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Abstract

e propose for the spin density matrix two parametrizations which automatically fulfi
non-negativity conditions, without setting any bound on the parameters. The firs
relies on a theorem, that we prove, and it is rather simple and easily adaptable t

specific reactions, where, for example, parity is conserved or angular momentum
ervation entails selection rules. Moreover, in the case when the rank is less than
order of the density matrix, we show how to improve the fits to the data, either by
ementing previous suggestions, or by elaborating an alternative method, for which w
e a second theorem. Our second parametrization is a variant of previous treatments, i
ars suitable for some particular processes. Moreover, we discuss about the possibility
ferring the elements of the density matrix from the differential decay width. Last
llustrate various examples of current interest, both in strong and weak decays; som
em may be helpful in the investigation of physics beyond the standard model.
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Introduction

spin density matrix (SDM), which was introduced long time ago [1] to describe
ure of pure spin states, is an essential tool for various aims, like determining th
and the parity of the resonances [2-9], singling out some exchange mechanisms in

production reactions [8,10-19] and finding possible hints to new physics [20-22]. I
erns unstable states - to be denoted as R in the following - which are produced in

reactions, usually of the type

a b → R c or R0 → R d. (1

matrix elements of the SDM of R are inferred through the analysis of one of its decay
es.
his matrix is Hermitian, non-negative definite and has trace 1. It is characterized by
of N pure, orthonormal spin states |n〉 - its eigenvectors - such that [1, 5]

ρ =
N∑

n=1

|n〉pn〈n|, 0 ≤ pn ≤ 1,
N∑

n=1

pn = 1. (2

the pn, some of which may be zero [2], are the probabilities of the various eigenstates
consists of a single resonance with spin J , one has N = 2J + 1. However, it may
en to cope with an intermediate state that consists of two spins [23-25], of the ρ- and

sonances [26, 27] or of a resonance and the background [8]; in this case, it results N

k(2Jk + 1), Jk being the value of each spin.
he number of non-zero eigenvalues is defined as the rank of the matrix, which i
ted by r, with r ≤ N . If the mechanism, which gives rise to R, is of the type (1), an
r bound to r can be fixed [3, 28].

n a frame at rest with respect to R, the eigenstates |n〉 are not necessarily eigenstate
e operators J2 and Jz; as an example, for a spin-3/2 resonance, the SDM may b

onal with respect to the states

2, 3/2〉, |3/2, 1/2〉, a|3/2,−1/2〉+ b|3/2,−3/2〉, and b|3/2,−1/2〉−a|3/2,−3/2〉, (3

|a|2 + |b|2 = 1. If R involves a single spin, a given eigenstate of ρ can be reduced
n eigenstate of Jz by a rotation of the reference frame, but the unitary matrix tha
onalizes the SDM is not a rotation in the general case [29].
he SDM is generally characterized by N2 − 1 real parameters. However, if parity
nserved in the production mechanism [30, 8], this number is reduced, owing t
relations between the matrix elements; moreover, if parity is conserved also in

successive decay of R, it often happens that the imaginary part of ρ cannot b
sured [30, 8, 31]; last, if R is produced in a decay, the constraint of angular momentum
ervation [20, 21, 32] has to be accounted for.
bviously, all constraints that we have exposed above, including non-negativity

, 30, 8, 28, 31] and normalization condition, have to be fulfilled by a parametrization
2
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The .
e SDM. A problem, which experimental physicists have to cope with, is to avoid
ducing any external bounds on the parameters. Different solutions were proposed in
years [33, 30, 8]; however, a simple and sufficiently flexible parametrization seem

e still lacking [31]. Moreover, the suggestion of exploiting the rank condition fo
cing the number of parameters of the SDM [5, 8] needs implementation; this problem
pecially important when higher spins or more than one spin are involved. Last
parametrizations, which were proposed in the past, concern essentially resonance
h are produced in strong interactions, whereas, in the last years, one has to do with
tures which arise from weak decays [20-22]: a systematic study of such cases has no
een performed.
he aim of the present paper is to fill such gaps. In particular, we consider the SDM
for parity conserving and for parity violating processes; furthermore, we suggest tw

rent parametrizations that automatically satisfy the above mentioned constraints
first parametrization, which is based on a theorem, is simple and easily adaptabl
fferent situations; moreover we implement and suggest some methods for recognizin
ible null eigenstates and for reducing the number of independent parameters. Th
nd parametrization is inspired by an unusual method [28, 15, 17-19], which takes int
unt the mechanism that originates the structures we want to study: indeed, in som
s, it may be convenient to parametrize the SDM as [28]

ρ = Uρ(i)U †, (4

e ρ(i) is the initial density matrix and U a unitary operator that describes th
tion of the reaction.
oreover, we discuss about the possibility of obtaining the elements of the SDM from

, referring in particular to the case when more spins are involved, or when parity i
erved in the production mechanism. Last, we apply our parametrizations to som
tions of interest.
ect. 2 is dedicated to the first parametrization, for which we prove a preliminary
rem. In Sect. 3, we show how to exploit situations such that r < N , in part by
g a second theorem. In Sect. 4, we introduce the second parametrization. Sect. 5 i
ted to a discussion about the extraction of the SDM elements from the differentia
y width. Last, we illustrate a few examples in Sect. 6 and draw some conclusions in
. 7.

