
HAL Id: hal-03107943
https://hal.science/hal-03107943

Submitted on 5 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Off-centred force-free neutron star magnetospheres
Jérôme Pétri

To cite this version:
Jérôme Pétri. Off-centred force-free neutron star magnetospheres. Mon.Not.Roy.Astron.Soc., 2021,
501 (3), pp.4479-4489. �10.1093/mnras/staa3909�. �hal-03107943�

https://hal.science/hal-03107943
https://hal.archives-ouvertes.fr


MNRAS 501, 4479–4489 (2021) doi:10.1093/mnras/staa3909
Advance Access publication 2020 December 23

Off-centred force-free neutron star magnetospheres

J. Pétri ‹
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ABSTRACT
Neutron star electromagnetic activity produces pairs that fill their magnetosphere represented to the zeroth order by the force-free
approximation. Neither dissipation nor acceleration nor radiation from charged particles is expected from this simplified model.
So far, only centred dipole magnetic fields have been studied in this limit. In this paper, we explore the consequences of a rotating
off-centred dipole on the force-free magnetosphere, showing the new magnetic field geometry, its spin-down luminosity, and
the electromagnetic kick and torque felt by the neutron star. Solutions are obtained by time-dependent numerical simulations of
the force-free regime using our pseudo-spectral code written in spherical coordinates. Our results are also compared to known
analytical expressions found for the off-centred vacuum dipole by an expansion to lowest order in the parameter ε = d/R, where
d is the displacement of the dipole from the stellar centre and R the neutron star radius. The presence of a force-free plasma
enhances the spin-down luminosity and the electromagnetic kick and torque with respect to a centred force-free dipole. The
impact on isolated and binary neutron stars is revised in light of these new results.
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1 IN T RO D U C T I O N

Neutron star magnetic fields are usually idealized by a centred
dipole rotating in vacuum. However, because of the ultrastrong
rotating magnetic field, a huge electric field is induced that expels
charged particles from the surface, filling the magnetosphere with
electron/positron pairs. The simplest description is a force-free
magnetosphere where the plasma exactly screens the electric field
component parallel to the magnetic field. Detailed numerical inves-
tigations of this force-free magnetosphere have been undertaken nu-
merically, first for an axisymmetric rotator using an iterative scheme
to solve the Grad–Shafranov equation (Contopoulos, Kazanas &
Fendt 1999), then for the full 3D oblique rotator by using time-
dependent simulations (Spitkovsky 2006; Pétri 2012). Even particles
in cell simulations were performed to account for possible gaps
and acceleration of particles (Cerutti et al. 2015; Kalapotharakos
et al. 2018). However, in all these works, the magnetic dipole was
assumed to lie at the stellar centre. There is actually no particular
reason to start with such an hypothesis as the internal magnetic field
is certainly neither truly dipolar nor exactly centred. Electric currents
within the star could easily break any symmetry, producing fields that
are non-dipolar and off-centred. For neutron stars shining as pulsars
in radio and thermal X-rays, like PSR J1136+1551, this asymmetry
is indirectly observed as a time lag between the radio pulse profile
and the X-ray thermal peak emission (Pétri & Mitra 2020) allowing
to constrain the geometry of the off-centred dipole. The latter also
impacts the dynamics of the neutron star, producing a high-velocity
kick as shown by Harrison & Tademaru (1975) and by Tademaru
(1976) for a dipole evolving in vacuum.

� E-mail: jerome.petri@astro.unistra.fr

The recent discovery by the Neutron Star Interior Composition
Explorer (NICER) of a complex magnetic structure at the surface
of the millisecond pulsar PSR J0030+0451 shows the necessity to
add multipolar components and in particular a significant quadrupole
part (Bilous et al. 2019). This magnetic field is filled with electron–
positron pairs, producing a feedback current that is approximated in
the ideal plasma case by a force-free expression (FFE). Adding small-
scale magnetic field structures in the neutron star magnetosphere
becomes compulsory to interpret the increasing amount of accurate
observations in radio, X-ray, and gamma-ray. The off-centred dipole
offers a simple picture to naturally include such higher order terms.

The vacuum rotating off-centred dipole has been carefully in-
vestigated by Pétri (2019), showing the good agreement between
analytical results and numerical simulations. He also discussed
possible implications for binary neutron star systems, especially for
the eccentricity of their orbit. However, a vacuum magnetosphere is
unrealistic because of the presence of pairs surrounding the dipole.
Thus these conclusions must be reinvestigated in light of a plasma
filled magnetosphere starting with the force-free approximation as
we show below.

In this paper, we compute numerical solutions for the electromag-
netic field in the force-free regime outside an off-centred rotating
dipole. This model is exposed in Section 2. Section 3 shows two
examples of magnetic field line geometries for particular orientations
of the dipole. A complete set of simulations is summarized in Sec-
tion 4 for the spin-down luminosity and compared with its vacuum
analogue. Such comparisons are extended to the electromagnetic kick
in Section 5 and to the electromagnetic torque in Section 6. A short
discussion about the revised impact on binaries containing neutron
stars is highlighted in Section 7. Conclusions are drawn in Section 8.

C© 2020 The Author(s)
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4480 J. Pétri

2 TH E MO D EL

2.1 Off-centred magnetic dipole

The off-centred magnetic dipole has been introduced by Pétri (2016)
and used in Pétri (2019) to study the secular evolution of neutron
stars. For completeness, we briefly remind the geometrical set-up
and notations used in these works.

