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This paper focuses on the controllability preservation through sampling of linear time-delay systems. We make use of a module theoretic framework acting as a unifying one for most of the existing delay system controllability notions. The controllability properties are envisioned through ring theoretic properties. Some illustrative examples complete the presentation.

INTRODUCTION

Delay systems, e.g. systems modeled by differentialdifference equations represent the simplest class of infinitedimensional processes. They naturally arise in technological systems, where the delay is quite often situated in the input or the output. This infinite dimensional character is merely lost through discretization.

Contrarily to the case of finite-dimensional systems, where the controllability notion is unique, there has been numerous, and seemingly unrelated controllability generalizations for delay systems. More specifically, notions have been elaborated either from a functional analytic approach (see, e.g., [START_REF] Bartosiewicz | Approximate controllability of neutral systems with delays in control[END_REF]; [START_REF] Manitius | Function space controllability of retarded systems: a derivation from abstract operator conditions[END_REF]; [START_REF] Yamamoto | Reachability of a class of infinitedimensional linear systems: an external approach with applications to general neutral systems[END_REF]) or from a more algebraic viewpoint (see, e.g., with a similar formalism as used here [START_REF] Bourlès | Linear Time-Varying Systems[END_REF]; [START_REF] Fabiańska | Applications of the quillen-suslin theorem to multidimensional systems theory[END_REF]; [START_REF] Mounier | Time delay systems[END_REF]; [START_REF] Rudolph | Flatness based control of distributed parameter systems: Examples and computer exercises from various technological domains[END_REF]), with systems over rings [START_REF] Loiseau | Algebraic tools for the control and stabilization of time-delay systems[END_REF]; [START_REF] Sontag | Linear systems over commutative rings: a survey[END_REF]), with distributional rings [START_REF] Bourlès | Generalized convolution behaviors and topological algebra[END_REF], [START_REF] Vettori | Module theoretic approach to controllability of convolutional systems[END_REF]), with dual trajectory modules over an operator ring (see, for instance, [START_REF] Gluesing-Luerssen | Linear Delay-Differential Systems with Commensurate Delays: An Alebraic Approach[END_REF]; [START_REF] Pillai | A behavioral approach to control of distributed systems[END_REF]). There has thus also been many bridging notions between continuous delay systems and sampled data systems (Fridman (2014a,b); [START_REF] Louisell | Delay differential systems with timevarying delay: new directions for stability theory[END_REF]).

In [START_REF] Fliess | Controllability and observability of linear delay systems: an algebraic approach[END_REF], an algebraic setting was introduced, based on module theoretic properties, which yielded a unifying framework within which most of theses notions could be compared. Having the previous facts in mind, it is natural to ask which controllability property can be preserved under sampling.

The main features of our algebraic framework can be summarized as follows:

' The intrinsic character of the various notions and definitions.

' Varying the coefficients ring and the module properties yield a great flexibility in defining structural notions. ' A framework enabling the unification of most of the existing structural notions of the delay system's literature (see [START_REF] Fliess | Controllability and observability of linear delay systems: an algebraic approach[END_REF]). ' The constructive character of the structural notions, as demonstrated by the numerous computer algebra implementations (see, e.g., [START_REF] Chyzak | Effective algorithms for parametrizing linear control systems over Ore algebras[END_REF]; [START_REF] Quadrat | A constructive study of the module structure of rings of partial differential operators[END_REF]). ' The independence of the obtained structural results from often tricky existence and uniqueness prerequisites, as is customary for infinite dimensional systems through functional analytic techniques. ' The same framework can be used both for finite-and infinite-dimensional linear systems.

The sampling we shall use are classical ones, and we will not explicitly study the effect of sampled data control on a continuous system.

The aim of this contribution is to investigate whether controllability notions can be preserved through sampling.

The remaining of the paper is organized as follows: In Section 2, general algebraic definitions are given, and the case of finite dimensional and delay systems are given in Section 3. Discretization and interplay between controllability and sampling are studied in Sections 4 and 5. Finally, some concluding remarks end the paper.

PREREQUISITES AND R-SYSTEMS

Most of the commutative algebra we use may be found in standard textbooks, such as [START_REF] Eisenbud | Commutative Algebra with a view toward Algebraic Geometry[END_REF]; Lang (71); [START_REF] Rotman | An Introduction to Homological Algebra[END_REF].

