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ABSTRACT
Pinning down the total neutrino mass and the dark energy equation of state is a key aim for upcoming galaxy surveys. Weak
lensing is a unique probe of the total matter distribution whose non-Gaussian statistics can be quantified by the one-point
probability distribution function (PDF) of the lensing convergence. We calculate the convergence PDF on mildly nonlinear
scales from first principles using large-deviation statistics, accounting for dark energy and the total neutrino mass. For the first
time, we comprehensively validate the cosmology dependence of the convergence PDF model against large suites of simulated
lensing maps, demonstrating its per cent level precision and accuracy. We show that fast simulation codes can provide highly
accurate covariance matrices, which can be combined with the theoretical PDF model to perform forecasts and eliminate the need
for relying on expensive N-body simulations. Our theoretical model allows us to perform the first forecast for the convergence
PDF that varies the full set of �CDM parameters. Our Fisher forecasts establish that the constraining power of the convergence
PDF compares favourably to the two-point correlation function for a Euclid-like survey area at a single source redshift. When
combined with a cosmic microwave background prior from Planck, the PDF constrains both the neutrino mass Mν and the dark
energy equation of state w0 more strongly than the two-point correlation function.

Key words: methods: analytical – methods: numerical – cosmology: theory – large-scale structure of Universe.

1 I N T RO D U C T I O N

The path of light travelling from distant background galaxies is
perturbed by matter density fluctuations along the line of sight.
Distortions in the images of these background galaxies caused by
weak gravitational lensing (reviewed by Kilbinger 2015) can be used
to infer the convergence field and hence directly probe the projected
matter density between the source galaxies and the observer. The
subtle effects of weak gravitational lensing create a need for large
statistics in order to constrain cosmological parameters, such as
those acquired by the Dark Energy Survey (DES; DES Collaboration
2018), the Kilo-Degree Survey (KiDS; Heymans et al. 2021), and
the Hyper Suprime Cam (HSC; Hikage et al. 2019). The future
promises even larger and more powerful weak-lensing surveys such
as Euclid (Laureijs et al. 2011; Amendola et al. 2018) and the Rubin
Observatory (Ivezić et al. 2019).

The non-Gaussian evolution of the Universe at low redshifts and
small scales implies that two-point statistics of the weak-lensing
field cannot capture all of the information available. Several previous
works have demonstrated that the information content of convergence
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maps can be better captured when higher order statistics are included.
Since it is difficult to find probes of higher order statistics whose
cosmological dependence can be accurately derived, the bulk of
analysis has relied on numerical simulations.

Petri et al. (2013) showed that adding Minkowski functionals
or higher order moments to the weak-lensing convergence power
spectrum can provide meaningful improvements in the constraints
on cosmological parameters. Petri, May & Haiman (2016) showed
that the non-Gaussian information contained in moments of the
convergence field and convergence peak counts could also com-
plement constraints from weak-lensing tomography. Vicinanza et al.
(2018) confirmed that moments of the convergence field can break
some cosmological degeneracies originating in the shear power
spectrum. Peel et al. (2018) proposed the use of higher order weak-
lensing statistics to break degeneracies between massive neutri-
nos and modified gravity f(R) models in the weak-lensing power
spectrum. Davies et al. (2020) recently examined the constraining
power of weak-lensing voids alone in a Rubin-Observatory-like
survey, and showed that these statistics outperform the shear-shear
correlation function as a probe. Martinet et al. (2021) investigated
the constraining power of weak-lensing aperture mass statistics,
such as peaks, voids and the probability distribution function
(PDF), also showing significant benefits over the shear two-point
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correlation function. Zürcher et al. (2020) examined the benefits
to constraints of peak counts, minimum counts or Minkowski
functionals compared to the angular cosmic shear power spectrum,
and confirmed that the non-Gaussian statistics could significantly
enhance constraints in the �m–σ 8 plane. A very recent study by
Harnois-Déraps et al. (2020) found one of the tightest constraints on
S8 = σ8

√
�m/0.3 in DES year-1 data based on a simulation-based

combined peak count and correlation function analysis. Munshi et al.
(2020a) recently demonstrated how the Minkowski functionals of
convergence maps can be inferred using a fitting function to the
bispectrum.

The full convergence PDF includes more information than can
be accessed through a small set of moments, with the additional
benefit that it can reliably modelled theoretically. Patton et al. (2017)
performed a Fisher forecast for the one-point convergence PDF based
on the L-PICOLA perturbative mocks for a DES-sized survey. They
showed that although the degeneracy direction between �m and σ 8

was very similar to the cosmic shear two-point correlation function,
adding information from the PDF improved constraints by about a
factor of two compared to two-point statistics alone. Additionally,
the presence of measurement systematics was shown to tilt the
degeneracy directions between the PDF and the power spectrum.
Liu & Madhavacheril (2019) focused on the ability of the weak-
lensing convergence PDF to help constrain the total neutrino mass
(Mν), performing a Markov chain Monte Carlo (MCMC) forecast for
a Rubin-Observatory-like survey based on the MassiveNuS simula-
tions. Their analysis included an examination of the benefits of using
a range of source redshifts to perform weak-lensing tomography.
They showed that the PDF alone could provide a 20 per cent stronger
constraint on Mν than the power spectrum, and that combining the
two measurements could improve the constraint by 35 per cent over
that of the power spectrum alone.

The one-point PDF of the convergence field therefore provides a
natural complement to two-point measurements for extracting cos-
mological information in the mildly nonlinear regime. The statistics
of weak-lensing fields can be difficult to model because of the mixing
of different scales (with different degrees of nonlinearity) along the
line-of-sight. It is well known as an empirical result that the weak-
lensing PDF can be approximated as lognormal (Taruya et al. 2002;
Hilbert, Hartlap & Schneider 2011), or by integrating over a lognor-
mally distributed matter field (Xavier, Abdalla & Joachimi 2016).
However, to extract cosmological information a more physically
principled model of parametrizing the full cosmology dependence
of the PDF is required. Having an accurate theory for predicting
cosmological statistics presents many advantages. It allows for
easier intuitive understanding of the cosmological dependence of the
statistic, removes the need for analysis with expensive simulations,
and greatly simplifies the performance of cosmological survey
forecasts. In this work, we present the first comprehensive forecast
for the lensing convergence PDF simultaneously varying all LCDM
parameters, as well as individually considering the extensions of
a free total neutrino mass Mν and dark energy equation of state
w. Note that beyond galaxy weak lensing, the cosmic microwave
background (CMB) lensing PDF (Liu et al. 2016; Barthelemy,
Codis & Bernardeau 2020b) and moments of the thermal Sunyaev–
Zeldovich field (Hill & Sherwin 2013) have also shown promise in
cosmological forecasts. Recently, the convergence skew-spectrum
has also been computed for the weak lensing of galaxies and the
CMB in Munshi et al. (2020b).

Large-deviation theory (LDT; for a general review see Touchette
2011) has successfully been applied to many cosmic large-scale
structure fields in recent years. Bernardeau & Reimberg (2016)

clarified the applicability of the theory to the cosmological density
field, demonstrating its connection to earlier works on the calculation
of cumulants and modelling the matter PDF using perturbation
theory and spherical collapse dynamics (Valageas 2002; Bernardeau,
Pichon & Codis 2014a). In Uhlemann et al. (2016), this approach
to calculating the PDF was greatly simplified with an analytical
approximation and Codis et al. (2016) demonstrated its potential
for constraining cosmology. Recently, the power of the matter PDF
to constrain the neutrino mass or primordial non-Gaussianities was
explored in Uhlemann et al. (2020) and Friedrich et al. (2020a), while
Ivanov, Kaurov & Sibiryakov (2019) investigated a renormalization
procedure for nonperturbative effects. Although the matter PDF is
not a direct observable, it is the foundation of observable quantities
like luminous tracer statistics (Repp & Szapudi 2020) and weak-
lensing fields, with combined approaches like density-split statistics
(Brouwer et al. 2018; Friedrich et al. 2018; Gruen et al. 2018) recently
showing particular promise. Uhlemann et al. (2018b) applied the
principles of LDT to densities in cylinders, and pointed out that
LDT provides a natural basis for the joint modelling of the matter
and weak-lensing fields, overcoming a fundamental limitation of the
lognormal approximation.

Barthelemy et al. (2020a) presented an LDT-based prediction
of the top-hat-filtered weak-lensing convergence PDF on mildly
nonlinear scales building on early work by Bernardeau & Valageas
(2000). The light-cone is divided into thin redshift slices, and the
cumulant generating function (CGF) of the projected matter density
in the resulting thin cylinders is related to that of the 3D matter
density field in each slice and summed over. For this work, we
adopt this approach (Barthelemy et al. 2020a), which is compatible
with density-split statistics from Friedrich et al. (2018). A nulling
method based on the BNT transform (Bernardeau, Nishimichi &
Taruya 2014b) was implemented to remove contributions from very
nonlinear small scales to significantly improve the accuracy of the
theory. Note that Thiele, Hill & Smith (2020) recently presented an
alternative analytic model for the weak-lensing convergence PDF
using a halo-model-based approach. Their model targets a smaller
scale, more non-Gaussian regime and is not accurate enough for the
mildly nonlinear scales considered here, but their Fisher forecast
shows promising results for constraining the neutrino mass in a
Rubin-Observatory-like survey.

