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Abstract—The activities we do in our daily-life are generally1

carried out as a succession of atomic actions, following a logical2

order. During a video sequence, actions usually follow a logical3

order. In this paper, we propose a hybrid approach resulting from4

the fusion of a deep learning neural network with a Bayesian-5

based approach. The latter models human-object interactions6

and transition between actions. The key idea is to combine both7

approaches in the final prediction. We validate our strategy in8

two public datasets: CAD-120 and Watch-n-Patch. We show that9

our fusion approach yields performance gains in accuracy of10

respectively +4 percentage points (pp) and +6 pp over a baseline11

approach. Temporal action recognition performances are clearly12

improved by the fusion, especially when classes are imbalanced.13

14

I. INTRODUCTION15

The recognition of human activities is at the core of the16

development of many practical applications such as monitor-17

ing of domestic activities or human-robot collaboration. An18

activity is defined by successive time sequences of actions [1],19

[2] e.g.: prepare coffee involves the successive actions pour20

in water, add ground coffee and start the machine. On the21

one hand, activities performed by humans in a domestic or22

industrial environment can be very different, for example in23

the nature of the objects involved. On the other hand, the24

atomic actions performed may be similar in any context.25

Indeed, these atomic actions concern the movement of objects,26

their capture, or the interactions they may have with their27

environment. Therefore, we are interested in the recognition28

of atomic actions and their sequencing because higher level29

activities can be represented by atomic actions arranged in30

sequences following a logical order.31

Data-driven approaches based on convolutional neural net-32

works (CNN) adapted to the video domain with 3D convo-33

lutions allow the recognition of actions in video streams. 3D34

convolutional neural networks learn spatio-temporal features35

simultaneously. Approaches like C3D [3] obtain an accuracy36

of 90.4% in the action recognition dataset UCF101 [4].37

However, 3D convolutions increase the size of the network38

and thus the number of parameters to be learned (i.e., 17M39

with C3D). As any CNN, they require a lot of annotated40

data, hence the emergence of larger annotated datasets such as41

NTU RGB+D [5], UCF101 [4] and Kinetic [6]. For example42

UCF101 contains 27 hours of videos and NTU RGB+D [5]43

56880 clips. Despite these advances, action recognition is still44

Fig. 1: Different individual approaches (1) (2) (3) and their
fusion (4). During training, the trained layers are represented
in green.

