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ABSTRACT

The absorption positions and shapes are key informa-
tion to identify and characterize a mineral from its re-
flectance spectrum. With the development of new airborne
and satellite-borne hyperspectral sensors, automatic methods
have to be developed to extract and analyze this useful in-
formation. A flexible deconvolution procedure, able to deal
with various sensor characteristics and a wide variety of mi-
nerals of interest, is proposed. The approach is based on the
sparse representation of the spectrum and the use of a greedy
algorithm, the Non-Negative Orthogonal Matching Pursuit al-
gorithm. First, NNOMP is adapted to deal with a parameteric
physical model of mineral reflectance spectra. Then, noise
statistical information is taken into account to improve the
detection of small absorptions while minimizing overfitting
effects. The procedure is tested on real data from two quarries
in France. Results show the potential of our procedure for
the estimation of a consistent number of absorptions whose
parameters can be used to analyze the mineralogy.

Index Terms— Mineral reflectance spectra, Deconvolu-
tion procedure, Hyperspectral image, Orthogonal Matching
Pursuit, EGO model.

1. INTRODUCTION

Hyperspectral imagery in the solar reflective domain (VNIR,
(Visible Near-InfraRead) [400− 1300]nm and SWIR (Short-
Wave InfraRed) [1300− 2500]nm) provides a reflectance
spectrum for each pixel of an image allowing to retrieve and
map physico-chemical properties of the observed surface. In
particular, spectra of minerals are composed of specific, or
diagnostic, absorption bands, the position of which depends
mainly on the chemical composition [1]. Absorptions in the
SWIR are generally narrow and deep, whereas in the VNIR
they tend to be broader and weaker because they correspond
to various physical phenomena (rotation, vibration, stretching
and bending of molecule bonds in the SWIR, crystal field,
electronic transitions in the VNIR). The overall shape, also
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called continuum, changes with surface conditions (e.g., grain
size, humidity), so that a simple comparison of a spectrum
with a huge database using a metric generally fails.

Thanks to the development of new airborne and satellite-
borne sensors, hyperspectral images are increasingly acquired
over large areas of mineralogical interest so that detailed spec-
tral analysis can be performed. The development of automatic
algorithms able to deal with various sensor characteristics and
a wide variety of minerals of interest is an important objective
which still remains challenging. Among the various methods
available in the literature (e.g., spectral indices [2] and refe-
rences therein, Tetracorder [3]), spectral deconvolution is a
method of choice because the full spectrum is taken into ac-
count, and it relies as much as possible on a physically-based
reflectance model.

In this paper, spectral deconvolution is combined with the
EGO model (Exponential Gaussian Optimization) [4]. The
EGO model is derived from the MGM model (Modified Gaus-
sian Model) [5] which is well-suited for iron related features
in the VNIR but not in the SWIR where absorptions are ge-
nerally narrower and often asymmetrical. This specificity is
taken into account by the introduction of an asymmetry factor
in (2). One may note that the authors have also introduced a
parameter to take into account the saturation of the absorption
bands [6], which is not considered here for sake of simplicity.
Thus, the deconvolution procedure aims at estimating the po-
sitions µ and shape parameters (widths σ, amplitudes s, asym-
metry parameters k) of the N modified Gaussians that best fit
the absorption bands of the logarithm of the reflectance. The
continuum is here removed beforehand using a convex hull
approach [7]. The model of the reflectance spectrum ρCR

with continuum removed reads

ln ρCR (λ, θ) =

N∑
i=1

Gi (λ, θGi) (1)

where the modified Gaussians are defined by

Gi (λ, θGi) = si exp

(
−1

2

(λ− µi)2

(σi − ki (λ− µi))2

)
(2)



with θGi = {si, µi, σi, ki}. θ = {N, θG1 , . . . , θGN } gathers
the full set of parameters.

Several solutions have been proposed to estimate the
model parameters θGi and select the order N of the model
automatically. They generally implement two steps: an
initial estimation of the parameters followed by an opti-
mization (nonlinear least-squares) algorithm. This approach
was adopted in the AGM procedure (Automatized Gaussian
Model) [8], [9] previously developed by the authors. We
focus here on the initialization step. One can use spectral
derivatives to estimate the number of Gaussians and their
positions [8], which is noise-sensitive and may lead to over-
fitting. Transformation methods such as the Continuous
Wavelet Transform [10] are not satisfactory because they
require to set many parameters which cannot be adjusted to
values adapted to both the VNIR and the SWIR due the great
diversity of spectral signatures of minerals.

