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Abstract: This paper focuses on the controllability preservation through sampling of linear
time-delay systems. We make use of a module theoretic framework acting as a unifying one
for most of the existing delay system controllability notions. The controllability properties
are envisioned through ring theoretic properties. Some illustrative examples complete the

presentation.
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1. INTRODUCTION

Delay systems, e.g. systems modeled by differential-
difference equations represent the simplest class of infinite-
dimensional processes. They naturally arise in technologi-
cal systems, where the delay is quite often situated in the
input or the output. This infinite dimensional character is
merely lost through discretization.

Contrarily to the case of finite-dimensional systems, where
the controllability notion is unique, there has been nu-
merous, and seemingly unrelated controllability general-
izations for delay systems. More specifically, notions have
been elaborated either from a functional analytic approach
(see, e.g., Bartosiewicz (1984); Manitius and Triggiani
(1978); Yamamoto (1989)) or from a more algebraic view-
point (see, e.g., with a similar formalism as used here
(Bourles and Marinescu (2011); Fabiaiska and Quadrat
(2007); Mounier and Rudolph (2003); Rudolph et al.
(2003)), with systems over rings (Loiseau (2000); Son-
tag (1976)), with distributional rings Bourles and Oberst
(2015), Vettori and Zampieri (2002)), with dual trajectory
modules over an operator ring (see, for instance, Gluesing-
Luerssen (2002); Pillai and Shankar (1999)). There has
thus also been many bridging notions between continu-
ous delay systems and sampled data systems (Fridman
(2014a,b); Louisell (2001)).

In Fliess and Mounier (1998), an algebraic setting was
introduced, based on module theoretic properties, which
yielded a unifying framework within which most of theses
notions could be compared. Having the previous facts in
mind, it is natural to ask which controllability property can
be preserved under sampling.

The main features of our algebraic framework can be
summarized as follows:

e The intrinsic character of the various notions and
definitions.

e Varying the coefficients ring and the module prop-
erties yield a great flexibility in defining structural
notions.

e A framework enabling the wunification of most of
the existing structural notions of the delay system’s
literature (see Fliess and Mounier (1998)).

e The constructive character of the structural notions,
as demonstrated by the numerous computer algebra
implementations (see, e.g., Chyzak et al. (2005);
Quadrat and Robertz (2014)).

e The independence of the obtained structural results
from often tricky existence and uniqueness prerequi-
sites, as is customary for infinite dimensional systems
through functional analytic techniques.

e The same framework can be used both for finite- and
infinite-dimensional linear systems.

The sampling we shall use are classical ones, and we will
not explicitly study the effect of sampled data control on
a continuous system.

The aim of this contribution is to investigate whether
controllability notions can be preserved through sampling.

The remaining of the paper is organized as follows: In
Section 2, general algebraic definitions are given, and
the case of finite dimensional and delay systems are
given in Section 3. Discretization and interplay between
controllability and sampling are studied in Sections 4 and
5. Finally, some concluding remarks end the paper.

2. PREREQUISITES AND R-SYSTEMS

Most of the commutative algebra we use may be found in
standard textbooks, such as Eisenbud (1995); Lang (71);
Rotman (1979).

In particular, the basic definitions of module, ideal, free
module, ..., can be found for example in pages 11 to 17 of
Eisenbud (1995). The notion of torsion freeness is in (Lang,
71, p. 388) or (Rotman, 1979, p. 224). For projectivity, see,
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e.g., (Eisenbud, 1995, A3.2 p. 615) or (Rotman, 1979, Th.
3.11 and 3.14, p. 62-63).

2.1 Preliminary definitions

All the rings and algebras we shall consider are commuta-
tive, with unity, and without zero divisors.

Definition 2.1. Let R be a ring. An R-linear system, or
an R—system, or a (linear) system over R, 3 is a finitely
generated R—module. O

In other words, an R—system is an R—module with finite
free presentation (see, e.g., (Eisenbud, 1995, p.17), (Rot-
man, 1979, p. 90)):

E-2W —3%—0
A presentation matriz Ps of X is one associated with ¢.

