Elias Barbudo

Eva Dokladalova

Thierry Grandpierre

A New Modelling Framework for Coarse-Grained Programmable Architectures

Keywords: Hyper-graph, coarse-grained programmable architecture, hardware model, latency, performance analysis

Coarse-grained reconfigurable architectures (CGRA) are designed to deliver high-performance computing while drastically reducing the latency of the computing system. Although they are often highly domain-specifically optimized, they keep several levels of flexibility so that they can be reused. However, their reuse is generally limited due to the complexity of identifying the best allocation of new tasks into the hardware resources. Another limiting point is the complexity to produce a reliable performance analysis for each new implementation.

To solve this problem, we propose to consider CGRA as a programmable, configuration-driven computing fabric, called Coarse-Grained Programmable Architecture (CGPA). We propose a new latency-based model to describe all hardware elements. We demonstrate how to implicitly model, with the help of latency's prediction, the heterogeneity of their material implementations. Our model provides the possibility to assess also the configuration cost, often neglected in other works. The design of the modelling framework allows it to become a part of a complete application mapping and scheduling chain, up to the automated generation of the execution context, thus maximizing the reusability of the given CGPA.

Introduction

Today, we observe the acceleration of autonomous systems utilization almost in all branches of industry [START_REF] Aazam | Deploying fog computing in industrial internet of things and industry 4.0[END_REF], shipyards (robots) [START_REF] Wang | From offline towards real-time verification for robot systems[END_REF], transport (vehicles) [START_REF] Naufal | A2cps : A vehicle-centric safety conceptual framework for autonomous transport systems[END_REF], and even in construction sites [START_REF] Yan | Quicabot : Quality inspection and assessment robot[END_REF]. These systems evolve in uncontrolled conditions. To interact with their environment, they need to perform high-performance computations under hard real-time constraints with high reactivity, expressed as low latency processing of sensors information. To answer these constraints, an extensive number of hardware architectures have been proposed in the past, trying to find the best trade-off between performance and flexibility. We can cite some examples going from arrays of General-Purpose Processors (GPPs), passing through Networks on Chip (NoCs), Field Programmable Gate Arrays (FPGAs) solutions up to Coarse-Grained Reconfigurable Architectures (CGRAs) [START_REF] Liu | A survey of coarsegrained reconfigurable architecture and design : Taxonomy, challenges, and applications[END_REF]. In the above-mentioned context, the latter ones provide the best ratio between the increase of the overall performance while decreasing computing latency and minimizing the energy budget [START_REF] Wijtvliet | Coarse grained reconfigurable architectures in the past 25 years : Overview and classification[END_REF]. CGRAs are high-performance platforms optimized for a given application domain. They consist of sets of processing, communication and memory resources (Fig. 1). The processing resources are heterogeneous modules, with possible different computing models designed to perform a specific set of tasks. Each processing has a set of programmable parameters. Notice that the set of parameters of each processing resource can be different. The communication resources allow creating adequate datapaths between processing resources. Also, a CGRA tends to process the applications in a dense pipeline. It means, as soon as some processed result is available, it is immediately communicated to the next processing resource according to the application data chain. Considering the heterogeneous computing models combined with the cost of memorization, communication, and configuration, the efficient reuse of the hardware is not trivial. The solution is an automated mapping and scheduling tool (Fig. 2). The core of this tool must be a model allowing to describe the heterogeneity of programming models of any CGRA hardware element.