a challenge because 3D convolution networks only aggregate 45

temporal features on video clips i.e. pre-segmented actions 46

without temporal relations between those clips. They are taken 47

independently and do not take into account the temporal logic 48

in a sequence of actions. 49

Often, large datasets like Kinetic [6] and UCF101 [4] 50

are created from videos collected on YouTube. The different 51

classes are performed in radically different environments, for 52

example swimming vs. playing guitar. However in the context 53

of monitoring domestic activities, the actions to detect take 54

place in a similar environment and have a temporal coherence 55

in their sequence representing a certain activity. Recognition 56

of sequential actions with low inter-class variance, imbalanced 57

classes, and/or under-represented classes is still a challenge for 58

conventional convolution networks. 59

Historically, probabilistic-based approaches [7], [8] propose 60

to characterize the actions in a more explicit way through 61

modeling the observations of the scene elements: human pose, 62

objects and their interaction through time. These approaches 63

usually based on probabilistic models generally offer lower 64



performance compared to convolutional networks. Neverthe-65

less, they generally require less data because they also have66

fewer underlying free parameters to tune. Therefore their67

interpretability is less dependent on the available learning68

data (e.g. less subject to over-fitting). These approaches are69

relevant in the case of a small number of samples available70

for training. For example, our previous Bayesian approach for71

action recognition ANBM (for A New Bayesian Model [9]),72

models both the interactions between objects and human-73

objects through about 50 parameters. Let us note that our74

ANBM approach also takes into account the transitions be-75

tween different actions in order to ensure temporal consistency76

throughout the sequence of actions.77

Building on the observation of a possible synergy of the two78

approaches, we propose a hybrid framework with a fusion at79

the decision level, of a C3D [3] convolutional network and our80

probabilistic ANBM [9] approach based on explicit human-81

object observations.These two approaches take into account82

the spatio-temporal characteristics of the different classes of83

actions. Due to the large number of parameters, the C3D84

network needs a lot of annotated data to be relevant since85

learning is difficult in the case of under-represented classes.86

The ANBM approach depends on handcrafted models and87

even with a little data the prediction of under-represented88

classes is possible.89

Thus, our contributions are: (1) one first minor contribution90

is the addition of a Gated Recurrent Unit (GRU) recurrent91

layer to the C3D architecture for action recognition which92

also models the temporal correlations between actions, (2)93

the comparison of both approaches (ANBM and C3D-GRU)94

on two public datasets CAD-120 and Watch-n-Patch, (3)95

implementation and evaluation of a late fusion mechanism of96

the predictions of these two approaches and comparison with97

the literature. We observe a performance gain from this hybrid98

approach.99

The article is organized as follows. In section 2 we present100

the state of the art and the context of our work. Then in101

section 3 we present our hybrid approach for action detection.102

A comparative study of our results is presented in section 4.103

Finally, section 5 presents our conclusion and future prospects.104

II. STATE OF THE ART105

The recognition of static actions on single image can be106

done by localizing certain objects in an image, i.e., Zhou107

et al. [10] or Oquab et al. [11]. This kind of approach has108

been popularized by the Pascal VOC 2012 challenge, where109

the goal is to recognize actions in images [12]. While this is110

relevant when the classes of actions to be recognized occur in111

different environments, these approaches are inappropriate for112

recognizing successive atomic actions occurring in a sequence113

of action taking place in the same scene. It is movements and114

objects involved in the execution of an action that allow it to be115

discriminated, for example when opening or closing a door.116

This is why we focus on approaches using spatio-temporal117

information from videos in order to consider the dynamics of118

gestures and objects during action classification.119

Historical approaches perform dynamic action recognition 120

through probabilistic modeling of the observations involved. In 121

addition, these model-based approaches may include trajectory 122

models for human pose, information of the spatial configura- 123

tion of the objects in the scene or their affordance [13]. Li 124

et al. [7] propose the use of Gaussian mixture to recognize 125

different actions in the MSRAction dataset [7]. Koppula and 126

Saxena [8] propose the use of conditional random fields 127

(CRFs) to model the scene and the spatio-temporal relation- 128

ships that appear in CAD-120 [8]. More recently, we have 129

proposed a new Bayesian ANBM [9] approach based on 130

explicit 3D modeling of contextual features, both spatially and 131

temporally. These approaches rely on a smaller number of 132

parameters than those of C3D networks. In fact, they require 133

less data and are evaluated on datasets that are generally 134

smaller. For example MSRAction [7] contains 420 sequences 135

and CAD-120 [8] contains 120 videos for about 1000 clips 136

after segmentation of the actions. They also have the advantage 137

of being more interpretable than CNN approaches. 138

One of the challenges with convolutional networks is their 139

dependency to the amount of data available for training. 140

Learning their many parameters is based on the amount 141