The off-centred dipole is anchored in a perfectly conducting sphere
of radius R in solid body rotation at an angular rate �. Its magnetic
moment μ is located inside the star at a position given by the vector

d = d (sin δ cos(�t) ex + sin δ sin(�t) ey + cos δ ez), (1)

where d = ‖d‖ is the distance from the stellar centre, δ the colatitude,
and (ex, ey, ez) a Cartesian orthonormal basis. The displacement
is normalized by introducing the parameter ε = d/R < 1. The
magnetic moment μ is directed along a unit vector m identified
by the angles (α, β) such that

m = sin α cos(β + �t) ex + sin α sin(β + �t) ey + cos α ez. (2)

Inside the star, the magnetic field is assumed to be a static dipole
shifted by d (Burnett & Melatos 2014):

B = BR3

‖r − d‖3

[
3μ · (r − d)

‖r − d‖2
(r − d) − μ

]
, (3)

where B is the surface magnetic field strength at the magnetic equator
and r the position vector. We emphasize that the field inside the star
is certainly not given by the displaced point dipole as prescribed
in equation (3). However, this might be a reasonable approximation
to the field on the neutron star surface that we use as a boundary
condition to compute the force-free field outside the star.

Taking the surface boundary conditions from the static solution
equation (3), we solved the time-dependent Maxwell equations in
the force-free regime by using our pseudo-spectral code detailed in
Pétri (2014). These boundary conditions are given by the continuity
of the radial component of the magnetic field Br and the tangential
component of the electric field. In the corotating frame inside the
star, this leads to a vanishing electric field E′ = 0 where unprimed
coordinates and fields are evaluated in the inertial frame, and primed
ones are evaluated in the rotating frame. For the outer boundary,
we impose outgoing waves. Compared to previous simulations, we
now solve Maxwell equations in a corotating coordinate system as
explained in the next section. This ensures a stationary state to which
the solution has to relax.

2.2 Maxwell equations in a rotating coordinate system

We are looking for a stationary solution of the electromagnetic field
that is actually static in the frame corotating with the star. An observer
can only corotate with the star up to the light-cylinder. Measuring
the electromagnetic field is impossible for such an observer outside
the light-cylinder because the metric has no physical significance any
more. It is impossible to describe the electrodynamics in whole space
with the field locally measured by a corotating observer because it
does not exist when r ≥ rL. A rotating frame is also not easily defined
(Koks 2019) contrary to a rotating coordinate system that does not
require to move slower than the speed of light without contradicting
special relativity.

We found it however useful to keep the definition of the elec-
tromagnetic field as measured in the inertial reference frame but
using a rotating cylindrical coordinate system (t ′ = t, r ′ = r, φ′ =
φ − �t, z′ = z) (remember that unprimed quantities are given in the

inertial frame and primed quantities in the rotating frame.) In such a
case the time derivative of any vector field A is given by

∂A
∂t

= ∂A
∂t ′ + curl (V rot ∧ A) − V rot divA. (4)

The solid body corotation velocity, expressed in the inertial frame,
is simply

V rot = � ∧ r = r�eφ. (5)

With the correspondence established in equation (4), in the rotating
coordinate system, Maxwell equations become

∂B
∂t ′ = − curl (E + V rot ∧ B), (6a)

∂E
∂t ′ = curl (c2 B − V rot ∧ E) − j

ε0
+ V rot divE. (6b)

The force-free current density is given solely by the electromagnetic
field according to (Blandford 2002)

j = ρe
E ∧ B

B2
+ B · ∇ ∧ B/μ0 − ε0 E · ∇ ∧ E

B2
B, (7)

the electric charge density being

ε0 ∇ · E = ρe. (8)

ε0 and μ0 are the vacuum permittivity and permeability. Note
however the subtleties that E and B are still defined as observed
in the inertial frame therefore they remain unprimed quantities.
There is no particular problem at the light-cylinder when Maxwell
equations are written in this way. In the next sections, we use this
formulation to solve for the force-free magnetosphere for an oblique
rotator.

In order to emphasize the role of each angle α, β, δ, and the
displacement d on the electromagnetic field, a full set of runs has been
performed. Results of the simulations are synthesized by plotting
the magnetic field, the spin-down luminosity, and the associated
electromagnetic kick and torque.

In order to speed up the computation of the large 4D space
parameter, we used an artificially high spin rate given by a = R/rL

= 0.3 for the whole set of simulations. Moreover, we only computed
solutions for δ = 90◦ in all the results shown below. Going to slower
rotation rates will not qualitatively change our main results. The
spatial resolution in the spherical grid (r, θ, φ) is given by Nr ×
Nθ × Nφ = 129 × 32 × 64. We checked that this grid is sufficient
to achieve a good accuracy by computing solutions with a lower
grid resolution of Nr × Nθ × Nφ = 65 × 16 × 32. The impact
of this coarser resolution on the spin-down luminosity is shown
on left-hand plot of Fig. 1 for α = 90◦ and varying β and ε and
compared to the finer grid on the right-hand plot of Fig. 1. Lvac

represents the vacuum off-centred dipole spin-down as given in Pétri
(2016) and L⊥ the spin-down for an orthogonal point dipole rotating
in vacuum, see equation (10). The discrepancies are indeed not
appreciable.

