
HAL Id: hal-03108194
https://hal.science/hal-03108194

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Bandits and Lexical Analysis for Document
Retrieval in a Juridical Corpora

Filipo Studzinski Perotto, Nicolas Verstaevel, Imen Trabelsi, Laurent
Vercouter

To cite this version:
Filipo Studzinski Perotto, Nicolas Verstaevel, Imen Trabelsi, Laurent Vercouter. Combining Ban-
dits and Lexical Analysis for Document Retrieval in a Juridical Corpora. 40th SGAI International
Conference on Artificial Intelligence, AI 2020, Dec 2020, Cambridge, United Kingdom. pp.317-330,
�10.1007/978-3-030-63799-6_24�. �hal-03108194�

https://hal.science/hal-03108194
https://hal.archives-ouvertes.fr

Combining Bandits and Lexical Analysis

for Document Retrieval in a Juridical

Corpora

Filipo Studzinski Perotto1(B), Nicolas Verstaevel1, Imen Trabelsi2,
and Laurent Vercouter2

1 Toulouse University, IRIT, 31000 Toulouse, France
{filipo.perotto,nicolas.verstaevel}@irit.fr

2 Normandie University, INSA Rouen Normandie, LITIS, 76000 Rouen, France
{imen.trabelsi,laurent.vercouter}@litislab.fr

Abstract. Helping users to find pertinent documents within a big cor-
pus through the use of simple queries on a search engine is a major
concern in the information retrieval field. The work presented in this arti-
cle combines the use of standard natural language processing methods to
estimate the relevance of a document to a query with an online preference
learning method to infer such kind of pertinence by analyzing the past
behavior of other users making similar searches. The first contribution
of this article is the proposition of a specific heuristic method, conceived
for an open access online juridical corpus, to filter and interpret data
collected from the user behavior while navigating on the search engine’s
query interface, on the list of results, and on the documents themselves.
The second contribution is an original way for combining multiarmed
bandit algorithms for learning pertinence from the user implicit feed-
back with natural language processing techniques in order to define a
unique ranking for the search results.

Keywords: Document retrieval · Learning-to-Rank

1 Introduction

A document retrieval system (DRS) implements both a user interface and an
engine to search over documents within a digital corpus. A DRS must: (a) find
relevant documents to user queries and (b) evaluate the matching results, sorting
them according to relevance. State-of-the-art DRS combine simple filtering tech-
niques (from user given constraints concerning metadata and expression match-
ing) with statistical analysis, natural language processing, and machine learning

This work is part of PlaIR 2.018, a project funded with the support from the European
Union with the European Regional Development Fund (ERDF) and from the French
Regional Council of Normandy. It is also partially supported by the C2C project,
financed by French Regional Council of Occitanie

_

https://doi.org/10.1007/978-3-030-63799-6 24

to exploit both the semantic connections between documents and queries, and
the feedback given by users in past interactions.

The work described in this article presents an original search engine archi-
tecture developed for a particular juridical digital corpus and query interface
(described in Sect. 2) which includes:

(a) a specific way for filtering and interpreting user behavior data, collected by
tracking user interactions with the search engine’s query interface, the list
of results, and the documents themselves;

(b) a domain-specific function for calculating user, document and query simi-
larities;

(c) the use of advanced NLP techniques for calculating relevance between
queries and documents, such as ontology-based matching and word-
embedding;

(d) the use of multiarmed bandits algorithms for learning pertinence from
behavior;

(e) a specific way for combining NLP and MAB in order to define a unique
ranking for the search results.

Fig. 1. Search engine modules. The top boxes represent the use of NLP modules for
ranking document matches following lexical or even semantic text attributes; it is
an offline process (the score of a document for a query does not change with time).
The other boxes represent the online process of learning from the user feedback. Such
modules analyze the user interaction with the list of results and with the documents
themselves, trying to identify, from the user behavior, the evidences of relevance of a
document for a query. Such evidence is then used as a reward, feeding a multiarmed
bandit algorithm.