of data available for training. The introduction of 3D [14] 142

convolution filters allows to simultaneously extract spatio- 143

temporal descriptors from a set of frames representing an 144

action, called a clip. These descriptors are appropriate for 145

implicitly capturing the context related to the video content. 146

This idea has been taken up by C3D [3] and other variants [15], 147

[16], [17] for action detection. Adding video clips at the 148

input of the network requires increasing its size compared 149

to its 2D CNN counterpart. C3D networks extract a global 150

descriptor from the clip independently of the action that took 151

place previously. This is particularly suitable and shows strong 152

results for large-scale datasets with many small clips such as 153

UCF101 [4] with its 13000 clips and an average duration of 154

7 seconds. These arrays only aggregate temporal information 155

over a fixed window size, typically 16 frames. This is not 156

suitable for recognizing actions that have temporal consistency 157

within their sequencing. 158

Hence the interest in adding a recurrent layer to a 3D- 159

convolutional network. Wang et al. [18] propose to add a Long 160

Short Term Memory layer (LSTM) to such a network. Also in 161

[19], [20] the authors propose to either add a LSTM-layer or 162

a GRU-layer to reinforce the temporal coherence within the 163

action clip and evaluate themselves on UCF101 for example. 164

Instead, we propose to add logical consistency in the actions 165

sequencing. 166

The fusion of C3D networks with other modalities has 167

already improved its performance in various challenges of 168

the Computer Vision community. For example, space-time 169

fusion [21] consists in merging an image with an optical 170

flow sequence that describes motion. This improves the per- 171

formance in comparison to a C3D network alone, which seeks 172

to simultaneously extract temporal and spatial features at the 173

3D convolution layers. There are also methods that propose 174

a fusion of different features of different nature such as 175



audio and video [22]. These different approaches show the176

advantages of using a fusion mechanism to increase overall177

performance. However, this gain is achieved at the expense178

of the amount of data required for training. The addition of179

more modalities increases the number of parameters to be180

learned for the convolution network. This has two effects:181

first it required the existence of a such dataset, and second it182

increases the training time. A late fusion is proposed by [23]183

for pose attention in RGB videos.184

We propose to merge two spatio-temporal approaches, one185

based on context modeling via learning such as C3D [3] and186

our ANBM [9] approach based on Bayesian models and 3D187

human and objects observations of the scene. This fusion is188

not done at the feature level but later at their predictions level189

towards the same layer. We propose to merge them using190

a fully connected layer, i.e. dense layer. Only a few works191

study the late fusion of two classes of approaches that a priori192

complement each other and the gains that this can yield.193

Public datasets such as Watch-n-Patch [24] and CAD-194

120 [8] allow to evaluate the recognition of atomic actions.195

These datasets offer approximately 20-seconds long videos196

in which different atomic actions are annotated. The actions197

follow each other in a logical order, for example we cannot198

move an object that has not been previously captured. In these199

datasets, the sequences of actions are more or less correlated.200

Moreover some classes are under-represented in these datasets,201

which is generally a lock for C3D learning.202

III. PROPOSED APPROACH203

In this section we describe the proposed architecture for the204

fusion of probabilities predicted by the ANBM [9] Bayesian205

approach with those of the modified C3D [3] network. We206

recall our previous ANBM approach in Section III-A, and207

then briefly describe the C3D network in section III-B and208

its modification (C3D-GRU) in Section III-C. Section III-D209

details the proposed late fusion strategy.210

A. Bayesian Approach With Human-Object Observations211

This approach [9] is based on the following insights:212

human pose, human-object and object-to-object interactions,213

performed during the execution of an action, provide spatio-214

temporal information that allows the recognition of the on-215

going action. Moreover, it considers temporal information such216

as transition between actions during a sequence. We have217

modeled these observations in order to be able to estimate,218

at each time of the video, the probabilities of each considered219

actions.220

All the elements of the scene are first localized in the221

image plane by 2D state-of-the-art detectors one for human222

pose estimation an another for the objects. Then they are223

modeled in 3D space using RGB-D sensor (e.g. Kinect)224

calibration data. The detection of the human pose in the image225

is based on OpenPose [25], which is trained on MSCOCO226

Keypoints Challenge [26]. We use Single Shot Multi-Box227

Detector (SSD) [27] to recognize objects, which is trained228

with the MSCOCO dataset [26].229

Each action a is associated to a model. Let A =
{a1, a2, ..., aN} be the set of N actions. The joint observation
of the human pose st and the set of objects Ωt is described at
time t by Ot = {st,Ωt} where Ωt = {ω1, ω2, ..., ωCard(Ω)}
with Card(Ω) being the number of objects in the scene. The
inference is performed on a sliding window of T frames, so
that this approach does not require video clips segmentation
beforehand, and ensure temporal consistency of the observa-
tions. We model the a posteriori probability of the actions
given the observations as follows:

p(a0:T |O0:T ) ∝
T∏

t=0

p(Ot|at)
T∏

t=1

p(at|at−1). (1)

