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Abstract— In this work, we tackle the problem of hyperspec-
tral (HS) unmixing by departing from the usual linear model and
focusing on a Linear-Quadratic (LQ) one. The proposed algo-
rithm, referred to as Successive Nonnegative Projection Algorithm
for Linear Quadratic mixtures (SNPALQ), extends the Successive
Nonnegative Projection Algorithm (SNPA), designed to address
the unmixing problem under a linear model. By explicitly mod-
eling the product terms inherent to the LQ model along the it-
erations of the SNPA scheme, the nonlinear contributions in the
mixing are mitigated, thus improving the separation quality. The
approach is shown to be relevant in a realistic numerical experi-
ment.

1 Introduction
HS imaging is a powerful tool in a wide range of fields: re-
mote sensing [1], biomedical and pharmaceutical imaging [2],
astronomy [3], to only name a few. While the datasets are
composed of a high number of spectral bands, HS images usu-
ally suffer from a limited spatial resolution. Therefore, several
materials generally contribute to the measurements associated
with each pixel and the acquired spectra correspond to mixtures
of pure material spectra, called endmembers.
Many works on HS imaging [4] have focused on the linear mix-
ing model (LMM) which states that the spectral signature of the
ith observed pixel xi ∈ Rm, i ∈ [[1, n]] can be written as

xi =

r∑
k=1

hikwk + ni (1)

where wk, k ∈ [[1, r]], corresponds to the spectral signature
of the kth endmember, hik is the the spatial contribution
(abundance) of the kth endmember in the ith pixel and ni

accounts for any additive noise in the ith pixel. In a matrix
form, the LMM can thus we rewritten as X = WH + N, with
X ∈ Rm×n, W ∈ Rm×r, H ∈ Rr×n and N ∈ Rm×n.
Recovering W and H from the sole knowledge of X is referred
to as spectral unmixing in the HS literature and can be cast as a
Blind Source Separation (BSS) problem [5–7]. As the problem
is generally ill-posed, additional physical non-negativity
constraints are imposed on the unknown matrices W and H,
akin to nonnegative matrix factorization (NMF) [8].

In various applicative contexts, LMM may however suffer
from some limitations and only consists in a 1st-order approx-
imation. In particular, when the light arriving on the sensor
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interacts with several materials, nonlinear mixing effects may
occur [4,9,10]. To take into account multiple scatterings, bilin-
ear or LQ models include termwise products of the endmem-
bers [11, 12]: for all i,

xi =

r∑
k=1

hikwk +

r∑
p=1

r∑
l=p+1

βipl(wp �wl) + ni, (2)

where the� denotes the Hadamard product and βipl is the con-
tribution of the quadratic term wp �wl in the ith pixel.
Despite source identifiability issues in the general context of
non-linear BSS problem [5,13,14], it was recently showed that
in LQ mixtures the non-linearity leads to a so-called essentially
unique solution1, provided that products of the sources up to
order four are linearly independent [15]. In HS imaging, such
an assumption thus requires the family

(wi,wi�wj ,wi�wj�wk,wi�wj�wk�wl)i,j,k,l∈[[1,r]]
l<k<j<i

,

(3)
whose size scales inO(r4), to be linearly independent. This re-
quirement might not be fulfilled in real-world scenario since the
number of spectral bands m should then also increase at least
as O(r4). To overcome this issue, we tackle (2) under an NMF
paradigm. The rationale is to convert the linear independence
condition on (3) into a non-negative independence condition,
which is significantly less restrictive in general. Specifically,
we focus on the so-called Nascimento model defined as [11,16]

X = Π�(W)H + N, (4)

where Π�(W) = [wi,wi � wj ]i,j∈[[1,r]], j<i ∈ Rm× r(r+1)
2

is the matrix containing the endmembers W and their second-
order products (referred to as the “virtual” endmembers), and
H ∈ R

r(r+1)
2 ×n is the matrix of mixing coefficients associated

with the linear and nonlinear contributions, hik and βipl in (2),
respectively. This model is accompanied by the following con-
straints

∀i ∈ [[1, n]], ∀k ∈ [[1, r(r + 1)/2]], hki ≥ 0,

∀i ∈ [[1, n]],

r(r+1)
2∑

k=1

hki ≤ 1,
(5)

Concerning W, no endmember must lie within the convex hull
formed by the other (virtual) ones and the origin. Lastly, the
mixing is assumed to be LQ near-separable, which generalizes
the pure pixel assumption [17, 18]:

1In the absence of noise and under the additional assumption that
rowrank(X) =

r(r+1)
2

, if Ŵ and Ĥ can be found such that X =

Π�(Ŵ)Ĥ, then Ŵ = W and Ĥ = H up to a scaling and permutation
indeterminacy



Assumption 1.1. X is said r−LQ near-separable2 if it can be
written as:

X = Π�(W)

[
Ir

0 r(r−1)
2
×r

H′

]
P︸ ︷︷ ︸

=H

+N, (6)

where W ∈ Rm×r, Ir is the r-by-r identity matrix, 0p×q
the p-by-q matrix of zeros, P a permutation matrix and H′ ∈
R

r(r+1)
2 ×(n−r) satisfying the two first conditions of (5).