The structure of the search engine is illustrated in Fig. 1. The basic idea is to
combine two strategies in order to better identify the relevance of documents to
queries. The first strategy is the basis of any information retrieval system: the
use of natural language processing techniques to analyze lexical and semantic

matches. It corresponds to the top boxes in the Fig. 1, starting from the indexed
corpus and matching with the query terms, which generates a linguistic relevance
score. The second strategy is the differential of modern search engines: the use of
user behavior in order to identify the relevance of a document based on implicit
feedback. It corresponds to the middle and bottom boxes in the Fig. 1, forming
a cycle where the implicit feedback collected by observing the interactions of
users with the documents and with the ranked list of results feeds a multiarmed
bandit algorithm that creates an alternative online ranking. Those two ways of
scoring a document are then aggregated in a common ranking by the ranking
engine.

The rest of the paper is organized as follows: Sect. 2 presents the targeted
corpus of documents; Sect. 3 formalizes the problem in theoretical terms, and
presents the background concepts concerning DRS and NLP; Sect. 4 overviews
the use of multiarmed bandit algorithms for online preference learning; Sect. 5
presents the proposed architecture; Sect. 6 concludes the paper.

2 Corpus and Search Interface

We worked on a corpus extracted from the French Institute for the International
Transportation Law (IDIT)1. Their virtual library, specialized in transporta-
tion jurisprudence, counts about 40000 documents, from which about 3000 are
in open access. All the documents have been categorized by law experts and
associated to specific keywords from a thesaurus containing about 2000 tokens.
Around 25000 documents are French decisions of justice.

Each decision is associated with metadata such as the date of the decision, its
country, type of court (tribunal, court of appeal, court of cassation - correspond-
ing to the first, second or third degrees), associated themes (from thesaurus), etc.
Due to domain specificity, the documents in the corpus have a regular structure.
Every document of a given type of court can be divided into similar distinct, con-
tiguous and non-overlapping segments, which always appear in the same order.
In other words, each type of decision is segmented in a specific way. For example,
the text of a decision from a court of appeal is divided into 4 segments:

header: where information like the name of the court, the judge, the city, the
date, and the name of the disputing parts are declared;

facts: where the judge recalls the context of the disagreement, and the arguments
claimed by the parts, as well as the verdict proffered by the lower court;

reasons: where the judge reproduces the arguments of the appellant for ques-
tioning the decision;

conclusion: where the judge declares and substantiates a new sentence, accept-
ing or rejecting the plea;

Those documents are PDF files, but their contents are also available in plain-
text format. After standard text pre-processing, each document is presented as

1 www.idit.asso.fr.

an ordered collection of paragraphs. The paragraphs are divided into sentences
and then tokenized into word-level terms to allow lexical analysis. The browsing
navigation interface is composed of 4 frames or pages (query, results, abstract,
and document) as illustrated in Fig. 2. The query interface frame is illustrated in
Fig. 3. The list of results is illustrated in Fig. 4. The document is viewed online
by the user through an interface similar to any classic PDF viewer as illustrated
in Fig. 5.

Fig. 2. Navigation between frames in the searching interface

Fig. 3. The query interface

3 Background

Document research in a digital corpus corresponds to a browsing process driven
by a user with specific information needs. Solving it requires the use of traditional
information retrieval methods to estimate the most likely relevant documents to
the user query. It can be improved by exploiting other elements like user profiles,
browsing profiles and the semantic proximity of documents.

First of all, we need to formally define each entity involved in a document
retrieval task.

3.1 Definitions

Let D = {d1, . . . , dn} be a corpus, consisting on a set of n documents, where each
of its elements di is a document composed of metadata (e.g. date, geolocation,

Fig. 4. Ranked list of results interface. After executing the query, the website returns
the results, ordered by the calculated relevance in the given time. The evidences learned
from the interactions of the user with the list of results, as well as with the documents
themselves, allow to improve the scoring for future queries. Searched terms are high-
lighted.

