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The Standard Model of particle physics is remarkably successful and is consistent with (al-
most) all experimental results. However, it fails to explain dark matter, dark energy or the
imbalance between matter and anti-matter in the universe. Any discrepancy between Stan-
dard Model predictions and experimental observations is scrutinized by physicists as it
may reveal clues of new physics. An accurate evaluation of these predictions needs highly
precise values of the fundamental physical constants. Among them, the fine-structure
constant α has an important status in physics as it sets the strength of the electromag-
netic interaction between light and charged elementary particles, such as the electron
or the muon. Here we report a new determination of the fine-structure constant α−1=
137.035999206 (11) with an unprecedented relative accuracy of 81 ppt (parts-per-trillion),
obtained from the measurement by matter-wave interferometry of the recoil velocity of a
rubidium atom that absorbs a photon. For the first time, the value of α is known with an
accuracy of eleven digits which leads to a new value of the electron g-factor 1,2 - the most
precise prediction of the Standard Model. Our result significantly reduces the discrep-
ancy between the calculated electron g-factor and the direct measurement. Most notably,
our new value of the fine-structure constant differs by more than 5σ from the best value
available based on cesium recoil measurement 3. It imposes new constraints on possi-
ble candidate particles from the dark sector proposed to explain the anomalous decays
of excited states of 8Be nuclei4 and paves the way for testing the persistent puzzle of the
magnetic moment of the muon5 in the electron sector6.

The fine-structure constant α is the pillar of our system of fundamen-
tal constants. As the measure of the strength of the electromagnetic
interaction in the low energy limit, it has been measured using diverse
physical phenomena: quantum Hall effect, Josephson effect, atomic fine
structure, atomic recoil and electron magnetic moment anomaly7. Com-
parison of results across sub-fields of physics is a powerful test of the
consistency between theory and the experiment. In particular, the fine-
structure constant is a crucial parameter for testing quantum electro-
dynamics (QED) and the Standard Model (SM). This test relies on the
comparison between the measured value of the electron gyromagnetic
anomaly ae = (ge − 2)/2 and its theoretical value. The Standard Model
prediction ae (SM) is dominated by the QED term given by a perturbation
series of (α/π). It also contains additional contributions from hadronic
and weak interactions. Numerical and analytical evaluations of the coef-
ficients of the QED series are firmly established up to the eighth order
and the accuracy of the tenth-order has been improved over the last
years1,2,8. Assuming that the prediction of the SM is correct, compari-
son of the theory with the most accurate measurement of the electron
magnetic moment9 leads to a value of the fine-structure constant with a
relative accuracy of 2.4 × 10−10 dominated by experimental precision9

(see Fig. 1).
From a different point of view, to test the prediction of the Standard

Model, we need independent measurements of α with a similar precision
to evaluate ae(SM). The most successful independent approach is based
on the measurement of the recoil velocity (vr = h̄k/m) of an atom of
massm that absorbs a photon momentum h̄k11,13. Here h̄ is the reduced
Planck constant (h̄ = h/2π) and k = 2π/λ is the photon wave vector
(where λ is the laser wavelength). Such a measurement yields the ratio
h/m and then α via the relation

α2 =
2R∞

c
× m

me
× h

m
(1)

The Rydberg constant R∞ is determined from hydrogen spectroscopy
with an accuracy of 1.9 ppt14. The atom-to-electron mass ratio m/me is
obtained from the ratio of the relative atomic mass Ar(m) of the atom
(known at 69 ppt for rubidium15,16) and the relative atomic mass Ar(me)
of the electron (known at 30 ppt17). The speed of the light in the vacuum
c has a fixed value.
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Figure 1: Precision measurements of the fine-structure constant.
A comparison of most precise determinations of the fine-structure con-
stant. The red points are from ge − 2 measurements and QED calcu-
lations, the green and blue points are respectively obtained from the
measurement of cesium and rubidium atomic recoil. Errors bars corre-
spond to ±1σ uncertainty. References: UW 198710, Stanford 200211,
LKB 201112, Harvard 20089, RIKEN 20192, Berkeley 20183

In this paper, we present a measurement of the recoil velocity on ru-
bidium atoms. We measured h/m87Rb = 4.59135925890(65) × 10−9

m2 s−1. In the international system of units adopted in 2019 where h
has a fixed value, we obtain m87Rb = 1.44316089776(21) × 10−25 kg.
This is the most accurate atomic mass measurement. This results leads
to a new determination of the fine-structure constant α:

α−1 = 137.035999206(11)

The contribution of the uncertainty from the ratio h/m87Rb is 2.4×10−11

(statistical) and 6.8 × 10−11 (systematic). Our result improves the
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Figure 2: Schematics of the experiment. a Design of the vacuum chamber, the atom interferometer takes place in the upper area, a 70 cm long
tube magnetically shielded. b Sequence of Bloch oscillations (B.O., red) and Raman pulses (yellow) used to control the trajectory of the atoms
before starting the atom interferometer. c Atom interferometer light pulse sequence. The atomic trajectories for upwards (blue) and downwards
(purple) accelerations are previously calculated to mitigate gravity gradient effect. In order to be visible, the separation between the two paths of
each interferometer is exaggerated.

accuracy on α by a factor of 2.5 over the previous cesium recoil
measurement3 but most notably it reveals a 5.4 σ tension with this latest
measurement.

We have built a new experimental setup and implemented robust
methods to control systematic effects. Accelerating atoms up to 6m s−1

in 6ms and using usual two-photon Raman transitions as beamsplitters
for the matter-waves, we obtained a relative sensitivity on the recoil ve-
locity of 0.6 ppb in one hour of integration (0.3 ppb on α). This sensitivity
is more than three times better than that obtained on the best atom in-
terferometer based on multi-photon beamsplitters 3 although the latter
technique is expected to provide a significant gain in sensitivity with re-
spect to Raman transitions18,19.

The unprecedented sensitivity of our atom interferometer enables us
to experimentally evaluate and mitigate several systematic biases. We
recorded data with different experimental parameters, reinforcing the
overall confidence of our error budget. We have also implemented a
Monte Carlo simulation that includes both the Ramsey-Bordé atom in-
terferometer and the Bloch oscillations process. This code models pre-
cisely the underlying physics of our interferometer and provides accurate
evaluation of systematic effects consistent with experimental results.