In this paper, to initialize the parameters, an orthogonal
matching pursuit based algorithm with non-negativity con-
straints, the NNOMP (Non-Negative Orthogonal Matching
Pursuit) algorithm [11], is used. Since the principle of this
approach is to approximate a signal as a linear combination
of a limited number of atoms, it is well-suited to fit the ab-
sorption bands in the reflectance spectrum of a mineral with
the EGO model. Here, NNOMP is adapted to take into ac-
count the spectrally varying noise in the image to improve the
detection of small amplitude absorptions while minimizing
overfitting effects.

Hereafter, the NNOMP algorithm for deconvolution of
mineral reflectance spectra is first described. Then, its exten-
sion to take noise statistics into account is explained. Finally,
experimental results on real spectra acquired on two quarries
in France are presented. Further validation and comparisons
to ground truths will be presented during the conference.

2. METHODS

2.1. NNOMP algorithm for mineral reflectance spectra
deconvolution

NNOMP is a sparse approximation algorithm under non-
negativity constraints. It can be interpreted as an optimization
algorithm dedicated to the optimization problem (3), where
a ∈ RNλ represents an input signal (e.g., a spectrum related
to a given pixel) and H ∈ RNλ×Natom is a dictionary matrix
including all the possible spectral features embedded in the
data signal a. The problem is formulated as

min
s
‖a−Hs‖22 s.t.

{
s ≥ 0 (C1)
‖s‖0 ≤ Nmax (C2)

(3)

where the `0 norm ‖s‖0 counts the number of non-zero entries
in vector s.

The principle of NNOMP (see Algorithm 1) is to gra-
dually select atoms in H in order to refine the approxima-

Algorithm 1 Solve the NNOMP problem
inputs: a, H
outputs: s, S

s←− 0: amplitude initialization
S ←− ∅: support creation
r←− a: residual initialization
MDL←− False
while MDL is False do
`←− arg maxi∈S 〈r,hi〉 : atom selection
S ←− S ∪ {`}: support update
z ←− s (S )
s (S )←− arg minz>0 ‖a−HSz‖22: amplitude update
r←− a−Hs: residual update
MDL update (not detailed here)

end while

tion a ≈ Hs. First, s ∈ RNatom is initialized to 0 and the
support of s is thus set to S = ∅. Then, at each iteration,
NNOMP proceeds as follows. A new atom h` (i.e., a co-
lumn) of H is selected and added to the support S . Then,
the selected amplitudes z are adjusted, using a NNLS (Non-
Negative Least-Squares) algorithm, to fit the absorption part
of the spectrum a with the selected atoms HS . Finally, the
approximation residual is updated. NNOMP yields as out-
put the selected atoms of H and their respective non-negative
amplitudes. Three alternative stopping criteria can be used:
(i) a maximum number Nmax of atoms is imposed; (ii) the
square norm of the residual r is less than a threshold; or (iii) a
criterion related to the Minimum Description Length (MDL)
principle [12] is used. This is the stopping criterion used in
this study.

To deal with mineral reflectance spectra, a specific shape
for the atoms in H is proposed. Thus, each atom is an EGO
modified Gaussian with a specific width-asymmetry couple at
a given location in the VNIR and SWIR domains. The choice
of a large number of width-asymmetry couples ensures the
presence of mineral diagnostic absorptions in the dictionary.
Moreover, in order to apply the existing NNOMP implemen-
tation in [11], the columns of H are normalized and s corres-
ponds to the amplitudes of the EGO modified Gaussians.

Thanks to the creation of a specific dictionary and the use
of adapted stopping criteria, NNOMP gives the possibility to
analyze a large variety of minerals with a consistent number
of absorptions of varying shapes.

2.2. NNOMP including noise statistics

In order to work with various sensor characteristics and im-
prove the deconvolution procedure, noise statistical informa-
tion is used in NNOMP. Noise is assumed to be zero-mean,
Gaussian and independent from one spectral band to another.
However, the noise is not identically distributed since the
noise variance σ2

λ is known to vary with respect to the spec-
tral band λ. The noise covariance matrix W = diag(σ2

λ) is



thus diagonal (but differs from the identity matrix) and can be
either calculated knowing the sensor characteristics, or esti-
mated [13]. The minimization problem can then be expressed
with non-negative and sparsity constraints as

min
s
‖Γ (a−Hs) ‖22 = min

s̃
‖Γa−H1

(
∆−1s̃

)
‖22 (4)

where Γ = W−1/2. The reparametrization H1 = ΓH∆ and
s = ∆−1s̃ is done to ensure the normalization of the columns
of H with a diagonal matrix ∆. As the noise variance depends
on wavelength, NNOMP is more suited to work with different
sensors and is able to discriminate weak absorptions.

