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Abstract

We propose for the spin density matrix two parametrizations which automatically fulfil
the non-negativity conditions, without setting any bound on the parameters. The first
one relies on a theorem, that we prove, and it is rather simple and easily adaptable to
some specific reactions, where, for example, parity is conserved or angular momentum
conservation entails selection rules. Moreover, in the case when the rank is less than
the order of the density matrix, we show how to improve the fits to the data, either by
implementing previous suggestions, or by elaborating an alternative method, for which we
prove a second theorem. Our second parametrization is a variant of previous treatments, it
appears suitable for some particular processes. Moreover, we discuss about the possibility
of inferring the elements of the density matrix from the differential decay width. Last,
we illustrate various examples of current interest, both in strong and weak decays; some
of them may be helpful in the investigation of physics beyond the standard model.
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1 Introduction

The spin density matrix (SDM), which was introduced long time ago [1] to describe a
mixture of pure spin states, is an essential tool for various aims, like determining the
spin and the parity of the resonances [2-9], singling out some exchange mechanisms in
the production reactions [8,10-19] and finding possible hints to new physics [20-22]. It
concerns unstable states - to be denoted as R in the following - which are produced in
some reactions, usually of the type

a b - R ¢ or Ry - R d. (1)

The matrix elements of the SDM of R are inferred through the analysis of one of its decay
modes.

This matrix is Hermitian, non-negative definite and has trace 1. It is characterized by
a set of N pure, orthonormal spin states |n) - its eigenvectors - such that [1, 5]

N N
p= Z |n>pn(n|, 0<p. <1, an = 1. (2)
n=1 n=1

Here the p,,, some of which may be zero [2], are the probabilities of the various eigenstates.
If R consists of a single resonance with spin J, one has N = 2J + 1. However, it may
happen to cope with an intermediate state that consists of two spins [23-25], of the p- and
w-resonances [26, 27| or of a resonance and the background [8]; in this case, it results N
=Y ,(2Jy 4+ 1), Jy being the value of each spin.

The number of non-zero eigenvalues is defined as the rank of the matrix, which is
denoted by r, with » < N. If the mechanism, which gives rise to R, is of the type (1), an
upper bound to r can be fixed [3, 28].

In a frame at rest with respect to R, the eigenstates |n) are not necessarily eigenstates
of the operators J* and J,: as an example, for a spin-3/2 resonance, the SDM may be
diagonal with respect to the states

13/2,3/2), [3/2,1/2), al3/2, —1/2) +b|3/2, —3/2), and b|3/2, —1/2) —a|3/2, —3/2), (3)

with |a]? + [b]*> = 1. If R involves a single spin, a given eigenstate of p can be reduced
to an eigenstate of J, by a rotation of the reference frame, but the unitary matrix that
diagonalizes the SDM is not a rotation in the general case [29)].

The SDM is generally characterized by N2 — 1 real parameters. However, if parity
is conserved in the production mechanism [30, 8], this number is reduced, owing to
some relations between the matrix elements; moreover, if parity is conserved also in
the successive decay of R, it often happens that the imaginary part of p cannot be
measured [30, 8, 31]; last, if R is produced in a decay, the constraint of angular momentum
conservation [20, 21, 32] has to be accounted for.

Obviously, all constraints that we have exposed above, including non-negativity
[5, 6, 30, 8, 28, 31] and normalization condition, have to be fulfilled by a parametrization
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of the SDM. A problem, which experimental physicists have to cope with, is to avoid
introducing any external bounds on the parameters. Different solutions were proposed in
past years [33, 30, 8]; however, a simple and sufficiently flexible parametrization seems
to be still lacking [31]. Moreover, the suggestion of exploiting the rank condition for
reducing the number of parameters of the SDM [5, 8] needs implementation; this problem
is especially important when higher spins or more than one spin are involved. Last,
the parametrizations, which were proposed in the past, concern essentially resonances
which are produced in strong interactions, whereas, in the last years, one has to do with
structures which arise from weak decays [20-22]: a systematic study of such cases has not
yet been performed.

The aim of the present paper is to fill such gaps. In particular, we consider the SDM
both for parity conserving and for parity violating processes; furthermore, we suggest two
different parametrizations that automatically satisfy the above mentioned constraints.
The first parametrization, which is based on a theorem, is simple and easily adaptable
to different situations; moreover we implement and suggest some methods for recognizing
possible null eigenstates and for reducing the number of independent parameters. The
second parametrization is inspired by an unusual method [28, 15, 17-19], which takes into
account the mechanism that originates the structures we want to study: indeed, in some
cases, it may be convenient to parametrize the SDM as [28]

p=UpUY, (4)

where p® is the initial density matrix and U a unitary operator that describes the
evolution of the reaction.