Parametrization of the Spin Density Matrix - I

first parametrization is based on a theorem, which we state and prove preliminarily
3
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sider a N ×N Hermitian matrix, ρ, defined with respect to an orthonormal basis,

ρ =
N∑

i,j=1

|i〉ρij〈j|. (5

cessary and sufficient condition for it to be non-negative is that
all of its diagonal elements are non-negative and
the Schwarz inequality [30]

|ρij|2 ≤ ρiiρjj (6

s.”
roof
) The necessary condition is a consequence of the features of the characteristi
tion of a non-negative definite Hermitian matrix [8]. However, we give a differen
ment, which is similar to the one proposed by Daboul [30]. If ρ is Hermitian and
negative, we may set

ρij =
∑

n

U∗inUjnpn,
∑

n

U∗inUjn = δij. (7

U is a unitary matrix3 that diagonalizes ρ and pn ≥ 0 is the n-th eigenvalue of ρ

ρii =
∑

n

|Uin|2pn ≥ 0, (8

h proves the non-negativity of the diagonal elements of ρ. Moreover, Eq. (7) suggest
efine a set of complex vectors [30]:

|Vi〉 =
∑

n

Uin
√
pn|n〉. (9

, owing to the first Eq. (7), one has ρij = 〈Vi|Vj〉 and the Schwarz inequality for th
r product implies (6).
) Now suppose that ρ is Hermitian, with non-negative diagonal elements and satisfie
ondition (6). Therefore, we may regard each matrix element ρij as a scalar product

ρij = 〈Wi|Wj〉, (10

e |Wi〉 (i = 1, 2, ... N) is a set of complex vectors. This set may be fixed in infinitely
y ways. Indeed, we may decompose each vector |Wi〉 according to the orthonorma

adopted for defining the elements of the SDM, Eq. (5), i. e.,

|Wi〉 =
N∑

k=1

αki |k〉. (11

s observed by Daboul [30], such a matrix is defined up to some given phases, Ujn → Ujn exp(iζn)
4
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, Eq. (10) entails the system

ρij =
N∑

k=1

αki
∗
αkj , (12

h is undetermined, as it consists of N2 real equations and 2N2 real unknowns. W
in Appendix A one of the infinite solutions to the system.
iven any vector

|Y 〉 =
N∑

i=1

yi|i〉, (13

(10) implies

〈Y |ρ|Y 〉 =
N∑

i,j=1

y∗i 〈Wi|Wj〉yj = 〈Z|Z〉 ≥ 0, (14

e

|Z〉 =
N∑

i=1

yi|Wi〉. (15

shows the non-negativity of ρ and completes the proof of our theorem.

Parametrization

results of the previous subsection are now exploited for parametrizing the SDM o
nstable state R, which, as already explained, may consist of more spins.
ince the diagonal elements of the SDM are non-negative, we introduce N rea
meters ai, such that

ρii = a2
i and

N∑

i=1

a2
i =

N∑

i=1

〈Wi|Wi〉 = 1. (16

eover, we observe, analogously to Doncel et al. [34], that the set of the moduli of th
ctors (9) - which characterize the SDM - can be related to the points of the surfac
hypersphere of unit radius in the N -dimensional Euclidean space RN . Therefore

ntroduce generalized spherical coordinates in that space, by means of a number o
ular’ parameters αi. We propose a parametrization for the SDM of R, distinguishin
een parity violation and parity conservation in the processes (1).

1 Parity Violating Processes

efine, in this case, N − 1 ‘angular’ parameters:

a1 = cosα1, a2 = cosα2 sinα1, ... (17

ai = cosαiΠ
i−1
l=1 sinαl ... aN = ΠN−1

l=1 sinαl. (18
5
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s regards the off-diagonal matrix elements, the Schwarz inequality (6) suggests t

ρij = |ai||aj| cos γij exp(iφij). (19

2 Parity Conserving Processes

is case, we fix a plane, say π, to be identified with the production plane [8] or, in
case of the decay, with the plane which is singled out by the momenta of R0 and
wo possible choices are available [35], corresponding to fixing the quantization axi

ectively normal to π or lying on it. Here we focus on the latter case, which include
elicity representation. We shall see two examples in Sect. 6. The matrix element
e SDM are denoted as ρJJ

′
mm′ . Then, fixing the y-axis normally to the π-plane, and

ing the reflection operator Πy = P exp(−iπJy), where P is the parity operator, on