3 FIELD LINES

Plotting the magnetic field lines gives a first insight into the impact
of a rotating off-centred force-free dipole. It is not possible to
show all geometrical configurations, so we focus on two particular
geometries where some field lines are entirely contained in the
equatorial plane. A perpendicular rotator with α = δ = 90◦ is a
good choice. We allowed some freedom in the displacement d and
angle β. As expected, for small off-centring d 
 R the field line
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FFE off-centred dipoles 4481

Figure 1. Spin-down luminosity depending on the grid resolution for α = 90◦, δ = 90◦, and varying β and ε. The resolution is Nr × Nθ × Nφ = 65 × 16 × 32
on the left and Nr × Nθ × Nφ = 129 × 32 × 64 on the right. The blue line corresponds to the function (3/2 + Lvac/L⊥) and the colour solid lines to a fit of the
force-free expression (FFE) simulations.

Figure 2. Magnetic field lines of an off-centred force-free dipole with α =
90◦, β = 0◦, δ = 90◦, and ε = 0.3 (red solid line) compared to the centred
solution ε = 0 (blue dashed line).

structure resembles to the centred force-free dipole. The two armed
spiral, reminiscent of a � = 1 mode, is clearly visible, dragged by the
stellar rotation at a constant speed �.

As a concrete example we choose β = 0◦ and ε = 0.3, obtaining
the field lines shown in Fig. 2 in red solid line and compared to
the centred force-free dipole in blue dashed line ε = 0. The off-
centred configuration introduces some multipolar components of
order � > 1 that decrease with radius r faster than the dipole.
Therefore an observer located at large distances from the star r � rL

cannot notice the difference between centred and off-centred dipole
because all higher multipoles become negligible. As a corollary, it is
impossible to deduce the geometry of the dipole simply by reporting
the field at large distances. Asymmetries only impact the stellar close
neighbourhood.

A second and similar example is shown in Fig. 3 for β = 90◦ and
ε = 0.3 in red solid line and can be compared to the centred force-

Figure 3. Magnetic field lines for an off-centred force-free dipole with α

= 90◦, β = 90◦, δ = 90◦, and ε = 0.3 (red solid line) compared to centred
solution ε = 0 (blue dashed line).

free dipole in blue dashed line. The same conclusions as before
apply except that now, outside the light-cylinder, a shift in phase
appears for the spiral structure, with respect to the centred case.
However, this shift remains too weak to be measured. The only way
to deduce the true magnetic geometry requires indirect measurement,
investigating its electromagnetic activity, and emission properties
close to the surface. We continue our study by computing more
quantitative physical parameters like the spin-down luminosity, the
electromagnetic kick, and its associated torque.

4 SPI N-DOWN LUMI NOSI TI ES

Isolated neutron stars slow down due to electromagnetic radiation. It
is quantified by the spin-down luminosity, braking the neutron star
rotation. Since the work of Deutsch (1955) an exact expression is
known for a dipole in vacuum. It has recently been extended by Pétri

MNRAS 501, 4479–4489 (2021)
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4482 J. Pétri

Figure 4. Variation of the spin-down luminosity depending on the displacement ε, obliquity α and β for a = 0.3, and marked as coloured symbols. The blue
line corresponds to the function (3/2 + Lvac/L⊥) and the colour solid line to a fit of the FFE simulations.

(2016) for an off-centred dipole, giving approximate formulas for
the dipole and quadrupole contributions that are

Lm=1 = L⊥

[(
1 − a2

)
sin2 α + 24

25
a2ε2 cos2 α

]
, (9a)

Lm=2 = 48

5
L⊥ a2 ε2 sin2 α, (9b)

where a = R/rL and the centred perpendicular point dipole spin-down
in vacuum is

L⊥ = 8π

3μ0c3
�4B2R4. (10)

Expressions (9a) and (9b) assume that δ = 90◦. The general case
with arbitrary angle δ can be found but is too lengthy to show
and in this work we only consider δ = 90◦. These expressions
have been confirmed by direct time-dependent numerical simulations
performed by Pétri (2019).

Now the presence of the plasma changes this formal geometrical
dependence. Our new results depend on the angle β contrary to what
is expected from equations (9a) and (9b) for vacuum. We performed
a bunch of runs with relevant geometric parameters by varying the
set (α, β, ε) and choosing different rotation periods symbolized by
the adimensionalized parameter a.

From the simulations we calculate the spin-down luminos-
ity LFFE by integrating the radial component of the Poynting flux
S = E × B/μ0 on a sphere of radius equal to the light-cylinder

radius rL:

LFFE =
∮
SL

(S · er) r2 d�L = r2
L

∫ π

0

∫ 2π

0
Sr sin θ dθ dφ, (11)

whereSL is the sphere of radius rL and d�L the solid angle subtended
by this sphere and expressed in spherical polar coordinates (θ , φ) as
d�L = sin θ dθ dφ. Ideally integration on any sphere of arbitrary
radius r should give the same results because of electromagnetic
energy conservation in the force-free regime, but due to numerical
dissipation, outside the light-cylinder, exact energy conservation is
violated because of the presence of a current sheet that acts as a sink
of energy. The electromagnetic force is computed in a similar way by
integrating along the same sphere the component of the kick along
the rotation axis, i.e. along ez:

Fz = 1

c

∮
SL

(S · ez) r2 cos θ d�L (12a)

= r2
L
c

∫ π

0

∫ 2π
0 Sz cos θ sin θ dθ dφ, (12b)

see Pétri (2016).
For a = 0.3, we summarize the simulation outputs for α = {0◦, 30◦,