Fig. 5. The decision (a pdf document) is viewed online. The user can interact with the
document (scrolling, selecting, etc.) and can also add private annotations (highlighted).
All such actions are tracked in order to identify the interest of the user on the document,
which helps to learn about its relevance to the query.

author, theme, type, etc.) and content (i.e. the structured sequence of words
forming the text). Let M = {m1, . . . , m|M |} be the set of considered meta-
attributes, and mi,j the value of attribute mi on document dj .

Let W = {w1, . . . , wk} be the complete set of k distinct words or terms
appearing at least once in D, and Wd ⊂ W the subset of those words that
appears in document d. A query q is also a collection of terms but not necessarily
limited to W .

Let φw,d be the relative frequency of a given word w on document d (usually
called tf for term frequency), and ψw the proportion of documents where the
word w appears in relation to the entire set of documents (usually called df for
document frequency).

Let R = {r1, . . . , r|R|} be a set of anaphoric relationships (synonym,
antonym, generalization, specialization, . . .). An ontology O corresponds to the
set of functions ωr(w1, w2) indicating the strength of relation r between the words
w1 and w2. Note that such relations can be symmetric (synonym, antonym) or
asymmetric (general, specific).

Let U = {u1, . . . , uz} be a set of z users who have been interacting with
the document retrieval search engine. Let Qu be the history of queries made
by a given user u, and Iu,d the history of interactions between that user and a
document d.

Let σ(di, dj) be a function that scores the similarity between documents
di and dj based on its lexical contents and metadata, σ(ui, uj) the similarity
between users ui and uj , and σ(qi, qj) the similarity between queries.

3.2 Lexical Pertinence

The “term frequency · inverse document frequency” (tfidf) coefficient is a stan-
dard statistical method for calculating how important (or relevant) a word is to
a document in a collection or corpus. Term weighting strategies (such as tfidf)
play an essential role in text categorization, information retrieval, and text min-
ing. The principle is simple: the importance of a word increases proportionally
to the number of times it appears in the document but is offset by the frequency
of the word in the corpus. Variations of the tfidf weighting scheme are often used
by search engines as a central mechanism for scoring and ranking documents in
response to a user query [2,13].

tfidf is composed by two operands: tf and idf. Term Frequency (tf) corre-
sponds to the number of times the target word appears in a document, normal-
ized by the total number of words in that document. Inverse Document Frequency
(idf) is the logarithm of the total number of documents in the corpus divided
by the number of documents where the specific term appears.

Term frequency as a metric does not account for order. It assumes that a
document is just an order-ambivalent collection of tokens (bag-of-words), which
could be represented by enumerating the number of times each token appears.
In that bag-of-words model, each document can be represented by a vector of
length k, where k is the total number of unique terms within the entire corpus

(all documents) and each entry is the number of times that specific term appears
in that document.

Inverse document frequency measures how informative a term can be within
a corpus by weighing down the frequent terms while scaling up the rare ones.
The standard tfidf coefficient τ , for a given word or term w ∈ W and a given
document d ∈ D, is defined in Eq. (1):

τw,d = (1 + log φw,d) · log
n

ψw

(1)

In such systems, term frequency, inverse document frequency, and document
length normalization are important factors to be considered when a term weight-
ing strategy is developed. Term length normalization is proposed to give equal
opportunities to retrieve both lengthy documents and shorter ones. However,
terms in very short documents could be assigned very high weights, resulting in
a situation where shorter documents are ranked higher than lengthy documents
that are more relevant to the user information needs. For that reason, in this
research, we use the term weighting strategy proposed in [14] to alleviate the
side effects of document length normalization.

To rank query results by lexical pertinence, the system must: (a) compute
the tf and idf scores for every term, and then build the n length vector for each
document, using the tfidf of each term; (b) considering the query, get a result
set of matching documents; (c) compute a tfidf vector for the query; then, (d)
calculate the similarity between the query vector and each document vector in
the result set using cosine similarity ; and (e) sort the documents by this score.