In particular, the basic definitions of module, ideal, free module, . . . , can be found for example in pages 11 to 17 of [START_REF] Eisenbud | Commutative Algebra with a view toward Algebraic Geometry[END_REF]. The notion of torsion freeness is in (Lang,71,p. 388) or (Rotman, 1979, p. 224). For projectivity, see, e.g., (Eisenbud, 1995, A3.2 p. 615) or (Rotman, 1979, Th. 3.11 and 3.14, p. 62-63).

Preliminary definitions

All the rings and algebras we shall consider are commutative, with unity, and without zero divisors. Definition 2.1. Let R be a ring. An R-linear system, or an R-system, or a (linear) system over R, Σ is a finitely generated R-module. l

In other words, an R-system is an R-module with finite free presentation (see, e.g., [START_REF] Eisenbud | Commutative Algebra with a view toward Algebraic Geometry[END_REF], p.17), (Rotman, 1979, p. 90)):

E φ ÝÑ W ÝÑ Σ ÝÑ 0. A presentation matrix P Σ of Σ is one associated with φ.
Notation. We denote by rξs the R-submodule spanned by a subset ξ of Σ. Definition 2.2. An R-linear dynamics, or an R-dynamics, or a (linear) dynamics over R, is an R-system Σ equipped with an input u " pu 1 , . . . , u m q, i.e., a finite subset of Σ, such that the quotient module Σ{rus is torsion. The input u is said to be independent if rus is a free R-module of rank m. l Definition 2.3. An output y " py 1 , . . . , y p q is a finite subset of Σ. An R-system equipped with an input and an output is called an input-output R-system. l

General controllability notions

Varying the rings under consideration through suitable tensor products yields various controllability notions. Definition 2.4. Let A be an R-algebra. The R-system Σ is said to be A-torsion free controllable (resp. A-reflexive controllable, A-projective controllable, A-free controllable) if the A-module A b R Σ is torsion free (resp. projective, free). l

Elementary homological algebra [START_REF] Rotman | An Introduction to Homological Algebra[END_REF] yields: Proposition 2.1. The A-free controllability implies the Aprojective controllability, which implies the A-reflexive controllability, which implies the A-torsion free controllability. l

Localisation (e.g. inversion of some elements) preserves module properties in the following sense (see, e.g., (Rotman, 1979, 4.81, p. 198

)): Proposition 2.2. If S Ď R is multiplicative, then localisa- tion Σ Þ Ñ S ´1Σ " S ´1R b R Σ defines an exact functor Mod R Ñ Mod S ´1R . Thus if Σ is free (resp. projective), then S ´1Σ is free (resp.

projective). l

The following result is borrowed from [START_REF] Rowen | Ring Theory[END_REF], Proposition 2.12.17, p. 233): Proposition 2.3. Let Σ be an R-system, A an R-algebra, and S a multiplicative part of A such that Σ is S ´1R-free controllable. Then, there exists an element π in S such that Σ is Rrπ ´1s-free controllable. l Definition 2.5. Let Σ be an R-system, A an R-algebra, and S a multiplicative part of A containing an element π such that Σ is Rrπ ´1s-free controllable. Such a system Σ will be called π-free. l

We have the following direct consequence: Corollary 2.1. Let Σ be an R-torsion free controllable Rsystem and S a multiplicative part of R such that S ´1R is a principal ideal ring. Then, there exists π P S such that Σ is Rrπ ´1s-free controllable and Σ is π-free. l Remark 2.1. Note that the previous definitions allow for an extreme flexibility in the choice of the structural notions to be considered. First, three distinct algebraic notions are underlined (torsion freeness, projectivity and freeness) and last, but not least, the base change, through extension of scalars, yields a vast number of notions. l

Let us end this subsection by another notion, the spectral controllability, very useful in the infinite-dimensional case.

The following definition (given in [START_REF] Woittennek | Controllability of networks of spatially one-dimensional second order PDE -an algebraic approach[END_REF]) extends previous ones (see, e.g., [START_REF] Kirillova | On the problem of controllability of linear systems with aftereffect[END_REF], [START_REF] Asmykovich | Spectrum control in systems with delay[END_REF], [START_REF] Bartosiewicz | Approximate controllability of neutral systems with delays in control[END_REF], [START_REF] Rocha | Controllability for delay-differential systems[END_REF]) in our context. Definition 2.6. Let R be any ring that is isomorphic to a subring of the ring O of entire functions with pointwise defined multiplication. Denote the embedding R Ñ O by L . A finitely presented R-system with presentation matrix P is said to be spectrally controllable if the Omatrix P " L pP q satisfies Dk P N : @σ P C : rk C P pσq " k

The following proposition establishes a first algebraic characterisation for spectral controllability Proposition 2.4. (See [START_REF] Woittennek | Controllability of networks of spatially one-dimensional second order PDE -an algebraic approach[END_REF]).

