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The effect of stress on the cross-slip energy in face-centered cubic metals:

a study using dislocation dynamics simulations and line tension models

M. Longsworth, M. Fivel

Univ. Grenoble Alpes, CNRS, Grenoble INP, SIMaP, Grenoble 38000, France

Abstract

Dislocation dynamics simulations were used to calculate the energy barrier of cross-slip via Friedel-
Escaig mechanism in face centered-cubic copper. The energy barrier in the unstressed case was
found to be 1.9 eV, as reported by B. Ramı́rez et al. [1]. The energy barrier was reduced by applying
an external stress. The most effective way of reducing it, was by applying a compressive stress on
the glide plane. Furthermore, it was confirmed using dislocation dynamics simulations, that both
the Schmid and Escaig stress have a comparable effect in reducing the energy barrier, in qualitative
agreement with the atomistic simulations performed by K. Kang et al. [2] in face-centered cubic
nickel. Most of the energy barrier values for stressed cross-slip fell within the experimental error
of 1.15±0.37 eV measured by J. Bonneville et al. [3]. Moreover, the activation enthalpy obtained
from K. Kang’s et al. [2] line tension model of cross-slip and the general expression for the activation
enthalpy proposed by A. Malka-Markovitz et al. [4] were in good quantitative agreement with the
simulation results. Hence, both could be used to calculate the activation enthalpy of screw segments
in dislocation dynamics simulations.
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1. Introduction

Cross-slip is a thermally-activated process by which screw dislocations change their glide plane,
allowing them to overcome obstacles and populate other slip planes [5]. It plays an important role
in two competing processes during plastic deformation [6]. On the one hand, it causes dynamic
recovery during stage III by dislocation annihilation [7], and other, it contributes to work hardening
by dislocation multiplication [8,9].

Since cross-slip is a thermally activated process, its rate is controlled by an Arrhenius-like
equation. Many dislocation dynamics (DD) simulations have successfully model plastic deformation
in crystals [10–14]. Most of them use the rate equation proposed by L. Kubin et al. [15]. In their model,
the cross-slip probability explicitly depends on the resolved shear stress at the onset of stage-III

Preprint submitted to the Journal of Mechanics and Physics of Solids December 9, 2020



plastic deformation, which is a macroscopic parameter obtained from the stress-strain curve of the
material.

This probability law has demonstrated to be robust enough to allow the formation of persistent
slip bands in the low-cycle fatigue regime [16], or to study the recovery dynamics in copper [17].
However, it is not sufficient in many situations. As an example, in the case of irradiated materials,
the local level of stress is very high because of the large number of obstacles associated with the
defect density. In this case, the cross-slip events are too frequent [18]. Contrarily, when the stress
level is very low, the probability of inducing cross-slip events will be very low or nonexistent.

Based on the work of L. Kubin et al. [15], A. Hussein et al. [19] recently proposed a more physical
rate equation that depends only on microstructure parameters, e.g. the energy barrier required to
form a constriction point on a screw dislocation, the Debye frequency of the material, the activation
volume and the local stress. This allowed them to implement DD simulations considering the
different cross-slip mechanisms identified from molecular dynamics (MD) simulations. Quantifying
the effect of stress on the activation barrier is thus of great importance to generate realistic DD
simulations.

The two most plausible cross-slip models for Face-Centered Cubic (FCC) crystals are the Fleis-
cher (FL) and Friedel-Escaig (FE) mechanisms.

The FL model was developed by R. Fleischer [20]. In his model, the leading partial in a stacking-
fault dissociates into two partials; one glides on the cross-slip plane and the other remains sessile
at the intersection of the two planes (stair-rod dislocation). The trailing partial then reacts with
the stair-rod dislocation to form another Shockley partial in the conjugate plane, which completes
the cross-slip process.

The FE model was developed by B. Escaig [21] based on J. Friedel’s ideas [22]. Moreover, he used
the line tension (LT) model of cross-slip developed by A. Stroh [23] to study the effect of the widening
stress (Escaig stress) on the energy barrier. In the FE model, the extended dislocation stops moving
in the glide plane due to an obstacle. An already-existing constriction then splits into two halves
and then separate in the cross-slip plane. This process proceeds spontaneously due to the stress on
the cross-slip plane until the dissociation is completed.

Although there have been some controversy on which cross-slip model prevails [24], recent atom-
istic simulations confirm that both FL and FE mechanisms can occur. The determination of which
process would dominate depends on many factors.

C. Jin et al. [25] used the nudged-elastic-band method to study FCC Al. They concluded that
there is a critical dislocation length below which the screw dislocation cross-slips only via FL
mechanism, whereas longer ones would cross-slip either via FL or FE mechanisms, depending on
the initial and final positions of the dislocation. The critical length they found was of the order of
22b, where b is the magnitude of the Burgers vector.

S. Xu et al. [26] reported similar findings in FCC Ni using dynamic concurrent atomistic-continuum
and MD simulations. They found that screw dislocations of length 6.47 nm cross-slip via FL mech-
anism, whereas longer dislocations (of length 12.94 nm) can cross-slip via either the FE or FL
mechanisms. They also suggested that the critical shear stress for both FE and FL mechanisms
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depends on the dislocation length.
Recently, W. Kuykendall et al. [27] used atomistic simulations to examine the effect of stress on

the energy barrier of cross-slip via FE and FL mechanisms in FCC Ni. They concluded that the
FE mechanism prevails when the Escaig stress on the glide plane is dominant, and that increasing
the Schmid and Escaig stress on the cross-slip plane promotes the FL mechanism.