A document search engine must rank documents by their relevance to the
query. For such a task, there is no unique and direct technical solution: it requires
some examination of the corpus and data structures. If the documents are not
just single text flows, but are structured and composed of known sections, differ-
ent weights can be associated to the pertinence scores depending on the region
the searched words are found. The same for textual metadata associated to the
documents.

3.3 Similarity Metrics

We consider to analyse the similarity between elements inside the following cat-
egories of objects: user, query, and document, as indicated in Table 1:

Table 1. Different strategies for detecting similarity between entities. The table indi-
cates what strategy can be applied to each kind of item.

Similarity User Query Document

Lexical No Yes Yes

Metadata Yes No Yes

Feedback Yes Yes Yes

Users and documents have associated metadata, and a first approach for
measuring similarity is analyzing the proximity between such metadata values.
Documents and queries, even if the last are very shorter, are composed by text.
Therefore, a natural way for considering similarity is through lexical proxim-
ity, using NLP techniques. Finally, the feedback history can also be used for
deducing an emerging similarity. The insight is that users producing similar
queries and navigating through similar documents can be considered similar.
Documents that are read by similar users during similar query sessions can be
considered similar. Queries that are constructed by similar users and that lead to
the reading of similar documents can be considered similar. Note, however, the
circularity between such considerations. We are estimating a similarity between
two objects based on the similarity between other objects related to it, which
are also estimations.

3.4 User Feedback

In cooperation with NLP techniques, the architecture proposed in this paper
makes use of learning techniques to infer the relevance between documents and
queries using the user feedback. Depending on the problem, and on the existing
user interface, an explicit feedback mechanism can be implemented (e.g. one to
five stars, like/dislike, up/down, etc.). The drawback of such kind of explicit
evaluation is that it introduces an additional effort that users are often unlikely
to accept. They also involve modifying the website user interface, which can be
undesirable. In addition, explicit evaluations can be biased or even misused by
users.

The alternative is to get evidence on the relative importance of a query result
by observing the user behavior [10]. Some interactions can produce particularly
strong evidence about the importance of a document for a given user in her/his
specific needs of information (e.g. a document clicked by the user after a query,
in which she/he spent a long time scrolling and annotating its parts, that had
been saved and printed, is probably a relevant document). Of course, several
different information needs and browsing profiles can be expressed indistinctly
by a same simple query. For that reason, the confidence concerning the estimated
relevance of a document to a query increases with the number of observations.

For fine tracking user behavior on a web service, the most common strategy
is the use of client side scripts (e.g. JavaScript functions incorporated to the web-
page) that asynchronously send information of elementary user interactions with
the pages, which is registered on a database on the server side [1]. The collected
information generally comes from low-level actions (e.g. mouse movements, key-
board typing, link clicking, etc.). More abstract features must be inferred from
such concrete data.

Implicit feedback (e.g., clicks, dwell times, etc.) provides an abundant source
of data in human-interactive systems [11]. Contrarily to explicit feedback,
implicit feedback means monitoring user behavior without intruding it. Implicit
feedback features vary from simple ones, like view counting, to more sophisti-
cated ones, like scrolling or mouse movement tracking. Due to its effortlessness,

data can be obtained in much larger quantities for each user. On the other hand,
they are inherently noisy, voluminous, and harder to interpret [11]. In addition,
its inherent biases represent a key obstacle to be used effectively [6]. Beyond
user-bias (e.g. some users tend to click in every result), the problem is the bias
caused by the ranking itself. On a document retrieval system where most users
are not experts on the domain, there is a tendency in accepting the ranking
suggested by the system (i.e. the first results presented will be clicked more).