The purpose of this work is to demonstrate how well fundamental
cosmological parameters can be constrained through measurements
of the weak-lensing PDF. We validate the cosmology depen-
dence of our model against convergence maps obtained from ray-
tracing through the DUSTGRAIN-cosmo simulations (Giocoli, Baldi
& Moscardini 2018) and the MassiveNuS simulations (Liu et al.
2018). After establishing the accuracy and precision of our model,
we use it to perform a Fisher forecast for stage 3 cosmic shear
surveys such as Euclid. Our forecast is the first for the convergence
PDF to simultaneously vary the full set of �CDM parameters. We
demonstrate that the convergence PDF outperforms the two-point
correlation function in constraining cosmological parameters. In
addition, we compare the information contained in the full PDF
with that provided by a finite number of cumulants of the field. We
focus on deploying the theoretical model for weak galaxy lensing at
a single source redshift, and leave a tomographic analysis for future
work.

Our paper is structured as follows: in Section 2, we describe
our theoretical model for the smoothed weak-lensing convergence
PDF, its sensitivity to cosmology, and how it can be extended
to account for massive neutrinos. In Section 3, we validate our
convergence PDF model using weak-lensing convergence maps
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extracted from ray-traced N-body simulations. In Section 4 we
perform a Fisher analysis for a Euclid-scale survey to quantify the
potential cosmological constraints available from the weak-lensing
convergence PDF, establishing its complementarity to the two-point
correlation function and CMB data. We conclude and summarize
potential avenues for future work in Section 5.

2 T H E O R E T I C A L M O D E L FO R T H E
W E A K - L E N S I N G C O N V E R G E N C E P D F

In this section, we briefly summarize the key equations required
for the calculation of the weak-lensing convergence PDF from large
deviation theory following the formalism developed in Barthelemy
et al. (2020a). A more complete overview of the derivation of these
equations is given in Appendix A.

The lensing convergence κ can be calculated from a projection
of the matter density contrast between the source and the observer
along the line-of-sight. Using the Born approximation and neglecting
lend–lens coupling, it can be written in terms of a redshift integral
(Mellier 1999):

κ(n̂) =
∫ zs

0
dz R′(z)ω(z, zs) δ(z, R(z)n̂), (1)

where R(z) is the comoving distance to redshift z (equal to the
comoving angular diameter distance dA(z) in a flat universe, as
assumed throughout this work) and Rs is the comoving distance
to the source redshift, zs. The weight function ω is defined as

ω(z, zs) = 3 �m H 2
0

2 c2

dA(z) dA(zs, z)

dA(zs)
(1 + z), (2)

and the comoving distance is a function of the Hubble parameter

R(z) =
∫ z

0

c

H (z)
dz , R′(z) = c

H (z)
, (3)

with the Hubble parameter being sensitive to cosmological parame-
ters through the Friedmann equation. Note that for a flat universe, the
lensing weight from equation (2) combined with R

′
(z) is independent

of the Hubble parameter today.

2.1 Cumulants and the PDF

The lensing convergence in a cone with a given opening angle θ , κθ ,
for sources at redshift zs, can be viewed as a weighted integral of
the density contrast δcyl in cylindrical slices of the cone with radii
dA(z)θ and depth L. In the small angle approximation it is possible to
assume1 that L is much larger than dA(z)θ . For standard cosmological
power spectra,2 the n-order cumulants of the density kcyl

n (dAθ, L, z)
in such cylinders will scale like 1/Ln − 1. This is true in particular for
the cylindrical variance σ 2(dAθ , L, z), which reads

σ 2(dAθ, L, z) = 1

L

∫
d2k⊥
(2π)2

P (k⊥, z) W 2
2D(dAθk⊥), (4)

where W2D(l) = 2J1(l)/l is the Fourier transform of the cylindrical
top-hat kernel, J1 is the Bessel function of first order, k⊥ are the

1This assumption is valid as long as the scale of the radial variation of the
lensing kernel function and the statistical properties of the density field is
much larger than the transverse size of the beam. This is a generalization of
the Limber approximation.
2In this context the cumulants are indeed dominated by modes whose
wavelength is smaller or about the transverse size of the cylinder.

wave vector modes perpendicular to the line-of-sight and P(k, z) is
the matter power spectrum at redshift z.

More generally, the cumulant generating function (CGF) of the
lensing convergence, φκ ,θ , can be straightforwardly related to the
CGF of the density in such cylindrical slices, φδ,cyl, as (Bernardeau
& Valageas 2000)

φκ,θ (y) =
∫ zs

0
dz R′(z)φδ,cyl(ω(z, zs)y, dA(z)θ, z), (5)

where ω(z, zs) is given in equation (2) and φδ,cyl is evaluated for
cylindrical slices of size dA(z)θ . A prescription for the CGF of the
density in cylinders is provided by large deviation theory (LDT; for
a more detailed outline see Appendix A), which describes the rate
function �cyl (i.e. the leading behaviour of the logarithm of the PDF)
as some driving parameter (here the variance) goes to zero. Formally,
the CGF and the rate function are Legendre transformations of one
another.

The determination of the rate function � in the case of a cylindrical
density relies on a key property of LDT known as the contraction
principle. In this particular context, the contraction principle means
that the appropriate rate function for the late-time density field can
be computed from the initial conditions using only the most likely
mapping between the initial and final densities ρ = 1 + δ in cylinders,
which we assume to be the cylindrical collapse based on symmetry
arguments (Valageas 2002; Barthelemy et al. 2020a). With this,
the rate function for the late-time density in cylinders (assuming
Gaussian initial conditions3) takes the form

�cyl(ρ) = τ 2(ρ)

2σ 2
l (rini, z)

, (6)

where σ 2
l is the linear cylindrical variance in the Lagrangian radius

rini (through mass conservation, rini = dAθρ1/2), and τ is the most
likely linear density contrast corresponding to the final density ρ.
The relevant equations for cylindrical collapse are summarized in
appendix A of Friedrich et al. (2018); a robust approximation was
provided by Bernardeau (1995):

ζ (τ ) =
(

1 − τ

ν

)−ν

⇔ τ (ρ) = ν
(

1 − ρ− 1
ν

)
. (7)

The value of ν is set to 1.4, so as to reproduce the value of the
tree-order skewness for cylindrical symmetry that is computed from
perturbation theory (Uhlemann et al. 2018b). The linear cylindrical
variance can be calculated from equation (4) when the power
spectrum is replaced by the linear power spectrum Pl(k, z), which can
be obtained using Boltzmann codes like CLASS (Blas, Lesgourgues
& Tram 2011).

Although the LDT results become exact only in the limit σ

→ 0, previous work has shown that the formalism also performs
well when extrapolated to non-zero values of the variance. This
phenomenological extrapolation, beyond LDT, has to be performed
in principle for each random variable – i.e. each redshift slice – and
its corresponding driving parameter, namely the nonlinear variance
at that redshift. This means that a modelling of the evolving nonlinear
variance is needed as an external input to our formalism. In practice,
a rescaling of the CGF has to be performed to ensure a correct
nonlinear variance. We calculate the nonlinear κ variance, σ 2

nl , using
equation (4) with the nonlinear power spectrum from Halofit (Bird,
Viel & Haehnelt 2012; Takahashi et al. 2012). In Barthelemy et al.

3Primordial non-Gaussianities can also be straightforwardly accounted for
in this formalism as shown by Uhlemann et al. (2018a) and Friedrich et al.
(2020a).
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(2020a), the correction for the nonlinear variance was performed by
rescaling the CGF with the correct projected nonlinear κ variance,
either from Halofit or as measured from simulations. In the present
case, we modify this approach slightly and rescale the CGF in each
redshift slice by the nonlinear variance at the scale dA(z)θ

φδ,cyl,nl(y) = σ 2
l (dA(z)θ )

σ 2
nl(dA(z)θ )

φδ,cyl,l

(
σ 2

nl(dA(z)θ )

σ 2
l (dA(z)θ )

y

)
. (8)

This is the same approach as adopted in Friedrich et al. (2018) and
implemented in the publicly available code CosMomentum,4 with
which we cross-check some of our results.

Once the CGF has been constructed, the convergence PDF is
obtained using an inverse Laplace transform

P (κ) =
∫ +i∞

−i∞

dy

2πi
exp(−yκ + φκ,θ (y)). (9)

The inverse Laplace transform requires an analytical expression for
the CGF so as to be able to perform an analytic continuation in
the complex plane. In Barthelemy et al. (2020a) this was achieved
through the fitting of a double-power-law approximation to the linear
variance. In this work, we instead move to a method first suggested
in Bernardeau & Valageas (2000), which involves reframing the
derived CGF in terms of an effective mapping ζ eff(τ ) between an
initial unsmoothed field and the final smoothed convergence field
(for a detailed description see Appendix C or Barthelemy, Codis &
Bernardeau 2021). A polynomial fit of the effective mapping is used
to perform the inverse Laplace transform numerically.