The material of study in this work is FCC Cu due to its broad literature. The mechanism
of cross-slip in Cu has been fully examined using atomistic simulations and it was reported that
dislocations in this material cross-slip via FE mechanism [28,29]. The activation energy of Cu has
been calculated using both elasticity theory and atomistic simulations. However, the vast majority
of energy barrier calculations employ atomistic simulations [29–34].

Alternatively, B. Ramı́rez et al. [1] used a network-based formulation of dislocation dynamics to
study the effect of a general stress on the energy barrier of cross-slip via FE mechanism. They found
that the stress-free activation energy in Cu is 1.9 eV when the core is represented by two partials,
and that it converges to 1.43 eV when the core is distributed by 20 Volterra partial fractional
dislocations, the later value being in better agreement with the experimental results. They also
found that the cross-slip energy reduces to 0.62 eV in presence of a Lomer-Cottrel junction.

In recent years, K. Kang et al. [2] extended Escaig’s LT model to include the effect of gliding
stress (Schmid stress) on the cross-slip plane. Contrary to Escaig’s claim that the Schmid stress had
a negligible effect on the energy barrier, they found that it had a comparable effect to the Escaig
stress. They calculated the energy barrier in FCC Ni using atomistic methods at different stress
conditions and found good qualitative agreement with their LT model.

More recently, A. Malka-Markovitz et. al. [4] solved Strohs’s LT model of cross-slip [23] exactly by
linearizing the interaction force between the partials. They obtained a general expression for the
activation enthalpy as function of the elastic constants and local stress.

The DD simulations of fatigue mostly rely on the energy barrier, which is often calculated using
atomistic simulations. However, the interatomic potential quantitatively affects the simulation
results [30]. Hence, they may not be reliable. On the other hand, in DD simulations, the core-width
used to compute the elastic energy can be determined using the theory developed by G. Schöck [35],
as suggested by B. Ramı́rez et al. [1]. Moreover, DD simulations naturally enable the possibility to
study the effect of complex structures on the energy barrier. In this way, they offer an attractive
alternative to large-scale atomic simulations.

The contribution of this work is twofold. First, the effect of stress on the cross-slip activation
enthalpy is carefully calculated using DD simulations, which is an interesting alternative to the
common atomistic approach found in the literature. Second, the results are compared with those
obtained from two recent LT models of cross-slip in order to verify their consistency. The objective
is to determine whether the aforementioned LT models could be reliably used in DD simulations to
calculate the activation enthalpy of screw segments.

The rest of this paper is organized as follows. Section 2 introduces the DD simulation methodol-
ogy, K. Kang’s et al. [2] LT model of cross-slip and the general expression for the activation enthalpy
proposed by A. Malka-Markovitz et. al. [4]. Section 3 describes the effect of stress on the activation
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enthalpy obtained using DD simulations and the two LT models. Finally, Section 4 presents the
summary and conclusions of this work.

2. Methodology

2.1. DD simulations

2.1.1. Force computation

Dislocation dynamics is a modeling approach to study crystal plasticity, in which dislocation
lines are discretized in linear segments and their motion is determined [36]. A segment is defined by
two nodes on its ends and a tangent line ξ̂ that connects them. The Burgers vector b associated to
it indicates the displacement’s magnitude and direction as the segment moves.

The force exerted by the local stress at each node is calculated using the Peach-Köhler formula.
Similarly to other discrete DD codes [37], NuMoDis [38] uses the formalism developed by A. Arsenlis
et al. [39] to compute the nodal forces. This force affects the nodal velocity through a given mobility
law. Thus, the dislocation dynamics can be determined by updating the position of all nodes after
a simulation step.

In order to study cross-slip in FCC crystals, the dissociated character of dislocations must
be considered. The SF produces a force that tends to attract the partials towards each other,
compensating the elastic repulsion between them. This results in an equilibrium separation distance
in the SF ribbon.

Perfect dislocations dissociate into partials if it decreases its elastic energy. However, discrete
DD codes are based on nodal forces and do not consider the systems energetics to determine its
evolution. In consequence, E. Martinez et al. [40] proposed to account for the intrinsic SF energy γi
by introducing a SF force (fsf ). They derived that fsf should be of magnitude γi, and perpendicular
to both the tangent line and SF plane n̂. The equation satisfying these conditions is given by:

fsf = γin̂× ξ̂ (1)

In NuMoDis [38], the SF ribbon is defined by an ordered list of nodes conforming the dislocation
partials and the plane that contains them. The SF forces acting on a partial, in order to be
physical, must point towards the opposite partial. Thus, given a slip plane orientation, the node
order defining the circuit must be such that the SF force given by Eq. 1 satisfy this condition.

2.1.2. Velocity computation

In FCC metals, the relationship between forces and velocities is linear due to the small intrinsic
lattice resistance [41]. The total force at a node f is given by f = fPK + fsf , where fPK is the
Peach-Köhler force. The projections of fPK and fsf on the glide plane act perpendicular to the line
segment. Therefore, the mobility law is of the form:

f = B · v (2)
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where v is the nodal velocity and B the viscosity matrix:

B(ξ̂) = B(I− ξ̂ ⊗ ξ̂) (3)

where B is the viscosity coefficient.
Thus, the nodal velocity is obtained by inverting the viscosity matrix from Eq. 2:

v = B−1 · f (4)

At each simulation step, the force at every node due to the influence of all other segments and
SF is computed; the nodal velocities are thus calculated and their new positions are updated.

