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Abstract—In this work, we tackle the problem of hyperspectral
unmixing by departing from the usual linear model and focusing
on a linear-quadratic (LQ) one. The algorithm we propose,
coined Successive Nonnegative Projection Algorithm for Linear
Quadratic mixtures (SNPALQ), extends the Successive Nonnega-
tive Projection Algorithm (SNPA), specifically designed to address
the unmixing problem under a linear non-negative model and
the pure-pixel assumption (a.k.a. near-separable assumption).
By explicitly modeling the product terms inherent to the LQ
model along the iterations of the SNPA scheme, the nonlinear
contributions of the mixing are mitigated, thus improving the
separation quality. The approach is shown to be relevant in
realistic numerical experiments, which further highlight that
SNPALQ is robust to noise.

Index Terms—Nonnegative Matrix Factorization, Non-linear
Hyperspectral Unmixing, Linear-Quadratic Models, Separability
and Pure-Pixel Assumption, Non-linear Blind Source Separation.

I. INTRODUCTION

Hyperspectral (HS) imaging is a powerful tool in a wide
range of fields such as remote sensing [1], biomedical and
pharmaceutical imaging [2], and astronomy [3], to only name
a few. While such data sets are composed of a high number
of spectral bands, HS images generally suffer from a limited
spatial resolution. Therefore, several materials generally con-
tribute to each pixel, and thus the acquired spectra correspond
to mixtures of the spectra of the different pure materials in
the pixel, called endmembers. Many works on HS imaging [4]
have focused on the linear mixing model (LMM) which states
that the spectral signature of the ith observed pixel xi ∈ Rm

for i ∈ [[1, n]] can be written as

xi =

r∑
k=1

hikwk + ni,

where wk (k ∈ [[1, r]]) corresponds to the spectral signature
of the kth endmember, hik to the spatial contribution
(abundance) of the kth endmember in the ith pixel, and ni

accounts for any additive noise in the ith pixel. In a matrix
form, the LMM can be written as X = WH + N, with
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X ∈ Rm×n, W ∈ Rm×r, H ∈ Rr×n and N ∈ Rm×n.
Recovering W and H from the sole knowledge of X is
referred to as spectral unmixing in the HS literature and can
be cast as a blind source separation (BSS) problem [5]–[7].
As the problem is generally ill-posed, additional physical
non-negativity constraints are imposed on the unknown
matrices W and H, akin to nonnegative matrix factorization
(NMF) [8]. Although NMF is NP1-hard in general [9], the
authors of [10] have introduced the subclass of near-separable
non-negative matrices for which it can be solved in a
polynomial time. This subclass corresponds to the pure-pixel
assumption in HS imaging [11], [12]: for each endmember
there exists a pixel in which only this endmember appears.
Building on near-separable NMF, several provably robust
algorithms have been proposed [10], [13], [14]. Among
them, one can cite the Successive Projection Algorithm
(SPA) [15], which is a fast greedy algorithm provably
robust to noise [11], or an enhanced version, the Successive
Nonnegative Projection Algorithm (SNPA) [16], which is
particularly more efficient when W is either rank-deficient or
ill-conditioned.

In various applicative contexts, LMM may however suffer
from some limitations since it only consists in a first-order
approximation. In particular, when the light arriving on the
sensor interacts with several materials, nonlinear mixing ef-
fects may occur [4], [17], [18]. Specifically, this is often the
case when the scene is not flat, for instance in the presence
of large geometric structures, such as in urban [19] or forest
[20] scenes. To take into account multiple scatterings, bilinear
or linear-quadratic (LQ) models2 include termwise products of
the endmembers [20], [23], i.e.,

xi =

r∑
k=1

hikwk +

r∑
p=1

r∑
l=p+1

βipl(wp �wl) + ni, (1)

where � denotes the Hadamard product and βipl adjusts the
contribution of the quadratic term wp �wl in the ith pixel.
Despite source identifiability issues in the general context

1Nondeterministic Polynomial time.
2While it is possible to include higher-order terms, most of the works

neglect the interactions of order larger than two since they are expected to be
of significantly lower magnitudes [21], [22].



of non-linear BSS problem [5], [24], [25], it was recently
showed3 that the non-linearity inherent to bilinear mixtures
leads to an essentially unique solution in the noiseless case,
provided that products of the sources up to order four are
linearly independent [26]. Such an assumption thus requires
the family

(wi,wi�wj ,wi�wj�wk,wi�wj�wk�wl)i,j,k,l∈[[1,r]]
l<k<j<i

,

(2)
to be linearly independent. As the size of this familly is
r(r+1)

