmonic, the system 8
can be approximated by:

Z(ω)Q+ F̃nl(Q)− P̃ = 0 (10)

where Q = {Q0,Qc
1,Q

s
1, . . . ,Q

c
n,Qs

n} is the vector of the Fourier
coefficients, Z(ω) is the dynamic stiffness matrix of the system,
F̃nl and P̃ are the nonlinear forces and the external efforts in the
Fourier basis respectively. The reduction of the model is based on
a FRF matrix representation of the model. This FRF matrix is de-
termined by calculating its exact value at some frequency points
and adding a second term that describes its variation in a range of
frequencies [25]. An Alternate Frequency/Time (AFT) [26, 27]
algorithm is used for the determination of the nonlinear forces
and the problem of Eq. 10 is solved with a Newton-Raphson al-
gorithm. In order to compute a continuous response curve in the
frequency domain, continuation is performed with regard to the
pulsation ω . Here, a secant predictor together with an arc-length
corrector is used. In the following the harmonics 1, 2 and 3 are
used for the simulations. They have been selected based on a
convergence study. For the dampers and the blades, 12 modes
are used for the simulation.
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Comparison of the Performances of the Different
Dampers

The nonlinear receptances of the three dampers are com-
puted for different levels of excitation from 0.096 N to 30 N.
The receptances are given Figure 9 for the out-of-phase family
case, and Figure 10 for the in-phase case.

The nonlinear receptances for the out-of-phase mode are
given Figure 9 for the three cases. The curves with a solid line
correspond to the conical damper receptances, the dashed ones to
the cylindrical damper and the dotted ones to the wedge damper.
The first observation is that compared to the cylindrical damper,
the behaviour of the conical damper is almost identical with a
small frequency shift of about 0.5 Hz. In all cases, the three
dampers have a similar behaviour and the damping efficiencies
are comparable.

But considering the in-phase case, the behaviours of the
three dampers are completely different (see Figure 10). Indeed,
as a first observation, the resonance frequencies are spread from
309 Hz to 423 Hz. As it can be seen Figure 10b, all the FRF
are superimposed. It demonstrates that the damper has no ef-
fect on the dynamic of the blades, in other words the cylindrical
damper has a pure rolling motion for this mode and the damping
efficiency for this mode is very limited. Hence, the blades have a
linear behaviour. Considering the wedge damper, it damps the re-
sponse since the maximum of the receptances decreases when the
excitation force increases but it also presents a strong softening
behaviour and an important frequency shift (around 4 Hz of dif-
ference between the peak at F=0.096 N and the peak at F=30 N).
Finally, the conical damper presents a behaviour similar to the
behaviour for the out-of-phase mode, i.e. a high damping effi-
ciency without frequency shift.

The maximum of the absolute amplitude response is also
given for the three dampers in Figure 11 for the in-phase case
(Figure 11a) and the out-of-phase case (Figure 11b). For the out-
of-phase case, the three dampers have a similar behaviour. The
amplitudes increase when the excitation increases and stabilize
between 0.06 mm and 0.07 mm for high excitation levels. For the
in-phase case, the three dampers have different behaviours. In-
deed, as seen previously, the blades have a linear behaviour if the
damper is the cylindrical one, so the absolute amplitude increases
linearly with the excitation, which gives very high level of ampli-
tude at high level of excitations. For the wedge damper (yellow
curve in Figure 11a), the maximum of amplitude also increases
with the level of excitation but more slowly and reached a maxi-
mum of 0.35 mm for F = 30 N. But for the conical damper (blue
curve), at very low level of excitations, the amplitude response
increases but after 5 N, it increases slightly from 7.8E-2 mm at
9.6 N to 8.7E-2 mm at 30 N of excitation amplitude, and almost
does not depend of the excitation amplitude. This demonstrates
the high damping capacity of the conical damper for the in-phase
case. In fact, the damper is even more efficient than the wedge
damper since there is a saturation effect.



307 307.5 308 308.5 309 309.5 310 310.5 311

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

N
L

 r
e

c
e

p
ta

n
c
e

 (
m

m
/N

)

(a) Conical damper

257 258 259 260 261 262

Frequency (Hz)

0

0.02

0.04

0.06

0.08

0.1

N
L

 r
e

c
e

p
ta

n
c
e

 (
m

m
/N

)

(b) Cylindrical damper
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FIGURE 10: Nonlinear receptances for the in-phase mode: (left) conical damper - (middle) cylindrical damper - (right) wedge damper

To investigate more deeply the efficiency of the differ-
ent dampers, the energy dissipated by friction for the different
dampers and the different level of excitation are determined.
They are given Table 1 for the out-of-phase case and Table 2 for
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(a) In-phase mode
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(b) Out-of-phase mode