The aim of this work is to introduce an algorithm which,
given a r-LQ near separable mixture, recovers the factors
W and H, up to a permutation. To do so, we generalize the
SNPA [19] by explicitely modeling the bilinear products along
the greedy search process.

We denote matrices as A ∈ Rm×r, a column indexed by
i ∈ [[1, r]] as ai and a row indexed by j ∈ [[1,m]] as aj . The
quantity |K| is the number of elements in the set K. We define
the set ∆r = {x ∈ Rr|x ≥ 0,

∑r
i=1 xi ≤ 1}.

2 Proposed SNPALQ algorithm
The proposed SNPALQ (see Algo. 1) is an extension of SNPA
[19], which is an algorithm designed for linear near-separable
NMF. Similarly to SNPA, SNPALQ is a greedy algorithm. At
each iteration, the column of the data matrix X with the largest
`2 norm is selected. SNPALQ and SNPA however differ by
their respective projection steps:

• SNPA projects each column of X onto the convex hull
formed by the origin and all the columns extracted so far;

• In SNPALQ, we propose to perform the projection of each
column of X on the convex hull formed by the origin, the
columns extracted so far and their second order products.

Therefore, if two endmembers wi, i ∈ [[1, r]] and wj , j 6=
i, j ∈ [[1, r]] have been extracted during the iterative process
of SNPALQ, the contribution of the quadratic term wi � wj

is cancelled. As such, the non-linear part of the mixing is re-
duced, giving more weight to the linear contribution. Thus the
endmembers are expected to be more easily extracted.

3 Numerical results
The experiments are conducted on a noiseless3 realistic dataset
X of the form (6). Up to 20 spectral signatures are extracted
from the USGS database4 to build W with m = 20 and
r ∈ [[2, 20]]. The matrix H has dimension r(r+1)

2 × 1000,
and the columns of H′ in (6) are generated randomly using a
Dirichlet distribution D (α, . . . , α) with α = 0.5. The results
are averaged over 100 Monte-Carlo experiments.

Given a set of indices K extracted by and algorithm, the sep-
aration quality is assessed using

θ = min
i∈[[1,r]]

diag
(
WTXK

)
,

2Note that the virtual endmembers are not required to appear as pure pixels,
prohibiting the mere use of linear near-separable NMF algorithms.

3The results are similar when some noise is added, but the study of
SNPALQ for various noise level is omitted in this paper due to lack of space.

4https://www.usgs.gov/

Algorithm 1 SNPALQ: Successive Nonnegative Projection Al-
gorithm for Linear Quadratic mixtures.

Input: A r-LQ r-near-separable matrix X ∈ Rm×n satisfy-
ing constraints (5), the number r of endmembers.
Initialization: R = X, K = {}
% Greedy search
while |K| ≤ r do
p = argmaxj∈[[1,n]] ‖rj‖2
K = K ∪ {p}
for j ∈ [[1, n]] do
hj = argmin

h∈∆
|K|(|K|+1)

2
‖xj −Π�(XK)h‖2

rj = xj −Π�(XK)hj

end for
end while
Output: Set K of indices such that XK ' W up to a per-
mutation.

where diag(A) is contains the diagonal elements of the matrix
A. We consider perfect separation is achieved if θ > 0.999.
The probability of obtaining a perfect separation using several

algorithms is displayed in Fig. 1 as a function of the number
r of endmembers. SNPALQ obtains significantly better results
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Figure 1: Probability of perfect separation as a function of r.

than SNPA [19] or SPA [17], especially for large r. It achieves
a perfect separation in more than 90% of the experiments. The
initial improvement when r increases is linked to the use of a
Dirichlet distribution with α = 0.5 when randomly generating
the mixing coefficient matrix H′. When r is small, the data-
points are more spread within the convex hull formed by the
origin and the (virtual) endmembers, leading to a higher prob-
ability for a virtual endmember to be extracted.
SNPA and SPA results deteriorate quickly when r increases.
SPA becomes worse than SNPA when r ' m, which is ex-
pected since SNPA has an interest mainly when the endmember
matrix W is either rank-deficient or ill-conditioned [19].

Conclusion

To tackle the problem of linear-quadratic hyperspectral unmix-
ing, we introduced SNPALQ, an extension of SNPA which ex-
plicitly includes the quadratic terms into the projection step.
The approach was shown to obtain good results on non-linear
realistic datasets. More results, both empirical and theoretical,
will be given at the conference, including a study of the pro-
posed algorithm SNPALQ with respect to noise.
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