Experiment
Our experimental method is illustrated in Fig. 2. The basic tools of our
experiment are Bloch oscillations in an accelerated optical lattice that en-
able to coherently transfer a precise number of photon momenta to the
atoms (typically 1000 h̄k), and a matter-wave interferometer that mea-
sures the phase shift due to the change in velocity of the atoms. As
in the optical domain, atom interferometry needs tools to split and re-
combine atomic wave packets. This is accomplished by a sequence of
light pulses. The probability of detecting atoms in a given internal state
at the output of the interferometer is a sinusoidal function of the accu-
mulated phase difference along the two paths. Thus, the measurement
of atomic populations enables the evaluation of the phase shift. Using
the combination of the Ramsey-Bordé interferometer configuration and
Bloch oscillations, the phase shift is proportional to the ratio h/m20.

We produce a cold rubidium sample using an optical molasses in

the main chamber. Then atoms are transported to the interferome-
try area embodied by a 70 cm long tube surrounded by a two-layer
magnetic shield. The magnetic field is controlled to within 50 nT. For
that, we use an atomic elevator based on two Bloch oscillations pulses
(acceleration/deceleration)20. They are performed using two vertical
counter-propagating laser beams whose frequency difference is swept
to create an accelerated standing wave. Atomic trajectories are pre-
cisely adjusted by controlling this frequency difference. In between the
two Bloch oscillations pulses of the elevator, we apply two Raman pulses
to prepare atoms in a well-defined atomic internal state (see Fig. 2b).
Raman transitions occur between the two hyperfine levels of the ground
state of the rubidium atom and are also implemented using two verti-
cal counter-propagating laser beams (with wave vectors ~k1 = −~k2 and
k1 ' k2 = kR). Their frequency difference ωR is controlled to com-
pensate precisely the Doppler shift induced by the accelerations of the
atoms.

The atom interferometer is illustrated in Fig. 2c. It is implemented with
two pairs of π/2 Raman pulses. Each pulse acts as a beamsplitter by
transferring to an atom a momentum of 2h̄kR with probability of 50%.
The first pair creates a coherent superposition of two spatially separated
wave packets in the same internal state with same momentum. The
second pair recombines the two wave packets. Between the second and
third π/2 pulses, a Bloch oscillations pulse transfers a momentum of
2NBh̄kB to both wave packets. The overall phase Φ of the interferometer
is given by

Φ = TR

[
εR2kR

(
εB

2NBh̄kB

m
− gT

)
− δωR

]
+ φLS (2)

where TR is the time between the π/2 pulses of each pair, T is the time
between the first and the third π/2 pulses, g is gravity, φLS represents
the phase due to parasitic atomic level shifts and δωR is the difference
of the Raman frequencies between the first and the third π/2 pulses.
εR and εB determine respectively the orientation of Raman and Bloch
lasers wave vectors.

Fluorescence signal collected in the detection zone tells us the number
of atoms in each atomic level at the output of the interferometer. Atomic
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fringes are obtained by measuring the fraction of atom in given internal
state varying δωR. Using a mean square adjustment we calculate δωR,0,
the frequency for which Φ = 0. Gravity is cancelled between upward
(εB = 1) and downward (εB = −1) acceleration (see Fig 2). Constant
levels shifts φLS are mitigated by inverting Raman beams direction (εR =
±1). The shot-to-shot parameters of the interferometer (δωR, εR, εB) are
executed randomly to avoid drifts. We record four spectra (Fig. 3a) that
yield

h̄

m
=

1

4

∑
εR,εB

|δωR,0(εR, εB)|
4NBkBkR

(3)

Data Analysis
For the conditions of Fig 3a, the typical uncertainty on δωR,0 is 55 mHz.
This leads to statistical uncertainty on h/m below 2 ppb in 5 min. The
behavior of Allan deviation calculated with a set of h/m measurements
over 56 hours (Fig. 3b) shows that data are independent (no correlations
or long-term drift). It also tell us that the sensitivity of our setup on α, is
8× 10−11 in 14 hours.

Table 1 presents our error budget. Several systematic effects already
identified in our previous measurement12 have been reduced by at least
one order of magnitude. By controlling the experimental parameters of
the atomic elevator, we are able to adjust precisely the altitude of atomic
trajectories within 100µm in such way that the gravity gradient cancels
out between configurations εB = 1 and εB = −1 (see Fig 2c). The effect
of Earth’s rotation is suppressed by rotating continuously one of the Ra-
man beam during the interferometric pulse sequence21. The long-term
drift of the beams alignment is corrected with an accuracy better than
4µrad every 45 min by controlling the retro-reflection of laser beams
via a single-mode optical fiber. Our lasers are locked on a stabilized
Fabry-Perot cavity and their frequencies are regularly measured using a
frequency comb with an accuracy of less than 4 kHz. The low density of
our atomic sample makes effects of index of refraction and atom-atom
interaction22 less than 1 part-per-trillion. Effects related to the geomet-
rical parameters of the laser beams (Gouy phase and wave front cur-
vature) are mitigated by utilizing a 4.9mm beam passing through an
apodizing filter and by adjusting the curvature with a shearing interfer-
ometer.

Among the new systematic effects, the most subtle is related to corre-
lations between the efficiency of Bloch oscillations and short-scale spa-
tial fluctuations in laser intensity. This effect raises the tricky question of
the photon momentum in a distorted optical field. Relying on the work
we have done in reference23, we reduce its contribution to the error bud-
get to less than 0.02 ppb. Because of the expansion of the atomic cloud,
there is a residual phase shift which is due the variation of the inten-
sity perceived by the atoms. This phase shift depends on the velocity
distribution24,25. We have implemented a compensation of the mean
intensity variation and use the Monte Carlo simulation to evaluate the
residual bias due to this Raman phase shift.

During the interferometer sequence we apply a frequency ramp to
compensate the Doppler shift induced by gravity. Non-linearity in the
delay of the optical phase lock loop induces a residual phase shift that
has been measured and corrected for each spectrum. These new sys-
tematic effects were not considered in our previous measurement12 (see
Fig. 1). This could explain the 2.4 σ discrepancy between our new mea-
surement and αLKB2011. Unfortunately we do not have available data to
evaluate retrospectively the contributions of the phase shift in the Raman
phase lock loop and of short scale fluctuations of laser intensity to the
2011 measurement. Thus, we cannot firmly state that these two effects
are the cause of the 2.4 σ discrepancy between our two measurements.

Overall systematic errors contribute an uncertainty of 6.8 × 10−11.
Fig. 3c shows our data used for the determination of α. Each point
represents about 10 hours of data. We took advantage of the sensitivity
and reproducibility of our setup to study systematic effects by varying the
experimental parameters (pulse-separation time, number of Bloch oscil-
lations, duration of Bloch pulse, laser intensity, atomic trajectories. . . ). In
parallel, theoretical modeling and numerical simulations were performed
to interpret the experimental observations. The measurement campaign
lasted one year and ended when consistent values for the different con-
figurations were obtained.