FIGURE 11: Maximum of the amplitude response for differ-
ent level of excitation for the different dampers: (blue) conical
damper - (orange) cylindrical - (yellow) wedge damper

the in-phase case. As expected, the level of energy dissipated by
friction for the out-of-phase case is similar for the three dampers.
Indeed, the quantity of dissipated energy is almost equal for the
three dampers at each level of excitation (see Table 1). However,
in the case of the in-phase mode family, the energy dissipated
differs a lot from one damper to another. First, the cylindrical
damper does not dissipate energy (see the low levels around e-
18 mJ), which confirms the pure rolling motion of the damper
for this case. This analysis is confirmed by the evolution of the
contact status of the contact points given Figure 12 for the dif-
ferent dampers for excitation levels equal to 9.6 N and 30 N. For
the cylindrical and the conical dampers, the points from 1 to 23
correspond to the left contact line, and the points 24 to 46 to
the right. They are ordered so that the points 1 and 24 corre-
spond to the large section and the points 23 and 46 to the small
section. For the wedge damper, the points 1 to 73 (resp. 74 to
146) correspond to the left (resp. right) contact surface. Red
points correspond to cases where stick/slip occurs at the contact
and green points where separation occurs. As it can be seen, in
the case of the cylindrical damper (top figures), friction occurs
only for the out-of-phase case (i.e. at 409 Hz). For the in-phase
case, the contact points remain stuck and the damper has a pure
rolling motion. Considering the conical damper, stick/slip occurs
in both cases, for either the in-phase and the out-of-phase modes.
Moreover, for the in-phase case, stick/slip appears at the extremi-
ties of the damper when the centre has a pure rolling motion (see
the stuck points in the middle of each contact line). This con-
firms the assumption done in the analytical part. Moreover, no
full contact separation is observed for the different amplitudes of
excitation, justifying the full-contact assumption done in the an-
alytical part. Since stick/slip occurs for the in-phase case, some
energy is dissipated by friction and so the damper has, as ex-
pected, a damping effect on the system. Considering the wedge
damper, the dynamic of the contact is much more complex for
the in-phase case since almost all points experience contact sep-



aration (see Figures 12e and 12f). This illustrates the rolling mo-
tion of the damper and explain the strong softening behaviour
observed Figure 10c.

For more insight, the evolution of the repartition of the con-
tact condition at the first resonance frequency for both the wedge
and the conical dampers for different excitation amplitudes is
given Figure 13. As it can be seen, for the conical damper (solid
lines) the number of contact points in a stick/slip or partial con-
tact state increases when the excitation amplitude increases. This
evolution may explain why the maximum of the amplitude re-
sponse remains almost constant in Figure 11a for the conical
damper. Considering the wedge damper, when the excitation am-
plitude increases, all the points tend to experience contact sepa-
ration. The energy dissipated by friction by the wedge damper

(a) (b)

(c) (d)

(e) (f)

FIGURE 12: Evolution of the contacts status for the cylindrical
(top), conical (middle) and wedge (bottom) dampers at different
frequency levels for an excitation of 9.6 N (left) and 30 N (right):
(•) stuck - (•) stick/slip - (•) contact separation - ( ) separation
between contact points on the left side (bottom) and on the right
side (top)
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FIGURE 13: Evolution of the % of contact condition repartition
at the resonance frequency for the conical ( ) and the wedge
( ) for different excitation amplitude - Full contact (black) -
Stick/slip (orange) - Contact separation (green)

in the in-phase case is of the same order of magnitude than the
energy dissipated by the conical damper. Hence, the conical and
the wedge dampers have similar performances in terms of energy
dissipation. However, the results obtained here for the wedge
damper are based on the strong assumption that the contact sur-
face is in perfect contact. In reality, the location and the sur-
face area of the contact are unknown, and it results in a drop of
the resonance frequency for this mode. Hence, the modelling of
this damper is limited, and the resonance frequency cannot be
estimated. On the opposite, the contact condition between the
conical damper and the platforms is much more robust since it
corresponds to a contact line that can be easily identified. It re-
sults in a strong ability to model and capture the behaviour of the
structure. Moreover, the coupling between the platforms can be
controlled, and so the frequency shift caused by the damper. For
these different reasons, the conical damper appears more efficient
and reliable than the wedge damper.

CONCLUSION
In the present study, a new damper geometry has been eval-

uated. Based on a conical geometry, the problem of pure rolling
motion when the blades have an in-phase motion cannot occurs.
Indeed, to maintain contact with the two platforms, slipping mo-
tion must takes place, and so friction appears. This friction is due
to the pure kinematic motion of the platforms, and so the conical
damper has a very high damping potential.