2.1.3. Elastic energy

W. Cai et al. [42] showed that the non-singular interaction energy Ens between a segment with
ends x1 and x2 and Burgers vector b with another segment with ends x3 and x4 and Burgers vector
b′ is given by:

Ens = − µ

8π

∫ x4

x3

∫ x2

x1

∂k∂kRabib
′
jdxidx

′
j

− µ

4π(1− ν)

∫ x4

x3

∫ x2

x1

∂i∂jRabib
′
jdxkdx

′
k

+
µ

4π(1− ν)

∫ x4

x3

∫ x2

x1

∂k∂kRabib
′
idxjdx

′
j

− µν

4π(1− ν)

∫ x4

x3

∫ x2

x1

∂k∂kRabib
′
jdxjdx

′
i

(5)

where µ is the shear modulus, ν the Poisson’s ratio, Ra =
√

R ·R + a2, R = x− x′, and a the
core-width parameter.

The analytical expressions resulting from the solution of Eq. 5 for parallel and non-parallel
segments were provided by W. Cai et al. [42]. These formulas were used to calculate the interaction
and self-energies of the segments in NuMoDis [38].

The core-width parameter a affects the elastic energy both qualitatively and quantitatively. G.
Schöck [35] developed a theory based on the Peierls framework [43] to obtain a physical value of a. He
showed that the total energy of a single straight dislocation is given by [35]:

EP = EL(φ)

[
ln

(
r

2w(φ)

)
+ 1

]
(6)

where φ is the angle between the Burgers vector and the line direction, r is the outer cut-off
radius, w(φ) is the average width of its edge and screw components, and EL(φ) is the pre-logarithmic
elastic line energy factor:
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EL(φ) =
µb2

4π

(
cos2(φ) +

sin2(φ)

1− ν

)
(7)

G. Schöck [35] argued that w(φ) can be approximated as the width of a single dislocation in an
isotropic medium passing through two equilibrium positions i.e. with SF energy γ = γu

[35]:

w(φ)

b
=

cos2(φ) + sin2(φ)/(1− ν)

b/c+ 2π2γu/(µb)
(8)

where c is the interplanar glide plane spacing, γu the unstable SF energy and b is the magnitude
of the Burgers vector.

Using W. Cai’s et al. [42] model, the line energy for screw ES and edge dislocation EE are found
to be [35]:

ES =
µb2

4π
ln

(
r
√
e

aS

)
(9)

EE =
µb2

4π(1− ν)
ln

(
r

aE

)
(10)

where aS and aE are the core spreading parameters of the screw and edge components, respec-
tively, and e is the base of the natural logarithm.

The continuum description in Eqs. 9 and 10 must be consistent with the Peierl’s atomistic
treatment in eq. 6. Imposing this condition, aS and aE are required to be [35]:

aS =
2w(0)√

e
and aE =

2w(π/2)

e
(11)

Following the work of B. Ramı́rez et al. [1], the core-width parameter can be considered as an
averaged value of aS and aE:

a ≈ 2w(0)

e
=

2

e

(
b

b/c+ 2π2γu/(µb)

)
(12)

2.1.4. Effective stacking-fault energy

Dislocations in FCC crystals dissociate into partials. The dislocation moves due to the action of
an external stress. The partial at the front respect to the direction of motion is called the “leading”
partial, and the other “trailing” partial. Let L = {~P1, ~P2, ..., ~PN} and L̃ = { ~Q1, ~Q2, ..., ~QN} represent
the set of nodes conforming the leading and trailing partials, respectively (see Fig. 1).

6



Figure 1: The solid dots denote the nodal positions; the shape of the leading and trailing partials
are described by L and L̃, respectively.

The effective SF energy is given by the SF energy WSF plus the work done by the applied forces
Wapp, which can be calculated as follows:

WSF = γi

N∑
j=1

[
yj+1 + yj

2
∆xj −

ỹj+1 + ỹj
2

∆x̃j

]
(13)

Wapp =
N∑
j=1

Fyj∆xj + F̃ ỹj∆x̃j (14)

where:

yj = ~Pj · û, ỹj = ~Qj · û, ∆xj = (~Pj+1 − ~Pj) · b̂, ∆x̃j = ( ~Qj+1 − ~Qj) · b̂ for j = 1, 2, ..., N (15)

û = n̂ × b̂ is an unitary vector contained in the slip plane of normal n̂, perpendicular to the
normalized Burgers vector b̂. In absence of Schmid stress, the partials are indistinguishable from
each other due to the spatial symmetry with respect to the x̂ axis. For that reason, the sign of û
does not affect the energy. However, the leading and trailing partials are univocally defined in the
presence of a Schmid stress. In that case, û must point towards the bowing-out direction because
the energy barrier does not depend on the sign of the Schmid stress [2,4,27].

The proportionality factors F and F̃ are given by:

F = − bσE
2
√

3
− bσS

2
and F̃ =

bσE

2
√

3
− bσS

2
(16)

where the subscripts E and S refer to the Escaig and Schmid stress, respectively.
All the nodes were mobile except those two at the extremes, which simulate the constriction

points at the equilibrium configurations. Therefore, the partials always satisfied y1 = ỹ1 = yN = ỹN = 0.
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Figure 2: An equilibrium configuration during cross-slip via FE mechanism. The process is com-
pleted when the constriction separation tends to infinity. In this limit, the dislocations is completely
contained in the conjugate plane with separation between the partials lcs for all x (figure adapted
from K. Kang et al. [2]).