Πy|Jm〉 = η exp[−iπ(J −m)]|J −m〉; (20

η is the intrinsic parity of the state that we consider. Therefore

(ΠyρΠ−1
y )JJ

′
mm′ = ηη′ exp(−iπ∆)ρ J J ′

−m−m′ , with ∆ = J − J ′ −m+m′, (21

d J ′ being different spin values and m and m′ their third components. Parity
riance implies

ρJJ
′

mm′ = ηη′ exp(−iπ∆)ρ J J ′
−m−m′ . (22

s regards the parametrization of the diagonal elements of the SDM, we distinguish
cases:
) Odd N , corresponding to an odd number of integer spins:

a1 = aN =
1√
2

cosα1, a2 = aN−1 =
1√
2

cosα2 sinα1, ... (23

ai = = aN−i+1 =
1√
2

cosαiΠ
i−1
l=1 sinαl ... aN ′/2 = Π

N ′/2
l=1 sinαl, (24

N ′ = N − 1.
) Even N , in all other cases:

a1 = aN =
1√
2

cosα1, a2 = aN−1 =
1√
2

sinα1 cosα2, ... (25

ai = = aN−i+1 =
1√
2

cosαiΠ
i−1
l=1 sinαl ... aN/2 = aN/2+1 =

1√
2

Π
N/2
l=1 sinαl. (26

he off-diagonal elements are parametrized according to Eq. (19), taking into accoun
elationship (22).
f the imaginary part of ρij is not measurable, as we shall discuss in Sect. 5, on
to set φij = 0 in the parametrization (19); incidentally, we note that the condition

j)
2 ≤ |ρiiρjj|, and therefore the Schwarz inequality - which is necessary to guarante
6
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non-negativity condition - is automatically fulfilled; moreover, |<ρij| constitutes
ral lower bound to |ρij|, without introducing any external constraint [30]. One can
apply the rank condition, according to which

r(=ρ) ≤ r(<ρ)− r(ρ), (27

e <ρ and =ρ are respectively the real and imaginary part of ρ [8].

Exploiting the Rank of the SDM

complete parametrization of the SDM requires, in principle, all of the parameter
we have illustrated in the previous section. However, in some specific situations

iderable simplifications are possible, which are notably useful in the cases of high
s or of more states. Here we examine the case when the rank of the SDM is less than
rder, that is, when some of the eigenvalues pn - or equivalently the determinant and

of the principal minors - vanish.
herefore, an important problem is to single out the kernel of the SDM [2, 3, 5, 8]
ccomplish that, one has to proceed according to more steps [8]. At first, one fits th
rimental data by means of an order-N SDM, then one determines its eigenvalues, pn
its eigenvectors, |n〉. If some of the pn vanish, the N -dimensional space where th

acts may be divided into two subspaces, the kernel, of dimension Nk < N , and th
plementary one, whose basis is constituted by the remaining r = N−Nk eigenvectors
egards the successive steps, we indicate three different methods.
ethod 1
et

|k〉 =
N∑

i=1

αki|i〉, k = 1, 2, ...Nk (28

he eigenvectors of the kernel: they are expressed with respect to the basis that ha
adopted in Eq. (5). The matrix

ρ′ = UρU †, (29

Uki = δki for 1 ≤ k ≤ r, (30

= α∗ki for r + 1 ≤ k ≤ N, (31

lts in
ρ′kl = ρkl = ηkl for 1 ≤ k, l ≤ r, 0 otherwise. (32

eover, the r× r sub-matrix η, which is defined by Eq. (32), is non-singular; it can b
rametrized by using the procedure that we have described in the previous section.
ethod 2
7
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f the unstable state R has a fixed spin J , a single eigenstate of ρ can be reduced to an
state of Jz by means of a rotation of the reference frame [29]. Indeed, any normalized

or, say,

|l〉 =
∑

m

αJm|J,m〉, such that
∑

m

|αJm|2 = 1, (33

be re-written as

|l〉 = U [R(φ, θ, 0)]|J, m̄〉 = exp(−iφJz) exp(−iθJy)|J, m̄〉, (34

e |J, m̄〉 is a pure spin state and φ and θ suitable values of the azimuthal and pola
e respectively. If |l〉 is an eigenvector that corresponds to a null eigenvalue, th
sformed SDM has at least a vanishing row and column, which intersect in the main
onal.
n this connection, we remark that, if the polarization direction of the resonance may
etermined - e. g., through an asymmetry in a weak decay mode -, it is convenient t
te the reference frame so as to take the quantization axis along such a direction: th
sformed SDM is diagonal.
ethod 3
he third method for reducing the order of the SDM is based on a simple theorem.
heorem: “If the Schwarz inequality is saturated for some (i,j)-pair of indices, i 6= j

,
|ρij|2 = ρiiρjj, (35

ank of the SDM is at least one unit less than its order.”
roof
e define the 2× 2 matrix ρ̄ as