Source Correction [10−11]
Relative

uncertainty [10−11]

Gravity gradient -0.6 0.1
Alignment of the beams 0.5 0.5
Coriolis acceleration 1.2
Frequencies of the lasers 0.3
Wave front curvature 0.6 0.3
Wave front distortion 3.9 1.9
Gouy phase 108.2 5.4
Residual Raman phase shift 2.3 2.3
Index of refraction 0 < 0.1
Internal interaction 0 < 0.1
Light shift (two-photon transition) -11.0 2.3
Second order Zeeman effect 0.1
Phase shifts in Raman phase lock loop -39.8 0.6
Global systematic effects 64.2 6.8
Statistical uncertainty 2.4
Relative mass of 87Rb 16 : 86.909 180 531 0(60) 3.5
Relative mass of the electron 14 : 5.485 799 090 65(16) · 10−4 1.5
Rydberg constant 14 : 10 973 731.568 160(21)m−1 0.1
Total: α−1 = 137.035 999 206(11) 8.1

Table 1: Error budget on α. For each systematic effect, more discus-
sion can be found in the listed section of the Methods.

Using our measurement of the fine-structure constant, the Standard
Model prediction of the anomalous magnetic moment of the electron be-
comes

ae(αLKB2020) =
ge − 2

2
= 1159652180.252 (95)× 10−12

The relative uncertainty on ge is for the first time below 0.1 part-per-
trillion, this is the most accurate prediction of the Standard Model. The
comparison with direct experimental measurement 9 is δae = ae(Exp)−
ae(αLKB2020) = (4.8±3.0)×10−13 (+1.6 σ), while using cesium recoil
measurement δae(αBerkeley) = (−8.8 ± 3.6) × 10−13 (-2.4 σ). The
uncertainty on δae is now dominated by ae(Exp).

Discussion
Our measurement enables new limits to be placed on theories beyond
the SM that lead to a contribution to ae. Using a Bayes method26, our
result implies that for a theory where δae is positive, we can reject with a
95% confidence level δae > 9.8 × 10−13 and for a theory where δae is
negative, we can reject with a 95% confidence level δae < −3.4×10−13.

For example, our result places new limits on a possible substructure
within the electron. If the electron is composed of constituent particles
of mass m∗ bound together by some unknown attraction, its natural size
should be R = h̄/(m∗c) and it would manifest a modification of its mag-
netic moment δae ' me/m∗ using the simplest analysis. According to
the chirally invariant model 27 our result excludes with a confidence level
of 95% regions where m∗ < 520 GeV/c2 or size R > 4 × 10−19 m.
These are stringent limits set by low energy experiments, although they
are not yet at the LEP (largest e+e− collider) limits 28.

Moreover, our result sets the stage for testing whether the persistent
discrepancy of 3.6 σ between the experimental value5 and the Standard
Model prediction of the magnetic moment of the muon29,30 exits in the
electron sector. If the δaµ discrepancy is the signature of new physics,
similar effects could be observable in electron sector. Using a naive scal-
ing, the effects on the electron will be of the order of (me/mµ)2δaµ6.
Fig. 4a summarizes contributions of overall experiments involved in the
determination of δae. We also include the largest theoretical contribu-
tions from the fifth order of the QED series and the hadronic term. The
dominant contribution comes from the Penning trap measurement. For
the first time, the contribution of the recoil measurement is at the level of
(me/mµ)2δaµ ' 6.5× 10−14, the value of δae deduced from the naive
scaling (horizontal green bar). In the next years, improvement of one or-
der of magnitude is expected for the measurement of ae31, it will then be
possible to probe physics beyond the SM with comparable information
from both the electron and muon.

Finally, the anomaly reported in the angular distribution of e+e− pro-
duced in 8Be nuclear transitions4 could be explained by the emission
of a hypothetical protophobic gauge boson X with a mass of 16.7 MeV
followed by a decay through X → e+e− 32. The X-boson is parameter-
ized by a mixing strength ε with electrons and a nonzero mass mX . The
Fig 4b represents exclusions space for those parameters. At 16.7 MeV,
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Figure 3: Data analysis. a Typical set of four spectra recorded by inverting directions of Raman and Bloch beams for TR = 20 ms, NB = 500. Each
spectrum displays the variation of the relative atomic population with respect to the parameter δωR. b Allan deviation σα of measurement of the
fine-structure constant α at maximum sensitivity (TR = 20 ms, NB = 500) as a function of the integration time τ . Line : σα(τ) = 3 ·10−10/

√
τ with τ

expressed in hours. c Data set used for the determination of the value of the fine-structure constant α. Data are obtained by changing experimental
parameters: the pulse separation time TR, the number of Bloch oscillations NB and their total duration τB. The circles and diamonds correspond to
two different laser intensities during the π/2 pulses of the interferometer. Error bar denote the ±1σ and are estimated by the standard deviation of
the mean. The blue band represents the overall ±1σ standard deviation. The reduced χ2 for combined data is 1.4.

the upper limit of ε is set by the ge − 2 of the electron and its lower limit
by electron beam dump experiments (E141 and NA64 collaborations).
Recently, new results from NA64 collaboration33 excluded ε values lower
than 6.8 × 10−4. Because a vector coupling implies δae > 0, the re-
sult from cesium recoil imposes strong constraints on ε. Combined with
NA64, it rejects at 90 % C.L. purely vector coupling of X(16.7). On the
contrary, our measurement of α leads to δae > 0 and favored a value
a purely vector coupling with ε = (8 ± 3) × 10−4 that could explain the
8Be anomaly.
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18. Cladé, P., Guellati-Khélifa, S., Nez, F. & Biraben, F. Large Momen-
tum Beam Splitter Using Bloch Oscillations. Phys. Rev. Lett. 102,
240402 (2009).

19. Müller, H., Chiow, S.-w., Long, Q., Herrmann, S. & Chu, S. Atom In-
terferometry with up to 24-Photon-Momentum-Transfer Beam Split-
ters. Phys. Rev. Lett. 100, 180405 (2008).

20. Cadoret, M. et al. Combination of bloch oscillations with a ramsey-
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phase shift in a light-pulse atom interferometer (2020). arxiv:
2006.14354.

26. Yu, C. et al. Atom-interferometry measurement of the fine structure
constant. Annalen der Physik 531, 1800346 (2019).

27. Brodsky, S. J. & Drell, S. D. Anomalous magnetic moment and limits
on fermion substructure. Phys. Rev. D 22, 2236–2243 (1980).

28. Bourilkov, D. Hint for axial-vector contact interactions in the data on
e+e− →e+e−(γ) at center-of-mass energies 192–208 GeV. Phys.
Rev. D 64, 071701 (2001).