To avoid the disturbance caused by that bias (the user tendency for click-
ing on the first results, independent of their real relevance), a common feature
calculated from low-level activity is the relative click-through rate. It consists in
the ratio of the number of times a given result was clicked on, to the number of
times it was displayed, pondered by its position on the results list. The ponder-
ing factor can be also adapted in function of the query profile (generic search
of information vs. precise query). Other common features are the effective dwell
time and the pogo-sticking. The first is the amount of time that a visitor spends
on a given result after clicking on it, having focus on, or interacting with the
document, and before closing it or coming back to the search results. The second
is a negative evaluation, corresponding to the situation when a user bounces off
an open document quickly (with few interaction) to return to the list of results
looking for another document.

4 Learning-to-Rank

Most of the web search engines make the general assumption that users are often
the best judges of relevance, so that if they select a particular search result, it is
likely to be relevant, or at least more relevant than the presented alternatives [3].
Such engines rely on behavioral metrics to constitute their ranking factors. The
basic strategy is using the collected click data on the query results to feed back
into ranking. Infrequently clicked results should drop toward the bottom because
they are probably less relevant, and frequently clicked results must bubble toward
the top.

Online learning to rank can be viewed as a sequential decision-making prob-
lem where in each round the learning agent chooses a list of items and receives
feedback in the form of clicks or other interactions from the user. Many sample-
efficient algorithms have been proposed for this problem, assuming some specific
click model relating rankings to user behavior [8].

Learning to rank is an important problem with numerous applications in
web search and recommendation systems. The goal is to learn an ordered list
of l items from a larger collection of size n that maximizes the satisfaction of
the user, conditioned on a query. This problem has traditionally been studied in
the offline setting, where the ranking policy is learned from manually-annotated
relevance judgments. It has been observed that the feedback of users can be used
to significantly improve existing ranking policies. This is the main motivation
for online learning to rank, where the goal is to adaptively maximize the user
satisfaction.

The standard click model in learning-to-rank is the cascade model (CM),
built from the supposition that users scan the ranking from top to bottom,
clicking on the first attractive item [7]. The system cannot observe what would
have been the user’s actions if the results have been placed in a different order.
Such a problem is referred to as learning with partial feedback [5].

In the bandit setting with contextual information applied to ranking, an
online algorithm receives a context (in the form of a feature vector) in time t

and must select an action, whose quality is evaluated by a reward function. One
of the first models had been presented by [12], an online learning algorithm that
directly learn a diverse ranking of documents based on users’ clicking behavior,
able to minimize abandonment, or alternatively, maximize the probability that
a relevant document is found in the top k positions of the ranking.

The learning-to-rank problem can be viewed as a regret minimization prob-
lem, where the goal is to asymptotically reduce the total number of bad-ranked
items displayed over time. The trade-off between exploration and exploitation in
that context comes from the necessary choice between presenting some unknown
documents on the ranking list in order to collect information about those docu-
ments, or presenting the likely best items in order to ensure the user satisfaction
[12]. Different bandit algorithms for the learning-to-rank task have been recently
proposed in the literature, such as BanditRank [4] and TopRank [9].

5 Proposed Model

The standard approach for estimating the relevance of a document to a given
search query is lexical correlation (tfidf), as indicated in previous sections. The
relevance can be then modified using a MAB algorithm, based on the history of
interactions, contextualized by the similarities between users and queries. The
evidence of relevance must be interpreted from the user feedback.

In the query frame (Fig. 3), the feedback that can be analyzed concerns the
construction of the query (typed or deleted words and expressions, and the time
spent on it). In the list of results (Fig. 4), the frame that appears after the user
launches the query, some feedback elements can be used for extracting evidence
of relevance: the timestamp when each result snippet is shown to the user (after
scrolling or changing to the next page of results), the total time that each snippet
is visible to the user, if the user moves the mouse over the snippet, or reads a text
tip, and finally, if the user clicks on the button to see the abstract of the decision
(a kind of resume made by an expert, available on the website, which extends
the snippet information) or to see the document (pdf) itself. Then, it is possible
to collect the dwell time of (time spent on) an abstract or a document (Fig. 5),
scroll percentage, counter of scrolling events or mouse pointer movements, print,
copy or save actions, and particularly for the pdf documents, annotations and
highlights made by the user, with corresponding timestamps.