ρ̄11 = ρii, ρ̄22 = ρjj, ρ̄12 = ρ̄ ∗21 = ρij. (36

eigenvalues of ρ̄ are 0 and ρii + ρjj; the corresponding eigenvectors are

|n1〉 = N [
√
ρjj|i〉 −

√
ρii exp(−iφij)|j〉] (37

|n2〉 = N [
√
ρii|i〉+

√
ρjj exp(−iφij)|j〉], (38

e φij is the phase of ρij and N = (ρii + ρjj)
−1/2. The matrix ρ̄ is diagonalized by th

ary matrix U such that

1 = N√ρjj, U12 = −N√ρii exp(iφij), U21 = N√ρii, U22 = N√ρjj exp(iφij). (39

efore, defining the N ×N unitary matrix U as

Uii = U11, Uij = U12, Uji = U21, Ujj = U22, Ulm = δlm for l,m 6= i, j, (40

llows that the new SDM ρ′ = UρU † has at least a diagonal term which vanishes. Bu
own before this implies that ρ′ij = ρ′ji = 0 for a fixed i and all j and r(ρ) ≤ N − 1
8
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completes the proof and indicates how to construct, in this case, the unitary matri
btaining the reduction of the parameters.
his result could be generalized: any null principal minor [8] of the SDM correspond
least one zero eigenvalue. In particular, the most trivial principal minor, a zero in
ain diagonal, implies the vanishing of the corresponding row and column, as follow

matically from Eqs. (16) and (19).
n this connection, it is worth recalling the Eberhard-Good theorem [2, 3, 5], which
ides useful constraints on the spin of a resonance. In the original version [2], on
iders reactions of the type (1), such that a boson resonance R is produced; th
rem states that isotropy in the decay of R implies the inequality

J < Q, (41

e J is the spin of R and Q is the product of the numbers of spin states of the othe
icles which are involved in the reaction. Successively, Peshkin [3] established, for an
e more restrictive inequality

(2J + 1)−1 ≤ r−1 ≤ [Trρ2]−1. (42

, Minnaert [5] obtained even more stringent conditions: if r < 2J + 1, 2J + 1 −
r combinations of the quantities Trρk (k = 1,2, ... 2J + 1) must vanish.

Parametrization of the Spin Density Matrix - II

procedure, that we have just described, is especially useful in cases when it is difficul
etermine a priori an upper bound to the rank (for example, in inclusive reaction
37]), or when this bound is greater than the order of the SDM [28]. If the bound i
than the order, or if the spin structures of the initial and final state are particularl
le [13], it may be sometimes convenient to use an alternative parametrization, based
q. (4) [18, 28, 13]. Indeed, in a process of the type (1), this equation yields for th
of R

ρkk′ =
∑

m

∑

ll′

Um
kl ρ

(i)
ll′ U

m∗
k′l′ . (43

Um
kl =

1

Nu
Amkl, N 2

u =
∑

m

∑

kl

|Amkl|2 (44

Amkl are the amplitudes of the process; m denotes the spin quantum number of th
served final particle (c or d) and l and l′ indicate either the spin quantum number o
r the pair (la, lb) of the initial particles a and b.
f the number of independent amplitudes is N̄ , we parametrize them as bs exp(iφs),
2, ... N̄ , with φs real numbers, φ1 = 0 and

b1 = cos β1, b2 = sin β1 cos β2, ... (45

bm = cos βmΠm−1
l=1 sin βl ... bN̄ = ΠN̄−1

l=1 sin βl. (46
9
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Here
cons
the amplitudes are characterized by 2(N̄ − 1) real parameters, to which one ha
dd those of the initial SDM. Obviously, if parity is conserved, one has to take int
unt the corresponding symmetry relations.
n order to see whether this method is more convenient than the previous one, th
all number of such parameters has to be compared with the upper bound to the ran
e density matrix of R; this bound is ri× rc(d), where ri(c,d) are respectively the rank
e initial state and of c or d. In Sect. 6, we shall compare the two methods in som

s.

Discussion

number of independent parameters, that one can extract from the normalized
rential decay width, is determined by the moments, i. e.,

1

Γ

d2Γ

d cos θdφ
=

Jm∑

L=0

L∑

M=−L

2L+ 1

4π
H(L,M)DL∗M0(θ, φ). (47

theD are the Wigner rotation functions and Jm is the maximum spin of R. Moreover
has H(0, 0) = 1. The other moments can be extracted either by means of a best fi

exploiting the orthogonality of the DLM0 functions with different L or M .
f R includes only one spin, the number of moments equals the number of parameter
e SDM that can be determined; these are related to the moments by a linear system
5]. Otherwise, the best we can extract are a number of matrix elements and som
r combinations of the remaining ones [8], unless one can reduce the number of th
pendent parameters of the SDM, by means of some assumption.
f parity invariance holds both in the production and in the decay of R, the imaginary
s of the elements ρij of the SDM turn out to be measurable only under very particula
itions, as shown in Appendix B:
R includes more spins and
there are at least two independent decay amplitudes, with a non-trivial relative phase
g to T -odd final-state interactions [38].
uch conditions are realized, for example, in the low-energy scattering p p̄→ Λ Λ̄ [13]
h involves a few partial waves; the corresponding decay amplitudes have differen
es, owing to the T -odd (spin-orbit) term of the interaction between the final hadrons