29. Aoyama, T., Kinoshita, T. & Nio, M. Revised and improved value of
the QED tenth-order electron anomalous magnetic moment. Phys.
Rev. D 97, 036001 (2018).

30. Davoudiasl, H., Lee, H.-S. & Marciano, W. J. Muon g - 2 , rare kaon
decays, and parity violation from dark bosons. Phys. Rev. D 89,
095006 (2014).

31. Gabrielse, G., Fayer, S. E., Myers, T. G. & Fan, X. Towards an im-
proved test of the standard Model’s most precise prediction. Atoms
7 (2019).

32. Feng, J. L. et al. Protophobic fifth-force interpretation of the ob-
served anomaly in 8Be nuclear transitions. Phys. Rev. Lett. 117,
071803 (2016).

33. Banerjee, D. et al. Improved limits on a hypothetical X(16.7) boson
and a dark photon decaying into e+e− pairs. Phys. Rev. D 101,
071101 (2020).

5

https://pml.nist.gov/cuu/Constants/
arxiv:2006.14354
arxiv:2006.14354


Methods

Experimental setup The design of the science chamber is shown on Fig. 2a. A 3D-magneto optical trap (3D-MOT) is loaded by a slow atomic beam
generated in a 2D-MOT. An optical molasses is used to further cool down atoms to a temperature of 4µK. The temperature of the atomic cloud was
measured using Doppler sensitive Raman transitions.

After being released from the optical molasses (t = 0), atoms are transported to a separate chamber, where the vacuum is controlled at the level
of few 10−11 mbar. It consists of a long tube placed 50 cm above the center of the MOT. One main difference with the previous setup is that the
atom interferometer is realized in this separate and long tube where the magnetic field is precisely controlled thanks to a uniformly wound solenoid
shielded by two layers of µ-metal.

Lasers for the Raman transitions are produced using second harmonic generation (SHG) from 1.56µm lasers. These two lasers are phase-locked
and the scheme used to control the frequency difference between the two laser during the interferometer sequence is depicted on Extended Data
Figure 3a. The power used to drive Raman transitions is at maximum 70mW per beam. Lasers are detuned with respect to the one photon transition
(Rb D2-line) by about 60GHz.

Laser beams for the Bloch oscillations (BOs) are produced from a 1.56µm fiber laser that is split in two. Each beam seeds an optical system made
by µQuans company where the beam passes through an acousto-optic modulator (AOM) to control their frequency, is then amplified and passes
through a PPLN cristal for SHG (about 800mW at 780 nm). The two Bloch beams are filtered through a Rb vapour cell to reduce the resonant
component of the amplified spontaneous emission (ASE) of the amplifiers34. The total power is 400mW for a peak intensity of 530mWcm−2. The
laser is blue-detuned by 40 GHz from Rb D2-line.

The two Raman beams have a linear and orthogonal polarizations. The two Raman and one of the Bloch beams are transported with the same
single mode polarization maintaining (PM) fiber at the top of the cell and point downward (Extended Data Figure1a). A Polarizing Beam Splitter
(PBS) is placed at the bottom of the vacuum cell. It transmits one of the Raman beams which is then retro-reflected on a horizontal mirror placed on
a vibration isolation table to achieve the counter-propagating configuration. The second Raman beam and the Bloch beam are rejected by the PBS.
The inversion of the Raman effective wave vector is performed by rotating the polarization of the Raman beams by 90◦ before the fiber. The second
Bloch beam is transported by an independent single mode PM fiber at the bottom of the cell and is upward. The waist of the beams at the output of
the collimators is 4.9 mm. An apodizing filter is placed after each collimator3.

Experimental sequence To transport atoms in the interferometry area, we use an atomic elevator based on two Bloch oscillations pulses
(acceleration/deceleration)20. Adjusting the parameters of the elevator (number of Bloch oscillations and delays), we can precisely choose the
initial position z0 and velocity v0 of the cloud at the start of the interferometer tinterf.. In between the two Bloch oscillations pulses of the elevator,
we apply two Raman π-pulses with a blow-away pulse in between. With this sequence atoms are prepared in the magnetically insensitive state
and by controlling the parameters of the first Raman π-pulse (intensity and duration) one can set the width of the vertical velocity distribution of the
atomic cloud. With a pulse duration of 189µs, we obtain a velocity distribution whose full width at half maximum is 1.7mm s−1. After the preparation
sequence, 500 000 atoms form the cloud.

The interferometer consists of four π/2 Raman pulses of same duration arranged in two identical Ramsey sequences (delay TR) separated by a
duration T . The BOs pulse is applied between the second and third Raman pulse (see Fig. 2c or Extended Data Figure 1c where the notations
for the timings of the pulses have been defined). To perform Bloch oscillations, we load the atoms at time tacc. in an optical lattice by adiabatically
ramping up the laser intensity for τadiab. = 500µs. Then, we implement NB oscillations by accelerating the lattice during a time τB . The time τB is
proportional to NB and it corresponds in our experiment to τosc = 12µs per oscillation unless otherwise specified. Finally, the lattice is adiabatically
ramped down for an other 500µs.

The detection scheme (Extended Data Figure 1b) is composed of three horizontal retro-reflected light-sheets that the atoms fall through succes-
sively. The first light-sheet is resonant with atoms in |F = 2〉 that emit fluorescence photons collected on a large-area photo-diode. A cache placed
at the bottom of the light-sheet blocks the retro-reflection which leads to pushing the detected atoms away from the detection system. The remaining
atoms in |F = 1〉 pass through a light-sheet that repumps them in |F = 2〉 and they are subsequently detected in a third light-sheet similar to the
first one. The relative population of atoms in each state is then obtained from the collected fluorescence signals.

Theoretical phase shit at the output of the interferometer To maintain the resonance condition of the Raman transitions, the frequency difference
ωR between the lasers that drive them is carefully adjusted. In addition to the frequency difference shift δωR between the first and third π/2 pulses,
we apply during the Ramsey sequences a ramp at rate β to compensate for gravity. Thus, the effective wave vector of Raman transitions varies
during the interferometer which can induce a bias35.