Where p(Ot|at) is the likelihood of the observation given the 230

action at. The term p(at|at−1) characterizes the probabilities 231

of transitions between two successive actions. All the obser- 232

vations of the scene in this approach are modelled in 3D. 233

Objects and pose 2D coordinates are projected onto the 3D 234

space thanks to the sensor calibration data. It allows ANBM 235

to be more robust to changes of point of view than an approach 236

based solely on 2D spatial characteristics. We invite the reader 237

to consult [9] the paper for more in-depth details. 238

B. 3D convolution network: C3D 239

C3D [3] is a deep learning network that takes into account, 240

in addition to images, a third dimension corresponding to time. 241

The architecture includes 3 x 3 x 3 convolution filters, followed 242

by 2 x 2 x 2 pooling layers. The introduction of 3D convolution 243

filters allows to learn spatio-temporal descriptors from a video 244

stream. 245

On the one hand, they provide a compact (4096) description 246

of a video stream of size H x W x C x L. With L the length 247

of the video clip containing the action, usually 16 frames. 248

These networks are able to learn those spatio-temporal descrip- 249

tors implicitly. Like other networks they perform end-to-end 250

learning without expert information (unlike any probabilistic 251

approach e.g. ANBM). 252

On the other hand, given the millions of parameters to be 253

learned, poorly represented classes are hardly well recognized 254

and it is more difficult to predict them correctly. The action 255

must be sampled on 16 frames in the original implementation, 256

of course it is possible to enlarge this time window but it 257

requires more memory. Tran et al [3] also offer a sliding 258

window system of descriptor averaging. However, in all cases, 259

C3D requires a pre-segmentation of actions in sequences, 260

which does not make it a suitable method for online action 261

recognition. Moreover, there are no mechanisms to take into 262

account the temporal context in which the video clip is inserted 263

during training. Therefore there is no consideration of the 264

previous action. 265

C. Adding a recurrent layer: C3D-GRU 266

In order to compensate the lack of a mechanism that ensure 267

the temporal consistency along the sequence, across the video- 268

clips. We propose to take into account the previous action in 269

the detection of the current action by adding a recurrent layer. 270



Fig. 2: An action sequence from CAD-120 [8] dataset: actor 1, video 2305260828, action microwaving-food. From left to right
: reach, open, reach, move, place. In blue: human pose detected by OpenPose. In yellow: objects detected by SSD.