The advances in the field of hardware modelling are significant, but they do not fulfill the needs of CGRA modelling. The current models do not provide the necessary means to describe latency at a cycle-accurate level [START_REF] Mei | Dresc : a retargetable compiler for coarse-grained reconfigurable architectures[END_REF][START_REF] Chin | Cgra-me : A unified framework for cgra modelling and exploration[END_REF] or neglect some resources to reduce the complexity of the performance analysis [START_REF] Pelcat | Models of architecture : Reproducible efficiency evaluation for signal processing systems[END_REF][START_REF] Barbudo | A new mapping methodology for coarse-grained programmable systolic architectures[END_REF]. Also, considering the need to optimize the reactivity of the systems, the tool has to provide accurate, near to real performance latency estimation. Several works propose methods to compute latency [START_REF] Wilhelm | The worst-case execution-time problem-overview of methods and survey of tools[END_REF][START_REF] Rajeev | Schedulability and end-to-end latency in distributed ecu networks : Formal modeling and precise estimation[END_REF][START_REF] Feiertag | A compositional framework for end-to-end path delay calculation of automotive systems under different path semantics[END_REF][START_REF] Krawczyk | Model-based timing analysis and deployment optimization for heterogeneous multi-core systems using eclipse app4mc[END_REF][START_REF] Kloda | Latency analysis for data chains of real-time periodic tasks[END_REF], however, these methods often neglect the configuration cost of the system [START_REF] Barbudo | A new mapping methodology for coarse-grained programmable systolic architectures[END_REF] and in general, they provide pessimistic values.

In this paper, we present a new accurate model of Coarse-Grained Programmable Architectures (CGPA), based on the modelization of resource heterogeneity through fine latency evaluation.

In our work, we decide to use the term "programmable" instead of "reconfigurable" architectures. The main contributions of this work are :

-A new formal model of CGPA, based on hyper-graphs. Our model covers all the hardware resources, including (re-)configuration management, memory, communication, and processing resources. -Cycle-accurate latency performance analysis, without neglecting configuration cost of any part of CGPA. This model can be easily integrated into a complete mapping framework and provide the required means of reusability for the CGPA. Fig. 2 shows the modules of a framework for CGPA efficient reuse, this paper covers the modules in gray. The organization of the remaining part of this paper is as follows. Section 2 introduces the new model of CGPA. In Section 3, we introduce a latency-based performance analysis. Then Section 4 describes the experimental study. Finally, Section 5 summarizes this paper and outlines the perspectives of this work.

Latency Based Models

In this section, we describe three models. We consider the application and hardware model as inputs of a mapping algorithm, and the implementation model the output.

Compas'2020 : Parallélisme/ Architecture/ Système/ Temps Réel MILC -Lyon, France, du 30 juin au 3 juillet 2020

Application model

Let G APP (T, D) be a directed hyper-graph that models an application. T is a set of nodes that represents the tasks of the application. D is a set of oriented hyper-edges that represents data dependency between tasks. We call a task t i ∈ T , so that t i = (type i , p i), where type i is the type of transformation applied to the data and p i the set of the transformation parameters.

CGPA hardware model

In our model, a directed hyper-graph G HW (S, K) represents a CGPA architecture, where the set of nodes (S) represents the hardware resources and the set of oriented hyper-edges (K) models the hardware resources interconnections. Fig. 3 shows the general hierarchy of the subsets of S.

We detail these subsets in the following sections.

Sequencer node

s cfg S R R P R M s cfg R C R WR R MUX R RD R INTERFACE FIGURE 3 -General hierarchy of the hardware resources (S).
The sequencer node s cfg controls the system configurations. It is in charge of the modification of the resources configuration between different applications or between partial configurations required to realize one application. We define s cfg = (Cfg fun , Cfg param), where Cfg fun is a set of designerdefined functions allowing to express how to compute the configuration cost of each hardware resource according to the implemented configuration mechanism. Finally, Cfg param is the set of configuration parameters of the hardware resources.

2.2.2.

Hardware resources R R is the of hardware resources dedicated to transform (process) R P , store R M or communicate data R C .

Processing resources R P

The subset R P represents resources that apply a given transformation of the input data. We define r P i ∈ R P , r P i = (T i , Π i , L i , Cfg i), where T i is the set of tasks that r P i can perform and Π i is the set of allowed parameters of each task.

L i = (L IN i (T i , Π i), L CL i (T i , Π i))
represents a tuple of functions assigning the input and computing latencies values of r P i , depending on T i and Π i as input parameters. To express the exact execution time of a task on any hardware resource, we propose using its input latency and computing latency. We define input latency as the number of clock cycles necessary to read all the samples required to start to compute the first result. We define computing latency as the number of clock cycles necessary to produce the result once all input samples are available. The parameter Cfg i ∈ Cfg fun defines the configuration cost of r P i . Cfg i =Cfg i (T i , Π i) is again a designer-defined function having the possibility to assign the configuration cost value of r P i . To complete, each r P i is able to implement the tasks copy and disable allowing to manage correctly unused processing resources in the data-path.