The idea is that, the more the user interacted with a given document, the
more it is likely to be relevant to her/his information need. In the subsequent
MAB algorithm, the evidence of relevance is represented as a positive reward.

Some evidences can reveal the opposite: for example, interacting with the result
snippet without opening the document, or opening the abstract and then closing
it quickly. Such observed sequences of actions can indicate that the user paid
attention to the document and decided to ignore it, which can be interpreted
as an evidence of non relevance to the query. Table 2 distinguishes 4 categories
adopted by the proposed mechanism for interpreting the observed evidences.

The proposed model analyzes query-document relevance based on multiple
types of implicit feedback. Some feedback actions give evidence that a particular
result was noticed by the user. It is the case for all interactions on the snippet (on
the page of results). In fact, the opposite, a non-noticed (or completely ignored)
result will not be impacted by feedback rewards. We consider in this case, that
the user was searching for some specific document, and then the ignored ones
do not need to be penalized. Other feedback actions indicate that the user paid
attention to some result, e.g. reading the summary or the document. Such actions
indicate the evidence of a potential importance of the document to the user and
the query. However, the importance can only be confirmed by other actions
indicating relevance, like saving the document or consistently annotating it.

The complete set of evidences considered for the specific target corpus is
presented in Tables 3 and 4. The presence of each evidence increment the strength
of the related parameter. The 4 parameters, α, β, γ, δ, are then heuristically
combined as indicated in Eq. (2) in order to obtain a general evidence value ξ,
which is returned as a reward to the MAB algorithm.

ξ = α · β · (2δ − γ) (2)

Table 2. 4 different categories of evidences, with different consequences to the com-
putation of relevance. Each category is associated to a parameter which measures the
cumulated strength of the evidences.

Parameter Interpretation Consequence

α Fruitful query evidences Take feedback into account

β Noticed result evidences Take feedback into account

γ Analyzed result evidences Add small negative reward

δ Relevant result evidences Add big positive reward

Table 3. Tracking

Interface frame Behavior Threshold Weight

Snippet Display cumulated time ≥10 s β ← β + 0.2

Mouse hover events Count ≥3 times β ← β + 0.4

Tip display cumulated time ≥5 s β ← β + 0.4

Abstract See abstract click flag true γ ← γ + 0.2

Get focus events count ≥3 times γ ← γ + 0.1

Focus cumulated time ≥1 min γ ← γ + 0.1

Mouse hover events count ≥5 times γ ← γ + 0.1

Add to favorites flag True δ ← δ + 0.1

Print flag True δ ← δ + 0.1

Document See PDF document click flag true γ ← γ + 0.2

Get focus events count ≥3 times γ ← γ + 0.1

Focus cumulated time ≥1 min γ ← γ + 0.1

Mouse hover events count ≥7 times γ ← γ + 0.1

Copy events count ≥3 times δ ← δ + 0.1

Print flag true δ ← δ + 0.1

Save flag True δ ← δ + 0.1

Annotations Annotations count ≥2 annotations δ ← δ + 0.1

Selected text size ≥20 characters δ ← δ + 0.1

Annotation text size ≥50 characters δ ← δ + 0.1

Edition cumulated time ≥1 min δ ← δ + 0.1

Modification events count ≥5 times δ ← δ + 0.1

Table 4. Navigation evidence

Results with evidence of relevance Query reformulated after Weight

No No α = 0.5

No Yes α = 0.0

Yes No α = 1.0

Yes Yes α = 0.5

6 Conclusions

This paper proposed an architecture that combines lexical methods and bandit
learning algorithms for producing a ranking of query-based searched documents
within a particular juridical corpus, which is improved thanks to the user feed-
back. We described the interesting findings of an ongoing work. The next steps
of this research include the use of synthetically generated data, and real collected
data, in order to evaluate the quality of the proposed solution. In a first phase,

a set of search problems and their corresponding relevant documents, previously
prepared by an expert, is submitted as an exercise to different subjects, with
different expertise levels, in order to observe their behavior during searching ses-
sions. In such a preliminary phase, the goal is identifying what kind of evidences
present greater correlation to document relevance. The intensity of the correla-
tion can also suggest the weight of an evidence for deducing relevance, modifying
the values presented in Tables 3 and 4. Based on such values, in a second phase
we will be able to analyze the quality of ranking answers over time, comparing
classic tfidf, as well as other state-of-the-art learning-to-rank methods against
the proposed method.