2.2 Cosmology dependence

To get preliminary insights into the cosmology dependence of the
PDF derived as above, one can examine the dependence of the
cumulants of cylindrical densities and the lensing convergence on
the cosmological parameters. In this section, we consider the cold
dark matter fraction �cdm, the power spectrum amplitude σ 8 and
the dark energy equation of state w0. Specifically, we focus here
on understanding the cosmology dependence of the PDF through
the effects of the cosmological parameters on its second and third
cumulants (the variance and κ3), extending to the dark energy
equation of state what was pioneered in Bernardeau, van Waerbeke &
Mellier (1997). From equation (6), it is clear that the density PDF in
the context of LDT is intimately related to both the scale-dependence
of the linear variance and the dynamics of the cylindrical collapse.
More precisely, different densities ρ scan the linear variance at scales
rρ1/2 for a range of values around the radius r. This is encapsulated in
the behaviour of the tree-order perturbation theory prediction for the
reduced skewness, S3, of the density at scale r. In an EdS universe,
this quantity is determined by the first logarithmic derivative of the
linear variance (Bernardeau 1994, 1995)

S2D
3 (r) = 〈δ3(r)〉

〈δ2(r)〉2
= 36

7
+ 3

2

d log σ 2
l (r)

d log r
. (10)

In principle, the first term of this expression depends on the expansion
rate of the Universe and therefore on the cosmological parameters.
This dependence has been found to be very mild in practice
(Bernardeau 1992), and we have verified that it makes no difference
to our results by comparing with output of the CosMomentum code,
which implements exact spherical collapse solutions. In the context

4https://github.com/OliverFHD/CosMomentum

Figure 1. Solid lines: The response of the linear cylindrical variance σ 2
L

at z = 0 to different changes in cosmology (denoted by colours) from the
fiducial cosmology. The increments used are those specified in Table 1 (using
the smaller increment for �cdm). Dashed lines: The corresponding differences
in the reduced skewness S3 as calculated using equation (10).

of weak-lensing observations, the main dependence on the expansion
rate of the Universe will be encoded in the projection effects.

Note that S2D
3 (r) does not depend on the overall amplitude of

the density fluctuation σ 8 as its dependence cancels out in the
logarithmic derivative. It depends however on the scale-dependence
of the variance. In Fig. 1, we show how �cdm impacts the linear
variance at z = 0 and hence the reduced skewness. Note that the
shape of the full PDF is also sensitive to a combination of the reduced
kurtosis S4 and higher order cumulants, which depend on higher order
logarithmic derivatives.

As mentioned before, the main source of dependence on the
expansion rate is encoded in the projection effects, as shown in
equation (12) at the level of the CGF, or at the level of the cumulants as
shown hereafter. In general, the cumulants of κ can indeed be related
to the cumulants in line-of-sight cylinders. Viewing the projected
density as the sum of densities in such cylinders, it can be shown
that

kκ
n (θ, zs) =

∫ zs

0
dzR′(z)ωn(z, zs)k

cyl
n (dA(z)θ, L, z)Ln−1, (11)

where kcyl
n (dA(z)θ, L, z) = 〈δn

cyl(dA(z)θ, L, z)〉c are the cumulants of
the 3D density contrast filtered in a cylinder of transverse size dAθ

and depth L, with a well-defined limit L → ∞. We can rewrite the
cumulants for cylinders in terms of their reduced counterparts, Scyl

n

(see also equation A3), which are then independent of L. At tree
order, they are furthermore expected to be redshift-independent and
given by their 2D expression (equation 10) so that

kcyl
n (dAθ, L, z) = Scyl

n (dAθ, z)σ 2(n−1)
nl (dAθ, L, z)

� S2D
n (dAθ )σ 2(n−1)

l (dAθ, L)D2(n−1)(z). (12)

It is then possible to give the explicit dependence of kκ
3 on any

cosmological parameter. More specifically, the upper panel of Fig. 2
shows the integrand for kκ

3 for various cosmologies. The lensing
kernel for a source redshift zs = 2 peaks around z = 0.5. The middle
panel shows the fractional changes in the integrand induced by
varying �cdm. The plot dissects the different contributions for �cdm:
the contribution from the �m factor in the lensing weight (equation
2; sparsely dotted line), which is counteracted by the change in the
linear growth factor D(z) (see equation 12; dot–dashed line) and the
comoving distance R(z) (see equation 3; tightly dotted line). The total
change for �cdm depends on the smoothing scale due to the impact of
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Figure 2. Upper panel: The integrand used to calculate the third cumulant
of κ in equation (12) for various cosmologies for θ = 10

′
. The solid lines

correspond to increases in the corresponding cosmological parameters (by
the smaller increments in Table 1) and the dashed lines to decreases. Middle
panel: Fractional changes in the integrand induced by changing �cdm for the
two smoothing scales considered for our Fisher forecast. The solid and dashed
lines correspond to increases and decreases in the cosmological parameters
once again. The additional lines represent the various contributions to the
overall differences (see the main text). Lower panel: Fractional changes
induced in the integrand by increasing or decreasing w0, and by changing
Mν from 0 to 0.15 eV. The changes with w0 are independent of smoothing
scale (so only one set of lines are shown) and the changes with Mν vary little
with smoothing scale (compare the dark green and yellow lines). The Mν

integrand is almost constant with redshift. The dotted dark green line shows
the effect of changing only the �m factor in the integrand.

the cylindrical reduced cumulant S3 and the scale-dependent variance
σ 2

cyl. The lower panel of Fig. 2 shows the fractional changes in the
integrand that result from varying w0 and Mν . In this case, we see
that the change induced by w0 is independent of the smoothing
scale. This is a shared property of all the moments, which allows
us to disentangle the �cdm and w0 contributions from each other
even at a single source redshift. Note that while changes in �cdm

and w0 lead to a redshift-dependent change in the integrand of the
moments, a change in σ 8 causes a redshift-independent enhancement
or diminution. We also emphasize that while we have used the

linear variance here for illustrative purposes, our model consistently
includes the nonlinear variance.

2.3 Extending the model to include massive neutrinos

Including massive neutrino cosmologies requires a few adjustments
in the implementation of the theory. Massive neutrinos affect the
PDF in multiple ways.

First, the total matter density fraction �m now contains a contri-
bution from �ν . �m enters into the lensing kernel through equation
(2). This is by far the dominant effect, as can be seen in Fig. 2 by
comparing the solid dark green line (the overall effect of Mν on the
k3 integrand) and the sparsely dotted dark green line (the effect of
changing �m alone). Because the effect of changing �m dominates,
the effect of changing Mν in Fig. 2 is relatively insensitive to redshift
and smoothing scale. This creates a natural degeneracy with σ 8.

Next, the scaling of the comoving distance R(z) with redshift
changes because the Hubble parameter H(z) changes. The scaling of
H(z) is now more complicated, as massive neutrinos contribute with
a radiative equation of state at early times and gradually transition
into forming a contribution like cold dark matter at late times. For an
analytic solution to the evolution of the energy density of neutrinos
that can be inserted into the Friedmann equation, see Slepian &
Portillo (2018). The simplest solution in this case is to use the
Boltzmann code CLASS to extract the appropriate evolution of H(z)
and R(z) with redshift.

The unique evolution of massive neutrinos from ultrarelativistic
to non-relativistic particles over the course of the history of the
Universe has a distinctive effect on the growth of structure. At early
times, neutrinos free-stream out of gravitational perturbations and
therefore do not contribute to the growth of structure, but they do
cluster at late times. This leads to a distinctive scale-dependence in
the formation of structures, even on linear scales, with the growth of
structure on smaller scales being relatively suppressed. Ultimately,
this means that the linear variance σ 2

l (R, z) can no longer be evolved
with redshift through multiplication by a scale-independent growth
factor D2(z), as the growth factor becomes mildly scale-dependent.
For practical implementation, the scale-dependence of the variance
must now be independently measured in each redshift slice.

Finally, massive neutrinos make a small contribution to the
cylindrical collapse mechanism (which we parametrize as in equation
7). LoVerde (2014) showed that for neutrino masses within realistic
current bounds, the main effect of massive neutrinos on spherical
collapse is to increase the collapse threshold by at most 1 per cent. The
impact of such a change can be estimated by varying the parameter
ν∝δc, and Uhlemann et al. (2020) showed that such a change resulted
in a change in the bulk of the 3D matter PDF of less than 1 per cent.
For cylindrical collapse, we assume that the effect is also negligible,
and find this approximation sufficient to achieve good accuracy for
the bulk of the convergence PDF in the next section.

3 VA L I DAT I N G T H E M O D E L W I T H
SI MULATI ONS

Before proceeding with a forecast on cosmological parameters,
we perform an extensive validation of our theoretical model with
simulations. We use sets of weak-lensing convergence maps from two
suites of ray-traced N-body simulations to determine the accuracy
of our theoretical PDFs and their Fisher derivatives: DUSTGRAIN-
cosmo (see Appendix B1 and Giocoli et al. 2018) and MassiveNuS
(see Appendix B2 and Liu et al. 2018). Both of those simulations
produce convergence maps of relatively small size (25 deg2 for
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DUSTGRAIN-cosmo and 12.25 deg2 for MassiveNuS). To complement
the small patch maps, we also make use of a set of full sky lensing
maps from Takahashi et al. (2017) at a fixed cosmology.

3.1 The fiducial model PDF

We smooth the DUSTGRAIN-cosmo κ maps with top-hat filters of size
50 and 70 pixels, corresponding to 7.32 arcmin and 10.25 arcmin,
respectively. For MassiveNuS, the same scales correspond to exactly
25 and approximately 18 pixels. The smoothing is implemented as
a direct convolution of the map with the smoothing kernel in the
DUSTGRAIN-cosmo case, and using a harmonic-space convolution
method for MassiveNuS, with the difference being purely practical
based on the different storage formats used for the maps. After
smoothing, we discard all pixels within a smoothing radius of the
edge of a given patch. We measure the histogram of the smoothed κ

maps in 101 linearly spaced bins for the range κ ∈ [−0.01, 0.01]. In
principle, one might prefer a finer binning, that for example allows
to accurately infer the moments from the binned PDF. However,
one should consider that when extracting the Fisher information the
Kaufman–Hartlap factor given by equation (20) below essentially
includes a penalty for too many bins due to the finite number of
realizations (here 256-500) from which the covariance is estimated.