Treating this effect as a perturbation in the Lagrangian formalism36 we obtain a modified version of equation (2):

Φ = TR

[
εR2kR

(
εB

2NBh̄kB

m
− gT

)
− δωR

]
+ φLS

+
TR

c

[
β

(
gT

(
T

2
+ TR

)
− v0T + εB

2NBh̄kB

m

(
tacc. + τadiab. +

τB

2
− TR − T

))
+ 2kR

(
2NBh̄kB

m
− gT

)(
2v0 −

TRg

2
+ εB

2NBh̄kB

m
− gT

)]
,

(4)

where kR is defined as the effective wave vector when the lasers frequency difference is set to address atoms at zero-velocity. This formula should be
used in order to compute h/m from the central frequency determinations of the four spectra. However, because the additional term (second and third
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lines) is independent of the direction of Raman beams, the determination of h/m from equation (3) remains valid provided that the value of Raman
wave vector corresponds to the one resulting from addressing atoms at zero-velocity. Since we use this value, there is no correction associated to
this effect.

Evaluation of uncertainty budgets Thanks to the high sensitivity of our atom interferometer, a wide range of systematic effects has been investi-
gated and evaluated experimentally. Furthermore, we perform the measurements of h/m with various experimental parameters (NB, TR, τB, Raman
lasers intensity). Parameters are listed on Extended Data Table 1.

As many systematic effects depend on the position or velocity of atoms, we implemented a Monte Carlo simulation of the experiment, in order
to calculate those effects precisely. Notice that trajectories of the atoms during the measurement sequence are precisely controlled by mean of
the atomic elevator. The Monte Carlo simulation is based on the calculation of atomic trajectories using the real-time sequence of the experiment.
Quantities depending on the trajectory of the atoms (such as contrast of Rabi oscillation or efficiency of Bloch oscillations) were calculated and
compared with experimental results to confirm the validity of the model.

Calculation of the final uncertainty The final value of h/m is obtain from hundreds of individual measurement of h/m. For each measurement,
an uncertainty was calculated. This uncertainty has several origins that may be unique to this measurement (for example the uncertainty of the fit
or the laser frequency measurement) or depend on the parameters of the measurement (for example light shift, gravity gradient) or common to all
measurement (for example beam parameters). The uncertainty package of Python37 is used to compute the weighted average value of h/m. The
final uncertainty is a weighted quadratic sum of all the elementary source of uncertainties. The error budget is obtain by gathering those contributions
depending on their origin.

Monte Carlo simulation In this simulation, each atom is described by an atomic wave packet with a mean momentum ~p(t), a phase φ(t) at its mean
position ~r(t) and a real amplitude a(t). The momentum ~p(t) and the position of the wave packet ~r(t) evolve using classical forces acting on the atom
and the phase is calculated along this path. The sequence is split in different stages where the accumulated phase, the evolution of the trajectory
and the amplitude are computed. Three kind of stages are considered: free fall in the gravity field, Raman transitions and Bloch oscillations.

During free fall, the amplitude remains constants, the trajectory is given by classical physics and the phase is computed using the action along the
classical trajectory.

For Raman transitions, evolution is calculated in an accelerated frame where the Raman frequency is constant. Analytical solutions for a finite
pulse duration in the momentum representation are used38. This allows to compute the amplitude and the phase. The displacement is calculated
from the derivative of the phase with respect to the momentum.

For Bloch oscillations, the evolution is calculated in the frame of the lattice. In this frame the evolution is periodic and no displacement of the
wave packet occurs. The phase evolution depends on three terms: i/ the phase due to the absorption and stimulated emission of NB photons:
φph = NB(φup(x, t) − φdown(x, t)), where φup and φdown are the phase of the two lasers of the lattice; ii/ the phase due to acceleration: φacc =
m(g− a)τB/h̄, where a is the acceleration of the lattice and τB the total duration of the acceleration; and iii/ the phase due to the lattice φlatt, which
is calculated from the average energy of the atom in the first band in the tight binding limit:

φlatt =

(
2 4
√
E2
rVupVdown +

(√
Vup −

√
Vdown

)2
)
τB

h̄
(5)

where Er is the recoil energy and Vup/down is the potential (light shift) of each individual laser of the lattice. From this energy, a classical force that
acts on the atom is also calculated. The amplitude is calculated independently: the efficiency of Bloch oscillation, which depends on both the depth
of the lattice and the magnitude of the acceleration, was taken from tables computed using an independent numerical simulation39,40.

The analytical formula for Raman and Bloch evolution are obtained assuming that the laser beam used are plane waves. Generalisation to other
beam was obtained by using formula with a plane wave that locally fits the phase of the laser (amplitude, phase and phase gradient). Those local
parameters are obtained analytically when the simulation was performed with Gaussian beams. In the case of an arbitrary beam, numerical values
were obtained using plane wave decomposition of the solution of the Helmholtz equation. Basically, we compute the Fourier transform Ã(kx, ky , z0)
of the wavefront at position z0. At any position, the complex amplitude is calculated using:

A(x, y, z) =

∫
e
i(kxx+kyy+

√
k2−k2x−k2yz)Ã(kx, ky , z0)dkx, dky (6)

and the recoil using

kz(x, y, z) =

∫ √
k2 − k2

x − k2
ye
i(kxx+kyy+

√
k2−k2x−k2yz)Ã(kx, ky , z0)dkx, dky (7)

The Monte Carlo simulation occurs as follows: an initial set of N wave packets (index i) is randomly calculated with a Gaussian distribution for both
the position and velocity. For each wave packet, and for the two paths (labelled A and B) of the interferometer, the final amplitude aA/Bi , position

~r
A/B
i , momentum ~p

A/B
i and phase φA/Bi are calculated. The phase of the interferometer is then obtained from:

Φ =
1

N

N∑
i=1

aAi a
B
i

(
φAi − φBi +

(~pBi + ~pAi ) · (~rBi − ~rAi )

2h̄

)
(8)

The simulation is run for each of the four spectra. The value of h/m is deduced using equation (3)
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Frequency measurement The Bloch laser and of one of the Raman lasers are locked to a Fabry-Perot cavity. The cavity is itself locked to the
5S1/2(F = 3) − 5D5/2(F = 5) two-photon transition in 85Rb41. The frequencies of those two lasers are measured using a commercial frequency
comb made by MenloSystems, which is referenced by a 100 MHz signal, referenced to the French National References of Time delivered by the
LNE-SYRTE via a 3 km-long optical fiber link.

The Extended Data Figure 2e represents the Allan deviation of the measurement. In the short term, we observe variations in frequency up to 4
kHz related to temperature fluctuations caused by air conditioning (timescale of about 200 seconds). The record of the interferometer fringes for a
single h/m determination lasts approximately 300 seconds. For the h/m computation, we take the average of the measurements and assign to each
value an uncertainty of ±4 kHz. Note that the contribution of this uncertainty on the error budget is negligible as the laser frequencies determination
for two consecutive h/m determination are independent variables, the systematic error of the frequency comb being insignificant.