24

(
(r − 1)(r − 2) + 12

)
, this requirement might not be

fulfilled in real-world scenarios since the number of spectral
bands m should then also increase at least as O(r4). For
example, for r = 10, which is relatively small, we need
m ≥ 385 which is typically not satisfied for HS images. To
overcome this issue, we propose to tackle problems of the
form (1) under an NMF paradigm. The rationale is to convert
the linear independence condition on the family (2) into a
non-negative independence condition, which is significantly
less restrictive in general.
In this work, we specifically focus on the so-called Nascimento
model. Beyond its good capability to model some HS mixtures
[20], it is an extension of the LMM, as the quadratic terms
wp�wl can be considered as additional virtual endmembers.
Writing Π�(W) = [wi,wi � wj ]i,j∈[[1,r]], j<i ∈ Rm×r̃ the
matrix containing the endmembers and their second-order
products with r̃ = r(r + 1)/2 (cf. notations at the end of this
section), the model becomes

X = Π�(W)H̃ + N (3)

with H̃ ∈ Rr̃×n the matrix of mixing coefficients associated
with the linear hik and nonlinear βipl contributions in (1). This
model is accompanied by the following constraints

∀i ∈ [[1, n]],∀k ∈ [[1, r̃]], h̃ki ≥ 0,

∀i ∈ [[1, n]],

r̃∑
k=1

h̃ki ≤ 1, (4)

α = min
j∈[[1,r]]
x∈∆

‖wj −Π�(W)J x‖2 > 0, J = [[1, r̃]] \ {j}.

The last condition ensures that no endmember lies within the
convex hull formed by the other ones, the virtual ones and
the origin. Lastly, extending the subclass of r near-separable
mixing of [27] to the LQ model, we will assume the mixing
to be r-LQ near-separable, as stated below.

Assumption I.1. The matrix X is r-LQ near-separable if it
can be written as:

X = Π�(W)

[
Ir

0 r(r−1)
2 ×r

H̃′
]
P︸ ︷︷ ︸

H̃

+N,

3More precisely, it is shown that, under the additional assumption that
rowrank(X) =

r(r+1)
2

, if Ŵ and Ĥ can be found such that X =

Π�(Ŵ)Ĥ, then Ŵ = W and Ĥ = H̃ up to a scaling and permutation of
the columns of Ŵ and the rows of Ĥ. Note that this is not anymore true when
squared terms are added, calling for additional priors such as non-negativity.

where W ∈ Rm×r satisfies the last condition of (4), Ir is the
r-by-r identity matrix, 0p×q is the p-by-q matrix of zeros, P is
a permutation matrix and H̃′ ∈ Rr̃×m−r is a matrix satisfying
the two first conditions of (4).

The aim of this work is to introduce an algorithm which,
given a r-LQ near separable mixture fulfilling Assumption I.1,
recovers the factors W and H̃ up to a permutation. To do
so, we generalize the SNPA [16] by explicitly modeling
the quadratic products along the greedy search process.
The resulting sucessive nonnegative projection algorithm for
linear quadratic mixtures (SNPALQ) is presented in the next
section. The effectiveness of the algorithm is attested through
extensive numerical experiments in Section III.

Notations – In the following, we denote [[1, r]] = {1, 2, .., r},
|K| the number of elements in the set K whose ith element is
denoted K(i). Matrices are written as A ∈ Rm×r, a column
indexed by i ∈ [[1, r]] as ai, and a row indexed by j ∈ [[1,m]] as
aj . The submatrix formed by the columns (resp. rows) indexed
by K is denoted AK (resp. AK). The set ∆r, for which the
superscript is omitted when clear from the context, is ∆r =
{x ∈ Rr|x ≥ 0,

∑r
i=1 xi ≤ 1}. Furthermore, we write as

Π�(W) the matrix containing all the columns of W and their
quadratic products Π�(W) = [w1,w2, ..,wr,w2�w1,w3�
w1,w3�w2, ...,wr�wr−1] = [wi,wi�wj ], for i, j ∈ [[1, r]]
and j < i.

II. PROPOSED ALGORITHM

To handle LQ near-separable HS unmixing (see Assump-
tion I.1), a first (naive) approach would be to use a pure-
pixel search algorithm based on the LMM and to look for
r̃ endmembers: as the quadratic terms (wi � wj)i,j∈[[1,r]]

j<i
can be considered as virtual endmembers, they could be
retrieved along with the columns of W, provided that they
appear as pure pixels. One could for instance choose to use
SNPA [16], which has shown to yield very good separation
performances compared to other algorithms such as VCA
and SPA [15]. Due to mathematical guarantees, if the LQ
mixing follows SNPA requirements, then the algorithm would
extract the r̃ endmembers defining Π�(W). It would then be
easy to check from this solution which ones are the columns
of W. Nevertheless, for practical scenarios, the pure-pixel
assumption on the virtual endmembers might be a too strong
requirement, as one cannot expect all virtual endmembers to
be present in the data set. As such, the recovery by SNPA
is not guaranteed, calling for an algorithm better designed
for LQ mixtures. The rationale of the proposed SNPALQ
algorithm is that we are mostly interested by recovering the
linear endmembers and thus the virtual endmembers wi�wj

are only taken into account in order to improve the estimation
of W. Therefore, we propose to adapt SNPA to the LQ mixing
model, reducing at each iteration of the unmixing process the
weight of the contribution of the terms wi �wj for i 6= j.