For demonstrating the accuracy of the theory for realistic surveys,
it is best to do a comparison of this type with full-sky simulations
to avoid additional contributions to the errors from small patch sizes
(see Appendix B5). We therefore compare our theoretical result with
that from the simulations of Takahashi et al. (2017) in Fig. 3. We
show a comparison of the mean PDF over 108 full-sky realizations
(long dashed lines) and the theoretical PDF derived from our model
using matching cosmological parameters (solid lines) for the two
scales 7.32 (blue) and 10.25 (red) arcmin. Overall, the prediction and
measurement are in very good agreement with the residuals being at
a few percent level in the 2σ region around the mean. As expected,
the theoretical prediction improves with increasing smoothing scale
and the observed departures exhibit a clear signature of a correction
to the predicted (tree order) skewness for the smaller scale.5

As demonstrated in Barthelemy et al. (2020a), the mixing of scales
involved in integrating the density field along the line-of-sight limits
the theoretical accuracy that can be expected. This scale-mixing
problem can be eliminated by considering linear combinations of
convergence maps at different source redshifts that allow for the
‘nulling’ of small scales and hence facilitate excellent agreement
between theory and simulation. The PDF of the nulled convergence
κnull can be computed using the same formalism as above when
replacing the weak-lensing weight from equation (2) by a linear
combination of lensing kernels from three different source redshifts
zi
s (called the BNT transform)

ωnull

(
z,
{
zi
s

}) =
3∑

i=1

pi ω
(
z, zi

s

)
�
(
dA

(
zi
s , z

))
, (13)

where � is the Heaviside step function and the weights pi are chosen
to cancel the contribution from the smallest redshifts and scales by
ensuring ωnull(z < z1

s ) = 0. We demonstrate this procedure on full-
sky simulations from Takahashi et al. (2017) in Fig. 4, where the maps

5In an Edgeworth expansion of the PDF, the first non-Gaussian correction
that appears is proportional to the rms fluctuation times the skewness times
an Hermite function of the field of order 3. Any correction to the skewness
hence introduces an H3 modulation in the residuals, which is consistent with
our measurements.

Figure 3. Upper panel: The lensing convergence PDF for the two smoothing
scales used in our forecasts for source redshift zs = 2 as measured from
the mean over 108 realizations of full-sky simulated maps from Takahashi
et al. (2017), compared to the corresponding theoretical prediction from
large deviation theory (shown both with and without shape noise). Lower
panel: Residuals between the theoretical and simulated noiseless PDFs. The
error bars indicate the standard error on the mean computed from the 108
simulations. The vertical coloured lines define the bin ranges we use for our
Fisher analysis. The shaded areas in the lower panel highlight 2 and 5 per cent
ranges.

have been smoothed with the harmonic-space convolution method.
As expected, the residual on the bottom panel is very small in this
case, below the percent in the 2σ range around the mean, despite
the PDF being quite non-Gaussian (upper panel). This illustrates the
power of LDT to capture the non-Gaussian shape of the convergence
PDF with high accuracy in the mildly nonlinear regime probed
here thanks to the BNT transform. When applying exactly the same
procedure to the maps from DUSTGRAIN-cosmo in Fig. 4 we find a
residual disagreement of a few per cent. We suspect that this hints at
potential small discrepancies between the different simulations and
map-making approaches, whose further study is beyond the scope of
this work. As for resolution effects, it is known that the 3D matter
PDF at small smoothing scales is impacted at a few per cent level by
a finite mesh resolution and a finite particle number (see e.g. fig. 5 in
Uhlemann et al. 2020), which are expected to exacerbate the situation
for projected lensing quantities that mix small and large scales. See
Appendix B for details of the simulations and a discussion on the
effects of small patch size maps. While Takahashi et al. (2017) relies
on a full-sky healpix map generated from several runs of nested boxes
with varying mass resolution (see fig. 1 in Takahashi et al. 2017),
DUSTGRAIN-cosmo and MassiveNuS maps are created from a single
simulation box using randomization and replication procedures to
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Figure 4. PDFs of the nulled lensing convergence from 256 patches in the
DUSTGRAIN-cosmo simulations, 1000 patches in the MassiveNuS simulations,
and 108 full-sky simulations from Takahashi et al. (2017). Error bars are
neglected because the question of the number of effective independent real-
izations for the DUSTGRAIN-cosmo simulations is unclear (see Appendix B1
for a discussion of how the simulations are run). It is clear that the simulations
of Takahashi et al. and MassiveNuS perform well, but there may be some
complications for the DUSTGRAIN-cosmo case that fall outside the scope of
this work. The nulling source redshifts in each case are given in the captions
of the lower panel.

cover a small light-cone patch. Nonetheless, we see the procedure
works well when applied to the convergence maps from MassiveNuS.

Since, observationally, the weak-lensing convergence map is
obtained from cosmic shear measurements and galaxies themselves
are intrinsically elliptical, the observed shear contains a contribution
from this intrinsic signal. Shape noise is caused by the variance of
the intrinsic ellipticity, which is the dominant source of noise in shear
measurements and impacts the convergence PDF (and its moments
and cumulants) as if it was convolved with a Gaussian centred at zero
with variance σ 2

SN (Clerkin et al. 2016)

PSN
κ (κ) = 1√

2πσSN

∫ ∞

κmin

dκ ′ exp

(
− (κ − κ ′)2

2σ 2
SN

)
P(κ ′) . (14)

For the variance describing the shape noise we assume

σSN = σε√
ng · �θ

∝ θ−1 , (15)

where σ ε = 0.30 is the shape-noise parameter, ng the galaxy density
(here assumed to be 30 arcmin−2) and �θ the solid angle (in arcmin2).
For the simulated maps, we include shape noise by adding a white
noise Gaussian random map to the ‘raw’ simulated convergence map
before smoothing, keeping the seed fixed for a given realization when
varying cosmologies. For the theoretical predictions, we convolve the

Table 1. The fiducial cosmology and parameter increments chosen for
our calculations, largely chosen for consistency with the DUSTGRAIN-
cosmo simulation suite. Those simulations (see Appendix B1 for more
details) were performed with two step sizes for the three main parameters
that were varied (�cdm, σ 8, and w) as shown. We do not have simulations
that vary the parameters below the horizontal line (h, ns, �b), but calculate
their effects theoretically in Section 4 using the step sizes shown.

Parameter Fiducial value Small Increment Large Increment

�cdm 0.26436 0.0125 0.1
σ 8 0.842 0.034 0.135
w − 1 0.04 0.16
Mν (eV) 0 0.15 –

h 0.6731 0.005 –
ns 0.9658 0.01 –
�b 0.0491 0.0022 –

theoretical ‘raw’ convergence PDF at the desired smoothing scale
with a Gaussian of the appropriate width. Since the area scales
quadratically with the radius, the variance due to shape noise is
inversely proportional to the smoothing scale. The standard deviation
of the noiseless smoothed convergence scales approximately as
σκ∝θ−1/3 for a smoothing scale θ . For a source redshift of zs =
2 and smoothing scales of θ1 = 7.32 arcmin and θ2 = 10.25 arcmin,
the cosmological signal dominates over the shape noise contribution.
Note that due to the symmetry of this convolution, the third moment
κ3 is only very mildly affected.

In Fig. 3, we also demonstrate the impact of shape noise on the
smoothed weak-lensing convergence PDF for the scales of interest
here. As expected, the shape noise broadens the PDF compared to the
noiseless case. Note that the addition of shape noise simultaneously
decreases the PDF values around the peak (signal) and the PDF
covariance (error).

3.2 The cosmology-dependence of the PDF

In this section, we compare the predicted response of the PDF to cos-
mological parameter changes with measurements from simulations.
The PDF response enters the Fisher forecast in Section 4 in terms of
derivatives with respect to cosmological parameters. The calculation
of these theoretical derivatives requires several ingredients. For each
cosmology (see Table 1), we generate linear and nonlinear (Halofit)
matter power spectra from CLASS (Blas et al. 2011) at a range
of redshifts between z = 0 and our source redshift zs = 2. We
use these to calculate the linear and nonlinear variance values as a
function of redshift following equation (4). CLASS is also used to
output H(z) and R(z) for the relevant redshifts. The density CGF is
calculated for redshift slices between z = 0 and z = 2 in steps of
0.05 (see Appendix A for details of the calculation of φδ, cyl from
LDT). These CGFs are then rescaled with the nonlinear variance as
outlined in equation (8), before being combined as in equation (5)
and undergoing an inverted Laplace transform to produce the PDF.

The simulations with we compare our results in this section have
produced very small-area maps (5 deg on a side for DUSTGRAIN-
cosmo and 3.5◦ on a side for MassiveNuS). The variance with
which we rescale our CGF must take this into account. In these
cases, instead of rescaling by σ 2

nl(dA(z)θ ) at each redshift, we rescale
with a projected variance derived from Halofit convergence angular
power spectra. This allows us to straightforwardly apply a cut in l
to exclude the large modes beyond the size of the maps with which
we compare. This slightly rougher method is sufficient to validate
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Figure 5. Derivatives of the lensing convergence PDF with respect to
�cdm, σ 8, w0 and Mν computed for large/small steps in the simulation
(dashed/dotted) and the theory for large steps (solid) at two smoothing scales,
θ = 7.32 arcmin and θ = 10.25 arcmin. In the Mν case, only a theoretical
line is shown, and this is validated using the MassiveNuS simulations instead
in Fig. 6. One can see that the small parameter steps in the simulation suffer
from numerical noise, which is why we rely on the large steps to validate our
theoretical predictions. When calculating the theory derivatives for validation
purposes, we include a large-scale cut in l when calculating the variance at
l = 36, corresponding to the patch size of DUSTGRAIN-cosmo. The vertical
dotted lines correspond to the locations of the peaks in the fiducial PDFs. The
coloured crosses indicate the extrema of the derivatives.

our derivatives in this section, as we will see. In our Fisher matrix
calculations, no cut in l is implemented and the rescaling with the
Halofit variance is carried out in each redshift slice individually,
but we have validated that whether we rescale with the projected
variance or the individual variance in each redshift slice makes no
difference to the results, although the latter approach gives slightly
better residuals (see Fig. 3).