The measurement is continuously performed as long as the frequency comb laser remains locked. When the measurement of the frequency was
not performed, but h/mmeasurements were taken, we estimated the frequency of the lasers using a linear interpolation and increase the uncertainty
of the determination to ±8 kHz. This uncertainty is common to a period over which the laser frequencies were not measured, i.e they do not average
out. Because most of the time the frequency measurement was performed, these uncertainties contribute to a negligible amount to the error budget.
The weighted mean uncertainty of the lasers frequencies during this period is about 1.2 kHz per laser, leading to a contribution to the error budget of
(0± 6.0) · 10−12.

Gravity gradient The phase shift induced by a linear gravity gradient γ writes:

Φgrav. grad = 2εRkRTRTγzm, (9)

where zm is:

zm = z0 +
v0

2
(T + TR)− TεRh̄kR

m
− g

(
T 2

6
+
TTR

4
+
T 2

R

6

)

+
NBh̄kB

Tm

(
T 2

R

12
+
τ2
B

12
+

(
T +

TR

2
− tacc. − τadiab. −

τB

2

)2
) (10)

We use the atomic elevator to position the atoms in the interferometer zone. The nice feature of this method is that we can choose v0 and z0 so
that the average position for the four spectra (εR, εB) is the same, thus mitigating the effect of the gravity gradient. We estimate that we can achieve a
precision below 100 µm, leading to uncertainty on h/m below 10−12. We discovered after the measurement campaign that a mistake was present on
the calculation of the trajectories for the spectra with 500 BOs, leading to a distance of 2.31 mm between the upwards and downwards acceleration
trajectories. Using a standard gravimeter configuration of our experiment, we have measured a gravity gradient of (2.25 ± 0.3) × 10−6 s−2. This
leads to an overall correction on h/m of −1.27± 0.17× 10−11.

Earth rotation Coriolis acceleration, resulting from Earth rotation, induces a phase shift which depends on the individual velocity ~v of the atoms. It
is given by:

ΦCoriolis = 2TRT~kR ·
(
~ΩE × ~v

)
, (11)

where ~ΩE is the vector describing the Earth rotation. Its effect is expected to cancel because of the symmetry of the atomic velocity distribution.
However, a residual phase shift can occur because of imperfection of the detection system42. Thus, we compensate for effect of Earth rotation by
using piezo-electric transducers on the retro-reflection mirror21,43. We perform the calibration of the Coriolis compensation parameters by maximizing
the contrast of a 700 ms long interferometer (see Extended Data Figure2b).

We have measured h/m with compensation of the Earth rotation and without. The result of this survey is displayed on Extended Data Figure2c,
and shows that the Earth rotation induces a (2.6 ± 2.1) × 10−10 shift of h/m. We estimate the accuracy on the rate of the compensation ramps to
±7%, which yields an uncertainty on h/m of 0± 2.3 · 10−11 (uncertainty obtained from the standard deviation calculated to the second order). This
experimental value sets a limit on all effect related to Earth rotation (Coriolis force and Sagnac effect).

Beams alignment The beams are aligned by an automatic procedure every 10 records of the four spectra (about 45 minutes). The alignment of the
Bloch beams is done by maximizing the coupling of the beam down into the lower fiber. The Raman beams alignment is done by optimizing the retro-
reflection in the upper fiber. Assuming that alignments are independent and that drifts are negligible during the 45 minutes between two alignments,

one can calculate the standard angular deviation from the shot to shot alignment. We found between the two Raman beams
√〈

θ2
R

〉
' 3.7µrad and

between the two Bloch beams
√〈

θ2
B

〉
' 2.6µrad. The correction on h/m given by (θ2

B + θ2
R)/2 is equal to 1.0 × 10−11. We took a conservative

uncertainty of 1.0× 10−11.

Wave front corrections Using the paraxial approximation, for any scalar field E(x, y, z0) = A(x, y, z0)eiφ(x,y,z0) at the position z0, one can
calculate the local wave vector:

kz = k

1− 1

2

∣∣∣∣∣
∣∣∣∣∣ ~∇⊥φk

∣∣∣∣∣
∣∣∣∣∣
2

+
1

2k2

∆⊥A

A

 (12)

where the gradient and Laplacian are taken along the x et y directions. This formula is a generalisation of analytical formula obtained for Gaussian
beams.
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Using a shearing interferometer, we have measured the wave curvature of the beam and estimate it to (0.9 ± 0.3) × 10−3 m−1 for both beams.
The term in Laplacian (associated with the Gouy phase) has been calculated from pictures taken with a CCD.

Equation (12) is used in the Monte Carlo simulation in order to compute the local wave vector at the position of atoms. The correction depends
on the size of the cloud and therefore on the parameters used. We obtain an average value for the curvature leading to an additional correction of
(1.3± 0.6)× 10−11.

In order to compute precisely the Gouy phase correction, we took several pictures of each beam at different distance from the collimator corre-
sponding to the position of the clouds in the interferometer. In the experiment, the precision on the overlap of the laser beams is less than 10% of
the waist. This is not as precise as the beam alignment (less than 10−5). We have not implemented an automatic procedure for this less sensitive
alignment.

The adjustments of the overlap between the upward and downward beams and the overlap between the atomic cloud and the laser beams were
carefully made at the beginning of the measurement and re-checked if we observe a drop in the contrast of atomic fringes or in the number of atoms.
Our method for controlling beam overlap consists in using, during the alignment procedure described above, a razor blade mounted on a micrometric
translation. This technique usually used to estimate the waist of laser beam allows us to superpose the centers of laser beams at better than 10%,
so we took an uncertainty of ±500 µm for this overlap.

To align the laser beam overlap with the atomic cloud, we use Rabi oscillations with the two co-propagating Raman beams (downward Raman
beams). The procedure consists in minimizing the pulse duration that satisfies the π condition by laterally displacing the laser beams (the fiber is
placed on a micro-metric translation). Of course, at each lateral position, the injection of the beams into the fibers is re-optimized.

Independently, simulations were performed with different sets of parameters of the overlap of the beams between themselves and with the atomic
cloud. We took the standard deviation of those simulations to estimate the uncertainty of the generalized Gouy correction. We obtained an uncertainty
of 2.9× 10−11.