Moreover, we discuss about the possibility of obtaining the elements of the SDM from
data, referring in particular to the case when more spins are involved, or when parity is
conserved in the production mechanism. Last, we apply our parametrizations to some
reactions of interest.

Sect. 2 is dedicated to the first parametrization, for which we prove a preliminary
theorem. In Sect. 3, we show how to exploit situations such that » < N, in part by
using a second theorem. In Sect. 4, we introduce the second parametrization. Sect. 5 is
devoted to a discussion about the extraction of the SDM elements from the differential
decay width. Last, we illustrate a few examples in Sect. 6 and draw some conclusions in
Sect. 7.

2 Parametrization of the Spin Density Matrix - 1

The first parametrization is based on a theorem, which we state and prove preliminarily.



2.1 Theorem

“Consider a N x N Hermitian matrix, p, defined with respect to an orthonormal basis,

N
p=>_liis (il ()
ij=1
A necessary and sufficient condition for it to be non-negative is that
- all of its diagonal elements are non-negative and
- the Schwarz inequality [30]
|0iil* < piinjj (6)
holds.”
Proof
a) The necessary condition is a consequence of the features of the characteristic
equation of a non-negative definite Hermitian matrix [8]. However, we give a different
argument, which is similar to the one proposed by Daboul [30]. If p is Hermitian and
non-negative, we may set

Pij = Z U;anpm Z U;an = 5ij~ (7)

Here U is a unitary matrix® that diagonalizes p and p, > 0 is the n-th eigenvalue of p.
Then

Pii = Z \Uinl’pn. >0, (8)

which proves the non-negativity of the diagonal elements of p. Moreover, Eq. (7) suggests
to define a set of complex vectors [30]:

Vi) =" Unuv/Puln). (9)

Then, owing to the first Eq. (7), one has p;; = (V;|V;) and the Schwarz inequality for the
scalar product implies (6).

b) Now suppose that p is Hermitian, with non-negative diagonal elements and satisfies
the condition (6). Therefore, we may regard each matrix element p;; as a scalar product:

pij = (Wil Wj), (10)

where |W;) (i =1, 2, ... N)is a set of complex vectors. This set may be fixed in infinitely
many ways. Indeed, we may decompose each vector |IW;) according to the orthonormal
basis adopted for defining the elements of the SDM, Eq. (5), . e.,

W) =) aflk). (11)

3As observed by Daboul [30], such a matrix is defined up to some given phases, Uj,, — Uj, exp(i(,,)
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Then, Eq. (10) entails the system

N

piy =y alaf, (12)

k=1

which is undetermined, as it consists of N? real equations and 2N? real unknowns. We
give in Appendix A one of the infinite solutions to the system.

Given any vector
N

V)= wli), (13)

i=1

Eq. (10) implies

YlplY) = yr(WilWy)y; = (Z]2) > 0, (14)

4,j=1

where
N
1Z) =yl ). (15)
i—1

This shows the non-negativity of p and completes the proof of our theorem.

2.2 Parametrization

The results of the previous subsection are now exploited for parametrizing the SDM of
the unstable state R, which, as already explained, may consist of more spins.

Since the diagonal elements of the SDM are non-negative, we introduce N real
parameters a;, such that

N N

pii =a; and Za? = Z<W2|WZ> =1 (16)

i=1 i=1

Moreover, we observe, analogously to Doncel et al. [34], that the set of the moduli of the
N vectors (9) - which characterize the SDM - can be related to the points of the surface
of a hypersphere of unit radius in the N-dimensional Euclidean space RY™. Therefore,
we introduce generalized spherical coordinates in that space, by means of a number of
‘angular’ parameters «;. We propose a parametrization for the SDM of R, distinguishing
between parity violation and parity conservation in the processes (1).