References

1. Atterer, R., Wnuk, M., Schmidt, A.: Knowing the user’s every move: user activity
tracking for website usability evaluation and implicit interaction. In: Proceedings
of the 15th International Conference on World Wide Web, pp. 203–212. ACM, New
York (2006)

2. Croft, B., Metzler, D., Strohman, T.: Search Engines: Information Retrieval in
Practice, 1st edn. Addison-Wesley, Boston (2009)

3. Enge, E., Spencer, S., Stricchiola, J., Fishkin, R.: The Art of SEO - Mastering
Search Engine Optimization, 2nd edn. O’Reilly, Sebastopol (2012)

4. Gampa, P., Fujita, S.: BanditRank: Learning to rank using contextual bandits.
CoRR abs/1910.10410 (2019)

5. Gentile, C., Orabona, F.: On multilabel classification and ranking with bandit
feedback. J. Mach. Learn. Res. 15(1), 2451–2487 (2014)

6. Joachims, T., Swaminathan, A., Schnabel, T.: Unbiased learning-to-rank with
biased feedback. In: Proceedings of the 10th ACM International Conference on
Web Search and Data Mining, WSDM 2017, pp. 781–789. ACM, New York (2017)

7. Kveton, B., Szepesvári, C., Wen, Z., Ashkan, A.: Cascading bandits: learning to
rank in the cascade model. In: Proceedings of the 32nd International Conference on
International Conference on Machine Learning, ICML 2015, vol. 37, pp. 767–776.
JMLR.org (2015)

8. Lattimore, T., Kveton, B., Li, S., Szepesvari, C.: TopRank: a practical algorithm for
online stochastic ranking. In: Advances in Neural Information Processing Systems,
Proceedings of NIPS 2018, vol. 31, pp. 3945–3954. PMLR (2018)

9. Lattimore, T., Kveton, B., Li, S., Szepesvari, C.: TopRank: a practical algorithm
for online stochastic ranking. In: Bengio, S., Wallach, H., Larochelle, H., Grauman,
K., Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems, vol. 31, pp. 3945–3954. Curran Associates, Inc. (2018)

10. Mandal, S., Maiti, A.: Explicit feedbacks meet with implicit feedbacks: a combined
approach for recommendation system. In: Aiello, L.M., Cherifi, C., Cherifi, H.,
Lambiotte, R., Lió, P., Rocha, L.M. (eds.) COMPLEX NETWORKS 2018. SCI,
vol. 813, pp. 169–181. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
05414-4 14

11. Peska, L.: Using the context of user feedback in recommender systems. In: Pro-
ceedings 11th Doctoral Workshop on Mathematical and Engineering Methods in
Computer Science, MEMICS 2016, Telč, Czech Republic, 21–23 October 2016, pp.
1–12 (2016)

12. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-
armed bandits. In: Proceedings of the 25th International Conference on Machine
Learning, ICML 2008, pp. 784–791. Association for Computing Machinery, New
York (2008)

13. Wu, H., Luk, R., Wong, K., Kwok, K.: Interpreting TF-IDF term weights as making
relevance decisions. ACM Trans. Inf. Syst. 26(3), 13:1–13:37 (2008)

14. Zhu, D., Xiao, J.: R-tfidf, a variety of TF-IDF term weighting strategy in docu-
ment categorization. In: Proceedings of 7th International Conference on Semantics,
Knowledge and Grids, SKG 2011, pp. 83–90. IEEE, Washington, DC, USA (2011)