In Fig. 5, we compare the derivatives of the PDF with respect to
�cdm, σ 8 and w0 as obtained using the theory and the DUSTGRAIN-
cosmo simulations at the two relevant scales. We also show a
theoretical derivative for Mν , although we cannot directly validate
it with DUSTGRAIN-cosmo (we validate it by comparison with
MassiveNuS instead in Fig. 6). We find the results to be in very
good agreement. We note that with the number of realizations we
have, the smaller step sizes provided for the simulations (see Table 1)
result in significant numerical noise (see the dotted lines in Fig. 5).
This kind of noise can result in exaggerated constraints by artificially
breaking degeneracies between parameters. The larger step sizes
provide much smoother derivatives, but we find that even those
contain some small amount of noise that can artificially enhance
their constraining power by a significant amount when inserted into a

Figure 6. Derivative of the lensing convergence PDF with respect to Mν

computed as a single-sided derivative using the difference between the fiducial
cosmology from MassiveNuS (which has a total neutrino mass Mν of 0.1 eV)
and their corresponding cosmology without massive neutrinos. This particular
comparison is shown only for validation purposes. We calculate the actual
theoretical derivatives used in the Fisher matrix calculations in Section 4
for the cosmology given in Table 1. Here we include a cut in l at l = 60,
corresponding to the MassiveNuS patch sizes. The smaller smoothing scale
here is set to 7.38 arcmin instead of 7.34 arcmin simply because it corresponds
to a whole number of pixels for the MassiveNuS resolution. The direction of
the derivative is reversed compared to that in Fig. 5 because σ 8 is not fixed
here and adding massive neutrinos lowers σ 8. The dotted ‘σ 8 matched’ lines
show how the derivative looks if the PDF with massive neutrinos in the
theoretical derivative is replaced by a PDF for a cosmology without massive
neutrinos but with equal σ 8 (σ 8 = 0.8295 from Liu et al. 2018). The difference
between the solid and dotted lines therefore corresponds to the orange line in
Fig. 5. The vertical dotted lines correspond to the locations of the peaks in
the fiducial PDFs (the leftmost is for the smaller scale).

Fisher matrix. This presents an obvious advantage to having a theory
with which to model observables in such calculations. In addition,
our validated complete cosmological model for the PDF allows us to
extend our forecasts to parameters beyond those varied in particular
simulations (see Section 4.3). Note that while the general shape of
derivatives might look similar at a first glance, there are two hints
for potential degeneracy breaking. If derivatives have either different
zero crossings or different extrema locations, this means they are not
proportional to each other. The first can be seen for example in the
positive κ region for the red �cdm and the blue σ 8 line. The second
can be observed from the green line for w whose peak is at a different
location from the rest of the dips.

In Fig. 6, we use the MassiveNuS simulations as a basis for
determining how well our theory captures the effects of massive
neutrinos on the PDF. The fiducial MassiveNuS cosmology (referred
to as model 1b in Liu et al. 2018) has cosmological parameters �m =
0.3, σ 8 = 0.8295 and Mν = 0.1 eV. This is used with a model with
the same �m but without massive neutrinos, which has σ 8 = 0.8523
(model 1a) to calculate the difference shown in Fig. 6. All relevant
cosmological parameters are provided in Table 1 of Liu et al. (2018)
and its caption. We see from Fig. 6 that the effects of adding massive
neutrinos to the cosmology are well captured by the theory.

3.3 The two-point correlation function

We measure the two-point correlation function from the unsmoothed
kappa maps using the TreeCorr Python package (Jarvis, Bernstein &
Jain 2004). We use 50 logarithmically spaced bins from 0.1 arcmin to
400 arcmin. To replicate the small patch areas of our two sets of maps,
we cut low multipoles l < lcut = π /θ sim. For our analysis, we discard
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scales below θmin = 5 arcmin to mitigate small-scale inaccuracies
and artefacts resulting from our cut-off lmax = 4096 when generating
FLASK maps Appendix B4. Note that this restriction of scales
is similar to the one adopted in Patton et al. (2017), where they
performed an l-cut to equate the number of independent modes
in the PDF and the two-point correlation function. In their case,
the PDF smoothing scale of θ � 14 arcmin (Nside = 256) related
to lmax = 886 and a corresponding θmin � π /lmax � 12 arcmin.
The cosmological derivatives for the two-point correlation function
match those generated using Halofit very well and we use the Halofit
derivatives as the input for our Fisher forecasts to avoid simulation
noise and ensure compatibility between the PDF and two-point
correlation function.

4 F I S H E R F O R E C A S T F O R A E U C L I D - L I K E
SURVEY

In this section, we quantify the information content of the lensing
convergence PDF on some key wCDM cosmological parameters
using the Fisher matrix formalism. After having validated our theo-
retical predictions for the PDF and the Halofit two-point correlation
function against simulation measurements, we perform our forecast
using purely those inputs. This is important because, as mentioned in
Section 3.2, we find that apparently negligible amounts of numerical
noise in the PDF derivatives extracted from simulations can lead to
artificially strong constraints.

The Fisher matrix for a set of cosmological parameters, θ , given a
(combination of) statistics s is defined as

Fij =
∑
α,β

∂sα

∂θi

C−1
αβ

∂sβ

∂θj

, (16)

where si is element i of the statistic s and Cα, β are the elements of
the covariance matrix of measurements ŝ of s, defined as

Cαβ = 〈(ŝα − 〈ŝα〉)(ŝβ − 〈ŝα〉)〉 . (17)

where 〈 · 〉 denotes an ensemble average.
The Fisher matrix allows us to determine the error contours on a set

of cosmological parameters under the assumption that the likelihood
is Gaussian. The inverse of the Fisher matrix gives the parameter
covariance. The error on the parameter θ i, marginalized over all
other parameters, is given by

δθi ≥
√

(F −1)ii . (18)

A Fisher analysis has a number of limitations: it only yields real-
istic error bars if measurements of the considered data vectors have
Gaussian noise and if the responses of these data vectors to changing
cosmological parameters are close to linear. We demonstrate that
the distribution of individual bins of the PDFs measured in the
simulations are sufficiently close to a Gaussian distribution in Fig. 7.
We focus on the lowest and highest two κ bins we consider for the
Fisher analysis (see the following section) and make a histogram
of the fluctuations of the individual realizations around the mean in
units of the measured variance. From this figure, we can expect a
small impact of residual non-Gaussianity on the total width of our
forecasted contours. Note that, in contrast, the moments of the lensing
convergence can have strongly non-Gaussian distributions around the
mean, in particular in small simulation patches as demonstrated in
our discussion of moments-based constraints in Appendix A.

Fully realistic data analyses might have to account for systematic
effects by marginalizing over additional nuisance parameters. How-
ever, the main focus of this study is to explore the complementarity

Figure 7. The distribution of realizations around the mean PDF in the lowest
(red) and highest (blue) bins for the smaller smoothing scale (solid) and
the larger scale (dashed). The black line shows a Gaussian of zero mean
and unit variance, which is the expectation for Gaussian noise and a good
approximation to all distributions.

between the two-point correlation function and the one-point lensing
convergence PDF as cosmological probes. Hence, we expect these
limitations to have limited impact on our findings.

4.1 Covariance matrices

In the following, the data vector s entering equation (16) will either
consist of histogram bins of measurements of the convergence
PDF, of measurements of the two-point correlation function of
convergence in a set of angular bins or of a combination of both.
In the cases where s includes PDF measurements we estimate
the covariance matrix that enters equation (16) from a set of Nsim

simulated measurements ŝi , i = 1, . . . , Nsim, as

Ĉα,β = 1

Nsim − 1

∑
i

(ŝi,α − s̄α)(ŝi,β − s̄β ) , (19)

where s̄ = ∑
i ŝi/Nsim is the mean of all measurements. To compute

the Fisher matrix with equation (16), we need to estimate the
inverse covariance matrix or precision matrix. Since matrix inversion
is a nonlinear operation, the noise in the above estimate of the
covariance elements Ĉα,β will lead to a bias in the elements of the
precision matrix. Through a miracle of nature this bias is just a factor
multiplying the entire matrix, the so-called Kaufman–Hartlap factor
(Kaufman 1967; Hartlap, Simon & Schneider 2006),

h = (Nsim − 2 − Ns)/(Nsim − 1) , (20)

where Ns is the number of data points in s. Please note that the
Kaufman–Hartlap factor (but also the more advanced treatment of
Sellentin & Heavens 2016) only correct the width of parameter
contours for bias from covariance estimation noise. This is sufficient
for a Fisher analysis like the one presented here, but it is not sufficient
for parameter estimation based on an actual measurement of s. In
the latter case, covariance noise will not only impact the width of
parameter contours but also introduce additional scatter to the contour
location. This needs to be taken into account independently of the
Kaufman–Hartlap factor, as e.g. described in Dodelson & Schneider
(2013) or even more completely in Percival et al. (2014) (see also
fig. 1 of Friedrich & Eifler 2018, for a visualization of this effect).