2.2.1 Parity Violating Processes

We define, in this case, N — 1 ‘angular’ parameters:

a, = cosay, (y = COSQpSinay, ... (17)

a; = cosoziﬂﬁ;isinozl aN:HlA:lsinal. (18)
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As regards the off-diagonal matrix elements, the Schwarz inequality (6) suggests to
set

pij = lai||a;| cos yi; exp(idy;). (19)

2.2.2 Parity Conserving Processes

In this case, we fix a plane, say 7, to be identified with the production plane [8] or, in
the case of the decay, with the plane which is singled out by the momenta of Ry and
R. Two possible choices are available [35], corresponding to fixing the quantization axis
respectively normal to 7 or lying on it. Here we focus on the latter case, which includes
the helicity representation. We shall see two examples in Sect. 6. The matrix elements
of the SDM are denoted as p;fnﬂ,. Then, fixing the y-axis normally to the m-plane, and
defining the reflection operator II, = P exp(—inJ,), where P is the parity operator, one
has

M1, |Jm) = nexpl—im(J — m)]|J — m); (20)
here 7 is the intrinsic parity of the state that we consider. Therefore
(H HflJJ'_ / N J J ith A = A /
yPIL, )i = 1 exp(—imA) p_p, T, Wit =J—-J —m+m, (21)

J and J' being different spin values and m and m’ their third components. Parity
invariance implies
Pl T = exp(—itA)pt T (22)
As regards the parametrization of the diagonal elements of the SDM, we distinguish
two cases:

a) Odd N, corresponding to an odd number of integer spins:

1 1

a; = anN = ECOS aq, g = aN—1 = ECOSO&Q Sinozl, (23)
1 1 12 .
a; = =an_;j41 = ﬁ coS OCiH;:% sina; ... anrp = Hl]\;{Q sin qy, (24)
with N/ = N — 1.
b) Even N, in all other cases:
1 1 .
a; = ay = ECOS aq, s = an_1 = Esmal COS iy, ... (25)
a; = =ay_i1=—=cosouIl " sineg ... anm = anjpeq = LHN/2 sin oy. (26)
i i+ \/§ g / /2+ \/§ =1

The off-diagonal elements are parametrized according to Eq. (19), taking into account
the relationship (22).

If the imaginary part of p;; is not measurable, as we shall discuss in Sect. 5, one
has to set ¢;; = 0 in the parametrization (19); incidentally, we note that the condition
(Rpij)? < |piipj;|, and therefore the Schwarz inequality - which is necessary to guarantee
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the non-negativity condition - is automatically fulfilled; moreover, |Rp;;| constitutes a
natural lower bound to |p;;|, without introducing any external constraint [30]. One can
also apply the rank condition, according to which

r(Sp) < r(Rp) —r(p), (27)

where Rp and Sp are respectively the real and imaginary part of p [8].

3 Exploiting the Rank of the SDM

The complete parametrization of the SDM requires, in principle, all of the parameters
that we have illustrated in the previous section. However, in some specific situations,
considerable simplifications are possible, which are notably useful in the cases of high
spins or of more states. Here we examine the case when the rank of the SDM is less than
its order, that is, when some of the eigenvalues p,, - or equivalently the determinant and
some of the principal minors - vanish.

Therefore, an important problem is to single out the kernel of the SDM [2, 3, 5, §].
To accomplish that, one has to proceed according to more steps [8]. At first, one fits the
experimental data by means of an order-N SDM, then one determines its eigenvalues, p,,,
and its eigenvectors, |n). If some of the p, vanish, the N-dimensional space where the
SDM acts may be divided into two subspaces, the kernel, of dimension N, < N, and the
complementary one, whose basis is constituted by the remaining » = N — N}, eigenvectors.
As regards the successive steps, we indicate three different methods.

Method 1

Let

N
k) = apli), k=1,2..N (28)
=1

be the eigenvectors of the kernel: they are expressed with respect to the basis that has
been adopted in Eq. (5). The matrix

p=UpU", (29)
with
U/ﬂ' = (5]“ for 1§ k § r, (30)
= ap; for r+1 <k <N, (31)
results in
P =P =mnw for 1< k1 <r, 0 otherwise. (32)

Moreover, the r X r sub-matrix 7, which is defined by Eq. (32), is non-singular; it can be
re-parametrized by using the procedure that we have described in the previous section.
Method 2



If the unstable state R has a fixed spin J, a single eigenstate of p can be reduced to an
eigenstate of J, by means of a rotation of the reference frame [29]. Indeed, any normalized
vector, say,

) = ZO‘Z@’J’ m), such that Z |04;7,L\2 =1, (33)
may be re-written as
1) = UIR(,6,0)]|J,m) = exp(~id.J.) exp(~i0.,)| J. ), (34)

where |J,m) is a pure spin state and ¢ and 6 suitable values of the azimuthal and polar
angle respectively. If |I) is an eigenvector that corresponds to a null eigenvalue, the
transformed SDM has at least a vanishing row and column, which intersect in the main
diagonal.

