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Abstract
Coarse-grained reconfigurable architectures (CGRA) are designed to deliver high-performance
computing while drastically reducing the latency of the computing system. Although they are
often highly domain-specifically optimized, they keep several levels of flexibility so that they
can be reused. However, their reuse is generally limited due to the complexity of identifying
the best allocation of new tasks into the hardware resources. Another limiting point is the com-
plexity to produce a reliable performance analysis for each new implementation.
To solve this problem, we propose to consider CGRA as a programmable, configuration-driven
computing fabric, called Coarse-Grained Programmable Architecture (CGPA). We propose a
new latency-based model to describe all hardware elements. We demonstrate how to implicitly
model, with the help of latency’s prediction, the heterogeneity of their material implementa-
tions. Our model provides the possibility to assess also the configuration cost, often neglected
in other works.
The design of the modelling framework allows it to become a part of a complete application
mapping and scheduling chain, up to the automated generation of the execution context, thus
maximizing the reusability of the given CGPA.

Keywords : Hyper-graph, coarse-grained programmable architecture, hardware model, la-
tency, performance analysis.

1. Introduction

Today, we observe the acceleration of autonomous systems utilization almost in all branches
of industry [1], shipyards (robots) [12], transport (vehicles) [9], and even in construction sites
[15]. These systems evolve in uncontrolled conditions. To interact with their environment, they
need to perform high-performance computations under hard real-time constraints with high
reactivity, expressed as low latency processing of sensors information.
To answer these constraints, an extensive number of hardware architectures have been propo-
sed in the past, trying to find the best trade-off between performance and flexibility. We can
cite some examples going from arrays of General-Purpose Processors (GPPs), passing through
Networks on Chip (NoCs), Field Programmable Gate Arrays (FPGAs) solutions up to Coarse-
Grained Reconfigurable Architectures (CGRAs) [8]. In the above-mentioned context, the latter
ones provide the best ratio between the increase of the overall performance while decreasing
computing latency and minimizing the energy budget [13].
CGRAs are high-performance platforms optimized for a given application domain. They consist
of sets of processing, communication and memory resources (Fig. 1).
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The processing resources are heterogeneous modules, with possible different computing mo-
dels designed to perform a specific set of tasks. Each processing has a set of programmable
parameters. Notice that the set of parameters of each processing resource can be different. The
communication resources allow creating adequate datapaths between processing resources.
Also, a CGRA tends to process the applications in a dense pipeline. It means, as soon as some
processed result is available, it is immediately communicated to the next processing resource
according to the application data chain. Considering the heterogeneous computing models
combined with the cost of memorization, communication, and configuration, the efficient reuse
of the hardware is not trivial. The solution is an automated mapping and scheduling tool
(Fig. 2). The core of this tool must be a model allowing to describe the heterogeneity of pro-
gramming models of any CGRA hardware element.
The advances in the field of hardware modelling are significant, but they do not fulfill the
needs of CGRA modelling. The current models do not provide the necessary means to describe
latency at a cycle-accurate level [3, 4] or neglect some resources to reduce the complexity of
the performance analysis [10, 2]. Also, considering the need to optimize the reactivity of the
systems, the tool has to provide accurate, near to real performance latency estimation. Several
works propose methods to compute latency [14, 11, 5, 7, 6], however, these methods often
neglect the configuration cost of the system [2] and in general, they provide pessimistic values.
In this paper, we present a new accurate model of Coarse-Grained Programmable Architectures
(CGPA), based on the modelization of resource heterogeneity through fine latency evaluation.
In our work, we decide to use the term "programmable" instead of "reconfigurable" architec-
tures. The main contributions of this work are :

— A new formal model of CGPA, based on hyper-graphs. Our model covers all the hard-
ware resources, including (re-)configuration management, memory, communication, and
processing resources.

— Cycle-accurate latency performance analysis, without neglecting configuration cost of
any part of CGPA.

This model can be easily integrated into a complete mapping framework and provide the re-
quired means of reusability for the CGPA. Fig. 2 shows the modules of a framework for CGPA
efficient reuse, this paper covers the modules in gray.
The organization of the remaining part of this paper is as follows. Section 2 introduces the new
model of CGPA. In Section 3, we introduce a latency-based performance analysis. Then Section
4 describes the experimental study. Finally, Section 5 summarizes this paper and outlines the
perspectives of this work.

2. Latency Based Models

In this section, we describe three models. We consider the application and hardware model as
inputs of a mapping algorithm, and the implementation model the output.
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2.1. Application model
Let GAPP(T,D) be a directed hyper-graph that models an application. T is a set of nodes that
represents the tasks of the application. D is a set of oriented hyper-edges that represents data
dependency between tasks. We call a task ti ∈ T , so that ti = (typei, pi), where typei is the
type of transformation applied to the data and pi is the set of the transformation parameters.