In the experiment, the survival probability P (I) of an atom in the Bloch acceleration process depends on the local intensity I of the laser. The
effective wave vector is equal to:

keff
z =

〈P (I(x, y, z0))kz(x, y, z0)〉
〈P (I(x, y, z0))〉 , (13)

where the average is taken over the spread of the cloud. Correlation between the atomic distribution and laser intensity lead to a systematic effect
identified in 23. In order to precisely characterize this effect, we ran the experiment using a reduced value of I so that there is a stronger correlation
between survival probability and intensity. The Extended Data Figure 4b displays the result of this experiment and the curve obtained with the
Monte Carlo simulation. The parameter of the simulation were adjusted so that both the variation of the number of atoms and the variation of relative
recoil match the experimental data. Furthermore, we had to add a small noise (2% at a scale of 50µm to the pictures recorded with a CCD camera).
We observed that for a reduction of 50% of the intensity of the laser, there is a reduction of 40% of the number of atoms and a systematic effect of
about 1 ppb. Under the standard condition (90% of the intensity of the maximum intensity), the calculated correction is (7.8± 3.8)× 10−11.

Quadratic Zeeman effect We have measured the magnetic field B(z) along the vertical axis in the interferometry area using the
|F = 1, mF = 1〉 → |F = 2, mF = −1〉 transition and observe peak-to-peak variation smaller than 50 nT. This measurement is displayed on
Extended Data Figure 2d.

The phase shift φB induced by the magnetic field can be calculated by integrating along the trajectory the variation of the Lagrangian due to the
presence of the magnetic field,

φB

2π
=
K

2

∫ interf.+T+TR

tinterf.

s(t)B(z(t))2dt, (14)

where K = 575.15HzG−2 and s(t) = 1 if the atom is in |F = 1,mF = 0〉 or s(t) = −1 if it is in |F = 2,mF = 0〉. Using the precise computation of
the atomic trajectories for each interferometer and the measured magnetic field along the interferometer area, we obtain relative corrections on h/m
that are below 10−12. Thus, we apply a conservative uncertainty of 10−12 and no correction.

One photon light-shift The one photon differential light shift is negative and proportional to the intensity I seen by atoms:

δL.S = − I

Is

Γ2νHFS

8∆2
(15)

where Γ is the natural linewidth of the rubidium D2 line, Is its saturation intensity and ∆ the detuning of the Raman laser with respect to the D2 line.

During the interferometer, the intensity of each Raman pulse is increased linearly with respect to time in order to compensate for the expansion
of the cloud and keep a constant average intensity. Typically, we increase by 10% the intensity between the first and last pulse. This number
corresponds to the laser intensity ramp that reduces the velocity-dependent phase shift during Raman transitions, induced by the unbalance of the
average internal intensity between Raman pulses 25. Calibration of the slope of the intensity ramp was performed under the same experimental
conditions as those of the measurement of the ratio h/m in order to ensure the same detection efficiency.

Effect of light shift are similar for each spectrum and therefore should cancel between both the inversion of the direction of the Raman beams
and of the Bloch acceleration. This compensation is not perfect for two reasons: i/ the temporal sequence being different, the size of the cloud is
slightly different when the Bloch acceleration is inverted and ii/ the retro reflected beam, which contributes twice, is different when the direction of the
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Raman beams is inverted. The Monte Carlo simulation is used to compute precisely the effect of the light shift and results are shown on Extended
Data Figure 4c. Those results are plotted as a function of the velocity of the cloud (detuning δD with respect to the resonance): indeed, there a
velocity-dependent phase shift induced by the Raman transitions 38 which has a dispersive shape. This effect has been studied in 25. It depends on
the intensity and is part of the simulation.

Using the results of the Monte Carlo simulation at zero Doppler detuning, we compute the dependency of the systematic error with respect to the
light shift imbalance ξ. The error then writes:

∆ (h/m)

h/m
' (κ1 + κ2 〈δD〉) ξ, (16)

where 〈δD〉 is the average Doppler shift of the atomic distribution. The value of κ1 and κ2 are extracted from the Monte Carlo simulation for each of
the eight configurations used (see Extended Data Table 1a). We estimate the light shift imbalance ξ to 0.1± 0.1. We estimate that we compensate
the light shift at the velocity selection stage at ±10% of 2 kHz. As a consequence we set δD at 0± 200Hz. Value for each configuration is displayed
on Extended Data Table2.

Two-photon light shift In our experiment, the two Raman lasers are transported to the vacuum cell using the same fiber (the counterpropagating
configuration is then achieved by retro-reflecting one of the two lasers). Thus, co-propagating Raman transitions induce a two-photon light shift
between the two hyperfine levels that writes:

δ2γ = − Ω2

2δcopro.
, (17)

where Ω is the Rabi frequency of the Raman transitions, and δcopro. the detuning of the co-propagating transitions mainly due to Doppler effect.
Because δcopro. changes sign with the direction of Raman beams, this effect does not cancel with this inversion. In our configuration this light shift
evaluates at a maximum of 5 Hz. The precise estimation of this effect is performed using the Monte Carlo simulation. The uncertainty associated to
this correction comes from the knowledge of the Rabi frequency of the pulses that we estimate to 10%. Corrections for each configuration are given
in Extended Data Table2. The correction on h/m is (−11.5± 4.7)× 10−11.

Phase shift in Raman Phase Lock Loop The setup used to control the frequency difference ωR(t) = ωHFS + δωRF(t) between the two Raman
lasers is presented on Extended Data Figure 3a. It is based on a phase-lock loop (PLL) that control precisely the phase of the beat note signal
between the two lasers. The PLL is controlled with a radio-frequency generator at frequency ωC +

δωRF(t)
8

. Before the PLL, the beat note signal is
mixed with a microwave generator at the frequency ωHFS − 8ωC. There is a ratio 8:1 between the radio-frequency generator and the beat note.

To compensate for the Doppler shift induced by gravity, we implement a frequency ramp of rate β ≈ ±25 MHz/s during the Ramsey sequences of
the interferometer where the sign of the ramp is dictated by the direction of Raman beams εR. Any delay δt in the PLL system, induces a shift βδt
in the frequency seen by atoms. A constant delay cancels over the interferometer sequence — however because of the frequency shift between the
two Ramsey sequences, this delay varies and a phase error appears.

To mitigate the bias induced by this effect, we have implemented a symmetric configuration (Extended Data Figure 3b) by changing the frequency
offset ωC with the direction of Raman beams. Precisely, we impose that 8ωC+

δωRF(tinterf.)+δωRF(tinterf.+T )+εRβTR
2

is the same when the direction
of Raman is inverted, so that the optical phase lock loop works in similar conditions.

However an independent measurement of the phase of the beat note signal revealed an imperfect cancellation at the mrad level. We suspect that
this residual phase comes from a non-linear response of the phase comparator of the PPL. We perform this measurement by demodulating the beat
note signal and recording it on a 100MHz bandwidth oscilloscope (Tektronix DPO 3014). The beat note signal is lowered in frequency by mixing it
with the signal of an additional microwave generator. The pulsation of this generator is set at the average 〈ωR〉 of the interferometry sequence so
that the signal on the oscilloscope is symmetric. The time base of the oscilloscope is calibrated by analysing the signal of a 10MHz reference.