In this connection, we remark that, if the polarization direction of the resonance may
be determined - e. g., through an asymmetry in a weak decay mode -, it is convenient to
rotate the reference frame so as to take the quantization axis along such a direction: the
transformed SDM is diagonal.

Method 3

The third method for reducing the order of the SDM is based on a simple theorem.

Theorem: “If the Schwarz inequality is saturated for some (7,7)-pair of indices, ¢ # 7,
1. €.,

\pii|*> = pipjjs (35)
the rank of the SDM is at least one unit less than its order.”
Proof
We define the 2 x 2 matrix p as
P11 = Pii, P22 = Pjj, P12 = Po1 = Pij- (36)

The eigenvalues of p are 0 and p;; + p;;; the corresponding eigenvectors are

) = Nlvpjili) — Vpii exp(—idi;)15)] (37)

and

[n2) = NIVpili) + v/pij exp(—idi)|5)]; (38)

—-1/2

where ¢;; is the phase of p;; and N = (pi; + pjj) . The matrix p is diagonalized by the

unitary matrix 4 such that
Uy = N/pjj, Uia = =N /piiexp(idij), Un = Ny/pii, U =N\/pj;exp(igi;). (39)
Therefore, defining the N x N unitary matrix U as
Ui =Un, Uy =Uvs, Uj=Un, Ujj=Uyp, Ui =owm for I,m#i,j, (40)

it follows that the new SDM p’ = UpUT has at least a diagonal term which vanishes. But
as shown before this implies that pj; = pj; = 0 for a fixed 7 and all j and r(p) < N — 1.
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This completes the proof and indicates how to construct, in this case, the unitary matrix
for obtaining the reduction of the parameters.

This result could be generalized: any null principal minor [8] of the SDM corresponds
to at least one zero eigenvalue. In particular, the most trivial principal minor, a zero in
the main diagonal, implies the vanishing of the corresponding row and column, as follows
automatically from Egs. (16) and (19).

In this connection, it is worth recalling the Eberhard-Good theorem [2, 3, 5], which
provides useful constraints on the spin of a resonance. In the original version [2], one
considers reactions of the type (1), such that a boson resonance R is produced; the
theorem states that isotropy in the decay of R implies the inequality

J < Q (41)

where J is the spin of R and (@) is the product of the numbers of spin states of the other
particles which are involved in the reaction. Successively, Peshkin [3] established, for any
J, the more restrictive inequality

J+1) <rt < [Trp? (42)

Last, Minnaert [5] obtained even more stringent conditions: if r < 2J +1, 2J +1 —1r
linear combinations of the quantities Trp* (k = 1,2, ... 2J + 1) must vanish.

4 Parametrization of the Spin Density Matrix - 11

The procedure, that we have just described, is especially useful in cases when it is difficult
to determine a priori an upper bound to the rank (for example, in inclusive reactions
[36, 37]), or when this bound is greater than the order of the SDM [28]. If the bound is
less than the order, or if the spin structures of the initial and final state are particularly
simple [13], it may be sometimes convenient to use an alternative parametrization, based
on Eq. (4) [18, 28, 13]. Indeed, in a process of the type (1), this equation yields for the

SDM of R A
m
Here 1
Ui =574 No=2_ ) |46 (44)

m ki
and A}} are the amplitudes of the process; m denotes the spin quantum number of the
unobserved final particle (¢ or d) and [ and {" indicate either the spin quantum number of
Ry or the pair (I, l,) of the initial particles a and b.
If the number of independent amplitudes is N, we parametrize them as b, exp(i¢,), s
= 1,2, ... N, with ¢, real numbers, ¢; = 0 and

by = cospi, by = sin 31 cos Bz, ... (45)
b, = cos Bml_[?gl sinf3;, ... by= Hl]\l;l sin f3;. (46)
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Then the amplitudes are characterized by 2(N — 1) real parameters, to which one has
to add those of the initial SDM. Obviously, if parity is conserved, one has to take into
account the corresponding symmetry relations.

In order to see whether this method is more convenient than the previous one, the
overall number of such parameters has to be compared with the upper bound to the rank
of the density matrix of R; this bound is r; X r4), where r;q) are respectively the ranks
of the initial state and of ¢ or d. In Sect. 6, we shall compare the two methods in some
cases.