Communication resources R C

The subset R C represents the resources dedicated to the data transfer, copy and data-path control. A multiplexer r MUX i ∈ R MUX provides a set of inputs and outputs, and performs a copy operation from a selected input to the selected output. An r MUX can describe a mux/demux/ arbitrary/switch and is model as a four element tuple (I port), where Π i are the parameters and L sensor i is the latency of producing one data sample. We consider that an r sensor i has an internal r WR , which allows it to transfer data directly to an r P or an r MUX , or write data to an r M . An r actuator i is also described in the same manner.

Memory resources R M

The subset R M represents the hardware memory resources (RAM modules, sequential memory modules). We describe each r M i ∈ R M with a tuple (A i , C RD i , C WR i), where A i represents the addressing space of r M i . C RD i is the number of read channels available and C WR i the number of write channels. Notice that the memory resources do not have the of the latency, this one is always integrated into the associated r RD and r WR nodes.

Implementation model

We consider G MAP (S , K) as the output of a mapping algorithm. G MAP contains all the fixed parameters obtained by mapping G APP onto G HW . We describe G MAP (S , K) as a directed weighted hyper-graph with fixed parameters for each resource. K = K 1 , K 2 , . . . , K m represents a set of oriented weighted hyper-edges, where the weight of each hyper-edge is equal to l i = L i (τ i , π i) of the head node. Several different instances G MAPi (S , K) (called time slot) may construct the implementation graph. A time slot is a subset of hardware resources configured to perform a subset of application tasks if one or more reconfigurations are needed to finish the complete application. In other words, we define a time slot as the interval from the resources configuration stage until the last result is outputted at the end of the configured data pipeline. We define S = R ∪ S cfg , where S cfg is a set of ordered nodes that represents the configuration control of each time slot. The sequencer node s cfg is in charge to generate S cfg . There should be the same number of s cfg ∈ S cfg as the number of time slots. Recall that R is the set of hardware resources with fixed parameters. We consider R = R p ∪ R c ∪ R m ∪ R sn . For the subsets, R p , R c and R m the descriptors are similar to the hardware model with the only difference of the fix parameters.

Time slot dependency node set R sn

This is an artificial subset of nodes representing data dependency between time slots. If an application can not be fully implemented in one time slot, we need to store the processed data at the end of the time slot i and read it in time slot i + 1. We introduce the notion of the special node r sn ∈ R sn , which will connect the two r m and allow us to identify the data dependency.

Latency-based performance analysis

Computing cost (CC) is a latency-based metric that is fundamental for critical time systems development as they must comply with hard real-time constraints. In this context, we compute CC as follows :

CC = N i=1 (T C i + TEX i (CL i)(Height)(Width) + TIN i |CP i |-1 j=1 ((L IN j -1)(α j) + L CL j + 1)) (1)
Where N is the number of time slots of the implementation graph, T IN i is the overall input latency of time slot i, T EX i is the execution duration of time slot i and T C i is the configuration cost of time slot i. CP i is a set of resources that belong to the critical path of time slot i. L IN j is the input latency of the resource, L CL j is the computing latency of the resource. Finally, α j is an expression of the propagation of computing latency. Let α j = max(α j-1 , L CL j-1), where α j-1 is the α of the predecessor and L CL j-1 is the computing latency of the predecessor. CL i is the worst computing latency of the critical path of time slot i, Height and Width are the height and width of the input image (resolution of the image).

Experimental study

In this section, we present an experimental study. We use three latencies configurations to show the reliability of our model and performance analysis. Consider the hypothetical CGPA example in Fig. 4. It consists of 8 image processing resources (PR i) and a memory block. It has one sensor as a producer of data and three actuators as consumers. In Fig. 6 we can see the hardware model. The second input of our experimental study is the image processing application showed in Fig. 5. It consists of five image processing operators as tasks. 1 lists the type of tasks (T i) that each processing resource can implement. For this example, we consider Π i as fixed for all the processing resources. Consider input latency as 2 samples and computing latency as 2 clock cycles for all the processing resources. This is the first set of latency features. Application parameters. The parameters of the tasks are t 0 = (task1) , t 1 = (task2), t 2 = (task3), t 3 = (task2), t 4 = (task1). In this example p i is fix.