2.1.5. Cross-slip simulations

Cross-slip via FE mechanism was assumed in all simulations. The DD code was used to find
the equilibrium configurations at different cross-slip stages. The total energy of a configuration
consisted of its total elastic energy plus the effective stacking-fault energy, which were computed
as described in sections 2.1.3 and 2.1.4. The applied stresses were small enough such that the
Frank-Read source remained deactivated in all simulations.

According to the FE mechanism, the dislocation must stop moving before cross-slipping. There-
fore, the Schmid stress on the glide plane σgS was always assumed to be zero. The dislocation
width in the glide plane was affected by the Escaig stress σgE. Soon after stop moving, an already-
existing constriction splits into two halves and the dislocation expands in the cross-slip plane until
equilibrium is reestablished (see Fig. 2). This occurs in the limit when the distance between the
constriction points in the cross-slip plane 2xd tends to infinity.

In DD codes, an infinite dislocation does not really exist. Thus, the initial configuration consisted
of a dislocation with length of 1000 Å lying in the (111) plane. The dislocation was pinned at its
ends. The Burgers vector of the partials pointed away from each other as shown in Fig. 3(a). This
was a long-enough dislocation such that most part of it attained equilibrium i.e the distance lg

between the partials.
An intermediate cross-slip configuration consisted of a semi-infinite dislocation on the glide plane

with a constricted cross-slipped segment on the conjugate plane (111). The Burgers vector of the
partials pointed towards each other on the cross-slip plane. The total configuration length was fixed
to 1000 Å, in agreement with the initial state. The intermediate cross-slip configuration was thus
characterized by the distance between its constriction points.

In the limiting case when the constrictions points are infinitely apart, the dislocation must be
completely contained in the cross-slip plane (see 3(b)). Unlike in the glide plane, the dislocation
was allowed to move by bowing-out on the conjugate plane. The sign of the Schmid stress on the
cross-slip plane σcsS was affected only the bowing-out direction, and not the total energy. As in the
glide plane, the width of dislocation in the conjugate plane was affected by the Escaig stress σcsE .
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Figure 3: Simulation setup. (a) The reference configuration consists of a dissociated right-handed

screw (RHS) dislocation at equilibrium on the glide plane (111) with partials’ Burgers vector
−→
bg1 =

a0
6

[121] and
−→
bg2 = a0

6
[211] pointing away from each other. (b) The final configuration consists of

a dissociated RHS dislocation at equilibrium in the cross-slip plane (111) with partials’ Burgers

vector
−→
bcs1 = a0

6
[121] and

−→
bcs2 = a0

6
[211] pointing towards each other.
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Figure 4: The shape of the partials in the cross-slip plane are described by the y1(x) and y2(x), and
satisfy the boundary conditions y1(±xd) = y2(±xd) = 0 (figure adapted from K. Kang et al. [2]).

In order to study the effect of σgE, σcsS and σcsE , the coordinate system was rotated such that
the [111] direction matched with the ẑ axis and the Burgers vector [110] with the x̂ axis. Thus,
the stress on the glide and cross-slip planes as function of the tensor components in the Cartesian
coordinate system were given by:

σgS = σxz (17)

σgE = σyz (18)

σcsS =
2
√

2σxy − σxz
3

(19)

σcsE =
7σzy + 2

√
2(σyy − σzz)
9

(20)

The energy of an intermediate cross-slip configuration was measured with respect to the energy
of the initial state i.e. the energy of the dislocation resting at equilibrium in the glide plane under
stress σgE. Thus, the energy barrier was defined as the maximum energy among all intermediate
cross-slip configurations as function of the distance between the constriction points.

2.2. Line tension model

In K. Kang’s et al. [2] LT model of cross-slip, the FE mechanism is assumed. Thus, the dislocation
does not move before cross-slipping i.e. the Schmid stress on the glide plane is zero (σgS = 0).
However, the Escaig stress on the glide plane σgE is not necessarily zero. The equilibrium separation
between the partials in the glide plane lg depends on σgE:

10



lg =
A

F g
(21)

where for a screw dislocation dissociated into two 30◦ partials [44]:

A =

(
1

4
− 1

12(1− ν)

)
µb2

2π
(22)

F g = γi − bσgE/(2
√

3) (23)

The convention used in this framework is that positive σgE increases the distance between the
partials and negative decreases it.

Analogously, if the dislocation does not move in the cross-slip plane, its equilibrium distance lcs

is given by:

lcs =
A

F cs
(24)

where

F cs = γi − bσcsE /(2
√

3) (25)

The shape of the partials is described by continuous functions y1(x) and y2(x) (see Fig. 4).
The constriction points are located in the x axis at ±xd and thus y1(±xd) = y2(±xd) = 0 must be
satisfied.

The energy contribution from the cross-slipped segment (measured with respect to the energy
of an infinite straight screw dislocation resting at equilibrium in the glide plane) is given by [2]:

Ecs = W1 +W2 +W3 (26)

where W1 is the change in elastic repulsion between the partials, W2 is the change of the line
energy and W3 the change in SF energy and the work done by the stress.