5 Discussion

The number of independent parameters, that one can extract from the normalized
differential decay width, is determined by the moments, 7. e.,

JIm L

1 dT 2L + 1
e = H(L, M)DL, (6, 6). A
I dcosfd ;MZ:L An (L, M)Dyjo(0, ¢) (47)

Here the D are the Wigner rotation functions and J,, is the maximum spin of R. Moreover,
one has H(0,0) = 1. The other moments can be extracted either by means of a best fit
or by exploiting the orthogonality of the D, functions with different L or M.

If R includes only one spin, the number of moments equals the number of parameters
of the SDM that can be determined; these are related to the moments by a linear system
[8, 35]. Otherwise, the best we can extract are a number of matrix elements and some
linear combinations of the remaining ones [8], unless one can reduce the number of the
independent parameters of the SDM, by means of some assumption.

If parity invariance holds both in the production and in the decay of R, the imaginary
parts of the elements p;; of the SDM turn out to be measurable only under very particular
conditions, as shown in Appendix B:

- R includes more spins and

- there are at least two independent decay amplitudes, with a non-trivial relative phase,
owing to T-odd final-state interactions [38].

Such conditions are realized, for example, in the low-energy scattering p p — A A [13],
which involves a few partial waves; the corresponding decay amplitudes have different
phases, owing to the T-odd (spin-orbit) term of the interaction between the final hadrons.

6 Examples

Here we apply our parametrizations to some concrete situations, either with parity
conservation or with parity violation.
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6.1 Two Spins: 1~ and 0T - Parity Conservation

We consider the two cases, in order to simulate a resonance-background interference in
strong decays of vector mesons; these were already considered many years ago [8], but
with a different approach. One has to take into account the relation (22).

a) In the case that R includes the states 1~ and 0~, we have i’ = 7, therefore

7 J—J'—mtm’ I T
Pmm! = (_> e —m—m’> (48)
this entails the following parametrization:
pii = pll=1/2sin’a;, phy = cos® aj cos® ay, (49)
11 11 1 : - 11
Plo = —P_i0= i COS (g Sin ayy €OS Qv €OS Y10 exp(iYyy), (50)
ol = pll=1/2sin?ajcosy 1, phy = cos® oy sin? ag, (51)
1
o = plio = 5 cosasinaz cosvig exp(ipyg),  pgp = 0. (52)

V2

The remaining terms can be deduced from the previous expressions by taking into account
the Hermitian character of p. Therefore, we have 7 parameters in all.

b) Consider now the case when R consists of the 1~ and 07 states. Eqs. (49) to (51)
hold still true, whereas

1 . .
Py = —p L = —=cosa sinay cos g exp(ipiy), (53)
V2
1
Po) = —=Cos a; sin ay cos Y0 exp(iggy)- (54)

V2

Therefore, 2 more parameters are needed.

It is worth mentioning that also the SDM of an off-shell spin-1 particle is 4 x 4, owing
to its scalar component; however, this case concerns essentially weak decays and will be
illustrated in some detail in Subsect. 6.4.

6.2 A, — AJ/Y

We consider the SDM of the J/iy-resonance. In this case, parity is not conserved in the
Ay decay, but the constraint of the angular momentum conservation has to be considered.
Indeed, adopting the helicity formalism, one has

p1-1=p-11 =0, (55)

since the third component of the angular momentum of A, along the J/¢) momentum
assumes a fixed value, either +1/2 or —1/2, but not both simultaneously. The other
elements read as

p11 = cosPay, poo =sin®aq cos? s, p_1_1 = sin? ay sin® o, (56)
* . .9 .
Plo = poy = COSq sinag cos ag sin® yyg exp(idyo), (57)
* .92 . 9 .
p—10 = Py = sin‘ ay cos g sin® y_19exp(ip_10). (58)
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We have employed 6 parameters in all, one less than required in ref. 39, which is cited in
the LHCbD analysis of the decay [40]. It is worth noting that, according to the discussion
of the previous section, all such parameters can be determined, in principle, by analyzing,
e. g., the decay J/v — put .

Incidentally, the constraint (55) holds true for any vector boson resonance V' that

comes from a decay of the type
i = 2V (59)
where f; and f, have spin 1/2. A similar simplification occurs, e. g¢., for the SDM of
A(1232) in the decay
A(1620)1/27 — A(1232)3/2" m, (60)
for which parity invariance must be taken into account.