In Fig. 8, we show the correlation matrix

Corrij = Cij√
CiiCjj

, (21)
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Figure 8. Upper panel: The reduced cross-correlation matrix (equation 21)
of the weak-lensing convergence PDF at radii θ1 = 7.32 arcmin and θ2 =
10.25 arcmin and source redshift zs = 2 without shape noise. We display
bins [−0.024,0.026] for θ1 and [−0.022,0.022] for θ2, which corresponds
to cutting [2 per cent, 5 per cent] probability in low/high κ . The black
line indicates the diagonal. The lower triangle shows the result from the
256 κ maps created from one DUSTGRAIN-cosmo N-body simulation with
randomization and the upper triangle shows the result from 500 independent
full-sky maps created from FLASK.

for measurements of the convergence PDF at our two smoothing
scales. This matrix visualizes the amount of correlation throughout
the data vector elements. We compare the correlation matrices
obtained from 256 maps from the DUSTGRAIN-cosmo simulations
and from 500 lognormal maps generated using the publicly available
FLASK tool (Xavier et al. 2016) in Fig. 8. In practice, we implement
the latter in our Fisher matrix calculations, but we see that both
methods are in reasonable agreement. Naturally, in both cases, the
measured covariances are rescaled to the area of a Euclid-sized
survey, assuming that the covariance is proportional to survey area.
In the two blocks on the diagonal in Fig. 8 we see that, as expected,
neighbouring PDF bins are positively correlated, while intermediate
underdense and overdense bins are anticorrelated with each other.
Note that the tails of the PDF, which are excluded in the plot, are
strongly correlated with each other and anticorrelated with the peak.
Additionally, we observe that PDFs at different scales are strongly
but not perfectly correlated with each other. This is expected, as the
two smoothing apertures partially (but not perfectly) overlap. The
cross-correlations between PDF bins of different scales look very
similar to the bin correlations for the individual PDFs, because the
matter clustering changes mildly with radius (see fig. 5 in Uhlemann
et al. 2017).

In all contours that only consider the convergence two-point
function we use an analytic covariance model in order to circumvent
noise (and potential small-scale numerical artefacts) associated with
covariance estimation from FLASK. Our covariance model is based
on the lognormal covariance model by Hilbert et al. (2011) but
uses the procedure of Friedrich et al. (2018) to fix the parameters
of the lognormal distribution as well as the analytic treatment of
sky curvature and bin averaging that is detailed in Friedrich et al.
(2020b). We find that our analytic covariance agrees well with the
corresponding estimate from FLASK for the range of scales (bigger
than a few arcmin) for which FLASK can be reasonably applied, see
Fig. B3.

Figure 9. Fisher forecast constraints on �cdm and σ 8 for a Euclid-like survey
from the weak-lensing convergence PDF at zs = 2. Contours are shown for
the PDF measured for a single smoothing scale of θ1 = 7.32 arcmin (cyan),
a single scale of θ2 = 10.25 arcmin (blue), and the two scales combined
(purple). It is clear that the use of two smoothing scales significantly improves
the constraints. The combined PDF contour is oriented along the line of
constant �8 = σ8

√
�m (black dotted line).

4.2 Forecasted constraints for �m, σ 8, w0 and Mν

We now analyse the cosmology-constraining power of the weak-
lensing convergence PDF and its complementarity to the two-point
correlation function. Fig. 9 shows constraints from the convergence
PDF for two individual smoothing scales and their combination.
It is clear that combining two smoothing scales helps reduce the
degeneracy between �cdm and σ 8 because the �cdm derivative is
a function of the smoothing scale (see Fig. 2). We see that the
degeneracy direction aligns roughly with the �8 = σ8

√
�m direction.

Fig. 10 compares the PDF constraints on �cdm and σ 8 at two
scales to other probes: the two-point correlation function with θmin =
5 arcmin and CMB-based constraints from Planck 2018 (Planck
Collaboration VI 2020). The Planck constraints are extracted from
the TTTEEE lowl lowE chains in the Planck legacy archive for the
base cosmology. This corresponds to data from the Planck TT, TE
and EE spectra at l > 30 plus low-l TT and EE spectra. In later figures,
we use instead the base w data set for the wCDM cosmology or
base mnu for the �CDM+Mν cosmology. The covariance matrices
are generated specifically using �cdm/h2 as the �cdm value for each
run (i.e. not using the values provided for �m). It is important to
note that all the Planck constraints here come marginalized over the
standard �CDM parameters as a minimum (including h, ns, �b)
while our PDF and two-point correlation function Fisher matrices
are marginalized only over the parameters shown in each contour
plot.

We see that the constraints in Fig. 10 compare favourably with
those from the two-point correlation function, although the degener-
acy direction in both cases is similar. This is due to the fact that we
have fixed all other cosmological parameters here. The degeneracy
directions can differ as soon as one varies more parameters. We
demonstrate this effect in Fig. 11, which extends the calculation
to include constraints on w0 and looks more promising. Here we

MNRAS 505, 2886–2902 (2021)



2896 A. Boyle et al.

Figure 10. As Fig. 9, but presenting a comparison of the constraints from
the PDF with two smoothing scales (purple) to constraints from other
probes. Contours for the two-point correlation function with θmin = 5
arcmin are shown in green. CMB-based constraints from the Planck 2018
TT,EE,EE+lowl+lowE data set are shown in yellow (see the text for details)
and show a clearly complementary degeneracy direction. Constraints from
the second and third moments alone (pink) slightly outperform the PDF. We
note this is not a contradiction as we use a truncated PDF. Some details on
the use of moments for constraints are given in Appendix A.

Figure 11. As Fig. 10, but extended to include the dark energy equation of
state w0 as an additional free parameter.

show that adding information from the PDF has the potential to
break degeneracies between w0 and both �cdm and σ 8, potentially
tightening constraints considerably. We see something similar in
Fig. 12, which shows simultaneous constraints on �cdm, σ 8 and
Mν . It is not possible to extract meaningful constraints on Mν

using either CMB or large-scale structure information alone. But
the PDF information content compares well with that from the two-

Figure 12. As Fig. 10, but extended to include the total mass of neutrinos
Mν as an additional free parameter.

point correlation function, and the degeneracy directions are shifted
somewhat, allowing for potential degeneracy breaking by combining
the two probes.

We can also use the Fisher matrix forecasting method to analyse
the robustness of our results. For instance,we find that implementing
the full differential equations for cylindrical collapse instead of the
approximation given in equation (7) makes no difference to the
results.

4.3 Extended parameter set constraints

The PDF derivatives for the parameters presented in Figs 9–12
have all been validated using simulations (see Section 3.2). It is
reasonable to assume that it is therefore safe to extend the application
of the model to other cosmological parameters to produce more
quantitative results relevant for a realistic future surveys. While
an in-depth analysis of the relevant degeneracies and a realistic
redshift distribution is beyond the scope of this work, we analyse
the key effects of varying the full set of cosmological parameters.
In Table 2, we present forecasted cosmological constraints from
the PDF marginalized over the standard �CDM parameters, and
combined with the CMB prior from Planck described in the previous
subsection.

As we aim for these results to represent more realistic constraints,
we also choose to be more conservative with our shape noise
parameters, adopting ngal of 8 arcmin−2 instead of 30 arcmin−2,
which approximately doubles the shape noise standard deviation. We
do this because in practice the total number of galaxies would not
be located at a single source redshift, but instead distributed across
different redshift bins according to the source galaxy distribution
ns(zs). This can be included in our formalism by replacing the weight
function from equation (2) by

ωns
(z) = 3 �m H 2

0

2 c2

∫
dzs

dA(z) dA(zs, z)

dA(zs)
(1 + z)ns(zs). (22)

Overall, the constraints in Table 2 are very promising. The con-
straints in the �CDM case are comparable, but the PDF significantly
outperforms the two-point correlation function once a free neutrino
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Table 2. Upper panel: Percentage improvements in the 1σ constraints from
Planck (TTTEEE lowl lowE) when adding the convergence PDF at two
combined smoothing scales at zs = 2 from a Euclid-like survey. Lower
panel: Percentage improvements in the constraints from Planck combined
with the PDF over constraints from Planck and the two-point correlation
function. Note that we take a more conservative approach to shape noise
here compared to in Figs 9–12 (see the text).

Planck+PDF versus Planck �CDM �CDM+Mν wCDM

�cdm +55% +43% +65%
σ 8 +43% +40% 79%
�b +52% +37% +67%
ns +25% +24% +20%
h +53% +39% +74%
Mν (eV) – +31% –
w0 – – +78%

Planck+PDF versus Planck+2pcf �CDM �CDM+Mν wCDM
�cdm 0% +23% +36%
σ 8 +8% +32% +35%
�b +0% +26% +37%
ns +0% +2% +4%
h +0% +25% +36%
Mν (eV) – +27% –
w0 – – +40%

mass or dark energy equation of state is introduced. We generally find
that the resulting contours have quite similar (though not precisely
identical) degeneracy directions, as was also seen by Patton et al.
(2017), for example. In the �CDM case, strong constraints from
Planck mean the advantage of the PDF over the two-point correlation
function seen in Fig. 10 becomes less relevant. When additional free
parameters that are poorly constrained by the Planck covariance
matrix are introduced, this is no longer the case. The PDF can
constrain Mν over 25 per cent better and w0 about 40 per cent
better than the two-point correlation function. An examination of
the individual Fisher matrices reveals that the advantage of the PDF
lies primarily in its ability to better constrain σ 8 than the two-point
correlation function. Of course, both Mν and w0 are anticorrelated
with σ 8, resulting in the improved constraints we see in Table 2.