NoTAaTION. We denote by [£] the R—submodule spanned
by a subset £ of 3.

Definition 2.2. An R-linear dynamics, or an R—dynamics,
or a (linear) dynamics over R, is an R—system ¥ equipped
with an input w = (u1,...,Un), i.€., a finite subset of 3,
such that the quotient module ¥/[u] is torsion. The input
u is said to be independent if [u] is a free R—module of
rank m. O

Definition 2.3. An output y = (y1,...,Yp) is a finite
subset of 3. An R-system equipped with an input and
an output is called an input-output R—system. |

2.2 General controllability notions

Varying the rings under consideration through suitable
tensor products yields various controllability notions.

Definition 2.4. Let A be an R—algebra. The R-system X
is said to be A-torsion free controllable (resp. A-reflexive
controllable, A—projective controllable, A—free controllable)
if the A—module A ®r ¥ is torsion free (resp. projective,
free). O

Elementary homological algebra Rotman (1979) yields:

Proposition 2.1. The A—free controllability implies the A—
projective controllability, which implies the A-reflexive
controllability, which implies the A—torsion free control-
lability. O

Localisation (e.g. inversion of some elements) preserves
module properties in the following sense (see, e.g., (Rot-
man, 1979, 4.81, p. 198)):

Proposition 2.2. If S € R is multiplicative, then localisa-
tion ¥ — S71¥ = ST!R®p ¥ defines an exact functor
Modgr — Modg-1g. Thus if ¥ is free (resp. projective),
then S™1¥ is free (resp. projective). N

The following result is borrowed from (Rowen, 1991,
Proposition 2.12.17, p. 233):

Proposition 2.3. Let 3 be an R—system, A an R-algebra,
and S a multiplicative part of A such that ¥ is S~!R—free
controllable. Then, there exists an element 7 in S such
that ¥ is R[7~!]-free controllable. O
Definition 2.5. Let ¥ be an R-system, A an R-algebra,
and S a multiplicative part of A containing an element 7
such that ¥ is R[r~!]-free controllable. Such a system ¥
will be called 7—free. |

We have the following direct consequence:

Corollary 2.1. Let ¥ be an R—-torsion free controllable R—
system and S a multiplicative part of R such that S™'R is
a principal ideal ring. Then, there exists w € S such that
¥ is R[r~1]-free controllable and X is 7free. O

Remark 2.1. Note that the previous definitions allow for
an extreme flexibility in the choice of the structural notions
to be considered. First, three distinct algebraic notions are
underlined (torsion freeness, projectivity and freeness) and
last, but not least, the base change, through extension of
scalars, yields a vast number of notions. ]

Let us end this subsection by another notion, the spectral
controllability, very useful in the infinite-dimensional case.
The following definition (given in Woittennek and Mounier
(2010)) extends previous ones (see, e.g., Kirillova and
Churakova (1967), Asmykovich and Marchenko (1976),
Bartosiewicz (1984), Rocha and Willems (1994)) in our
context.

Definition 2.6. Let R be any ring that is isomorphic to a
subring of the ring & of entire functions with pointwise
defined multiplication. Denote the embedding R — &
by Z. A finitely presented R-system with presentation
matrix P is said to be spectrally controllable if the O-

matrix P = .Z(P) satisfies
JkeN:Voe C:1kcP(0) = k

The following proposition establishes a first algebraic
characterisation for spectral controllability

Proposition 2.4. (See Woittennek and Mounier (2010)).
Let R be any ring that is isomorphic to a subring of
the ring & of entire functions with pointwise defined
multiplication. A finitely presented R-system is spectrally
controllable if, and only if, the module ¥y = 0 ®r X is
torsion free.

The next proposition strongly links spectral controllability
and R-freeness, which yields a fairly constructive charac-
ter.
Proposition 2.5. (See Woittennek and Mounier (2010)).
Let R be any Bézout domain that is isomorphic to a
subring of & with the embedding R — & denoted by
Z. Then the notions of spectral controllability and R-
free controllability are equivalent if and only if % maps
non-units in R to non-units in &.