Once we trained C3D, we retrieve its weights, freeze them271

and add a recurrent GRU-type layer. C3D is trained with data272

augmentation that is not able to perform in the same manner273

for the GRU-type layer. Indeed we need to preserve temporal274

coherence and segments to train in logic order.275

Then we adapt the GRU layer to take into account two276

successive clips corresponding to two different, but successive,277

actions. We do not re-train the whole C3D network but we only278

perform a fine-tuning at the level of the last layers. To illustrate279

the importance of the nature of the previous actions we notice280

that among all the possible transitions between any two pairs281

of actions in Watch-n-Patch [8], only about 20 % are actually282

occurring. By adding this extra constraint while training the283

GRU-layer, we hope to reduce the number of false positive284

detections of some classes. This strategy is illustrated in Fig. 1,285

number 3. We call this approach C3D-GRU afterwards.286

D. Late fusion with a dense layer287

We therefore have two approaches to predict actions from288

video clips based on spatio-temporal data, explicitly with289

ANBM and implicitly with C3D-GRU. Both approaches also290

consider the existing transitions between two successive ac-291

tions. On the one hand with ANBM we have modeled each292

action, on the other hand C3D-GRU learns from the datasets,293

whose classes are not equally distributed. Indeed in the detec-294

tion of atomic actions, some actions are found more frequently.295

For example the displacement of an object (moving) represents296

34% of the actions of CAD-120, it mandatory occurs before297

many different actions such as to drink because we need to298

move the bottle before. We propose a fusion of their respective299

predictions. Both approaches estimate probabilities for each300

class. We have one for ANBM and for C3D-GRU we have a301

vector corresponding to the output of the soft-max layer.302

We propose a strategy that takes as input video clips that303

are processed through the ANBM approach and also through304

the C3D-GRU network described above, whose C3D layers305

weights are frozen. We thus obtain two prediction vectors306

for each of the approaches that are later concatenated. This307

concatenation is connected to a dense layer of the same size308

as the number of classes, as shown with only N = 4 classes309

as example in Fig 1, number 4. So there are only N2 + N310

parameters to learn (N2 weights related to the dense layer and311

N bias related to activation). This interconnection enables to312

take the advantage of both approaches in the final decision.313

We call this approach C3D-GRU-DF thereafter.314

IV. EXPERIMENTS AND RESULTS 315

A. Public Datasets 316

Let us recall that we propose an initial approach to detect 317

actions in [9]. This online approach is able to detect actions 318

sequences of from a video stream and to manage transitions 319

between actions. We wish to take advantage of this asset, so 320

we evaluate ourselves on two public datasets which contain 321

such action sequences: CAD-120 [8] and Watch-n-Patch [24]. 322

a) CAD-120: The CAD-120 [8] dataset consists of 120 323

videos with RGB-D channels, played by 4 actors. It contains 324

10 daily life activities (preparing a bowl of cereal, taking 325

medication...). These activities involve 10 actions: reaching, 326

moving, pouring, eating, drinking, placing, opening, closing, 327

null. Here, each video represents an activity as defined in the 328

section I. The inequitable distribution of actions, expressed 329

by the corresponding percentage of frames, is described in 330

Tab. III. An illustration of this dataset is presented in Fig. 2. 331

b) Watch-n-Patch: The office environment consists of 332

196 videos recorded in 8 different offices. There are 10 333

annotated actions: read, walk, leave-office, fetch-book, put- 334

back-book, put-down-item, pick-up-item, play-computer, turn- 335

on computer, turn-off computer. Here again some actions are 336

dependent on the action that takes place previously, e.g. to play 337

the computer, the screen must be turned on. Action classes are 338

not equally distributed as shown in Tab. III. 339

TABLE III: Detail of class distribution within datasets and the
number of clips.

Dataset Number of clips Distribution (% per class)

CAD-120 1149 [23,30,3,3,3,15,4,3,1,14]

Watch-n-Patch 1148 [12,16,21,6,4,14,9,9,5,3]

B. System Evaluation 340

a) Managing ANBM’s Predictions: We record the pre- 341

diction probabilities of ANBM at each frame, then we take 342

their averages over the duration of each action to assign a 343

class to each video clip representing an action. 344

b) Pre-processing for C3D: We keep the original settings 345

of the publication [3] for the input image size by setting it to 346

112 x 112 pixels. The video clips are cropped around the 347

enlarged bounding box containing the actor and objects in the 348

action context. This bounding box is detected using the human 349

pose inferred by OpenPose [25]. This allows the network to 350



TABLE I: Results of our different variants on Watch-n-Patch. Performance metrics considered are macro-accuracy (M) and
micro-accuracy (µ).

Architecture Sample 0 Sample 1 Sample 2 Sample 3 Mean Standard Deviation

µ M µ M µ M µ M µ M µ M

1 - ANBM 0.78 0.79 0.73 0.74 0.76 0.77 0.75 0.75 0.76 0.76 0.02 0.02

2 - C3D 0.72 0.65 0.73 0.64 0.75 0.69 0.74 0.64 0.74 0.66 0.01 0.02

3 - C3D-GRU 0.89 0.87 0.86 0.77 0.85 0.77 0.89 0.84 0.87 0.81 0.02 0.05

4 - C3D-GRU-ANBM-DF 0.94 0.91 0.93 0.90 0.93 0.91 0.93 0.89 0.93 0.90 0.001 0.01

TABLE II: Results of our different variants on CAD-120. Performance metrics considered are macro-accuracy (M) and micro-
accuracy (µ).