Specifically,

W1 = A

∫ xd

−xd
ln

(
lg

y1 − y2

)
dx (27)

W2 = T

∫ xd

−xd

(√
1 + (y′1)

2 +
√

1 + (y′2)
2
)
dx− 4Txd (28)

W3 =

∫ xd

−xd
(F cs

1 y1 + F cs
2 y2) dx− 2F glgxd (29)
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where

F cs
1 = F cs − bσcsS /2 (30)

F cs
2 = −F cs − bσcsS /2 (31)

The energy functional in Eq. 26 was minimized using the conjugate gradient method as suggested
by Kang et al. [2].

The line energy per unit length was given by [2]:

T = αµb2/2 (32)

The variable α was treated as a fitting parameter to match the DD simulations of cross-slip (see
section 3).

Formally, the energy barrier is given by:

Eb(σ
g
E, σ

cs
S , σ

cs
E ) = max

xd
E(xd;σ

g
E, σ

cs
S , σ

cs
E ) (33)

where

E = min
y1,y2

Ecs(y1, y2;xd;σ
g
E, σ

cs
S , σ

cs
E ) + Eg(σgE) (34)

Eg being the energy of an isolated constriction on a perfect screw dislocation:

Eg = 2lg
√
AT

∫ 1

0

[− ln t+ (t− 1)]1/2dt (35)

The activation energy can be obtained for a given stress condition by solving Eq. 34 numerically.
Another useful formulation of the LT model of cross-slip was proposed by A. Malka-Markovitz

et. al. [4], who solved Strohs’s LT model [23] exactly by linearizing the interaction force between the
partials. They obtained the following general expression for the activation enthalpy as function of
the elastic constants and local-stress components:

∆H(σ)

∆E0

=
βg

2
+

(
βcs

2

)
tanh(lC)

−
(
βcs

2

)[
2αL
1.55

lCE
∗ +

α3
Ls

1.55

δ

βcs
l3C

] (36)

where ∆E0 = 1.9 eV is the energy barrier of copper obtained in this work using DD simulations
and αL ≈ 0.6 is a scale factor.

βg and βcs are functions of the Escaig stress:
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Property Value

a0
[46]3.61 Å

b [47]a0/
√

2
γi

[48]42 mJ/m2

γu
[1]182 mJ/m2

ν [49]0.324
µ [50]54.6 GPa
B [51]1.5 ×10−5 Pa-s

Table 1: Parameters used for FCC Cu; a0 is the lattice parameter, b the magnitude of the Burgers
vector, γi the intrinsic SF energy, γu the unstable SF energy, ν the Poisson’s ratio, µ the shear
modulus and B the viscosity coefficient at room temperature.

βg =
1

1 +
√
3b

6γi
σgE

and βcs =
1

1 +
√
3b

6γi
σcsE

(37)

whereas δ is a quadratic function of the Schmid stress on the cross-slip plane:

δ =
1

6

(
bσcsS
γi

)2

(38)

The E∗ function is a dimensionless off-set in the interaction energy between the glide and cross-
slip planes [45]:

E∗ = ln

(
βcs

βg

)
(39)

The critical length lC in Eq. 36 can be found by solving the following equation numerically [45]:

1.55

cosh2(lC)
− 3δ

βcs
l2C = 2E∗ (40)

In contrast with the convention used in K. Kang’s et al. [2] LT model of cross-slip, positive σgE
decreases the distance between the partials and negative increases it.

In this work, the sign convention of K. Kang’s et al. [2] was used in the plots.
The elastic constants of Cu used in both the DD simulations and LT model are shown in Table

1.
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Figure 5: The energy barrier as function of the constriction separation at zero stress.

3. Results and discussion

3.1. The calibration of the line tension model

The relative energy of the intermediate cross-slip configurations at zero stress is shown in Fig.
5. The energy uncertainty of the order of ±0.1 eV in all the simulations results can be attributed to
the line discretization used in the DD simulations, as well as to the finite core-width size of the non-
singular theory of dislocations. The parameter α in K. Kang’s et al. [2] LT model was calibrated such
that the equilibration energy matched with the DD simulations at zero stress. The value was found
to be α = 0.22. Together with the core-width parameter in the elastic energy, the choice of α was a
key parameter for the good agreement between K. Kang’s et al. [2] LT model and DD simulations.
The effect of compressive Escaig stress was to decrease the SF width. The stressed equilibrium
separation obtained from the DD simulations was in great agreement with the LT model, as shown
in Fig. 6.

The energy predicted by the K. Kang’s et al. [2] LT model and that obtained with the simulations
does not match for short cross-slipped segments as seen in Fig. 5. This is expected because the LT
model approximates the energy of a differential segment as that of a straight dislocation [52]. In fact,
the LT model breaks down in the limiting case were 2xd = 0 because the elastic repulsion diverges
(see Eq. 27). However, this is not relevant since the objective of this work is to quantify the stress
effect on the energy barrier, which occurs for longer dislocation lines where the LT model is more
physical.
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Figure 6: The effect of stress on the equilibrium separation between the partials. The segmented
line corresponds to equation 21.

In the unstressed case, the energy monotonically augments as the constriction separation in-
creases, but quickly reaches a maximum value of 1.9 eV. This means that once the cross-slip seg-
ment reaches a critical length (around 60 Å), no further energy is required to be invested and the
cross-slip process continues spontaneously. Therefore, the unstressed energy barrier of copper is
equal to 1.9 eV, as reported by B. Ramı́rez et al. [1].