First, from geometrical considerations and some assump-
tions, an analytical formulation of the expected kinematic slip
is determined. It allows a fast estimation of the performances of
a damper for different geometric properties in a preliminary de-
sign process. Then, the real damping efficiency of the damper



TABLE 1: Energy dissipated by friction in mJ for the different dampers and the different excitation levels for the out-of-phase mode

Force (N) 0.096 3.84 9.6 15 20 25 30

Wedge 2.3e-22 1.4e-3 1.2e-2 2.6e-2 3.9e-2 5.2e-2 6.6e-2

Cylindrical 1.3e-21 1.8e-18 1.1e-2 2.4e-2 3.5e-2 4.7e-2 5.8e-2

Conical 8.1e-22 1.7e-18 1.1e-2 2.3e-2 3.5e-2 4.6e-2 5.8e-2

TABLE 2: Energy dissipated by friction in mJ for the different dampers and the different excitation levels for the in-phase mode

Force (N) 0.096 3.84 9.6 15 20 25 30

Wedge 4.7e-21 3.6e-3 3.3e-2 8.1e-2 1.4e-1 2.3e-1 3.3e-1

Cylindrical 6.2e-23 1.7e-19 1.6e-18 1.0e-18 4.1e-18 6.2e-18 9.5e-18

Conical 3.9e-20 1.8e-2 5.9e-2 1.0e-1 1.4e-1 1.8e-1 2.2e-1

is determined by using a nonlinear dynamic analysis based on
the HBM. The nonlinear receptances of the conical damper for
different excitation levels are compared to the receptances of a
cylindrical and a wedge damper. The damping properties of the
different dampers are similar in the case of an out-of-phase mo-
tion of the blades. But in the case of an in-phase motion of the
blades, the behaviours of the three dampers tend to be very differ-
ent. The cylindrical damper has a pure linear behaviour and has
almost no damping properties. The wedge damper has a strong
softening behaviour, and so a non-negligible frequency shift. On
the opposite, the conical damper has a high level of damping as
it was expected from the analytical results. The energy dissi-
pated by friction for the different dampers are almost compared
and confirmed the pure rolling motion of the cylindrical damper
in in-phase case. The energies dissipated by the wedge and the
conical damper are of the same order of magnitude.

As a conclusion, the conical damper has a high damping po-
tential for both in-phase and out-of-phase motion. The contact
conditions are more robust than for the wedge damper since the
contact corresponds to a contact line that can be easily located.
Moreover, by increasing the cone angle, the coupling effect be-
tween the two platforms is increased, therefore, the frequency
shift caused by the damper can be controlled by a simple control-
lable parameter. Furthermore, from simple design parameters (as
the cone angle), a very fine trade-off between the damping effi-
ciency and the wear rate can be achieved.

ACKNOWLEDGEMENT
The third and fourth authors are grateful to Innovate UK

(Grant no. MEDY.P50254) and Rolls-Royce plc (Grant no.
MEDY.P42978) for providing the financial support for this work

and for giving permission to publish it. This work was part of a
collaborative R&T project SILOET II P19.6 which is co-funded
by Innovate UK and Rolls-Royce plc. The first and third au-
thors thank Rolls-Royce plc and the EPSRC for the support un-
der the Prosperity Partnership Grant “Cornerstone: Mechanical
Engineering Science to Enable Aero Propulsion Futures”, Grant
Ref: EP/R004951/1.

REFERENCES
[1] Krack, M., Salles, L., and Thouverez, F., 2017. “Vibra-

tion prediction of bladed disks coupled by friction joints”.
Archives of Computational Methods in Engineering, 24(3),
pp. 589–636.

[2] Petrov, E., and Ewins, D., 2004. “State-of-the-art dynamic
analysis for non-linear gas turbine structures”. Proceedings
of the Institution of Mechanical Engineers, Part G: Journal
of Aerospace Engineering, 218(3), pp. 199–211.

[3] Cowles, B., 1996. “High cycle fatigue in aircraft gas tur-
bines—an industry perspective”. International Journal of
Fracture, 80(2-3), pp. 147–163.

[4] Gaul, L., and Nitsche, R., 2001. “The role of friction in
mechanical joints”. Applied Mechanics Reviews, 54(2),
pp. 93–106.

[5] Feeny, B., Guran, A., Hinrichs, N., and Popp, K., 1998. “A
historical review on dry friction and stick-slip phenomena”.
Applied Mechanics Reviews, 51(5), pp. 321–341.

[6] Griffin, J., 1990. “A review of friction damping of turbine
blade vibration”. International Journal of Turbo and Jet
Engines, 7(3-4), pp. 297–308.

[7] Szwedowicz, J., Gibert, C., Sommer, T., and Kellerer, R.,
2008. “Numerical and experimental damping assessment



of a thin-walled friction damper in the rotating setup with
high pressure turbine blades”. Journal of Engineering for
Gas Turbines and Power, 130(1), p. 012502.