2.2. CGPA hardware model
In our model, a directed hyper-graph GHW(S, K) represents a CGPA architecture, where the set
of nodes (S) represents the hardware resources and the set of oriented hyper-edges (K) models
the hardware resources interconnections. Fig. 3 shows the general hierarchy of the subsets of S.
We detail these subsets in the following sections.

2.2.1. Sequencer node scfg

S R
RP

RMscfg RC
RWR

RMUXRRD
RINTERFACE

FIGURE 3 – General hierarchy of
the hardware resources (S).

The sequencer node scfg controls the system configurations.
It is in charge of the modification of the resources confi-
guration between different applications or between partial
configurations required to realize one application. We define
scfg = (Cfgfun, Cfgparam), where Cfgfun is a set of designer-
defined functions allowing to express how to compute the configuration cost of each hardware
resource according to the implemented configuration mechanism. Finally, Cfgparam is the set
of configuration parameters of the hardware resources.

2.2.2. Hardware resources R
R is the set of hardware resources dedicated to transform (process) RP, store RM or communicate
data RC.

Processing resources RP

The subset RP represents resources that apply a given transformation of the input data. We
define rPi ∈ RP, rPi = (Ti, Πi,Li, Cfgi), where Ti is the set of tasks that rPi can perform and Πi
is the set of allowed parameters of each task. Li= (LINi (Ti, Πi),LCLi (Ti, Πi)) represents a tuple of
functions assigning the input and computing latencies values of rPi , depending on Ti and Πi as
input parameters. To express the exact execution time of a task on any hardware resource, we
propose using its input latency and computing latency. We define input latency as the number
of clock cycles necessary to read all the samples required to start to compute the first result. We
define computing latency as the number of clock cycles necessary to produce the result once all
input samples are available.
The parameter Cfgi ∈ Cfgfun defines the configuration cost of rPi . Cfgi=Cfgi(Ti, Πi) is again a
designer-defined function having the possibility to assign the configuration cost value of rPi . To
complete, each rPi is able to implement the tasks copy and disable allowing to manage correctly
unused processing resources in the data-path.

Communication resources RC

The subset RC represents the resources dedicated to the data transfer, copy and data-path
control. A multiplexer rMUXi ∈ RMUX provides a set of inputs and outputs, and performs a copy
operation from a selected input to the selected output. An rMUX can describe a mux/demux/
arbitrary/switch and is model as a four element tuple (Iporti , O

port
i ,Li, Cfgi). Iporti and Oporti ,

are the set of input and output ports of rMUXi . Li is the latency of rMUXi and Cfgi ∈ Cfgfun

represents the configuration cost. An rWRi ∈ RWR and an rRDi ∈ RRD are resources able to per-
form a write/read operation from or to a memory resource. We define rWRi and rRDi with a three-
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element tuple (Ai,Li, Cfgi). Ai defines the address space to access. Li models the latency of the
write/read operation and Cfgi ∈ Cfgfun represents the possible configuration cost. The external
sources and consumers of the data are rsensori , ractuatori ∈ Rinterface. We describe an rsensori with a
tuple (Πi,Lsensori ), where Πi are the allowed parameters and Lsensori is the latency of producing
one data sample. We consider that an rsensori has an internal rWR, which allows it to transfer
data directly to an rP or an rMUX, or write data to an rM. An ractuatori is also described in the
same manner.

Memory resources RM

The subset RM represents the hardware memory resources (RAM modules, sequential memory
modules). We describe each rMi ∈ RM with a tuple (Ai, CRDi , CWRi ), where Ai represents the
addressing space of rMi . CRDi is the number of read channels available and CWRi the number of
write channels. Notice that the memory resources do not have the expression of the latency,
this one is always integrated into the associated rRD and rWR nodes.

2.3. Implementation model
We consider GMAP(S ′, K ′) as the output of a mapping algorithm. GMAP contains all the fixed
parameters obtained by mapping GAPP onto GHW .
We describe GMAP(S ′, K ′) as a directed weighted hyper-graph with fixed parameters for each
resource. K ′ = K ′

1, K
′
2, . . . , K

′
m represents a set of oriented weighted hyper-edges, where the

weight of each hyper-edge is equal to li = Li(τi, πi) of the head node. Several different ins-
tances GMAPi(S ′, K ′) (called time slot) may construct the implementation graph. A time slot is a
subset of hardware resources configured to perform a subset of application tasks if one or more
reconfigurations are needed to finish the complete application. In other words, we define a time
slot as the interval from the resources configuration stage until the last result is outputted at
the end of the configured data pipeline.
We define S ′ = R ′ ∪ Scfg , where Scfg is a set of ordered nodes that represents the configuration
control of each time slot. The sequencer node scfg is in charge to generate Scfg. There should be
the same number of s ′cfg ∈ Scfg as the number of time slots. Recall that R ′ is the set of hardware
resources with fixed parameters. We consider R ′ = Rp ∪ Rc ∪ Rm ∪ Rsn. For the subsets, Rp, Rc

and Rm the descriptors are similar to the hardware model with the only difference of the fix
parameters.