The equilibration energy encountered in the unstressed cross-slip is roughly equal to twice the
energy required to form an isolated constriction. It can be argued that at the beginning of cross-slip,
when the two constrictions are close to each other, the elastic repulsion between them adds up to
the energy required to form them in isolation. However, as the distance between them increases,
their interaction further decreases. Thus, if they are sufficiently far apart, the total energy with
respect to the relaxed dislocation is roughly equal to that of the two independent constrictions. The
planar constriction energy at zero stress is 0.7 eV, according to the DD simulations (see Fig. 7).

A. Stroh et al. [23] found the energy of a constriction using elasticity theory. Assuming a shear
modulus of G = 45 GPa and an equilibration distance between the partials at zero stress of d0 = 18
Å, one finds that in his model the energy of a single constriction is roughly 2 eV, which is almost
three times higher than that found in this work (0.7 eV).

W. Püschl [53] estimated a constriction energy of 1.1 eV for FCC Cu using elasticity theory; G.
Saada [54] generalized A. Strohs’s LT model for arbitrary constricting distance. He obtained different
constriction energy values in the range of 0.33 - 0.7 eV, depending on the choice r0/b, where r0 is a
cut-off radius. Although these values are in better agreement with the experimental energy barrier,
the (arbitrary) choice of r0 was not clearly determined.

T. Rasmussen et al. [34] found a constriction energy of 1.6 eV using atomistic simulations, in
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Figure 7: The effect of compressive stress on the constriction energy according to DD simulations.

reasonable agreement with A. Stroh et al. [23], but too high according to the experimental energy
barrier.

More recently, B. Ramı́rez et al. [1] found a constriction energy of 0.7 eV using dislocation dy-
namics, in excellent agreement with this work.

The effect of pure compressing stress on the constriction energy was found to be negligible. The
slight decrease on the constriction energy observed in Fig. 7 is not conclusive. Nevertheless, one
can assert that the average constriction energy did not vary much in the given range of stress.

The small effect of stress on the constriction energy can be explained by using the model devel-
oped by W. Püschl [53]. It predicts a marginal decrease in constriction energy (of less than 0.2 eV)
when the splitting width between the partials decreases from 8b ≈ 20.4 Å to 6b ≈ 15.3 Å. These are
roughly the equilibration distances simulated by NuMoDis [38] at zero (17.4 Å) and -250 MPa (12.1
Å), respectively. Thus, according to this model, one should not expect the constriction energy to
vary much by applying a pure compressing stress for the given range of values.

The asymptotic convergence of the cross-slip energy barrier at zero stress observed in Fig. 5 has
been thoroughly reported before.

M. S. Duesbery et al [55] calculated the constriction pair energy as function of the stacking-
fault energy using a linear-elastic framework, and found that for constriction separation larger than
∼ 50b, the total energy becomes that of two independent constrictions. In particular, for FCC
Cu, they found that the asymptotic value of the cross-slipped configuration was 3.7 eV. They also
identified the asymmetric nature of the two constrictions in the cross-slip plane, as they asserted
that one had lower energy being screw-like, and the other higher energy being edge-like. These are
different from the Stroh-type constriction, which are edge-like on the one side, and screw-like on
the other.

16



0 50 100 150 200 250
−σgE [MPa]

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

H
[e

V
]

(A)

0 50 100 150 200 250
σcsE [MPa]

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

(B)

0 50 100 150 200 250
σcsS [MPa]

0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1

(C)

K. Kang et al.
A. Malka-Markovitz et al.
NuMoDis

Figure 8: The effect of stress on the energy barrier: (A) σgS = σcsE = σcsS = 0, (B) σgS = σgE = σcsS = 0
and (C) σgS = σgE = σcsE = 0. The green circles represent the DD simulation results, the blue
diamonds correspond to the numerical solution of K. Kang’s et al. [2] LT model of cross-slip (see
Eq. 34) and the red crosses were obtained from the general expression for the activation enthalpy
proposed by A. Malka-Markovitz et. al. [4] (see Eq. 36).
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Later on, T. Rasmussen et al. [34] corroborated several results of M. S. Duesbery et al. [55] using
atomistic simulations, as they obtained that indeed the total energy converged to the value of
two independent constrictions for separations larger than ∼ 50b. They measured a screw-like
constriction energy of -3.8 eV, and an edge-like constriction energy of 1.1 eV, which added up to
the total energy barrier in FCC Cu (2.7 eV). Although this value is lower than that obtained by M.
S. Duesbery et al [55], it is roughly the double of the experimental value obtained by J. Bonneville
et al. [3].

S. I. Rao et al. [30] obtained an energy barrier for cross-slip at zero stress in the range of 1.07
- 1.28 eV using molecular statics. This energy is significantly smaller than that predicted by T.
Rasmussen et al. [34]. They argued that it could be due to the difference in interatomic potentials
used, as well as the Green’s function technique used to relax the boundary forces in the simulations
developed by S. I. Rao et al.

B. Ramı́rez et al. [1] found an unstressed energy barrier of 1.9 eV using DD simulations for
dislocations dissociated into two partials. They obtained that the energy plateau was reached for a
constriction separation of about 60 Å. Both results are in excellent agreement with the simulations
in this work. Furthermore, notice that the critical length is about the half of the value found by
previous methods.