Finally, we note that combining Planck with both the PDF and two-
point correlation, we expect a modest improvement of 15 per cent
on σ 8 constraints for base LCDM. For the extended models we see
up to a 50 per cent improvement for most parameters in the w0CDM
and νLCDM cosmologies, except for ns, which is still strongly
constrained by Planck. In particular we noticed a 40–45 per cent
improvement on σ 8, Mν , w0 and h. Note that the improvement of
the PDF over the two-point correlation tends to be reduced by the
presence of shape noise. We expect that when repeating a similar
analysis at lower source redshifts zs ∼ 1 with a larger smoothing
scale ∼20 arcmin (thus keeping the degree of nonlinearity roughly
the same as for our current set-up), the impact of shape noise will be
smaller and the PDF potentially even more powerful.

4.4 Comparison with previous work

There are several works in the literature that provide us with useful
points of comparison for our results. The results of Patton et al.
(2017) are perhaps the best suited to comparison with this work.
They provide a simulation-based Fisher analysis of the PDF using the
fast L-PICOLA perturbative mocks. Although the mocks are based
on Lagrangian perturbation theory and not expected to fully capture
the non-Gaussian convergence PDF, they confirm that competitive

constraints can be achieved from the convergence PDF compared to
the cosmic shear power spectrum including an equivalent number
of modes in each measurement. They extract their PDFs from a
convergence field smoothed on a scale of approximately 13.7 arcmin,
which is a little larger than the scales considered for our Fisher
forecast. For their Fisher forecast, they vary the parameters {�m,
H0, σ 8} and include a CMB prior on �m = �mh2. They find that
combining the PDF with the power spectrum improves the �m − σ 8

constraints by a factor of two despite the quite similar degeneracy
directions between these two parameters for the two probes. They
also highlight that limiting the convergence PDF to values of κ

> 0 results in significant degradations in the constraints, and that
the convergence PDF provides significant information that is not
available in the peaks of the convergence field alone.

Liu & Madhavacheril (2019) performed a joint simulation-based
analysis of the constraining power of the weak-lensing power
spectrum and PDF for an Rubin Observatory-like survey, focusing
particularly on constraining the neutrino mass. Their simulation-
based MCMC forecast (using the same MassiveNuS simulation) also
combines information from five source redshift bins. The authors
focus on the PDF smoothed in Fourier space, on a scale roughly
corresponding to 2 arcmin, which represents a more nonlinear regime
than that considered in this work, and also give results focused on
a single source redshift for zs = 1. They also find that the PDF
compares well with the power spectrum as a cosmological probe,
finding that the PDF provides generally stronger constraints. They
find that both combining the PDF and power spectrum and making
use of a tomographic analysis can significantly improve constraints.
For now we keep these extensions for future work.

A recent paper by Thiele et al. (2020) provides a nice complement
to this work. The authors provide an analytical model for the weak-
lensing convergence PDF based on the halo model, which is suited
for smaller smoothing scales but not accurate enough on the mildly
nonlinear scales considered in this work. The authors provide results
from a Fisher forecast for a Rubin Observatory-like survey and show
promising results for constraints on the neutrino mass when a CMB
prior on As is included, and find reasonable agreement with the results
of Liu & Madhavacheril (2019).

Friedrich et al. (2018) and Gruen et al. (2018) indirectly analysed
the joint PDF of line-of-sight projected galaxy density and lensing
in year-1 data of the Dark Energy Survey, using the technique of
density split statistics. In this approach, the PDF of foreground galaxy
counts is split into a set of density quantiles, and the strength of
tangential gravitational shear around these quantiles is used to probe
the underlying projected matter density PDF. Using the modelling
of Friedrich et al. (2018) (which is based on principles related to
the LDT ansatz presented here) Gruen et al. (2018) were able to
simultaneously measure σ 8, �m, linear galaxy bias and galaxy-matter
stochasticity and at the same time test for deviations from the �CDM
predictions for the skewness of the matter density field. Their success
with observational data is a proof of concept, indicating also that the
results presented here carry over to real data analysis.

5 C O N C L U S I O N

In this work, we have extended the theoretical model for the weak-
lensing convergence PDF from Barthelemy et al. (2020a) to include
massive neutrinos and the dark energy equation of state. We showed
that its per cent level accuracy allows for robust calculations of Fisher
derivatives for a range of cosmological parameters through validation
with simulated lensing maps, see Figs 5 and 6. We found that
Halofit (Bird et al. 2012; Takahashi et al. 2012) provides sufficiently
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accurate nonlinear variances for the calculation of such derivatives.
Furthermore, accurate covariance matrices for Fisher forecasts can be
derived from fast simulation codes like FLASK. Therefore, theory-
based forecasts as provided in this paper can easily be carried out
without the need for expensive N-body/ray-tracing simulations. We
have focused on the central region of the PDF, which has a Gaussian
likelihood, making the Fisher matrix a natural tool for quantifying the
cosmological information contained within it. This is to be contrasted
with the first few moments of the convergence field, for which the
likelihood of exhibits significant non-Gaussian features (see Fig. A1).

Using our Fisher matrix forecasts, we have demonstrated the value
of the weak-lensing convergence PDF as a cosmological probe, and
its complementarity to the two-point correlation function and CMB
data. We have shown that even with a single source redshift, the
convergence PDF can provide useful information for constraining
cosmology that outperforms that from the convergence two-point
correlation function. Our theoretical model has allowed us to perform
the first forecast for the weak-lensing convergence PDF that varies
a complete set of �CDM parameters (see Table 2). Our comparison
could be seen as quite conservative, as we focus on a single source
redshift, although it is at quite high redshift (zs = 2) due to limitations
of the smoothing scales accessible in small aperture simulated maps.
While lower source redshifts should produce more non-Gaussian
information, they also push the model further into the nonlinear
regime, which can be compensated by increasing the smoothing
scale accordingly. The particular power of the PDF over the two-
point correlation comes from its superior capacity to constrain σ 8 –
this leads directly to better constraints on both Mν and w0, both of
which are degenerate with σ 8.

There are many natural extensions to this work. An obvious
place to start would be with introducing multiple source redshifts to
examine the constraining power of a tomographic analysis, which Liu
et al. (2018) found produced significant improvements in forecasted
constraints on Mν . In Barthelemy et al. (2020b), the model for the
PDF outlined in this work was applied to the CMB lensing PDF,
and the cosmological constraints achievable with such a formalism
would be another interesting avenue for exploration, although the
non-Gaussian information content is smaller so the PDF might be a
relatively weaker measurement in this case.

Finally, we would like to comment on our choice to use an
indirect observable, the convergence, rather than shear components
for instance, with the risk of introducing biases in the conversion.
The main advantage of basing a theoretical analysis like this one
on weak-lensing mass maps is that they allow for easier intuitive
understanding of the connection between results for the projected
matter density and lensing. Nonetheless, we note that Patton et al.
(2017) allowed for both multiplicative and additive shear biases in
their analysis, and that they found qualitatively similar results with
and without marginalization over these systematics, highlighting that
the cosmological information from the PDF seems less sensitive to
these biases than the power spectrum. Furthermore, we note that
an analysis of one-point statistics for the DES has been performed
based on moments of the convergence (Gatti et al. 2020) and shear
profiles around density quantiles (Friedrich et al. 2018; Gruen et al.
2018). We also note that the tangential shear profile around the line
of sight can be directly inferred from the convergence profile as in
equation (II.6) of Friedrich et al. (2018). Pires et al. (2020) presented
significant improvements on the Kaiser–Squires method with a novel
mass-inversion method (KS+) that corrects for systematic effects,
and pointed out that convergence maps could play an important role in
the analysis for future surveys (highlighting non-Gaussianity studies
as a specific example) because the lensing signal is more compressed

in convergence maps, leading to less computational expense. We also
emphasize once again that the mean (which cannot be reconstructed)
has been subtracted in the simulated mass maps we have used. As
shown by Barthelemy et al. (2020a) it is possible to extend large
deviation theory and the nulling principle to the aperture mass, which
is much more tightly linked to measured shear data and we believe
that the main conclusion of our investigations will not be changed
with such more specific observables.
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Harnois-Déraps J., Martinet N., Castro T., Dolag K., Giblin B., Heymans C.,

Hildebrandt H., Xia Q., 2020, MNRAS, preprint (arXiv:2012.02777)
Hartlap J., Simon P., Schneider P., 2006, A&A, 464, 399
Heymans C. et al., 2021, A&A, 646, A140
Hikage C. et al., 2019, PASJ, 71, 43
Hilbert S., Hartlap J., Schneider P., 2011, A&A, 536, A85
Hilbert S. et al., 2020, MNRAS, 493, 305
Hill J. C., Sherwin B. D., 2013, Phys. Rev. D, 87, 023527
Ivanov M. M., Kaurov A. A., Sibiryakov S., 2019, J. Cosmol. Astropart.

Phys., 2019, 009
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A P P E N D I X A : L A R G E D E V I AT I O N T H E O RY
AND MOMENT-BASED CONSTRAI NTS

A1 Large-deviation theory in a nutshell

In this appendix, we provide more background equations relevant to
the derivation of the theoretical model presented in Section 2 and
more specific details on the calculation of the matter density CGF
in cylinders. For a more elaborate derivation we refer the reader to
Barthelemy et al. (2020a).