Architecture Actor 1 Actor 2 Actor 3 Actor 4 Mean Standard Deviation

µ M µ M µ M µ M µ M µ M

1 - ANBM 0.84 0.77 0.78 0.81 0.82 0.76 0.82 0.77 0.82 0.78 0.03 0.02

2 - C3D 0.58 0.45 0.70 0.61 0.64 0.57 0.56 0.35 0.62 0.50 0.06 0.12

3 - C3D-GRU 0.61 0.49 0.76 0.73 0.66 0.60 0.60 0.45 0.66 0.57 0.07 0.13

4 - C3D-GRU-ANBM-DF 0.86 0.80 0.89 0.91 0.84 0.82 0.83 0.79 0.86 0.83 0.03 0.05

focus its attention on the area where the activity is taking351

place. The C3D network takes an action sequence of fixed352

size: 16 frames. In practice, since we consider atomic actions,353

which are relatively short, we do not use a sliding window on354

the sequences but rather simply re-sample the sequences.355

c) Training: The network weights are trained using a356

stochastic gradient descent on mini-batches of size 16 with a357

momentum of 0.9. We initialize the learning rate to 0.01 and it358

decreases over time. The training is done on a GeForce GTX359

1080 Ti graphics card. We use the cross-entropy categorical360

loss function.361

d) Testing: The performance of our hybrid approach is362

evaluated according to the principle of k-fold cross-validation363

where the k-folds form a partition of the dataset (with k =364

4). Each fold is used exactly once as a validation set during365

training. In the CAD-120 dataset there are four actors and366

each fold is associated with one actor. In Watch-n-Patch, the367

original publication [24] provides one test and training sets, we368

generate 3 more folds while keeping the actions in the same369

sequence within the same fold. We obtain the final prediction370

at the last activation layer, softmax, present in variants 2,3 and371

4 described in section III and illustrated in Fig. 1.372

C. Metrics for Evaluation373

We evaluate the different variants proposed in section III
with two metrics. The first one is the accuracy, later called
micro-accuracy (µ), which is defined as follows:

µ-accuracy =
number of correct predictions
total number of predictions

. (2)