The total energy of a solid crystal is all potential energy (assuming of course that the crystal
does not move). The potential energy of an elastic system is the difference between the internal
energy Πint and the energy due to external forces Πext [56]. The Πint consists of the stress-strain
energy due to the stress field introduced by the dislocations (and their interactions) respect to the
initial geometry i.e. the perfect crystal. The Πext consists of the work done by the applied forces,
which is obtained by multiplying the displacement generated by the dislocations as they move with
the applied forces. Therefore, the energy barrier can be decreased in presence of an external stress.

In many DD fatigue simulations [10–14], following the pioneering work of L. Kubin et al. [15], the
driving force for cross-slip is the Schmid stress. However, the screw dislocation does not really
move because an obstacle is assumed to stop its motion in the glide plane. Thus, the effect of σgS
is to compress the dislocation against the obstacle, reducing the equilibration distance between the
partials [2]. In this way, the σgS stress plays a similar role to σgE, if the dislocations is assumed to
stop completely by being compressed against an obstacle. For this reason, σgS is assumed to be zero
in all simulations, following the model developed by B. Escaig [21].

3.2. Uncoupled stress

In order to study the independent influence of the stress components on the energy barrier,
three cross-slip possibilities were considered: (A) pure compression on the glide plane, (B) pure
expansion on the conjugate plane and (C) pure bowing-out on the conjugate plane. The stress was
increased up to 250 MPa, because the equilibrium configuration breaks down around 260 MPa [57].

The activation enthalpy obtained from DD simulations, the numerical solution of K. Kang’s et
al. [2] LT model of cross-slip and the general expression for the activation enthalpy proposed by A.
Malka-Markovitz et. al. [4] are in good quantitative agreement with each other, as shown in Fig. 8.
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The largest influence on the energy barrier was obtained by pure compression on the glide plane,
which reduced it up to 45% (see Fig. 8 (A)). The minimum energy barrier of 1 eV was obtained
by applying a compressive stress of 250 MPa on the glide plane. This is in contrast with the lower
energy value of 0.95 eV obtained by B. Ramı́rez et al. [1] under a pure σcsE of 220 MPa. On the
other hand, K. Kang et al. [2] also concluded that the compressive stress applied on the glide was
the most effective way of reducing the energy barrier in FCC nickel. The pure widening stress on
the cross-slip reduced it up to 20% (see Fig. 8 (B)) and the pure bowing-out stress on the cross-slip
produced a decrease in the energy barrier of about 15% (see Fig. 8 (C)).

The effect of stress was not only to decrease the energy barrier but also the activation length of
cross-slip. The maximum of energy at 200 MPa occurred for a constriction separation of about 25
Å. This value is comparable to the activation length of 12b ≈ 30.6 Å at 220 MPa obtained by B.
Ramı́rez et al. [1].

3.3. Coupled stress

In order to study the combined effect of stress on the energy barrier, three cross-slip possibilities
were considered: (A) compression on the glide plane and expansion on the conjugate plane, (B)
compression on the glide plane and bowing-out on the conjugate plane and (C) expansion and
bowing-out on the conjugate plane.

As in the previous case, the activation enthalpy obtained from DD simulations and the two
formulations of the LT model of cross-slip analyzed in this work [2,4] are in good agreement (see Fig.
9).

The effect of applying a coupling compressive stress on the glide plane lead to the largest
decrease in the energy barrier (see Figs. 9 (A) and (B)). These results resemble the effect applying
an uncoupled compressive stress on the glide plane (see Fig. 8 (A)), which also lead to an energy
barrier reduction of roughly 50%.

The effect of applying coupled stresses on the conjugate plane only (see Fig. 9 (C)) was com-
parable of applying an uncoupled Schmid stress on the conjugate plane (see Fig. 8 (C)). In both
cases, the energy barrier decreased up to 20%.

These observations are validated by the atomistic simulations of G. Esteban-Manzanares et.
al. [58], who studied the effect of stress in aluminum using molecular dynamics and obtained the
same qualitative results.

4. Summary and Conclusions

In this work, the unstressed constriction energy was equal to 0.7 eV, as reported by B. Ramı́rez
et al. [1]. The effect of pure compressive stress in the range of -50 to -250 MPa on the constriction
energy was negligible, in agreement with W. Püschl [53].

The unstressed energy barrier was found to be 1.9 eV, as obtained by B. Ramı́rez et al. [1].
However, it does not lie within the experimental range of 1.15±0.37 eV measured by J. Bonneville
et al. [3]. On the other hand, the energy barrier could be reduced by applying an external stress,
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Figure 9: The effect of stress on the energy barrier: (A) σgS = σcsS = 0, (B) σgS = σcsE = 0 and (C)
σgS = σgE = 0.
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leading to an energy barrier in better agreement with the experimental results. The most effective
way of reducing it, was by pure compression on the glide plane. Furthermore, it was found using DD
simulations, that both the Schmid and Escaig stress on the conjugate plane have a comparable effect
in reducing the energy barrier, in qualitative agreement with the atomistic simulations performed
by K. Kang et al. [2] in FCC nickel.