Examples

we apply our parametrizations to some concrete situations, either with parity
ervation or with parity violation.
10
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Two Spins: 1− and 0∓ - Parity Conservation

consider the two cases, in order to simulate a resonance-background interference in
g decays of vector mesons; these were already considered many years ago [8], bu
a different approach. One has to take into account the relation (22).
) In the case that R includes the states 1− and 0−, we have η′ = η, therefore

ρJJ
′

mm′ = (−)J−J
′−m+m′

ρ J J ′
−m−m′ ; (48

entails the following parametrization:

ρ11
11 = ρ 1 1

−1−1 = 1/2 sin2 α1, ρ11
00 = cos2 α1 cos2 α2, (49

ρ11
10 = −ρ 11

−10 =
1√
2

cosα1 sinα1 cosα2 cos γ10 exp(iϕ11
10), (50

ρ1 1
1−1 = ρ 11

−11 = 1/2 sin2 α1 cos γ1−1, ρ00
00 = cos2 α1 sin2 α2, (51

ρ10
10 = ρ 10

−10 =
1√
2

cosα1 sinα2 cos γ10
10 exp(iϕ10

10), ρ10
00 = 0. (52

remaining terms can be deduced from the previous expressions by taking into accoun
ermitian character of ρ. Therefore, we have 7 parameters in all.

) Consider now the case when R consists of the 1− and 0+ states. Eqs. (49) to (51
still true, whereas

ρ10
10 = −ρ 1 0

−10 =
1√
2

cosα1 sinα2 cos γ10
10 exp(iϕ10

10), (53

ρ10
00 =

1√
2

cosα1 sinα2 cos γ10
00 exp(iϕ10

00). (54

efore, 2 more parameters are needed.
t is worth mentioning that also the SDM of an off-shell spin-1 particle is 4 × 4, owin
s scalar component; however, this case concerns essentially weak decays and will b
trated in some detail in Subsect. 6.4.

Λb → Λ J/ψ

onsider the SDM of the J/ψ-resonance. In this case, parity is not conserved in th
ecay, but the constraint of the angular momentum conservation has to be considered
ed, adopting the helicity formalism, one has

ρ1−1 = ρ−11 = 0, (55

the third component of the angular momentum of Λb along the J/ψ momentum
mes a fixed value, either +1/2 or −1/2, but not both simultaneously. The othe
ents read as

ρ11 = cos2 α1, ρ00 = sin2 α1 cos2 α2, ρ−1−1 = sin2 α1 sin2 α2, (56

ρ10 = ρ∗01 = cosα1 sinα1 cosα2 sin2 γ10 exp(iφ10), (57

ρ−10 = ρ∗0−1 = sin2 α1 cosα2 sin2 γ−10 exp(iφ−10). (58
11
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ave employed 6 parameters in all, one less than required in ref. 39, which is cited in
HCb analysis of the decay [40]. It is worth noting that, according to the discussion

e previous section, all such parameters can be determined, in principle, by analyzing
, the decay J/ψ → µ+ µ−.
ncidentally, the constraint (55) holds true for any vector boson resonance V tha
es from a decay of the type

f1 → f2 V, (59

e f1 and f2 have spin 1/2. A similar simplification occurs, e. g., for the SDM o
32) in the decay

∆(1620)1/2− → ∆(1232)3/2+ π, (60

hich parity invariance must be taken into account.
ast, in the decay Λb → Λ J/ψ, a correlation between the decay products of the tw
particles may be derived, starting from the direct product ρΛ ⊗ ρJ/ψ of the density
ices of such particles. One can proceed similarly to ref. 41, where the correlation
een the two charged leptons l+ and l−, that result from

e+ e− → t t̄ → (b l+ νl) (b̄ l− ν̄l), (61

lculated to O(αS).

t→ bW → bτντ

is decay, which is of the type (59), we employ the alternative method that we hav
ribed in Sect. 4. We consider, in this case, the SDM of a W -boson which is emitted
given direction, adopting a frame at rest with respect to the top quark. It reads a

ρµµ′(θ, φ) =
1

4π

∑

λ

bλµρ
′
ΛΛ′(θ, φ)b∗λµ′ . (62

Λ = µ − λ is the spin component of t along the W momentum and µ and λ th
ities of, respectively, W and the b-quark; moreover,