Last, in the decay A, — A J/1), a correlation between the decay products of the two
final particles may be derived, starting from the direct product py ® p;/ of the density
matrices of such particles. One can proceed similarly to ref. 41, where the correlation
between the two charged leptons [t and [~, that result from

et em = tt — (blty) (bl 7)), (61)

is calculated to O(ag).

6.3 t— bW — bry,

In this decay, which is of the type (59), we employ the alternative method that we have
described in Sect. 4. We consider, in this case, the SDM of a W-boson which is emitted
in a given direction, adopting a frame at rest with respect to the top quark. It reads as
[22]

1
Puw (97 ¢) = E Z b)\llzp{/&A'(ev QS) ip," (62)
A

Here A = p — X is the spin component of ¢ along the W momentum and p and A the
helicities of, respectively, W and the b-quark; moreover,

plAA/<9a ¢) = Oan + Uj\A’Pi/7 (63)

P' = P(cos#,sinf cos ,sin 0 sin ¢); (64)

P is the top quark polarization, 0 < P < 1, while 6 and ¢ are, respectively, the polar and

the azimuthal angle of the momentum of the W-boson. Last, by, are the reduced decay
amplitudes of the t — Wb decay:

by =NV Ay, N = AP+ Aol + Ao + 1A % (65)
This suggests the parametrization
bii = [cospl, (66)
bio = |sinfcosfa]exp(ivio) (67)
b_o = |sinfsin By cos fs]exp(iv_1o), (68)
b__1 = |sin/fsinfysinfGs). (69)
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Moreover, we set
P = cos? f. (70)

We have assumed the phases of the amplitudes by 1+ to be zero, because, in our case, they
can interfere only with by o respectively.
The parametrization of the W-boson SDM results in p;_; = 0 and

pii = cos’ i1+ cos® fycosl), poo = sin® By(cos” By + sin® By cos® f), (71)
p_i_1 = sin® B sin? Bysin? Bs(1 — cos® By cos b)), (72)
pro = |cos By sin By cos B[l + cos? By sin 6 exp(—id)] exp(igio), (73)
p_10 = |sinpysinB|(]cos B3] + | sin Bs|)[1 + cos® Bysin b exp(ig)] exp(iv_1),  (74)

having set p = 4mp. As before, the remaining SDM elements are deduced from the
hermiticity condition.

It is worth noting that this procedure - whose parameters, again, do not need any
bound - could also be applied to the vector boson V in a decay of the type (59); it has
the advantage of relating the polarization of the W to that of the parent state.

The SDM of the W-boson in the semi-leptonic decay of the top quark was parametrized
also by other authors a few years ago [21, 42]. Furthermore, in ref. 42, also the more
general quasi-three-body decay t — X,ly, is analyzed, in order to search for possible hints
to new physics; in particular, two of the parameters, which are introduced, result to be
quite sensitive to contributions beyond the standard model.

6.4 Ay — AW* H*) = Actv;

The decay involves a virtual W, which includes a scalar component. For decays of this
type, a complete list of the 16 matrix elements of the SDM of the virtual W is given in
ref. 43. Furthermore, in the leptonic decays of the Higgs boson, the scalar component of
the virtual W and Z is added in a gauge invariant manner [44]. See also ref. 22 and refs.
55 to 59 therein.

In the specific decay that we consider, the independent (reduced) decay amplitudes
are 8:

bfﬁl = |cosfl, (75)
b_lho = |sin 31 cos fs exp(igp}ho), 61_70 = |sin By sin B cos (3| exp(z’gol_p), (76)
4
blif1 = | sin 3y sin Sy sin B3 cos By, bfho = H | sin 3, cos S| exp(igp’fho), (77)
k=1
5 6
vy = H | sin B cos Bs| exp(ip’ ), b, = H | sin B cos Br| exp(ip} ), (78)
k=1 k=1
7
bg’o = H | sin S| exp(wg’o). (79)
k=1
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Here, the possible new physics is described by the amplitudes b(i,o- Moreover, analogously
to the previous case, we have assumed equal to 0 the phases of bli,ﬂ.