60◦, 90◦} and β = {0◦, 30◦, 60◦, 90◦} in Fig. 4. For comparison, we
add the vacuum spin-down expectations in blue solid lines, offset
by an amount 1.5 for ease of readability, and a fit to the FFE
simulations in colour solid lines associated with β. Fig. 5 shows
the normalized spin-down luminosity evolution with respect to the

MNRAS 501, 4479–4489 (2021)
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FFE off-centred dipoles 4483

Figure 5. Normalized spin-down luminosity depending on the displacement
ε, obliquity α and β for a = 0.3, and marked as coloured symbols, see the
legend for the labels corresponding to different couples {α, β} in degrees.
Solid coloured lines are best fits.

displacement ε for fixed α, β, and δ. We observe that with this
normalization the luminosity behaviour is rather insensitive to α and
β and well represented by a mean fit given by

L(α, β, ε) ≈ (0.994 + 0.918 ε2) L(α, 0, 0), (13)

where L(α, 0, 0) corresponds to the spin-down luminosity for the
centred FFE dipole. A large displacement pushing the magnetic
moment close to the surface with ε ≈ 1 almost doubles the spin-
down luminosity with respect to a centred dipole.

5 ELECTROMAG NETIC KICK

As for the spin-down luminosity, it is interesting to compare force-
free and vacuum electromagnetic kick results. Therefore we remind
the kick expressions for the dipole m = 1 and quadrupole m = 2
contributions as found in Pétri (2016) and valid for δ = 90◦. They
read, respectively,

Fm=1 = 6

5

L⊥
c

aε cos α sin α sin β, (14a)

Fm=2 = 256

105

L⊥
c

a3ε3 cos α sin α sin β. (14b)

Following the same lines as in Pétri (2019), the electromagnetic kick
is deduced from our new set of runs and compiled in Fig. 6 for
α = 30◦ and in Fig. 7 for α = 60◦. A linear scaling with respect to
the displacement ε is found to good accuracy. Nevertheless, because
a = 0.3 we also added a ε3 term in the fits shown as solid colour
lines. We also compare these results to the vacuum electromagnetic
force in dashed coloured lines. Now compared to a vacuum dipole,
although both plots remain similar, we notice that the α = 60◦ leads
to slightly smaller electromagnetic forces compared to α = 30◦. A
substantial difference with the vacuum rotator is the presence of a
significant force even for β = 0◦ as soon as the shifted dipole operates
with ε ≥ 0.1. The sin β dependence is lost and a kick is expected for
any orientation of the dipole contrary to the vacuum case.

Discrepancies also arise when showing the dependence on the
angle β, for α = 30◦ in Fig. 8 and for α = 60◦ in Fig. 9. The behaviour
now deviates significantly from the expectations of a vacuum dipole.
The sin β dependence has changed to a more complicated angular
dependence we tried to fit with expressions containing cos β, sin β,
cos 2β, sin 2β but we got no simple expressions. Also for comparison

Figure 6. Electromagnetic force induced by a rotating off-centred dipole for
different displacements ε and different angles β for α = 30◦, and marked
as coloured symbols. Solid coloured lines are best fits. The dashed coloured
lines correspond to the vacuum analogue.

Figure 7. Electromagnetic force induced by a rotating off-centred dipole for
different displacements ε and different angles β for α = 60◦, and marked
as coloured symbols. Solid coloured lines are best fits. The dashed coloured
lines correspond to the vacuum analogue.

Figure 8. Electromagnetic force induced by a rotating off-centred dipole for
different displacements ε and different angles β for α = 30◦, and marked
as solid coloured lines. The dashed coloured lines correspond to the vacuum
analogue. No fits are shown.
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4484 J. Pétri

Figure 9. Electromagnetic force induced by a rotating off-centred dipole for
different displacements ε and different angles β for α = 60◦, and marked
as solid coloured lines. The dashed coloured lines correspond to the vacuum
analogue. No fits are shown.

Table 1. Best-fitting coefficients for the force F ex-
pressed as F1 ε + F3 ε3 for α = 30◦ and 60◦.

α β F1 F3

30 0 0.277 − 0.185
30 30 0.245 − 0.172
30 60 0.131 0.166
30 90 0.069 − 0.117
60 0 0.184 0.237
60 30 0.213 0.189
60 60 0.165 0.077
60 90 0.066 0.038

purposes, we show the vacuum electromagnetic force in dashed
coloured lines.

Some fitting formulae are given for the kick depending on the
displacement ε in Table 1. For the β dependence, we did not found
any simple and useful formula so we do not show them. We go
on by computing the electromagnetic torque from the off-centred
force-free dipole.

6 ELECTROMAG NETIC TO RQUE

Finally, as for the vacuum case, the electromagnetic torque is
computed employing the same procedure as in Pétri (2019). This
torque is given by integration of the Laplace force on the surface of
the star S∗ such that

K = R3

“
S∗

[σs n ∧ E + (B · n) i s] d�, (15)

where n is the unit normal to the surface. We identify two contribu-
tions to this torque, the first one arising from the surface charge
density, σs = ε0 [E] · n and the second from the surface current
density μ0 i s = n ∧ [B]. The square bracket notation [F] means the
jump of the vector field F across the stellar surface. We also assume
that the force-free condition holds inside the star, therefore there is no
volume contribution to the torque as by definition ρ E + j ∧ B = 0,
where (E, B) is the electromagnetic field, ρ the charge density, and
j the current density inside the star. The assumption of a force-free
neutron star interior means that the electromagnetic force acts only
on the stellar surface, admittedly an oversimplified picture. Some

Figure 10. KE
x component of the electric torque induced by a rotating off-

centred dipole for different displacements ε and angles β for α = 60◦.
Coloured dots are from the simulations, whereas the solid coloured lines
are the fits. The dashed coloured lines correspond to the vacuum analogue
divided by a factor of 10.