2.3 Decomposition

The classical decomposition of a module over a PID into
its torsion and torsion free parts generalizes to Bézout
domains (see, e.g. (Hazewinkel, 1995, p. 381)).

Proposition 2.6. Let R be a Bézout domain, and ¥ an R-
module. One has the following decomposition:

Y=tXp3X/ty
where tY is the torsion submodule of X. OJ

3. FINITE DIMENSIONAL AND DELAY SYSTEMS
3.1 Finite dimensional systems

Two common instances of R-systems are given when R
is the ring of differential operators R[], which yields



continuous time linear finite-dimensional systems Fliess
(1990), and when R is R[dy,], with d;, the shift operator of
delay h, h being the sampling interval, with dy being the
identity operator. This yields linear discrete time finite-
dimensional systems Fliess (1992).

On such rings (being common examples of principal ideal
rings), all the notions of torsion freeness, projectivity and
freeness coincide, resulting in the well known Kalman
controllability notion. See Fliess (1990); Fliess and Bourlés
(1997) for several fruitful consequences of this framework.

3.2 Various rings and delay systems

We shall consider the following rings in the sequel:

e R, = R[4,0.], the polynomial ring; a ring on which
delay systems are defined. In the incommensurate
delay case, it becomes Rp = R[%,8L], where 6f, =

(0n,+0L,,-..,0r,) and the dimension of the Q vector
space [Ll, ey L ]Q is 7.
e R.=R[Z o.e ]7 the ring of exponential polynomi-

als, where an analytic relationship between the ring
indeterminates is emphasized. ThlS ring is a subring of
R[ tﬂ the power series rlng in . It is commutative,

d _—h< —h4

since e di In the incommensurate

d ,~Li
S,e rar].
e Ry = R[dt, L eLdt], the ring of exponential

delays and advances In the incommensurate delay

case, it becomes R, = R[%7 e_L%,eL%].

e Ry = R(%)[e_L%,eL%] N O, the distributed
delay ring, where & denotes the ring of entire
functions. This ring includes distributed delays. In
the incommensurate delay case, it becomes Ry =
R(i)[ L e dt]mﬁ

e Rs = R[0y], the discrete delay, a natural ring when
considering purely discrete systems. This ring is iso-

= e dt—

delay case, it becomes Re =R|

morphic to R¢ = R[e"#]. In the incommensurate
delay case, it becomes Rs = R[d]. The latter ring
will not be used here, since in computer implementa-
tions, only commensurate delays are used.

3.3 Delay systems

The definition we shall adopt is the following.

Definition 3.1. A pointwise linear delay system is a finitely
generated Rp-module. A pointwise linear commensurate
delay system is a finitely generated R,-module. ]

Definition 3.2. Let A be a pointwise linear delay system.

We shall call the exponential version of A, denoted by A,

the Re-system obtained by the functor isomorphism ¥

from Modg, to Modg, (where Modp, is the category of

R-modules, for a ring R), with . the ring isomorphism:
Ye : Rp — Re

d
dp — e Lt

O

Definition 3.3. Let A be a pointwise linear delay system.
The extension of scalars Ra ®x, A. is called the advanced
extension, or Ra-extension of A, and is denoted as A,.
The extension of scalars Rqg®r, A is called the distributed
extension, or Rq-extension of A, and is denoted as Ag. [

4. DISCRETIZATION

We shall define the discretization in the following way.

Definition 4.1. Let A be a delay system, let h be a real
number dividing L (i.e. such that L = Nh with N € N).
Consider then the ring morphism gi)D o where p,q € R

B (-1
¢Dp,q,h Ry (@) Rs
d  pn)
dt  q(dn)
this morphism corresponding to an identity approxima-
tion, i.e., p and ¢ being such that
ple¥) _d
e~hidr)  dt
A discretizer of A with sampling period h is a functor
Dp.g.n: Modg, — Mod,)-1%, built in the following way:
A =R[Z,6,,q(6n) ] ®r, A
— AF A
Dpgnl = ¢Dp,q,hA

where (extn) is an extension of scalars, (rest) a restriction

of scalars, and ¢* is the restriction of scalars functor
P,q;h

associated to ngD i ]
p,q,h

lim
h+—0 q(

(extn)
(rest)

Remark 4.1. Let us remark that
R[6.] = R[67] < R[6,] = R,

Let us give three examples of this general definition.