Then, following the same procedure and using the same notations as in the previous
subsection, we find that the matrix elements of p read as

16%—11 = 0, ﬁjzllzilzl = gil(l + PZ)7 (80)
Poo = Mo + AL paio =1 0P (81)

Here J and J’ run over 1, ¢, 0; moreover,

P, = cos® Bycos, P = cos’ Bysinfexp(ig); (82)

last,
En1 = ‘bli,i1’27 776]{), = bi,ob{:) + b{,ob{,f)a (83)
Aﬂ({d] = bi,obijf) - bi,obif)’ 7]:!:11{) = bli,ﬂbifo- (84)

In this case, we have used 14 parameters in all, whereas the general treatment would
require 24 parameters. But according to the considerations of Sect. 5 the number of
independent parameters, that can be inferred from the differential decay width, is §;
therefore, the best fit to the data, if performed by using the above parametrization,
would present some ambiguities. However, in this case, some parameters can be fixed by
inserting the standard model predictions [20, 21, 42, 45]. In particular, in a previous paper
[22], we showed the relationship between the tensor, that is usually employed to describe
a semi-leptonic decay, and the non-covariant SDM. If at least one of the amplitudes b3

is non-zero, with a non-trivial phase, it causes a T-odd component for the A, polarization
[46].

7 Conclusions

We have proposed two methods for parametrizing the SDM of an unstable state -
consisting of one or more spins - that is produced in various reactions. Both methods
satisfy automatically all of the numerous non-negativity conditions [30, 5] and are
adaptable to the constraints imposed by parity [8] and angular momentum conservation.
The first method is based on a theorem that we have proved and it may be applied in a
simple and flexible way. Moreover, we show how to improve the fit to the data when the
rank of the SDM is less than its order; we do this, either by implementing suggestions by
other authors [5, 28], or with the help of a second theorem, which we have proved as well.

The second method is a variant of previous parametrizations [3, 28] and is particularly
suitable under especial conditions, e. ¢., when the structure to be analyzed derives from
some decay.

We have discussed about the possibility of inferring the SDM from the differential
decay width. In particular, we have examined the case where a given intermediate state
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is generated and decays according to strong or electromagnetic interactions, showing that,
under very particular circumstances, the imaginary part of the SDM can be measured.
Last, we have illustrated some applications; two of them, which concern the decays
t — bW [20,21] and A, — A, T vy [47-50,22], are very interesting from the viewpoint
of the search for new physics beyond the standard model.
As a conclusion, we observe that our suggestions appear efficient for situations where
higher spins or newly discovered structures [51] are involved.
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Appendix A

We find an explicit solution to the N complex vectors |W;) which appear in Eq. (10),
1. €.,

pij = (Wil Wj). (A1)

This is possible owing to the Schwarz inequality, that we have assumed. The data of the
system (A.1) consist of the elements of the Hermitian matrix p, defined with respect to
an orthonormal basis |k) and such that

pii >0 and |pij’2 < PiiPjj- (A.2)

We assume expansions of the type

W) =) aflk) (A-3)

for any vector |W;), i = 1,2,..N; furthermore, we establish all of the a! to be real and
non-negative. Then, limiting ourselves to i > j, Eq. (A.1) yields

pij = Zaf*af. (A.4)
k=1

We show that this equation uniquely fixes all of the coefficients a¥ of the expansions (A.3).
1) Assume, at first, that the rank of p is equal to N, which implies that all principal
minors of the matrix are positive, in particular, p;; > 0. Then we prove our statement by
induction.
a) For i =1, Eq. (A.4) reads as

Of% = \/pllv (A5>
which defines |IW;) through Eq. (A.3).
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b) Suppose Eqs. (A.4) to be solvable with respect to ozf forallk < jandall j <i < N.
This amounts to asserting that all vectors

Wi, J<i, (A.6)

have been determined. Now we prove that the vector

i+1
[Wig1) = Zaﬁﬂk), (A7)
k=1
can be uniquely deduced from the system
J
pisij =y affaf, =12 i+1, (A8)
k=1

a complex system of ¢ + 1 equations, with ¢ complex unknowns, ozfﬂ, 1 <k<7 and a
real one, a!f].
To this end, preliminarily, we show that the i x ¢ (‘triangular’) matrix A, such that

Ajp=af,  with k<j<i (A.9)

is non-singular. Consider the i X ¢ submatrix p, whose matrix elements py,, coincide with
those of p for I,m < i. Eq. (A.1) implies

pim = (Wil Wh,). (A.10)

The assumption of non-singularity of p implies the same for p, therefore the vectors
(A.6) constitute a basis for p and are linearly independent. This in turn entails the
non-singularity of A%.