The energy barrier of FCC Cu at zero stress has been obtained using the line LT model and
atomistic simulations before. Some of them reported an energy barrier in better agreement with
experiments [30,54]. However, the LT model suffers from arbitrariness in the cut-off radius determi-
nation [54] and the atomistic simulations are highly sensitive to the interatomic potential used [30].
In DD simulations, these problems do not exist and the core-width used to compute the elastic
energy can be calculated using the theory developed by G. Schöck [35] as suggested by B. Ramı́rez et
al. [1]. Moreover, the effect of non-homogeneous stress on the energy barrier, like those generated by
pile-ups and forest dislocations, can be more naturally studied using DD simulations, in comparison
with other simulation techniques.

The activation enthalpy obtained from DD simulations was in excellent agreement with both
the numerical solution of K. Kang’s et al. [2] LT model of cross-slip and the general expression for
the activation enthalpy proposed by A. Malka-Markovitz et. al. [4]. Since the later is an analytical
model, it can be easily implemented in a DD code to calculate the activation enthalpy of screw
segments.

Acknowledging a limitation of this work, a perfect screw dislocation in FCC crystals can be
dissociated in a set of fractional partial dislocations (FPD) pairs, instead of two Shockley partials
with Burgers vectors b1 and b2. Based on the work of S. Banerjee et al. [59], B. R. Ramı́rez et al. [1]

generalized the dissociation of perfect screw dislocations into n pairs of fractional partial dislocations
(FPD) with Burgers vectors b1/n and b2/n. By using 20 FPDs, they obtained an energy barrier
reduction from 1.9 to 1.43 eV at zero stress, which lies within the experimental error of the energy
barrier measured by J. Bonneville et al. [3].

Regarding the LT model, the constant line energy per unit length T makes it impossible to
distinguish between edge-like and screw-like constrictions. Thus, a more physical description of
cross-slip can be made by letting the total energy depend on the angle between the Burgers vector
and the local tangent vector [2,45,52]. In spite of it, the energy barrier calculated using the LT model
was found to be in good quantitative agreement with the DD simulations, at least for the case
of dissociation into two partials. Hence, the orientation-dependent LT model might be in better
agreement with DD simulations that describe the dislocation core using more than a pair of FPDs.
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[58] G. Esteban-Manzanares, R. Santos-Güemes, I. Papadimitriou, E. Mart́ınez, J. LLorca, Influ-
ence of the stress state on the cross-slip free energy barrier in Al: An atomistic investigation,
Acta Materialia 184 (2020) 109–119. arXiv:1910.14556, doi:10.1016/j.actamat.2019.10.
055.
URL https://doi.org/10.1016/j.actamat.2019.10.055

27

http://aip.scitation.org/doi/10.1063/1.3253150
https://doi.org/10.1063/1.3253150
http://aip.scitation.org/doi/10.1063/1.3253150
https://books.google.fr/books?id=QcyxI-3EG4cC
https://books.google.fr/books?id=QcyxI-3EG4cC
https://books.google.fr/books?id=QcyxI-3EG4cC
https://linkinghub.elsevier.com/retrieve/pii/S1359645402003567
https://linkinghub.elsevier.com/retrieve/pii/S1359645402003567
https://doi.org/10.1016/S1359-6454(02)00356-7
https://doi.org/10.1016/S1359-6454(02)00356-7
https://linkinghub.elsevier.com/retrieve/pii/S1359645402003567
http://doi.wiley.com/10.1002/pssb.2221620205
https://doi.org/10.1002/pssb.2221620205
http://doi.wiley.com/10.1002/pssb.2221620205
https://linkinghub.elsevier.com/retrieve/pii/092150939190333I
https://doi.org/10.1016/0921-5093(91)90333-I
https://linkinghub.elsevier.com/retrieve/pii/092150939190333I
https://linkinghub.elsevier.com/retrieve/pii/095671519290208V
https://doi.org/10.1016/0956-7151(92)90208-V
https://linkinghub.elsevier.com/retrieve/pii/095671519290208V
https://books.google.fr/books?id=PDeSBQAAQBAJ
https://books.google.fr/books?id=PDeSBQAAQBAJ
https://linkinghub.elsevier.com/retrieve/pii/S0045653500005610
https://linkinghub.elsevier.com/retrieve/pii/S0045653500005610
https://doi.org/10.1016/S0045-6535(00)00561-0
https://doi.org/10.1016/S0045-6535(00)00561-0
https://linkinghub.elsevier.com/retrieve/pii/S0045653500005610
https://doi.org/10.1016/j.actamat.2019.10.055
https://doi.org/10.1016/j.actamat.2019.10.055
http://arxiv.org/abs/1910.14556
https://doi.org/10.1016/j.actamat.2019.10.055
https://doi.org/10.1016/j.actamat.2019.10.055
https://doi.org/10.1016/j.actamat.2019.10.055


[59] S. Banerjee, N. Ghoniem, G. Lu, N. Kioussis, Non-singular descriptions of dislocation cores:
a hybrid ab initio continuum approach, Philosophical Magazine 87 (27) (2007) 4131–4150.
doi:10.1080/14786430701528739.
URL http://www.tandfonline.com/doi/abs/10.1080/14786430701528739

28

http://www.tandfonline.com/doi/abs/10.1080/14786430701528739
http://www.tandfonline.com/doi/abs/10.1080/14786430701528739
https://doi.org/10.1080/14786430701528739
http://www.tandfonline.com/doi/abs/10.1080/14786430701528739


Conflict of Interest



Margarita Longsworth: Conceptualization, Methodology, Software, 
Writing - original draft. Marc Fivel: Conceptualization, Supervision, 
Writing - review & editing.

Author Statement