ρ′ΛΛ′(θ, φ) = δΛΛ′ + σiΛΛ′P ′i , (63

~P ′ ≡ P (cos θ, sin θ cosφ, sin θ sinφ); (64

the top quark polarization, 0 ≤ P ≤ 1, while θ and φ are, respectively, the polar and
zimuthal angle of the momentum of the W -boson. Last, bλµ are the reduced decay

litudes of the t→ Wb decay:

bλµ = N−1/2Aλµ, N = |A+,1|2 + |A+,0|2 + |A−,0|2 + |A−,−1|2. (65

suggests the parametrization

b+,1 = | cos β1|, (66

b+,0 = | sin β1 cos β2| exp(iϕ10) (67

b−,0 = | sin β1 sin β2 cos β3| exp(iϕ−10), (68

b−,−1 = | sin β1 sin β2 sin β3|. (69
12
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eover, we set
P = cos2 β0. (70

ave assumed the phases of the amplitudes b±,±1 to be zero, because, in our case, they
interfere only with b±,0 respectively.
he parametrization of the W -boson SDM results in ρ1−1 = 0 and

ρ̄11 = cos2 β1(1 + cos2 β0 cos θ), ρ̄00 = sin2 β1(cos2 β2 + sin2 β2 cos2 β3), (71

−1 = sin2 β1 sin2 β2 sin2 β3(1− cos2 β0 cos θ), (72

ρ̄10 = | cos β1 sin β1 cos β2|[1 + cos2 β0 sin θ exp(−iφ)] exp(iϕ10), (73

10 = | sin β1 sin β2|(| cos β3|+ | sin β3|)[1 + cos2 β0 sin θ exp(iφ)] exp(iϕ−10), (74

ng set ρ̄ = 4πρ. As before, the remaining SDM elements are deduced from th
iticity condition.

t is worth noting that this procedure - whose parameters, again, do not need any
d - could also be applied to the vector boson V in a decay of the type (59); it ha
dvantage of relating the polarization of the W to that of the parent state.
he SDM of the W -boson in the semi-leptonic decay of the top quark was parametrized
by other authors a few years ago [21, 42]. Furthermore, in ref. 42, also the mor
ral quasi-three-body decay t→ Xblνl is analyzed, in order to search for possible hint
ew physics; in particular, two of the parameters, which are introduced, result to b

sensitive to contributions beyond the standard model.

Λb → Λc(W
∗, H∗)→ Λcτντ

decay involves a virtual W , which includes a scalar component. For decays of thi
, a complete list of the 16 matrix elements of the SDM of the virtual W is given in
43. Furthermore, in the leptonic decays of the Higgs boson, the scalar component o
irtual W and Z is added in a gauge invariant manner [44]. See also ref. 22 and refs
59 therein.

n the specific decay that we consider, the independent (reduced) decay amplitude
:

b1
+,1 = | cos β1|, (75

b1
+,0 = | sin β1 cos β2| exp(iϕ1

+,0), b1
−,0 = | sin β1 sin β2 cos β3| exp(iϕ1

−,0), (76

b1
−,−1 = | sin β1 sin β2 sin β3 cos β4|, bt+,0 =

4∏

k=1

| sin βk cos β5| exp(iϕt+,0), (77

bt−,0 =
5∏

k=1

| sin βk cos β6| exp(iϕt−,0), b0
+,0 =

6∏

k=1

| sin βk cos β7| exp(iϕ0
+,0), (78

b0
−,0 =

7∏

k=1

| sin βk| exp(iϕ0
−,0). (79
13
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, the possible new physics is described by the amplitudes b0
±,0. Moreover, analogousl

e previous case, we have assumed equal to 0 the phases of b1
±,±1.

hen, following the same procedure and using the same notations as in the previou
ection, we find that the matrix elements of ρ̄ read as

ρ̄1 1
1−1 = 0, ρ̄ 1 1

±1±1 = ξ±1(1± Pz), (80

ρ̄JJ
′

0 0 = ηJJ
′

00 + ∆ηJJ
′

0 0Pz, ρ̄ 1J
±10 = η 1 J

±1 0P∓. (81

J and J ′ run over 1, t, 0; moreover,

Pz = cos2 β0 cos θ, P± = cos2 β0 sin θ exp(±iφ); (82

ξ±1 = |b1
±,±1|2, ηJJ

′
0 0 = bJ+,0b

J ′∗
+,0 + bJ−,0b

J ′∗
−,0, (83

∆ηJJ
′

00 = bJ−,0b
J ′∗
−,0 − bJ+,0bJ

′∗
+,0, η 1J

±10 = b1
±,±1b

J∗
±,0. (84

is case, we have used 14 parameters in all, whereas the general treatment would
ire 24 parameters. But according to the considerations of Sect. 5 the number o
pendent parameters, that can be inferred from the differential decay width, is 8
efore, the best fit to the data, if performed by using the above parametrization
d present some ambiguities. However, in this case, some parameters can be fixed b
ting the standard model predictions [20, 21, 42, 45]. In particular, in a previous pape
we showed the relationship between the tensor, that is usually employed to describ
i-leptonic decay, and the non-covariant SDM. If at least one of the amplitudes b0