Figure 11. KE
y component of the electric torque induced by a rotating off-

centred dipole for different displacements ε and angles β for α = 60◦.
Coloured dots are from the simulations, whereas the solid coloured lines
are the fits. The dashed coloured lines correspond to the vacuum analogue
divided by a factor of 10.

non-force-free currents could certainly flow inside the star but would
require a deeper knowledge of the stellar interior, a task out of the
scope of this study [see Paschalidis & Shapiro 2013 for a technique
to join a force-free magnetosphere to the magnetohydrodynamic
(MHD) interior of the star]. Even if the torque could be calculated as
an angular momentum flow through a surface surrounding the star,
it would require an assumption about the stellar interior because of
the need to impose the continuity of the radial magnetic field and the
tangential electric field across the surface.

We reckon separately the electric and magnetic contributions to
this torque, denoting them, respectively, by KE and KB . The results
are shown individually for the electric torque KE

x along the x-axis
in Fig. 10, the electric torque KE

y along the y-axis in Fig. 11, the
magnetic torque KB

x along the x-axis in Fig. 12, the magnetic torque
KB

y along the y-axis in Fig. 13, and magnetic torque KB
z along the

z-axis in Fig. 14. The latter being relatively insensitive to the β

angle, we show its α dependence in Fig. 15. Contrary to the kick, we
found accurate fits to each of these components with good analytical
expressions even for high displacements ε ≈ 0.3.

These fits are listed in Table 2 for all components of the torque
due to the electric part and the magnetic part. The z component

MNRAS 501, 4479–4489 (2021)
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FFE off-centred dipoles 4485

Figure 12. KB
x component of the magnetic torque induced by a rotating

off-centred dipole for different displacements ε and angles β for α = 60◦.
Coloured dots are from the simulations, whereas the solid coloured lines are
the fits. The dashed coloured lines correspond to the vacuum analogue.

Figure 13. KB
y component of the magnetic torque induced by a rotating

off-centred dipole for different displacements ε and angles β for α = 60◦.
Coloured dots are from the simulations, whereas the solid coloured lines are
the fits. The dashed coloured lines correspond to the vacuum analogue.

Figure 14. KB
z component of the magnetic torque induced by a rotating

off-centred dipole for different displacements ε and angles β for α = 60◦.
Coloured dots are from the simulations, whereas the solid coloured lines are
the fits. The dashed coloured lines correspond to the vacuum analogue.

of the magnetic torque only weakly depends on β as seen from
the fits. More relevant are the fits for varying α given in the same
Table 2 for this component of the torque. As expected from the
spin-down rate, the z-component of the FFE torque is stronger

Figure 15. KB
z component of the magnetic torque induced by a rotating off-

centred dipole for different displacements ε and angles α. This component is
weakly dependent on β. Coloured dots are from the simulations, whereas the
solid coloured lines are the fits. The dashed coloured lines correspond to the
vacuum analogue.

Table 2. Best-fitting coefficients for the torque components K
expressed as T0 + T1 ε + T2 ε2 for α = 60◦ except for KB

z that
is almost independent of β so we show it for varying α.

β T0 T1 T2

0 − 0.006 0.015 − 0.031
KE

x 30 − 0.019 0.026 − 0.122
60 − 0.028 0.038 − 0.195
90 − 0.028 0.024 − 0.195

0 0.025 0.075 − 0.447
KE

y 30 0.019 0.059 − 0.362
60 0.008 0.033 − 0.209
90 − 0.006 − 0.007 − 0.012

0 0.592 − 0.225 0.316
KB

x 30 − 0.057 − 0.051 0.109
60 − 0.652 − 0.217 − 0.156
90 − 1.114 0.117 − 0.979

0 1.138 − 0.833 5.307
KB

y 30 1.281 − 0.763 4.499
60 1.074 − 0.465 2.564
90 0.605 0.206 − 0.352

α T0 T1 T2

0 − 1.294 0.036 − 0.827
KB

z 30 − 1.896 0.142 − 1.63
60 − 2.599 0.129 − 3.26
90 − 2.807 − 0.371 − 2.781

than for the vacuum rotator and exists also for an aligned rotator
with α = 0◦.

We conclude this paper by a last section about possible conse-
quences for isolated and binary neutron stars.

7 IMPAC T O N BI NARY AND I SOLATED
N E U T RO N STA R S

An off-centred rotating force-free magnetic dipole can have some
impact on the orbital evolution of a binary neutron star and also on
isolated neutron stars. In this section, we reexplore such questions in
the light of our new results compared to the vacuum case presented
in Pétri (2019).
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7.1 Binary neutron star eccentricity

The spin-down luminosities and the electromagnetic kicks induced
by an off-centred force-free dipole are comparable in magnitude to
the one obtained in vacuum by Pétri (2019). Its impact for binary
neutron stars orbit eccentricities has been discussed in depth by Pétri
(2019) for a vacuum rotator. The contribution of a force-free plasma
as the one shown in this paper would give similar results. However,
the geometrical dependence of the spin-down, electromagnetic force,
and torque are drastically affected by this plasma. The variations with
respect to α and β have nothing comparable to the vacuum case. This
has profound implications for the evolution of the spinning neutron
star geometry, i.e. the evolution of its obliquity α and therefore also
on the braking index. The line of sight will evolve accordingly with a
secular change in the multiwavelength pulse profiles. Here however
we only focus on the binary orbital evolution.