Ezamples 4.1. o Backward difference discretization. In
this case, the morphism (bD . is
P,q,

d 1— 9y

o, i) =

i.e. p= (1 —6p)/h, and ¢ = 1. We shall denote Dp ,
this discretization.

e Forward difference discretization. In this case, the

morphism ¢Dp n is

S1—1 1-96
dy _ h — h
9o, ldr) h hé),

i.e. p=(1—40y), and ¢ = hdp. We shall denote D,
this discretization.
e Tustin discretization. In this case, the morphism
Dy 3

p,q,h

_ 2(1—dn)
¢Dp=q-,h(%) N m

i.e. p=2(1—0p), and ¢ = h(1 + &,). We shall denote
D5, this discretization. OJ

5. INTERPLAY BETWEEN CONTROLLABILITY
AND SAMPLING

5.1 Ring and dimension level analyis

On a gross level, one has the following proposition, whose
proof follows directly from the results in Section 2.

Proposition 5.1. Let A be a delay system. We have the
following:

(1) For A: Rp-free & Rp-projective 2 Rp-torsion free



(2) For A.: Re-free & Re-projective 2 R.-torsion free

(3) For Ar,: Ry-free < Ry-projective < Ry-torsion free
(4) For DyA: Rs-free < Rs-projective < R4-torsion free,

where Dy = D, g5, with p,q € Rs.

Remark 5.1. Thus, from these general module properties
implications and equivalences, one is tempted to conclude
that from a controllability viewpoint, to work with Ag,
in a continuous setting or to work on DyA in a discrete
setting is equivalent. We shall see in the sequel that this
is not true. |

5.2 A Disturbing situation

On the ring and dimension level analysis, things appear to
be easy to handle. But these levels are quite coarse, and
when one looks deeper into a finer, Fitting ideal analysis,
the situation appears to be more tricky, as the following
examples highlight.

Example 5.1. Consider the following example

#(t) = sox(t) + (1 — hso)Nu(t) — u(t — L)
whose associated module is A. The associated presentation
matrix is

(% —s0 (1 —hso)V —eiL%) =

_Ld _Ld
(ml(%7e Ldt) m2(%7e Ldt))
Hence, the system is spectrally controllable if so # 0 and

not spectrally controllable if s = 0. Through backward
difference discretization, we get

(5% =50 ()=o) -

1
(1 — hSO — 5h) <h T’((S}J)
Thus Dp »A. is non controllable, whatever the value of sg
is. ]
Ezxample 5.2. Another example is
hi(t) = z(t) + u(t — L)
whose associated presentation matrix is
d d
1-hs elE)
( it €

and thus, the system is spectrally controllable. Its back-
ward difference discretization has the presentation matrix

(phlh(s”' 5{LV>=(5h )

Hence, the discretized system is non controllable. |

Ezample 5.3. Let p and sg such that p(sp) = 0. Consider
the system
() = sow(t) +ple”" ) (u)(1)
The associated presentation matrix is
d
(5 = 50

L4
&= so plemhH)

and the system is not spectrally controllable. The dis-
cretization Dy, ,  has the following presentation matrix

(S~ #00")

which has no common factor. Hence, the discretized sys-
tem is controllable. O

6. CONCLUSION

We have exhibited some discretizer notion of for delay
systems envisioned through an algebraic module theoretic
setting. A ring theoretic and dimension analysis has been
conducted, under which strong similarities occur between
properties of the continuous system on a distributed delay
ring and of the discrete system on the difference operator
ring. Several simple examples showed that this analysis is
not sufficient and one needs to investigate further through
finer tools, such as the Fitting ideal. This is the topic of
further research, in progress.
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