Experimental settings

Implementation model

Applying manual mapping we get the implementation model showed in Fig. 7, which only needs one time slot. Notice that the sequencer node s cfg generates the configuration node s cfg .

Performance analysis

We continue with the performance analysis using the first set of latency features. We can see the final timing diagram of the implementation in Fig. 8. Notice that the maximum configuration cost corresponds to the path showed in Fig. 10. We compute the performance analysis over this path. Consider an input image resolution of 100x100 pixels. Consider the configuration cost of the time slot is equal to one clock cycle. According to Equation 1, the computing cost is 20019 clock cycles per image. We change the parameters for r P 5 . Let's assume that for the implementation of task2, the input latency changes to 3 samples and the computing latency to 3 clock cycles. The critical path is no longer the same. Fig. 11 shows the new critical path and the resulting computing cost is 30023 clock cycles. Finally, for the third considered latency features, the changes are considerable. For r P 5 , the implementation of task2 considers 3 samples as input latency and 2 clocks cycles as computing latency. For r P 6 , the implementation of task3 considers 4 samples as input latency and 3 clocks cycles as computing latency. For r P 8 , the implementation of task1 considers 1 sample as input latency and 3 clocks cycles as computing latency. We get a new critical path (Fig. 9) and the computing cost is 30025 clock cycles. The performance analysis is able to identify the slightest change in the latencies of the resources, either due to different material implementations or because of changes in the parameters.

Conclusions

In this paper, we presented a latency based model for CGPA. We show the properties of our approach, and prove that for latency analysis is precise. Due to the characteristics of the model, we pretend to extend to other types of hardware accelerators. As latency is a crucial factor for autonomous systems, this model is ideal for the development of new systems and can predict the behavior of it. We also presented a new performance analysis equation. It takes into account the propagation of computing latency through the processing pipeline. It can provide cycle-accurate results and be a tool for the measurement of the configuration cost of an implementation in a design space exploration. The future work consists in to develop a mapping algorithm for CGPA based on the presented model and integrate the entire set of tools in a complete mapping framework.

,

 L i , Cfg i). I port i and O port i , are the set of input and output ports of r MUX i . L i is the latency of r MUX i and Cfg i ∈ Cfg fun represents the configuration cost. An r WR i ∈ R WR and an r RD i ∈ R RD are resources able to perform a write/read operation from or to a memory resource. We define r WR i and r RD i with a three-Compas'2020 : Parallélisme/ Architecture/ Système/ Temps Réel MILC -Lyon, France, du 30 juin au 3 juillet 2020 element tuple (A i , L i , Cfg i). A i defines the address space to access. L i models the latency of the write/read operation and Cfg i ∈ Cfg fun represents the possible configuration cost. The external sources and consumers of the data are r sensor i , r actuator i ∈ R interface . We describe an r sensor i with a tuple (Π i , L sensor i

Compas' 2020 :FIGURE 4 -

 20204 FIGURE 4 -Architecture organization of the study case.

FIGURE 5 -

 5 FIGURE 5 -Application model of the example.

FIGURE 6 -

 6 FIGURE 6 -Hardware model corresponding the case study CGPA.

FIGURE 7 -

 7 FIGURE 7 -Implementation model of the example.

FIGURE 8 -

 8 FIGURE 8 -Timing diagram of the implementation graph under the first set of latency features. Now, let's use a different set of latency features. We change the parameters for r P 5 . Let's assume that for the implementation of task2, the input latency changes to 3 samples and the computing latency to 3 clock cycles. The critical path is no longer the same. Fig.11shows the new critical path and the resulting computing cost is 30023 clock cycles.

TABLE 1

 1

	-Experimental study :
	processing resources features.
		T i
	r P 4,8,10 r P 5,7,11 r P 9 r P 6	task1, task5 task2, task6 task5, task6 task3, task4