Let us summarize the binary neutron star orbital evolution for
force-free magnetospheres. Neutron star binaries are expected to
relax to almost circular orbits with very low eccentricities e ≈ 0
due to mass transfer and tidal circularization. Nevertheless, large
eccentricities e� 0.3 can be produced by supernova explosions when
a substantial fraction of the binary mass is lost. The electromagnetic
kick produced by an off-centred force-free dipole is able to modify
the orbital eccentricity, sometimes generating moderate to large
eccentricities in neutron star binaries as we demonstrate below.

When both neutron stars of the binary, located respectively at a
vector position r1 and r2, are subject to kicks F1 and F2 (the origin of
which is not necessarily electromagnetic), the associated two-body
problem reduces to the Stark problem also called the accelerated
Kepler problem (Namouni & Guzzo 2007). The derivation is shown
in Pétri (2019). Using the equivalence with a one-body problem as
in the case of no kicks, the binary neutron star relative separation
r = r2 − r1 satisfies

d2r
dt2

= −G (m1 + m2)
r
r3

+ A, (16)

where G being the gravitational constant, m1 the mass of the star
located at r1, and m2 the mass of its companion located at r2. The
additional acceleration A is expressed by

A = F2

m2
− F1

m1
. (17)

It is straightforward to check that this acceleration is constant in
direction and time for an electromagnetic kick produced by the
rotation of an off-centred dipole. Therefore equation (16) is fully
integrable according to Lantoine & Russell (2011). Focusing on
bound orbits for a constant acceleration A, solutions for eccentricity
excitation are given in Namouni (2005) and Namouni & Guzzo
(2007).

When the acceleration A acts constantly in time, an orbit starting
from zero eccentricity e(t = 0) = 0 varies periodically in time
according to

e(t) =
∣∣∣∣sin i0 sin

(
3A

2�a
t

)∣∣∣∣ , (18)

where a is the semi-major axis, A = ‖A‖ is the acceleration produced
by the neutron stars themselves due to the electromagnetic kick Fi,
i0 is the inclination angle between the acceleration vector A and
the orbital angular momentum vector, and � =

√
G (m1 + m2)/a3

is the Keplerian frequency. The typical time-scale of eccentricity
excitation is then

Te = π�a

3A
= π

3A

√
G (m1 + m2)

a
. (19)

Because the star is spinning down, the acceleration does not remains
constant in time, it decreases significantly after the characteristic age
time scale τ c. The estimate for a constant in time acceleration must
be revised taking into account τ c. A good guess for the actual binary
eccentricity at the end of the acceleration process is therefore

e(τc) =
∣∣∣∣sin i0 sin

(
3Aτc

2�a

)∣∣∣∣ . (20)

The upper limit for the eccentricity is achieved after a full excitation
period Te and according to equation (18) amounts to sin i0. This
time Te has to be compared to other typical time-scales like the true
age of the binary and the electromagnetic spin-down time-scale. The
eccentricity depends only on the neutron star spinning period P and
on the orbital period Porb but not on the period derivative Ṗ . The
typical eccentricity therefore becomes

e(τc) =
∣∣∣∣∣sin i0 sin

(
18π5/3

5 × 21/3
ε

IP −2P
1/3
orb

m1c
√

G(m1 + m2)

)∣∣∣∣∣ . (21)

For low eccentricities, it reduces to

e(τc) ≈ 18π5/3

5×21/3 ε | sin i0| IP−2P
1/3
orb

m1c
√

G(m1+m2)
(22a)

≈ 1.5 × 10−5 ε | sin i0 | ( P
1 s

)−2 (
Porb
1 d

)1/3
, (22b)

revealing a simple scaling with P and Porb as

e ∝ ε P −2P
1/3
orb . (23)

Compared to the vacuum case, the formal dependence is similar
expect for the geometrical factor depending on the angles α, β, δ,
factor now deduced from the simulation results.

7.2 Isolated neutron star kick

According to several observational investigations, pulsar proper
motion seems to be almost aligned with their rotation axis (Hobbs
et al. 2005; Johnston et al. 2005). The electromagnetic kick has been
suggested as an alternative scenario to mechanisms imprinted a large
kick velocity right at the birth of the neutron star. See for instance
Lai, Chernoff & Cordes (2001) for a discussion and a more recent
extension by Wang, Lai & Han (2006). Kojima & Kato (2011) studied
a particular case of magnetic dipole + quadrupole electromagnetic
kick showing the evolution of the kick velocity with time. The final
kick velocity depends on the relative magnitude of the quadrupole
versus dipole and on their respective orientation rather than on the
magnitude itself.