This measures the ratio of correctly recognized actions to the374

total number of actions to recognize. In contrast, the second375

metric called macro-accuracy (M) measures the average of 376

the accuracy for each class. The accuracy of each class is 377

calculated and the macro-accuracy is the average of these 378

accuracies. Macro-accuracy gives the same weight to each 379

class, regardless of the number of samples the class has in the 380

dataset. This makes possible to see if only the most represented 381

classes are correctly recognized or if globally all the classes, 382

including the under-represented ones, are correctly recognized. 383

These two metrics are complementary in performance evalu- 384

ation for datasets with imbalanced classes. 385

D. Results and discussion 386

We first compare the individual results of C3D, C3D-GRU 387

and ANBM variants described in section III before evaluating 388

their late fusion. 389

Here we evaluate the contribution of the GRU recurrent 390

layer at the output of C3D to take into account the temporal 391

logic between actions (C3D-GRU). According to Tab. I in 392

Watch-n-Patch we observe, on average, a gain in micro- 393

accuracy of +13 percentage points (cf. lines 2 and 3). Re- 394

garding CAD-120 dataset, we observe on Tab. II (cf. lines 395

2 and 3) a gain in micro-accuracy of +4 percentage points 396

thanks to the addition of a GRU layer to the C3D network 397

compared to C3D alone. Looking in detail at the different 398

confusion matrices obtained on Watch-n-Patch on Fig. 5 and 6, 399

we see that classes that benefit the most are the following: 400

put-back-book, put-down-item and take-item. Indeed the action 401

put-back-book is often preceded by the action read. When the 402

previous action is labeled as read, it reduces and conditions the 403

choice of the following possibilities. The action put-down-item 404

is often preceded by action walk. Indeed, in Watch-n-Patch it 405



is a common scenario for a person to walk into the office406

and put his or her phone on the table. The gains on CAD-407

120 are more modest because for the recurrent layer to bring408

information, the frozen C3D network must have learned to409

recognize classes with a sufficient accuracy.410

The C3D-GRU network therefore outperforms C3D and411

now we are comparing it with our ANBM approach before412

evaluating their fusion. On the Watch-n-Patch dataset, C3D-413

GRU has a better micro-accuracy than ANBM (+11 percentage414

points pp) but the improvement of the macro-accuracy is less415

important (+5 pp), cf. lines 1 and 3 of Tab.I. As it can be seen416

on the confusion matrix on Fig. 6, the best detected actions417

by C3D-GRU are read, walk and leave-office with scores of418

1, 0.98, and 0.97% respectively. These actions represent 49%419

of the data (cf. Tab. III of the dataset) and contribute more420

to the micro-accuracy than, for example, turn-off-computer421

which represents only 3%. The confusion matrix of Fig. 4422

shows us that the ANBM approach outperforms C3D-GRU423

on 3 classes: play-computer, turn-on-computer and turn-off-424

computer. Both approaches perform best on different classes,425

but the nature of false positives also varies. As we can see426

from the confusion matrices in Figs. 4 and 6, both approaches427

have similar performances for the action fetch-book (0.71%428

for ANBM and 0.81% for C3D-GRU) but the errors differ.429

Indeed ANBM sometimes detects reach while C3D-GRU430

detects place instead of fetch-book On CAD-120 the C3D-431

GRU network distinguishes better reaching and placing than432

ANBM, these two actions represent 45% of the dataset.433

Thus, both datasets C3D-GRU and ANBM bring perfor-434

mances that complement each other. Giving best performances435

on different classes and different false positive sources of error436

may be one reason why the fusion using a fully connected437

layer may capture more information than a simple average438

of the two outputs. Here we evaluate the benefits that can439

be derived from their fusion. On CAD-120, the ability of the440

C3D-GRU network to distinguish reach and place from other441

classes allows, when merging both approaches, a gain of +4442

percentage points in micro-accuracy, see Tab. II. The fusion443

of C3D-GRU and ANBM improves the recognition of every444

actions on Watch-n-Patch except the action walk (1) which445

drops from 0.98 with C3D-GRU to 0.97 as well as actions446

play-computer (7) and turn-off-computer (9) that also drop447

by 1% with C3D-GRU-ANBM-DF fusion as shown by the448

confusion matrices on Figs. 4 6 and 7. Overall, predictions449

fusion increases the micro-accuracy by +6 percentage points450

with respect to C3D-GRU and by +17 percentage points with451

respect to ANBM. In the fusion, for actions involving a452

computer the performances of ANBM are favoured over those453

of C3D-GRU. The fact that both approaches complement each454

other is also well exploited when they individually present455

similar performances for a same class. For example, with the456

fusion approach the action fetch-book reaches 0.94 whereas457

with C3D-GRU and ANBM this action was correctly predicted458

in respectively 0.81 and 0.77.459

Here we propose to evaluate the robustness of this fusion460

approach on Watch-n-Patch by smoothing or further degrad-461

Fig. 3: Macro-accuracy with respect to Watch-n-Patch dataset
with classes synthetically augmented in order to decrease or
increase the class imbalance.

TABLE IV: Comparison to the literature. Action recognition
accuracy on two public datasets: CAD-120 and Watch-n-Patch.