2.3.1. Time slot dependency node set Rsn

This is an artificial subset of nodes representing data dependency between time slots. If an
application can not be fully implemented in one time slot, we need to store the processed data
at the end of the time slot i and read it in time slot i+ 1. We introduce the notion of the special
node rsn ∈ Rsn, which will connect the two rm and allow us to identify the data dependency.

3. Latency-based performance analysis

Computing cost (CC) is a latency-based metric that is fundamental for critical time systems
development as they must comply with hard real-time constraints. In this context, we compute
CC as follows :

CC =

N∑
i=1

(TCi +

TEXi︷ ︸︸ ︷
(CLi)(Height)(Width)+

TINi︷ ︸︸ ︷
|CPi|−1∑
j=1

((LINj − 1)(αj) + LCLj + 1))
(1)

Where N is the number of time slots of the implementation graph, T INi is the overall input
latency of time slot i, TEXi is the execution duration of time slot i and TCi is the configuration
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cost of time slot i. CPi is a set of resources that belong to the critical path of time slot i. LINj is
the input latency of the resource, LCLj is the computing latency of the resource. Finally, αj is an
expression of the propagation of computing latency. Let αj = max(αj−1,LCLj−1), where αj−1 is
the α of the predecessor and LCLj−1 is the computing latency of the predecessor. CLi is the worst
computing latency of the critical path of time slot i, Height and Width are the height and width
of the input image (resolution of the image).

4. Experimental study

In this section, we present an experimental study. We use three latencies configurations to
show the reliability of our model and performance analysis. Consider the hypothetical CGPA
example in Fig. 4. It consists of 8 image processing resources (PRi) and a memory block. It has
one sensor as a producer of data and three actuators as consumers. In Fig. 6 we can see the hard-
ware model. The second input of our experimental study is the image processing application
showed in Fig. 5. It consists of five image processing operators as tasks.

4.1. Experimental settings TABLE 1 – Experimental study :
processing resources features.

Ti
rP4,8,10 task1, task5
rP5,7,11 task2, task6
rP9 task5, task6
rP6 task3, task4

Hardware parameters. Table 1 lists the type of tasks (Ti) that
each processing resource can implement. For this example,
we consider Πi as fixed for all the processing resources.
Consider input latency as 2 samples and computing latency
as 2 clock cycles for all the processing resources. This is the
first set of latency features.
Application parameters. The parameters of the tasks are t0 = (task1) , t1 = (task2), t2 =
(task3), t3 = (task2), t4 = (task1). In this example pi is fix.

4.2. Implementation model
Applying manual mapping we get the implementation model showed in Fig. 7, which only
needs one time slot. Notice that the sequencer node scfg generates the configuration node s ′cfg.
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4.3. Performance analysis
We continue with the performance analysis using the first set of latency features. We can see
the final timing diagram of the implementation in Fig. 8.
Notice that the maximum configuration cost corresponds to the path showed in Fig. 10. We
compute the performance analysis over this path. Consider an input image resolution of 100x100
pixels. Consider the configuration cost of the time slot is equal to one clock cycle. According to
Equation 1, the computing cost is 20019 clock cycles per image.
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Now, let’s use a different set of latency features. We change the parameters for rP5 . Let’s assume
that for the implementation of task2, the input latency changes to 3 samples and the computing
latency to 3 clock cycles. The critical path is no longer the same. Fig. 11 shows the new critical
path and the resulting computing cost is 30023 clock cycles.
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FIGURE 10 – Critical path with the first latency
features.
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FIGURE 11 – Critical path with the second la-
tency features.
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FIGURE 9 – Critical path with the third latency features.

Finally, for the third considered
latency features, the changes are
considerable. For rP5 , the imple-

mentation of task2 considers 3 samples as input latency and 2 clocks cycles as computing
latency. For rP6 , the implementation of task3 considers 4 samples as input latency and 3 clocks
cycles as computing latency. For rP8 , the implementation of task1 considers 1 sample as input
latency and 3 clocks cycles as computing latency. We get a new critical path (Fig. 9) and the
computing cost is 30025 clock cycles. The performance analysis is able to identify the slightest
change in the latencies of the resources, either due to different material implementations or
because of changes in the parameters.

5. Conclusions

In this paper, we presented a latency based model for CGPA. We show the properties of our
approach, and prove that for latency analysis is precise. Due to the characteristics of the mo-
del, we pretend to extend to other types of hardware accelerators. As latency is a crucial factor
for autonomous systems, this model is ideal for the development of new systems and can pre-
dict the behavior of it. We also presented a new performance analysis equation. It takes into
account the propagation of computing latency through the processing pipeline. It can provide
cycle-accurate results and be a tool for the measurement of the configuration cost of an imple-
mentation in a design space exploration. The future work consists in to develop a mapping
algorithm for CGPA based on the presented model and integrate the entire set of tools in a
complete mapping framework.
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