But the system (A.8) can be split into a linear subsystem with ¢ equations and a
non-linear equation:

J i+1
pi“‘lj = ZAjkafila J = 1a 2a Zu Pi+1i+1 = Z ‘a§+1’2. (All)
k=1 k=1

The non-singular character of A allows to solve the linear subsystem with respect to af, ;,

k = 1,2,..i. The solution can be inserted into the non-linear equation, which can be
solved with respect to a;ﬂ. This completes the proof in the case of non-singular p.

2) If the rank of p, say r, is less than N, we perform the transformation (29), i. e.
p = UpU. (A.12)
The result is

Oin = Pim =Mm for 1 < Im <r and 0 otherwise; (A.13)

4As a byproduct, it is worth noting that, in this case, all o} are strictly positive.
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therefore 7 is a r x r Hermitian, non-singular matrix, to which we may apply the method
described above. We find a set of linearly independent complex vectors |w;), [ = 1, 2,...r.
Defining

W) =|w;) for i<r and 0 for r<i<N, (A.14)

the transformed vectors

(Wi) = Uy |W3) (A.15)
give the solution to the system (A.1). This completes the proof.

Appendix B

Here we discuss about the measurability of the imaginary parts of the elements of the
spin density matrix (SDM) of an unstable state R that is produced and decays according
to parity conserving interactions. We assume this state to include more spins and to have
a two-body decay:

R — a b (B.1)

Adopting the helicity formalism, the normalized differential decay width reads as

1 !
fdcos Ode ZZ Z C(L ") Py Do (6.0, 0) Dy (6,0, 0>f)\a)\bf/\ Ay (B.2)

JJ" mm/’ Ag Xy

Here C(J,J") = 1/4x[(2J + 1)(2J" + 1)]|V2, pl", = (J,m|p|J'm') is an element of the
SDM, D is the Wigner rotation function and
1
fi]aAb = FfFi]aAb? N.? = Z |F;\]t1)\b|2’ (B?))

JAa,Ap

the reduced decay amplitudes, with A = A\, — \,. Parity conservation implies

pll = g exp(—irA)p? T (B.4)
A= J-—J—-—m+m, (B.5)
ffxa—xbf—Jl*a—/\b = m exp[ in(J — J/)]an/\bf a\p? (B.6)
as follows from Egs. (20) to (22) in the text. Moreover,
Dya(9,0,0) = exp(—ime)dy\(0),  dL,,_\(0) = (=)™ d;\(0). (B.7)

Therefore we may re-write Eq. (B.2) as

2

%dcos@dqﬁ ZZZC‘]]{@XP i(m —m')¢] + (=) expli(m — m')¢]}

JJ" mm/ AaXp
><pmrrz’d ( )d;;l’)\(9>f)(\]a)\bf‘],*/\u,)\ba (B8)
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where e = A+J —J +m+m' —2\ = 2(J — J +m' — )\) and the primes in the
sums indicate that they are limited to non—negative values of the indices. But € is an
even number, moreover only Sp/7 and ( fil A fi /\b) are odd under the simultancous
exchange (J, m) (J',m'), the other terms of Eq. (B.8) being even. Therefore we have

1 d°r / , /
i = 2 2 3 O eoslm = m )l OB OF s (B

JJ' mm/’ Ag\p

with
F%]zin/ Xado %PJJ /%(f:\]a)\bf)\ ,\b) - \fﬂiq{n/c\\‘<f,\J{l/\bf,\ ,\b) (B.lO)

Therefore, under the conditions that we have assumed, the imaginary part of the SDM
can be measured only if more spins are involved and at least one of the relative phases
between the decay amplitudes is non-trivial.
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Proposed two methods for parametrizing the SDM of an unstable state -
consisting of one or more spins - that is produced in various
reactions. Both methods satisfy automatically all of the numerous non-
negativity conditions and are adaptable to the constraints imposed by
parity and angular momentum conservation.

First method = theorem; appliable in a simple and flexible way.
Improvements of the fit to the data when the rank of the SDM is less
than its order. Added note on Eberhard-Good theorem.

Second method: a variant of previous parametrizations; particularly
suitable under especial conditions, e. g. , when the structure to be
analyzed derives from some decay.

examined the case where a given intermediate state is generated and
decays according to strong or electromagnetic interactions: under very
particular circumstances, the imaginary part of the SDM can be
measured.

Illustrated some applications; two of them are very interesting from
the viewpoint of the search for new physics beyond the standard model.



Ziad J. Ajaltouni: stress on the importance of the spin density matrix and of
non-covariant formalism in data analysis; remarks on the
feasibility of an experiment and on the measurability of

some parameters.
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