The beat note signal is demodulated for each pulse by computing its two quadrature with a numerically computed signal. We obtain for a single
interferometric sequence the contribution of the phase of the Raman lasers using the usual formula φ4 − φ3 − φ2 + φ1 where the subscripts refer to
the pulse order. An alternative analysis based on curve fitting of the beat note signals yields identical results.

For a single determination of h/m (see Fig. 3a), we obtain for each spectrum a collection of phase shift estimation. We compute the applied phase
correction by taking the average of this collection and an uncertainty deduced from its standard deviation. The correction is accounted for in the
interferometric phase (equation 2) and propagated to the value of h/m.

We have checked that the oscilloscope does not induce a bias by reducing its bandwidth to 20MHz and did not detect shifts at the level of 0.01
ppb on h/m. Moreover, we have studied the relationship between the phase of the beat note and the interferometric measurement in the following
way: using 600 determinations of h/m performed continuously over ≈ 60 hours, we divided the set into six quantiles sorted by the beat note phase.
For each quantile, we averaged this phase and the interferometric phase. Extended Data Figure 3c displays the relationship between these two
quantities and shows that their fluctuations are identical (slope of 1).

Experimentally, we have also checked that this method can compensate the phase shift observed when filters with different cutoff frequencies are
inserted in the PLL.

We evaluated the related correction to h/m, which depends on the interferometer parameters NB and TR. Note that the effect of a phase shift
δΦ scales as δΦ/TR on h/m. For NB = 500, we find a correction on h/m of ≈ −9 · 10−10 for TR = 10 ms or 20 ms which shows that the phase
shift induced by frequency ramps depends on their duration. Moreover, we find a reduced effect for NB = 250 at ≈ −6 · 10−10 which is expected
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because the frequency difference between the first and third pulse is ∼ 7.5 MHz compared to 15 MHz for NB = 500. We then find a correction to
h/m of (−82.1± 1.2) · 10−11. The uncertainty includes a conservative uncertainty of 0.01 ppb on the phase measurement with the oscilloscope.
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Extended Data Figure 1: Laser beam setup and detection. a Schematics of the vacuum cell and of the laser beams used for Raman transition and Bloch oscillation. b Schematics of the detection
setup. c Light-pulse sequence implemented for the measurement protocol.
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Extended Data Figure 2: Data on the control of the laser beams alignment and the magnetic field. a Distributions of the shot to shot variations of the auto-alignment procedures for mirrors
M1 and M2 (see extended data figure 1a).b Scatter of the the contrast with respect to the sweep rates of the piezoelectric transducer of the mirror mounts (M2) for a 700ms-long interferometer. c
Integrated h/m raw determinations with and without Earth rotation compensation. Each point correspond to 400 sets of 4 spectra. The total interrogation duration is 60 hours. d Blue: measurement
of the magnetic field obtained by measuring the resonance of the magnetically sensitive |F = 1,mF = 1〉 → |F = 2,mF = −1〉 transition. Orange: interpolation used for the modelling of the
systematic effect. e Allan deviation of the frequency measurement.
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Extended Data Figure 4: Analysis of the effect of local fluctuations in laser intensity. a Typical intensity profile of the laser beam. b Characterisation of the short scale noise on the beam
intensity. The intensity of the laser used for Bloch oscillation is reduced, leading to losses of atoms in the experiment (bottom graph). This induces a systematic effects on the recoil measurement
(upper graph). In order to match the experimental data with the Monte Carlo simulation, we had to add a small noise (2% at a scale of 50µm to the pictures recorded with a CCD camera). c
Correction from the intensity profile calculated for each configuration. Uncertainty displayed are only the independent ones obtained from the Monte Carlo simulation. d Results of the Monte Carlo
simulation for the estimation of the effect of the one photon light shift, for different initial velocity and Raman inversion compensation (orange points: perfect compensation, blue and green points: one
photon light shift are greater by 20% for one or the other Raman direction). The simulation was performed for all interferometer configuration (top: Raman high power, bottom: Raman low power) and
different (TR, NB, τB ) from left to right.
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Extended Data Table 1: Time sequence data. Parameters used for the data collection for the different configuration and spectra. The times are indicated with respect to the release of the atomic
cloud from the optical molasses. Legend of configurations : A© TR = 20ms, NB = 500, τB = 6ms; B© TR = 10ms, NB = 500, τB = 6ms; C© TR = 20ms, NB = 250, τB = 3ms;
D© TR = 20ms, NB = 250, τB = 6ms. Legend of spectra : Spectrum 1: εR = +1, εB = +1; Spectrum 2: εR = −1, εB = +1; Spectrum 3: εR = +1, εB = −1; Spectrum 4:
εR = −1, εB = −1

Configuration A© B© C© D©
TR 20 10 20 20 ms
NB 500 500 250 250 BOs
τosc 12 12 12 24 µs
T 32.9 ms
telev,1 9 ms
Nelev,1 +650 BOs
tprep,1 110 ms
τprep,1 189 µs
tprep,2 120 ms
τprep,2 63 µs

telev,2
Spectra 1, 2 154.910

ms
Spectra 3, 4 131.528 131.946 137.492 136.984

Nelev,2
Spectra 1, 2 -1185 -1010 -1185 -1185

BOs
Spectra 3, 4 -635 -515 -735 -735

tinterf. 175 ms

τinterf.
Raman power: Low 80

µs
Raman power: High 35

tacc. 197.9 ms

1
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Extended Data Table 2: Light shifts - Data computed with the Monte Carlo simulation for the different configurations: correction parameters of the light shift imbalance over the Raman direction
(κ1) and atomic mean velocity (κ2); relative corrections to h/m due to the one photon light shift; correction on h/m induced by two-photon light shifts during Raman pulses. Configurations are
described on extended data Table 1

Power Conf. κ1 (×10−10) κ2 (×10−13 Hz−1) One-ph. corr. (×10−11) Two-ph. corr. (×10−11)
Low A© −2.1 0.52 2.1± 2.1 −12.2± 3.7
Low B© −4.1 1.3 4.1± 4.1 −27.2± 5.9
Low C© −6.1 1.6 6.1± 6.1 −7.0± 3.0
Low D© −17 4.2 17± 17 −3.6± 2.7
High A© −2.9 0.48 2.9± 2.9 −39.3± 8.1
High B© −6.3 0.79 6.3± 6.3 −88.2± 17.8
High C© −8.1 1.3 8.1± 8.1 −27.4± 5.8
High D© −23 2.6 23± 23 −18.0± 4.3

1
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