±,
n-zero, with a non-trivial phase, it causes a T-odd component for the Λc polarization

Conclusions

have proposed two methods for parametrizing the SDM of an unstable state
isting of one or more spins - that is produced in various reactions. Both method
fy automatically all of the numerous non-negativity conditions [30, 5] and ar
table to the constraints imposed by parity [8] and angular momentum conservation
first method is based on a theorem that we have proved and it may be applied in
le and flexible way. Moreover, we show how to improve the fit to the data when th
of the SDM is less than its order; we do this, either by implementing suggestions by

r authors [5, 28], or with the help of a second theorem, which we have proved as well
he second method is a variant of previous parametrizations [3, 28] and is particularly
ble under especial conditions, e. g., when the structure to be analyzed derives from
decay.
e have discussed about the possibility of inferring the SDM from the differentia

y width. In particular, we have examined the case where a given intermediate stat
14
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nerated and decays according to strong or electromagnetic interactions, showing that
r very particular circumstances, the imaginary part of the SDM can be measured.
ast, we have illustrated some applications; two of them, which concern the decay
b W [20, 21] and Λb → Λc l

+ νl [47-50,22], are very interesting from the viewpoin
e search for new physics beyond the standard model.
s a conclusion, we observe that our suggestions appear efficient for situations wher

er spins or newly discovered structures [51] are involved.

Acknowledgments
he authors are thankful to their friend Flavio Fontanelli for useful and stimulatin
ssions.

ppendix A

e find an explicit solution to the N complex vectors |Wi〉 which appear in Eq. (10)
,

ρij = 〈Wi|Wj〉. (A.1

is possible owing to the Schwarz inequality, that we have assumed. The data of th
m (A.1) consist of the elements of the Hermitian matrix ρ, defined with respect t
rthonormal basis |k〉 and such that

ρii ≥ 0 and |ρij|2 ≤ ρiiρjj. (A.2

e assume expansions of the type

|Wi〉 =
i∑

k=1

αki |k〉 (A.3

ny vector |Wi〉, i = 1, 2, ..N ; furthermore, we establish all of the αii to be real and
negative. Then, limiting ourselves to i ≥ j, Eq. (A.1) yields

ρij =
i∑

k=1

αki
∗
αkj . (A.4

how that this equation uniquely fixes all of the coefficients αki of the expansions (A.3)
) Assume, at first, that the rank of ρ is equal to N , which implies that all principa
rs of the matrix are positive, in particular, ρii > 0. Then we prove our statement by
ction.
) For i =1, Eq. (A.4) reads as

α1
1 =
√
ρ11, (A.5

h defines |W1〉 through Eq. (A.3).
15
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) Suppose Eqs. (A.4) to be solvable with respect to αkj for all k ≤ j and all j ≤ i < N
amounts to asserting that all vectors

|Wj〉, j ≤ i, (A.6

been determined. Now we prove that the vector

|Wi+1〉 =
i+1∑

k=1

αki+1|k〉, (A.7

be uniquely deduced from the system

ρi+1j =

j∑

k=1

αk∗i+1α
k
j , j = 1, 2, ..i+ 1, (A.8

mplex system of i + 1 equations, with i complex unknowns, αki+1, 1 ≤ k ≤ i, and
one, αi+1

i+1.
o this end, preliminarily, we show that the i× i (‘triangular’) matrix A, such that

Ajk = αkj , with k ≤ j ≤ i, (A.9

n-singular. Consider the i× i submatrix ρ̃, whose matrix elements ρ̃lm coincide with
e of ρ for l,m ≤ i. Eq. (A.1) implies

ρ̃lm = 〈Wl|Wm〉. (A.10

assumption of non-singularity of ρ implies the same for ρ̃, therefore the vector
) constitute a basis for ρ̃ and are linearly independent. This in turn entails th
singularity of A4.
ut the system (A.8) can be split into a linear subsystem with i equations and
linear equation:

ρi+1j =

j∑

k=1

Ajkα
k∗
i+1, j = 1, 2, ..i, ρi+1i+1 =

i+1∑

k=1

|αki+1|2. (A.11

non-singular character of A allows to solve the linear subsystem with respect to αki+1

1, 2, ..i. The solution can be inserted into the non-linear equation, which can b
d with respect to αi+1

i+1. This completes the proof in the case of non-singular ρ.
) If the rank of ρ, say r, is less than N , we perform the transformation (29), i. e.