Let R be any ring that is isomorphic to a subring of the ring O of entire functions with pointwise defined multiplication. A finitely presented R-system is spectrally controllable if, and only if, the module Σ O " O b R Σ is torsion free.

The next proposition strongly links spectral controllability and R-freeness, which yields a fairly constructive character.

Proposition 2.5. (See [START_REF] Woittennek | Controllability of networks of spatially one-dimensional second order PDE -an algebraic approach[END_REF]).

Let R be any Bézout domain that is isomorphic to a subring of O with the embedding R Ñ O denoted by L . Then the notions of spectral controllability and Rfree controllability are equivalent if and only if L maps non-units in R to non-units in O.

Decomposition

The classical decomposition of a module over a PID into its torsion and torsion free parts generalizes to Bézout domains (see, e.g. (Hazewinkel, 1995, p. 381)). Proposition 2.6. Let R be a Bézout domain, and Σ an Rmodule. One has the following decomposition:

Σ " tΣ ' Σ{tΣ where tΣ is the torsion submodule of Σ. l

FINITE DIMENSIONAL AND DELAY SYSTEMS

Finite dimensional systems

Two common instances of R-systems are given when R is the ring of differential operators Rr d dt s, which yields continuous time linear finite-dimensional systems [START_REF] Fliess | Some basic structural properties of generalized linear systems[END_REF], and when R is Rrδ h s, with δ h the shift operator of delay h, h being the sampling interval, with δ 0 being the identity operator. This yields linear discrete time finitedimensional systems [START_REF] Fliess | Reversible linear and nonlinear discretetime dynamics[END_REF].

On such rings (being common examples of principal ideal rings), all the notions of torsion freeness, projectivity and freeness coincide, resulting in the well known Kalman controllability notion. See [START_REF] Fliess | Some basic structural properties of generalized linear systems[END_REF]; [START_REF] Fliess | Finite poles and zeros of linear systems: an intrinsic approach[END_REF] for several fruitful consequences of this framework.

Various rings and delay systems

We shall consider the following rings in the sequel:

' R p " Rr d dt , δ L s, the polynomial ring; a ring on which delay systems are defined. In the incommensurate delay case, it becomes R p " Rr d dt , δ L s, where δ L " pδ L1 , δ L2 , . . . , δ Lr q and the dimension of the In the incommensurate delay case, it becomes R s " Rrδ h s. The latter ring will not be used here, since in computer implementations, only commensurate delays are used.

Q vector space rL 1 , . . . , L r s Q is r. ' R e "

Delay systems

The definition we shall adopt is the following. Definition 3.1. A pointwise linear delay system is a finitely generated R p -module. A pointwise linear commensurate delay system is a finitely generated R p -module. l Definition 3.2. Let Λ be a pointwise linear delay system. We shall call the exponential version of Λ, denoted by Λ e the R e -system obtained by the functor isomorphism ψ 

DISCRETIZATION

We shall define the discretization in the following way. Definition 4.1. Let Λ be a delay system, let h be a real number dividing L (i.e. such that L " N h with N P N). Consider then the ring morphism φ D p,q,h , where p, q P R s φ D p,q,h : R p Ñ pqq ´1R s d dt Þ Ñ ppδ h q qpδ h q this morphism corresponding to an identity approximation, i.e., p and q being such that lim

hÞ Ñ0 ppe ´h d dt q qpe ´h d dt q " d dt
A discretizer of Λ with sampling period h is a functor D p,q,h : Mod Rp Ñ Mod pqq ´1Rs built in the following way: ' Backward difference discretization. In this case, the morphism φ D p,q,h is φ D p,q,h p d dt q "

r Λ " Rr d dt , δ h , qpδ h q ´1s b Rp Λ pextnq D p,q,h Λ " φ Dp,q,h
1 ´δh h i.e. p " p1 ´δh q{h, and q " 1. We shall denote D B,h this discretization. ' Forward difference discretization. In this case, the morphism φ D p,q,h is