Dataset Approaches Accuracy

CAD-120 GEPHAPP [28] 79.4
ANBM [9] 82.2
GPNN [29] 87.3

Ours 86.1

Watch-n-Patch CaTM [24] 32.9
WBTM [30] 35.2
PoT [31] 49.93
ANBM [9] 76.4
GEPHAPP [28] 84.8

Ours 93.0

ing the class imbalance within the dataset. We synthetically 462

augment or degrade the dataset and we re-train the networks 463

C3D, C3D-GRU, C3D-GRU-ANBM-DF to obtain the results 464

presented in Fig. 3. We observe that C3D training is sensitive 465

to the number of samples in the training. We also observe the 466

dependency of C3D-GRU on the result of C3D. Indeed C3D- 467

GRU performance drops faster than C3D, because to capture 468

temporal coherence, the previous action must be well detected. 469

When classes are strongly imbalanced, C3D detects poorly 470

some actions and some temporal transitions between action 471

are not modeled. Overall, as expected we note that the fusion 472

of C3D-GRU-ANBM-DF resist more to the degradation of the 473

samples, with a slightly less important slope value. 474

As shown in Tab. IV, our hybrid fusion strategy allows 475

us to improve our previous performance, while still having 476

near or better than the state of the art performances. We 477

select recent state-of-the-art benchmark approaches and if 478

possible that are evaluated on the same two datasets such as 479



Fig. 4: Confusion matrix of ANBM (original test set from
Watch-n-Patch). Predictions are on columns are ground truth
on rows. [0 - read ; 1 - walk ; 2 - leave-office ; 3 - fetch-book
; 4 - put-back-book ; 5 - put-down-item ; 6 - take-item ; 7 -
play-computer ; 8 - turn-on-computer ; 9 - turn-off-computer]

Qi et al. [28]. The two approaches considered in our hybrid480

fusion strategy take into account the transitions between two481

successive actions. In CAD-120, the action moving precedes482

almost all the others, which is not very informative. We may483

consider to take into account more transitions. It also shows484

that our merging strategy allows us to surpass the state of485

the art in action recognition on the Watch-n-Patch dataset486

by improving action recognition by +8.2 percentage points487

compared to the approach proposed by Qi et al [28].488

A video illustrates our results on video sequences of both489

datasets is available at the address indicated in the footnote 1.490

V. CONCLUSION AND FUTURE WORK491

In this paper we have compared different approaches for492

action detection and proposed the addition of a recurrent layer493

to C3D to benefit from the temporal relationships between494

actions. We explored a way to merge at the decision level495

of data driven and Bayesian-based approaches for action496

recognition using a dense layer. We experimented with two497

datasets in the literature presenting an imbalance between their498

classes, and we show gains in accuracy that are even more499

significant when the approaches complement each other.500

In the perspectives we plan to evaluate our merging ap-501

proach on the detection of high-level activities composed by502

the succession of atomic actions. In the future we also plan503

to further investigate deep learning architectures for automatic504

action segmentation in order to deal with untrimmed video505

data.506

1https://youtu.be/7txCiHx3OwA

Fig. 5: Confusion matrix of C3D (original test set from Watch-
n-Patch). Predictions are on columns are ground truth on rows.
[0 - read ; 1 - walk ; 2 - leave-office ; 3 - fetch-book ; 4 -
put-back-book ; 5 - put-down-item ; 6 - take-item ; 7 - play-
computer ; 8 - turn-on-computer ; 9 - turn-off-computer]

Fig. 6: Confusion matrix of C3D-GRU (original test set from
Watch-n-Patch). Predictions are on columns are ground truth
on rows. [0 - read ; 1 - walk ; 2 - leave-office ; 3 - fetch-book
; 4 - put-back-book ; 5 - put-down-item ; 6 - take-item ; 7 -
play-computer ; 8 - turn-on-computer ; 9 - turn-off-computer]

https://youtu.be/7txCiHx3OwA


Fig. 7: Confusion matrix of our fusion approach C3D-GRU-
ANBM-DF (original test set from Watch-n-Patch). Predictions
are on columns are ground truth on rows. [0 - read ; 1 - walk
; 2 - leave-office ; 3 - fetch-book ; 4 - put-back-book ; 5 -
put-down-item ; 6 - take-item ; 7 - play-computer ; 8 - turn-
on-computer ; 9 - turn-off-computer]
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