3. DATA SET

To validate the proposed method, hyperspectral images were
acquired over two quarries in France, Fig. 1, with HySpex
cameras (https://www.hyspex.com). Three mine-
rals of interest, with different spectral signatures, can be
observed: gypsum, carbonates (Cherves-Richemont) and
kaolinite (Chevanceaux). They present different physical
and chemical characteristics and are used in the production
of plasterboard or as aggregates (Cherves-Richemont) and
refractory ceramics (Chevanceaux).

Images were acquired in September 2019, with a 0.5 m
and a 1.0 m spatial resolution for the VNIR and SWIR res-
pectively. The numbers of bands were respectively 160 and
162 for the VNIR and SWIR with a ≈ 4 nm and ≈ 7 nm
spectral resolution. In this study, only SWIR images are used.
Images were atmospherically corrected using ATCOR4 [14].
To improve the signal-to-noise ratio, reflectance images were
spatially downsampled to 5 m. Two spectral masks were ap-
plied around 1400 nm and 1900 nm to avoid effects of atmo-
spheric water vapor absorptions.

Samples were collected after the image acquisition in or-
der to create a spectral database gathering the various spectral
signatures present in the quarries. An ASD FieldSpec R© FR3
was used for laboratory measurements.

4. EXPERIMENTAL RESULTS: DECONVOLUTION
PROCEDURE INCLUDING NOISE STATISTICS

The validation of the proposed deconvolution procedure is
carried out on a kaolinite spectrum from the hyperspectral
image of Chevanceaux. The pixel is chosen on a pile of kaoli-
nite. To avoid spectral mask effects due to atmospheric wa-
ter vapor absorptions, only wavelengths between 2100 nm
and 2400 nm are kept. The noise covariance W is esti-
mated using HYSIME [13] and the continuum is removed [7].
The dictionary H formed of EGO Gaussians is created with a
large number of widths σ ∈

[
1, Nλ4

]
and asymmetry factors

k ∈
[
− 1

2 ,
1
2

]
yielding 129 800 atoms. To estimate adaptively

the number of Gaussians, the MDL stopping criterion (dic-

Fig. 1. Hyperspectral images acquired over (a) Cherves-
Richemont and (b) Chevanceaux quarries. (c) Gypsum spec-
tra on the quarry layer. (d) Carbonates spectra from piles used
as aggregates. (e) Kaolinite spectra with different concentra-
tions of alumina (note the absorption doublet varying in shape
depending on the pile).

tionary H) which can be adapted to the case of known noise
statistics (dictionary H1) is used in NNOMP.

A kaolinite spectrum is defined by its absorption doublet
at 2160 nm and 2210 nm. These two absorptions have simi-
lar shapes. The spectrum has also secondary absorptions at
2310 nm, 2350 nm and 2380 nm, often weak and difficult to
separate from the noise.

Results of the deconvolution procedure are presented in
Fig. 2. NNOMP, applied to dictionary H, fits the spectrum
with only three EGO Gaussians, two for the global shape of
the absorption bands and one for the absorption at 2210 nm.
NNOMP, applied to dictionary H1, shows a better fit. The
absorption doublet is fitted with three EGO Gaussians, one
for the global shape, broad and centered at 2187 nm, and
two centered at 2157 nm and 2205 nm for the absorptions.
Note that the widths and the amplitudes fit to our expectations.
Moreover, two small absorptions are also identified at 2314
nm and 2398 nm and a broad one fits the drop off towards
longer wavelengths.

More EGO Gaussians are selected with the proposed de-
convolution procedure but are coherent with a physical in-
terpretation. Even if the first selected atoms corresponds to
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the global shape of the absorption bands, taking into account
noise statistical information improves the detection of small
absorptions and doublets. Overfitting is limited thanks to the
sparsity constraint and EGO parameters can be used for mi-
neralogical identification and characterization.

Fig. 2. Deconvolution of a kaolinite spectrum (black), bet-
ween 2100 nm and 2400 nm, after continuum removal. a)
Reconstructed spectrum (red) with NNOMP, applied to dic-
tionary H (unknown noise statistics). (b) Reconstructed spec-
trum (red) with NNOMP, applied to dictionary H1 (known
noise statistics). Selected atoms of H and H1 are also repre-
sented for both reconstructions in dotted lines.

5. CONCLUSION

In this paper, an existing OMP-based approach is adapted to
mineral reflectance spectra and noise statistical information is
included in the deconvolution procedure. It gives the possibil-
ity to (i) find absorptions with varying shapes, even close to
noise, and (ii) use the estimated parameters in an identifica-
tion and characterization procedure of the mineral and its sub-
strate. Several improvements are considered to the proposed
method as for example the use of the complete EGO model
with a saturation parameter or the development of a proce-
dure to remove possible artifacts due to the presence of spec-
tral masks. The proposed deconvolution procedure is used in
AGM to initialize the absorption part of the spectrum and a
complete validation will be presented during the conference.
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