φ D p,q,h p d dt q " δ ´1 h ´1 h "
1 ´δh hδ h i.e. p " p1 ´δh q, and q " hδ h . We shall denote D F,h this discretization. ' Tustin discretization. In this case, the morphism φ D p,q,h is

φ D p,q,h p d dt q "
2p1 ´δh q hp1 `δh q i.e. p " 2p1 ´δh q, and q " hp1 `δh q. We shall denote D T,h this discretization. l

INTERPLAY BETWEEN CONTROLLABILITY AND SAMPLING

Ring and dimension level analyis

On a gross level, one has the following proposition, whose proof follows directly from the results in Section 2. Proposition 5.1. Let Λ be a delay system. We have the following:

(1) For Λ: R p -free ô R p -projective ñ ö R p -torsion free

(2) For Λ e : R e -free ô R e -projective ñ ö R e -torsion free (3) For Λ R d : R d -free ô R d -projective ô R d -torsion free (4) For D ˚Λ: R s -free ô R s -projective ô R s -torsion free, where D ˚" D p,q,h , with p, q P R s . Remark 5.1. Thus, from these general module properties implications and equivalences, one is tempted to conclude that from a controllability viewpoint, to work with Λ R d in a continuous setting or to work on D ˚Λ in a discrete setting is equivalent. We shall see in the sequel that this is not true. l

A Disturbing situation

On the ring and dimension level analysis, things appear to be easy to handle. But these levels are quite coarse, and when one looks deeper into a finer, Fitting ideal analysis, the situation appears to be more tricky, as the following examples highlight.

Example 5.1. Consider the following example 9 xptq " s 0 xptq `p1 ´hs 0 q N uptq ´upt ´Lq whose associated module is Λ. The associated presentation matrix is

´d dt ´s0 p1 ´hs 0 q N ´e´L d dt ¯" ´m1 p d dt , e ´L d dt q m 2 p d dt , e ´L d dt q
Hence, the system is spectrally controllable if s 0 ‰ 0 and not spectrally controllable if s 0 " 0. Through backward difference discretization, we get ˆ1 ´δh h ´s0 p1 ´hs 0 q N ´δN h ˙" and the system is not spectrally controllable. The discretization D p,q,h has the following presentation matrix ˆppδ h q qpδ h q ´s0 ppδ h q N ẇhich has no common factor. Hence, the discretized system is controllable. l

p1 ´hs 0 ´δh q ˆ1 h rpδ h q Ṫhus D B,

CONCLUSION

We have exhibited some discretizer notion of for delay systems envisioned through an algebraic module theoretic setting. A ring theoretic and dimension analysis has been conducted, under which strong similarities occur between properties of the continuous system on a distributed delay ring and of the discrete system on the difference operator ring. Several simple examples showed that this analysis is not sufficient and one needs to investigate further through finer tools, such as the Fitting ideal. This is the topic of further research, in progress.

e

  from Mod Rp to Mod Re (where Mod R is the category of R-modules, for a ring R), with ψ e the ring isomorphism: ψ e : R p ÝÑ R e δ L Þ ÝÑ e ´L d dt l Definition 3.3. Let Λ be a pointwise linear delay system. The extension of scalars R a b Re Λ e is called the advanced extension, or R a -extension of Λ, and is denoted as Λ a . The extension of scalars R d b Re Λ e is called the distributed extension, or R d -extension of Λ, and is denoted as Λ d . l

  r Λ prestq where (extn) is an extension of scalars, (rest) a restriction of scalars, and φ Dp,q,h is the restriction of scalars functor associated to φ D p,q,h . l Remark 4.1. Let us remark that Rrδ L s " Rrδ N h s Ă Rrδ h s " R s Let us give three examples of this general definition. Examples 4.1.

  h Λ e is non controllable, whatever the value of s 0 is. Let p and s 0 such that pps 0 q " 0. Consider the system 9 xptq " s 0 xptq `ppe

						l
	Example 5.2. Another example is
		h 9 xptq " xptq `upt ´Lq
	whose associated presentation matrix is
		´1	´h d dt	e	dt ´L d	ānd
	thus, the system is spectrally controllable. Its back-
	ward difference discretization has the presentation matrix
	ˆ1	´h 1 ´δh h	δ N h	h ˙" `δh δ N	Hence,
	the discretized system is non controllable.	l
	Example 5.3. ´L d dt qpuqptq
	The associated presentation matrix is
		p	d dt	´s0 ppe	´L d dt qq
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