A. SNPALQ algorithm

The pseudocode4 of the proposed SNPALQ is described in
Algo. 1. Similarly to SNPA, it is a greedy algorithm. At each
iteration, the column of the residual matrix R with the largest
`2 norm is extracted5 [16, Assumption 2]. SNPALQ and SNPA
however differ by their respective projection steps:
• In SNPA, each column of X is projected onto the convex

hull formed by the origin and all the columns extracted
so far;

• In SNPALQ, we propose to perform the projection of
each column of X onto the convex hull formed by the
origin, the columns extracted so far and their second
order products.

Therefore, if two endmembers wi and wj for i 6= j are
extracted during the iterative process of SNPALQ, the contri-
bution of the virtual endmember wi�wj is removed. Beyond
the advantage that wi�wj will not be extracted in subsequent
steps, the non-linear contribution is reduced in the unmixing
process, giving more weight to the linear part. Thus, the
endmembers W are more likely to be extracted in the early
steps of the iterative process, and SNPALQ will empirically
extract much less mixed pixels than SNPA; see Section III.

Algorithm 1 SNPALQ: SNPA for Linear Quadratic mixtures
Input: A r-LQ r-near-separable matrix X ∈ Rm×r̃ satisfy-
ing constraints (4), the number r of endmembers.
Initialization: R = X, K = {}
% Greedy search
while |K| ≤ r do
p = argmaxj∈[[1,n]] ‖rj‖2
K = K ∪ {p}
for j ∈ [[1, n]] do

ĥj = argmin

h∈∆
|K|(|K|+1)

2

‖xj −Π�(XK)h‖2 (5)

rj = xj −Π�(XK)ĥj

end for
end while
Output: Set K of indices such that XK ' W up to a
permutation.

Let us make a few other remarks concerning Algo. 1. First,
the projection step (5) is a convex optimization problem,
solved using the fast gradient method of [28] (see [16, Ap-
pendix A]). Second, in case of ties for finding p, the same
rule as in SNPA is used, that is, the index j for which ‖xj‖2
is maximum is selected.

B. Computational complexity

The complexity of the lth iteration of SNPALQ is dominated
by computing the projection step (5), which requires the

4The algorithm and data used will be made available online at
https://sites.google.com/site/nicolasgillis/code

5Note that any strongly convex function f(·) can be used instead of the `2
norm, provided that f(0) = 0

projection of an m-by-n matrix onto a convex hull with
l(l + 1)/2 + 1 vertices, yielding to O

(
mnl2

)
operations

when using a first-order method. This corresponds to an
asymptotic complexity of the order of O

(
mnr2

)
. Note that

SNPA requires O (mnr) operations hence SNPALQ is r times
more expensive.

III. NUMERICAL RESULTS

We here study the algorithm behavior on the realistic data
sets described in subsection III-A. While subsection III-B
dwells on noiseless mixtures, in subsection III-C the robust-
ness of SNPALQ in the presence of noise is studied, first on
linear mixtures and then depending on the non-linearity level.
The results of SNPALQ are compared with the ones of SNPA
[16] and SPA [15].

A. Experimental setting and metrics

1) Data sets: Experiments reported in this paper are con-
ducted on realistic data sets X on the form described in
Assumption I.1:
• The endmembers signatures W are extracted from the

USGS database4,6. They correspond to spectra from
diverse origins (minerals, soils, plants...) and naturally
follow 0 ≤W ≤ 1, ensuring the first point extracted by
SNPALQ, SNPA and SPA to be an endmember since this
implies wi ≥ wi �wj for all i, j.

• The matrix H̃′ is generated in the following way:

– The columns of a first matrix ´̃H of the same dimen-
sion as H̃′ are generated randomly using a realistic
[29] Dirichlet distribution D(α, ..., α) with α = 0.5.

– The r first rows (corresponding to the linear contri-
bution) are multiplied by 1−ν, with ν a non-linearity
parameter, while the remaining rows (corresponding
to the virtual endmembers) are multiplied by ν to
enable various non-linearity levels:

H̃′ =

[
´̃H[[1,r]] × (1 − ν)

´̃H[[r+1,r̃]] × ν

]
.

– Since the columns are assumed to sum to (at most)
one, the last step divides each column of H̃′ by its
`1 norm.

• The matrix N is generated using a centered Gaussian
distribution with a variance corresponding to a given
signal-to-noise ratio (SNR).