From the electromagnetic kick expressions found in the previous
section, an efficient recoil requires a fast spinning neutron star
possessing a large off-centred dipole. Large magnetic field strengths
are not required but their decrease the time-scale of the kick. The spin-
down rate is mostly accounted for by the magnetodipole radiation
losses. However, in the early youth of the star, gravitational radiation
can be substantial. The net effect on the kick velocity decreases
significantly in such cases as shown by Lai et al. (2001). We
reexamine this situation in the following lines. As in the vacuum
case, the force can be estimated by F (t) ≈ a ε Lem(t)/c disregarding
geometric factors involving the angles α, β, δ. Assuming a star
starting at rest at birth, the kick velocity after a time t is

v(t) =
∫ t

0

F (t)

M
dt = ε

Mc

∫ t

0
aLem(t) dt . (24)

The argument put forward in this calculation assumes implicitly that
the rotation axis is fixed with respect to the magnetic field config-
uration. However, electromagnetic radiation produces also a torque
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responsible for the alignment between rotation and magnetic dipole
axis. It has been shown in Pétri (2020) that the time-scale for this
alignment is of the same order of magnitude as the electromagnetic
quick time-scale, therefore, to a good approximation, we can neglect
this alignment for the estimate of the final kick velocity. Even if the
alignment is properly taken into account, the kick obtained remains
almost the same, see equation (32b) in Pétri (2020). If the spin-down
is fully of electromagnetic origin, then Lem(t) = −I� �̇, where I is
the stellar moment of inertia and the kick velocity becomes for an
initial spin of �0,

v(t) = IεR

3Mc2
(�3

0 − �(t)3). (25)

Taking a moment of inertia for a homogeneous sphere, I = 2
5 MR2,

we get

v(t) = 2c

15
ε(a3

0 − a(t)3), (26)

with a0 = �0R/c. The final velocity at large times is

vem
f = 2c

15
εa3

0 (27a)

= 64 km s−1
( ε

0.1

) (
R

12 km

)3 (
P

1 ms

)−3

. (27b)

We observe that the final velocity is independent of the magnetic
field strength, it only depends on the initial rotation period of the
pulsar at birth. High kick velocities can therefore only be explained
by very high initial rotation rates, in the submillisecond range. The
situation gets worth if gravitational radiation is taking into account.
Indeed, the rotational history of the star then follows:

�̇ = −(k1�
3 + k2�

5). (28)

The constant coefficients for magnetodipole losses and gravitational
wave are, respectively,

k1I = 8π

3μ0c3
B2R6, (29a)

k2I = 32

5

G

c5
μ2I 2

zz, (29b)

where we used the gravitational luminosity for a deformed neutron
star with ellipticity μ (Shapiro & Teukolsky 1983). The final kick
velocity then becomes with only the electromagnetic spin-down
contributing to the kick Lem = k1I�4 and using equation (24),

vf = ε

Mc2

∫ t

0

�R

c
k1I�4 dt = − εIR

Mc3

∫ 0

�0

k1�
5

k1�3 + k2�5
d�.

(30)

Using the typical value for the homogeneous sphere moment of
inertia, we arrive at an expression similar to Kojima & Kato (2011)
but with different notations,

vf = 2c

5
ε

a3
0

ξ0

[
1 − arctan

√
ξ0√

ξ0

]
. (31)

The parameter ξ0 = k2�
2
0/k1 = Lgw/Lem controls the initial ratio

between gravitational Lgw and electromagnetic Lem luminosity. The
final kick is compared to the pure electromagnetic kick vem

f in Fig. 16.
If gravitational radiation is negligible, ξ 0 
 1 and we retrieve
expressions (27a) and (27b). In the opposite case where gravitational
radiation is dominant, ξ 0 � 1 the asymptotic kick velocity tends to
zero according to

vf

c
= 2

5
ε

a3
0

ξ0
. (32)

Figure 16. Final kick velocity comparing the pure electromagnetic case vem
f

to the gravitational + electromagnetic case vf depending on the ratio ξ0 =
Lgw/Lem.

If the gravitational wave spin-down dominates the electromagnetic
losses at birth, the final kick velocity will be drastically reduced by
a factor ξ 0. This is because gravitational wave emission does not
produce any recoil. In order to get a large recoil, the electromagnetic
force must act on a long time-scale, similar to the Poynting spin-down
time-scale that cannot be achieved if gravitational wave emission is
preponderant. Favourable kick velocities are obtained for ξ 0 
 1
that gives a constrain on ellipticity μ versus magnetic dipole field B
assuming an initial period P0. The characteristic age for a quadrupole
is also ξ 0 smaller than the characteristic age for a dipole.

In principle, gravitation radiation can also produce a recoil of
the star. For instance, this mechanism imprints a substantial kick in
binary mergers of compact objects. Gravitational recoil requires at
least some next to leading order quadrupole and octupole moments
interactions (mass and/or current) to transfer linear momentum to
the star (Thorne 1980; Maggiore 2007). For black holes, Bekenstein
(1973) estimated the recoil velocity order of magnitude around
typically 300 km s−1. For binary black hole mergers, the dynamics
is different but the recoil remains of the same order of magnitude,
although slightly higher, about 1000 km s−1 (Fitchett 1983). For an
axisymmetric system, Bekenstein (1973) found a simple expression
for the recoil. This however cannot be applied to neutron stars because
gravitational wave emission requires breaking of this axisymmetric
configuration. To lowest order, the quadrupole mass moment Qik, the
quadrupole current moment Sik, and the octupole mass moment Qijk

produce together a recoil given for instance in Blanchet (2019) by

dPi

dt
= G

c7

(
2

63

d3Qij

dt3

d4Qijk

dt4
+ 16

45
εijk

d3Qj�

dt3

d3Sk�

dt3

)
. (33)

We use this expression not to solve for the exact problem but to give
some orders of magnitude of the expected recoil from an isolated
neutron star radiating gravitational waves. In orders of magnitude,
the terms in bracket scale as Fgr ∝ M2R5�7, whereas the gravitation
luminosity scales as Lgr ∝ M2R4�6. We therefore obtain a very
similar expression to the dipole–quadrupole magnetic field, namely
that