ρ′ = UρU †. (A.12

result is

ρ′lm = ρlm = ηlm for 1 ≤ l,m ≤ r and 0 otherwise; (A.13

s a byproduct, it is worth noting that, in this case, all αi
i are strictly positive.
16
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efore η is a r× r Hermitian, non-singular matrix, to which we may apply the method
ribed above. We find a set of linearly independent complex vectors |wl〉, l = 1, 2,...r
ning

|W ′
i 〉 = |wi〉 for i ≤ r and 0 for r < i ≤ N, (A.14

ransformed vectors
|Wi〉 = Uij|W ′

j〉 (A.15

the solution to the system (A.1). This completes the proof.

ppendix B

ere we discuss about the measurability of the imaginary parts of the elements of th
density matrix (SDM) of an unstable state R that is produced and decays accordin
rity conserving interactions. We assume this state to include more spins and to hav

o-body decay:
R → a b. (B.1

pting the helicity formalism, the normalized differential decay width reads as

1

Γ

d2Γ

d cos θdφ
=

∑

JJ ′

∑

mm′

∑

λaλb

C(J, J ′)ρJJ
′

mm′DJ∗mλ(φ, θ, 0)DJ ′
m′λ(φ, θ, 0)fJλaλbf

J ′∗
λaλb

. (B.2

C(J, J ′) = 1/4π[(2J + 1)(2J ′ + 1)]1/2, ρJJ
′

mm′ = 〈J,m|ρ|J ′m′〉 is an element of th
, D is the Wigner rotation function and

fJλaλb =
1

Nf

F J
λaλb

, N2
f =

∑

J,λa,λb

|F J
λaλb
|2, (B.3

educed decay amplitudes, with λ = λa − λb. Parity conservation implies

ρJJ
′

mm′ = ηη′ exp(−iπ∆)ρJ−J
′

−m−m′ , (B.4

∆ = J − J ′ −m+m′, (B.5

fJ−λa−λbf
J ′∗
−λa−λb = ηη′ exp[−iπ(J − J ′)]fJλaλbf

J ′∗
λaλb

, (B.6

llows from Eqs. (20) to (22) in the text. Moreover,

DJmλ(φ, θ, 0) = exp(−imφ)dJmλ(θ), dJ−m−λ(θ) = (−)m−λdJmλ(θ). (B.7

efore we may re-write Eq. (B.2) as

d2Γ

d cos θdφ
=

∑

JJ ′

∑

mm′

′∑

λaλb

′
C(J, J ′){exp[−i(m−m′)φ] + (−)ε exp[i(m−m′)φ]}

×ρJJ ′
mm′dJmλ(θ)d

J ′
m′λ(θ)f

J
λaλb

fJ
′∗λaλb , (B.8
17
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[1] U

[2] P

[3] M

[4] M

[5] P

[6] R

[7] M

[8] S

[9] A

[10]

[11]

[12]

[13]

[14]

[15]
e ε = ∆ + J − J ′ + m + m′ − 2λ = 2(J − J ′ + m′ − λ) and the primes in th
s indicate that they are limited to non-negative values of the indices. But ε is an

number, moreover only =ρJJ ′
mm′ and =(fJλaλbf

J ′∗
λaλb

) are odd under the simultaneou
ange (J,m) ↔ (J ′,m′), the other terms of Eq. (B.8) being even. Therefore we have

1

Γ

d2Γ

d cos θdφ
=

∑

JJ ′

∑

mm′

′∑

λaλb

′
C(J, J ′) cos[(m−m′)φ]dJmλ(θ)d

J ′
m′λ(θ)FJJ

′
mm′,λaλb , (B.9

FJJ ′
mm′,λaλb = <ρJJ ′

mm′<(fJλaλbf
J ′∗
λaλb

)−=ρJJ ′
mm′=(fJλaλbf

J ′∗
λaλb

). (B.10

efore, under the conditions that we have assumed, the imaginary part of the SDM
be measured only if more spins are involved and at least one of the relative phase
een the decay amplitudes is non-trivial.
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  
l.
Proposed two methods for parametrizing the SDM of an unstable state 
consisting of one or more spins - that is produced in various 
reactions. Both methods satisfy automatically all of the numerous no
negativity conditions and are adaptable to the constraints imposed b
parity and angular momentum conservation.

First method  theorem; appliable in a simple and flexible way. 
Improvements of the fit to the data when the rank of the SDM is less
than its order. Added note on Eberhard-Good theorem. 

Second method: a variant of previous parametrizations; particularly 
suitable under especial conditions, e. g. , when the structure to be
analyzed derives from some decay.

examined the case where a given intermediate state is generated and 
decays according to strong or electromagnetic interactions: under ve
particular circumstances, the imaginary part of the SDM can be 
measured. 

Illustrated some applications; two of them are very interesting from
the viewpoint of the search for new physics beyond the standard mode
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jaltouni:    stress on the importance of the spin density matrix and of 

                  non-covariant formalism in data analysis; remarks on the

                  feasibility of an experiment and on the measurability of 

                  some parameters.
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