• The matrix X is created ensuring all the entries to be
non-negative: X =

[
Π�(W)H̃ + N

]
+

, where [.]+ is the
elementwise projection on the non-negative orthant. We
denote X̄ = Π�(W)H̃ the noiseless mixing.

2) Metrics: The quality is assessed using the minimum
Spectral Angle Distance (SAD) over the endmembers:

θmin = min
i∈[[1,r]]

SAD(wi, x̄K(i))

6https://www.usgs.gov/



with SAD(u,v) = uTv
‖u‖2‖v‖2

and where the set of indices K is
permuted to minimize θmin. We consider a perfect separation
is achieved if θmin > 0.999.

B. Numerical results on noiseless mixtures

We here assess the behavior of SNPALQ as a function of
the number of endmembers r in a noiseless setting. There are
n = 1000 pixels observed in m = 50 spectral bands. The
non-linearity parameter is chosen as ν = 0.5. We conducted
100 Monte-Carlo experiments, each time generating a new
data set. The percentage of perfect separation by the different
algorithms is displayed in Fig. 1.
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Fig. 1. Percentage of experiments in which a perfect separation is achieved.

In this experiment, SNPALQ clearly shows its interest, as it
obtains much better results than SNPA and SPA, and achieves
in more than 90% of the experiments a perfect separation.
The improvement when r increases is linked to the use of a
Dirichlet distribution with α = 0.5 when randomly generating
the mixing coefficient matrix H̃′. When r is small, the data
points are more spread within the convex hull formed by the
origin, the endmembers and the virtual endmembers, leading
to a higher probability for a virtual endmember to be extracted.
SNPALQ and SNPA obtain the same results for r = 2, as both
algorithms are identical in this case. On the other hand, SNPA
and SPA results deteriorate quickly when r increases.

C. Numerical results on noisy mixtures

We now investigate SNPALQ robustness to noise in case of
linear and linear-quadratic mixings.
Linear mixing – If the input matrix follows the LMM, it also
satisfies Assumption I.1 (with H̃′[[r+1,r̃]] = 0). However, while
SNPALQ can thus be applied on linear mixings, it is expected
to perform worse than SNPA since it projects the residual
onto non-existing virtual endmembers, which leads to a loss
of information (the norm of the residual will decrease faster),
especially in the presence of noise. The goal of this experiment
is to assess the performance of SNPALQ against SNPA under
the LMM model for various noise levels.
The number of spectral bands is set to m = 50, there are
n = 1000 pixels and r = 10 endmembers. To obtain linear
mixtures, ν was set to 0 in the 100 Monte-Carlo experiments.

The average θmin value as a function of the SNR is displayed
in Figure 2.

SNR (dB)

θ m
in

Fig. 2. Avergage θmin in the linear case. The error bars correspond to the
standard deviation.

This figure shows that SNPALQ, SNPA and SPA achieve
similar results for high SNR values (namely, SNR ≥ 40 dB),
all reaching a perfect separation. The main discrepancies
appear in the range SNR ∈ [10 dB, 30 dB], in which SNPA
obtains better results than SNPALQ, which was expected
(see above). The difference between the two algorithms is
however relatively mild, showing that even in this setting
SNPALQ obtains competitive results compared to SNPA.

Linear-quadratic mixing – The impact of the noise and
non-linearity levels is now studied: we generated data sets
X with 12 different SNR levels and 12 values for the non-
linearity parameter ν. For each SNR and each ν, 100 Monte-
Carlo experiments were performed on nonlinear mixtures
characterized by m = 50 spectral bands, r = 10 endmembers
and n = 1000 pixels. The recovery performance of SNPALQ
and SNPA is depicted as a 2-dimensional map in Figure 3.
SNPALQ mostly shows its interest over SNPA when the non-

linearity level increases and more specifically when the noise
is relatively small (upper-right corner of the figures). More
precisely, when ν ≥ 0.3 and SNR ≥ 30 dB, SNPALQ always
obtains a perfect recovery, which represents an improvement
over SNPA, up to 12%. In the lowest right corner of the
figures, when the SNR decreases, the results of both algorithms
deteriorate as the problem is highly difficult. Lastly, we
mention that SPA results are similar to that of SNPA and are
not shown here.

CONCLUSION

To tackle the problem of linear-quadratic hyperspectral
unmixing, we introduced SNPALQ, an extension of SNPA
which takes into account the presence of quadratic terms in the
projection step. SNPALQ was shown to obtain good results on
non-linear realistic data sets. Furthermore, SNPALQ empiri-
cally exhibited a good robustness to noise, including when it is
applied on linear mixtures, in which case it obtains competitive
results with respect to SNPA. Future works include theoretical
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Fig. 3. Percentage of perfect separation using: SNPALQ (Left), SNPA (Right).

guarantees on such a robustness and applying SNPALQ on real
data sets.
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