Fgr = κ
aLgr

c
, (34)

where κ encompasses the magnitude of the mass octupole and
current quadrupole terms. The final gravitational kick velocity would
resemble the final electromagnetic kick velocity in equations (27a)
and (27b) by replacing ε with κ . However, this next to leading
order contribution from Qijk and Sij is very small κ 
 1 because
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the departure from spherical symmetry is weak. Consequently, the
kick imprinted by gravitational radiation alone remains negligible, a
factor κ/ε smaller than for the electromagnetic kick above mentioned.
To find and estimation of the neutron star deformation, let us assume
that its distortion is due to its own magnetic field (Bonazzola &
Gourgoulhon 1996). The ellipticity is therefore introducing the
magnetic distortion factor β, synthesizing the magnetic stress on
the star shape, and taking the ratio between magnetic energy and
gravitational potential energy:

e = β
4π

3μ0

B2R4

GM2
= 10−12 β

(
B

108 T

)2


 1. (35)

Even if the magnetic distortion factor β can be as large as 1000,
as found by Bonazzola & Gourgoulhon (1996), it is insufficient to
significantly distort the star.

An absolute upper limit for the kick velocity is obtained at the
mass shedding limit �k =

√
GM/R3, assuming Newtonian gravity.

General relativistic corrections discussed by Friedman, Ipser &
Parker (1989) and Haensel, Salgado & Bonazzola (1995) decrease
this value by approximately 2/3. This corresponds then to a spin
parameter,

ak = 2

3

�kR

c
= 2

3

√
GM

Rc2
(36a)

= 0.278

(
M

1.4 M�

)1/2 (
R

12 km

)−1/2

. (36b)

We have

vmax
f = 2

15
ε

(
GM

Rc2

)3/2

(37a)

= 86 km s−1
( ε

0.1

) (
M

1.4 M�

)3/2 (
R

12 km

)−3/2

. (37b)

A high initial kick velocity requires a large off-centred dipole with ε

� 1. More generally speaking, it means that multipolar components
must be as large as or even larger than the dipolar component. We
could imagine a less restrictive geometry by relaxing the off-centred
dipole and choose a dipole + quadrupole configuration leaving the
relative magnetic strength between dipole and quadrupole as a free
parameter. The electromagnetic kick scenario remains nevertheless
interesting because it naturally explained the spin–proper motion
alignment observed in many neutron stars (Johnston et al. 2005).

The importance of gravitational wave emission in the early phases
depends on the ellipticity of the neutron star that is unfortunately
ill constrained with upper limits for isolated radio pulsars given by
μ ≈ 10−4–10−6 (Aasi et al. 2014). Recent searches for continuous
gravitational waves seem even to constrain typical values to be less
than around μ ≈ 10−8 (Abbott et al. 2019) even for millisecond
pulsars (Abbott et al. 2020). Comparing to magnetodipole losses, we
get

Lgw

Lem
= k2�

2
0

k1
= 48

125

μ0

c2

GM2�2μ2

B2R2

= 7.6

(
P

1 ms

)−2 (
R

12 km

)−2 (
B

108 T

)−2 ( μ

10−5

)2
.

(38a)

For isolated radio pulsars with typical magnetic field strength of
108 T and initial period of P0 = 1 ms, an ellipticity stronger than 10−5

generates a large gravitational spin-down luminosity, dominating the
electromagnetic spin-down in the early phase of the neutron star.

In any case, the off-centred dipole cannot explain the fastest
moving neutron stars even for large displacements up to almost the
surface if gravitational wave emission is significant in the early stage
as expected from neutron star formation scenario. This is due to the
constrain on ε � 1 that imposes a maximum value for the quadrupole.
If this condition is released, for instance for a quadrupolar component
not related to the dipole (Kojima & Kato 2011), we would expect
higher kick velocities depending on the relative strength between
magnetic dipole and quadrupole. We explore this issue in another
work (Pétri 2020).

8 C O N C L U S I O N S

We performed accurate time-dependent numerical simulations of
off-centred force-free rotating dipoles scanning a full range of
geometrical parameters. We found that the off-centring slightly
increases the spin-down luminosity compared to a centred dipole.
We fitted this enhancement by a simple expression quadratic in the
displacement ε. The associated electromagnetic kick and torques
have been computed. Our new results show that the magnetospheric
plasma has but only little effect compared to the vacuum case. The
main difference arises in the formal dependence on the geometry but
qualitatively the conclusions presented in Pétri (2016) remain valid.
The impact on magnetic field line structures, spin-down luminosities,
induced electromagnetic forces, and torques have been outlined. The
geometrical dependence on the dipole orientation is more involved
than for the vacuum case. All angles modify the luminosity, the force,
and the torque. The electromagnetic kick could have an impact on the
orbital evolution of binary neutron stars as was already the case for
the vacuum off-centred dipole. For force-free off-centred dipole, we
expect similar behaviours as for vacuum dipoles. We also reexplored
the question about the velocity kick of isolated neutron stars and
show that it cannot easily explain the highest proper motion because
of the constrain on the magnetic moment displacement.

One interesting possibility to extend this work releases the assump-
tion of an off-centred dipole, replacing it by a dipole + quadrupole
configuration. This alleviates the limit on the quadrupole component
with respect to the dipole, increasing the maximum reachable
velocity kick. This idea is detailed in Pétri (2020).
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