[8] Sanliturk, K., Ewins, D., and Stanbridge, A., 2001. “Under-
platform dampers for turbine blades: theoretical modeling,
analysis, and comparison with experimental data”. Jour-
nal of Engineering for Gas Turbines and Power, 123(4),
pp. 919–929.

[9] Sanliturk, K., Ewins, D., Elliott, R., and Green, J., 2001.
“Friction damper optimization: simulation of rainbow
tests”. Journal of Engineering for Gas Turbines and Power,
123(4), pp. 930–939.

[10] Panning, L., Popp, K., Sextro, W., Kayser, A., and Wolter,
I., 2004. “Asymmetrical underplatform dampers in gas tur-
bine bladings: theory and application”. In ASME Turbo
Expo 2004: Power for Land, Sea, and Air, pp. 269–280.

[11] Petrov, E., and Ewins, D., 2007. “Advanced modeling of
underplatform friction dampers for analysis of bladed disk
vibration”. Journal of Turbomachinery, 129(1), pp. 143–
150.

[12] Panning, L., Sextro, W., and Popp, K. “Optimization of
interblade friction damper design”. In ASME Turbo Expo
2000: Power for Land, Sea, and Air.

[13] Jareland, M., 2001. “A parametric study of a cottage-
roof damper and comparison with experimental results”. In
ASME Turbo Expo 2001: Power for Land, Sea, and Air.

[14] Firrone, C., Zucca, S., and Gola, M., 2009. “Effect of
static/dynamic coupling on the forced response of turbine
bladed disks with underplatform dampers”. In ASME
Turbo Expo 2009: Power for Land, Sea, and Air, pp. 429–
440.

[15] Pesaresi, L., Salles, L., Jones, A., Green, J., and Schwing-
shackl, C., 2017. “Modelling the nonlinear behaviour of
an underplatform damper test rig for turbine applications”.
Mechanical Systems and Signal Processing, 85, pp. 662–
679.

[16] Jareland, M., 2001. “Experimental investigation of a plat-
form damper with curved contact areas”. In ASME Design
Engineering Conference, Pittsburgh.

[17] Csaba, G., 1999. “Modelling of a microslip friction damper
subjected to translation and rotation”. In ASME 1999 in-
ternational gas turbine and aeroengine congress and exhibi-
tion.

[18] Bessone, A., Toso, F., and Berruti, T., 2015. “Investigation
on the dynamic response of blades with asymmetric under
platform dampers”. In ASME Turbo Expo 2015: Turbine
Technical Conference and Exposition.

[19] Gola, M., and Gastaldi, C., 2014. “Understanding complex-
ities in underplatform damper mechanics”. In ASME Turbo
Expo 2014: Turbine Technical Conference and Exposition.

[20] Zucca, S., Botto, D., and Gola, M., 2008. “Range of vari-
ability in the dynamics of semi-cylindrical friction dampers

for turbine blades”. In ASME Turbo Expo 2008: Power for
Land, Sea, and Air, pp. 519–529.

[21] Gastaldi, C., and Gola, M., 2017. “Pre-optimization of
asymmetrical underplatform dampers”. Journal of Engi-
neering for Gas Turbines and Power, 139(1), p. 012504.

[22] Pesaresi, L., Armand, J., Schwingshackl, C., Salles, L.,
and Wong, C., 2018. “An advanced underplatform damper
modelling approach based on a microslip contact model”.
Journal of Sound and Vibration, 436, pp. 327–340.

[23] Petrov, E., and Ewins, D., 2003. “Analytical formulation of
friction interface elements for analysis of nonlinear multi-
harmonic vibrations of bladed disks”. Journal of turboma-
chinery, 125(2), pp. 364–371.

[24] Petrov, E., 2008. “Explicit finite element models of fric-
tion dampers in forced response analysis of bladed disks”.
Journal of engineering for gas turbines and power, 130(2),
p. 022502.

[25] Petrov, E., 2011. “A high-accuracy model reduction for
analysis of nonlinear vibrations in structures with contact
interfaces”. Journal of Engineering for Gas Turbines and
Power, 133(10), p. 102503.

[26] Cameron, R., and Martin, W., 1947. “The orthogonal de-
velopment of non-linear functionals in series of fourier-
hermite functionals”. Annals of Mathematics, pp. 385–392.

[27] Salles, L., Blanc, L., Thouverez, F., Gouskov, A., and Jean,
P., 2009. “Dynamic analysis of a bladed disk with friction
and fretting-wear in blade attachments”. In ASME Turbo
Expo 2009: Power for Land, Sea, and Air, pp. 465–476.

[28] Ning, X., and Lovell, M., 2002. “On the sliding friction
characteristics of unidirectional continuous frp deposits”.
ASME Journal of Tribology, 48(5), pp. 2000–2008.