In general terms, the cumulant generating function (CGF) φX of
a continuous random variable X (such as the density contrast) is the
logarithm of the moment generating function, which is the Laplace
transform of the associated PDF

φX(y) = log(MX(y)) =
∞∑

n=1

kn

yn

n!
. (A1)

kn are the cumulants (connected moments) of the distribution. In our
theory, the mean, k1, is assumed to be zero. The scaled cumulant
generating function (SCGF), ϕX,

ϕX(y) = lim
k2→0

∞∑
n=0

Sn

yn

n!
(A2)

is a related quantity that is key to large deviation theory and that
defines the reduced cumulants Sn:

Sn = kn

kn−1
2

. (A3)

The CGF and SCGF in the zero variance limit are straightfor-
wardly related as ϕX(y) = limk2→0 k2φX(y/k2). For random variables
satisfying a large deviation principle, the SCGF is given through
Varadhan’s theorem as the Legendre–Fenchel transform of �X,
which is called the rate function

ϕX(y) = sup
X

[yX − �X(X)]. (A4)

When � is convex, this reduces to a simple Legendre transform and

ϕX(y) = yX − �X(X), (A5)

with the stationary condition defining the relationship between X and
y

y = ∂�X

∂X
. (A6)

The crucial element of LDT is the contraction principle, which
gives that the rate function for any variable that is a function of X
can be determined assuming only the most likely mapping between
the two variables. This is what allows us to define the rate function
using only cylindrical collapse in Section 2. The final SCGF of the
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Figure A1. The distributions of the third and fourth central moments taken
from 256 25 deg2 patches from FLASK-generated maps.

cylindrically-filtered density is given by

ϕcyl(y) = sup
δ

[
yδ − σ 2

l (Dθ, L, z)

2σ 2
l (Dθ

√
1 + δ, L, z)

τ 2(1 + δ)

]
. (A7)

This can easily be re-written in terms of φcyl(y), which is the form
that is implemented in our code. This also connects it to the overview
given in Section 2, where we deal only in terms of φ for simplicity.

A2 Moments

In Fig. 10, we show that a large part of the information contained in
the PDF comes from the second and third moments alone. This is to be
treated with some caution, however, as we remove information from
the PDF by truncating the tails, while the full distribution of values
is included in our measurements of the moments. The moments-only
constraints also benefit from a smaller Kaufman–Hartlap factor (see
equation 20). In addition, constraints with a finite number of moments
can only perform well when the total number of observables (in the
case of Fig. 10, two scales and two moments, so four) is greater than
the number of parameters being constrained.

Furthermore, we can highlight a particular advantage of perform-
ing Fisher matrix calculations with the bulk of the PDF instead
of individual moments: the individual moments show very non-
Gaussian distributions when measured from simulations with small
patch sizes. Fig. A1 shows the distributions of the third and fourth
moments measured at two smoothing scales measured from patches
of FLASK-generated maps with side length 5◦. This is not the case
for the bulk of the PDF as used in this work (see Fig. 7).

A P P E N D I X B : SI M U L AT I O N S A N D
N U M E R I C A L TO O L S

B1 DUSTGRAIN-cosmo

The DUSTGRAIN-pathfinder simulations (Giocoli et al. 2018) are a
suite of cosmological simulations originally designed to sample
several different combinations of modified gravity and massive
neutrinos cosmologies – performed with the MG-GADGET N-body
code (Puchwein, Baldi & Springel 2013) and subsequently post-
processed with the weak-lensing map making code MapSim (Giocoli
et al. 2014). The original DUSTGRAIN-pathfinder suite described
in Giocoli et al. (2018) has been further extended to include a set of
standard �CDM cosmologies with specific deviations of individual
cosmological parameters from their fiducial values, as summarized

in Table 1. We call this new set of simulations the DUSTGRAIN-
cosmo suite. The simulations follow the evolution of 7683 dark matter
particles in a periodic cosmological volume of 750 Mpc h−1 per side,
starting from initial conditions generated at z = 99 from a random
realization of an initial matter power spectrum computed through the
CAMB Boltzmann solver (Lewis, Challinor & Lasenby 2000) within
the Zel’dovich approximation.

The light-cone is built using the MAPSIM routine (Giocoli et al.
2014) following the geometry illustrated in Fig. B1. The approach
is based on using several snapshots from a single realization N-
body simulation to build a light-cone up to z = 4. For DUSTGRAIN-
cosmo there are 21 snapshots available. Given the box length of
750 Mpc h−1, roughly seven (five) boxes are needed to cover the
comoving distance of about 5 (3.6) Gpc h−1 to zs = 4 (zs = 2). To
obtain better redshift sampling, each simulation volume necessary
for constructing the light-cone is divided along the line of sight into
multiple redshift slices obtained from the individual snapshots. If the
redshift slice reaches beyond the boundary of a single box, two lens
planes are constructed from a single snapshot. The total number of
lens planes up to zs = 4 (zs = 2) is 27 (19). To avoid replicating
the same structure along the line of sight, the seven boxes needed to
cover the light-cone are randomized. This randomization procedure
allows to extract multiple realizations from a single simulation.
Randomization is achieved by using seeds that act on the simulation
boxes based on

(i) changing the location of the observer, typically placed on the
centre of one of the faces of the box,

(ii) redefining the centre of the box (taking advantage of periodic
boundary conditions), and

(iii) changing the signs of the box axes.

Note that the same randomization process is applied to all redshift
slices belonging to the same box to avoid spatial discontinuities
(Roncarelli et al. 2007). A comparison of key statistics of the lensing
field obtained from different routines based on replicating the original
box volume along the line of sight can be found in Hilbert et al.
(2020). Note that in the end the mean of the individual weak-lensing
convergence maps is subtracted.

B2 MassiveNuS

The MassiveNuS simulation suite is described in Liu et al. (2018).
It is based on N-body simulations for dark matter particles with a
linear treatment of neutrinos in a box of side length 512 Mpc h−1.
Similarly to the case for DUSTGRAIN-cosmo, for a given cosmology,
the light-cone is built from a single N-body realization with ray-
tracing as implemented byLensTools. The slices used to construct
the light-cone have a constant thickness of 126 Mpc h−1 and are
taken from different randomizations of the single box at the given
snapshot. This is different from the MapSim procedure adopted for
DUSTGRAIN-cosmo, where the same randomizations are kept across
different slices fitting in a single box (indicated as a common colour
in Fig. B1). Large sets of maps (10 000 each) usable for validating
Fisher derivatives are provided only for two cosmologies, with equal
�m and As but different values of Mν and therefore of σ 8. Note that
the individual κ maps in MassiveNuS have non-zero means, which is
one difference between these maps and those of DUSTGRAIN-cosmo.

B3 Takahashi full-sky lensing simulations

In Section 3.1, we use a PDF measured from the 108 full-sky lensing
convergence maps provided by Takahashi et al. (2017) to validate
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Figure B1. Illustration explaining how the DUSTGRAIN-pathfinder light-cones up to source redshift zs = 2 are built from a single realization N-body simulation
of box size 750 Mpc h−1. To reach the source redshift of zs = 2, the box is replicated 5 times along the light-cone up to zs = 2. A randomization procedure is
applied to (a) avoid replicating the same structure along the line of sight (same colour indicates same randomization) and (b) generate 256 realizations.

our theoretical model. These simulations are ideal for validating our
model because they avoid any errors introduced by small patch sizes,
but they are only available for a single fiducial cosmology, and so
cannot be used to validate our cosmological derivatives. The method
used to construct these lensing maps differs slightly from that of
DUSTGRAIN-cosmo and MassiveNuS. The ray-tracing procedure is
performed through a set of nested cubic simulation boxes around
the observer. Each box has 20483 DM particles, so the resolution is
higher in boxes closer to the observer. The final maps are generated
with a resolution of 0.86 arcmin.

B4 FLASK

We use FLASK (Xavier et al. 2016) to generate a large number
of lensing maps with which to compute the covariance matrix for
our PDF Fisher matrix calculations. FLASK can generate lensing
convergence maps using two possible approaches. The first is by
assuming the convergence field can be well fit by a shifted lognormal
distribution. The second approach instead simulates the density field
as a function of redshift as a lognormal distribution, and obtains
the convergence map by integrating along the line of sight. Here
we make use of the first approach which is sufficient to obtain
good agreement with the simulation measurements. FLASK is built
to generate lensing convergence (or other) maps whose one-point
distribution is close to a shifted lognormal (Clerkin et al. 2016;
Hilbert et al. 2011)

PLN(κ) = �(κ − κ0)

(κ − κ0)
√

2πσ
exp

[
− (ln(κ − κ0) − μ)2

2σ 2

]
, (B1)

where the mean is μ = ln (− κ0 + 〈κ〉) − σ 2/2. The variance of κ is
related to the parameters as σ 2

κ = exp(2μ + σ 2)(exp(σ 2) − 1).
The primary input required by FLASK is a set of lensing Cl

generated using a Boltzmann solver like CLASS or CAMB, which
we generate up to l = 10 000. The shift parameter, λ, is then set to
replicate the desired skewness (Xavier et al. 2016):

λ = σ

μ̃3

(
1 + y(μ̃3)−1 + y(μ̃3)

) − 〈κ〉,

y(μ̃3) = 3

√
2 + μ̃2

3 + μ̃3

√
4 + μ̃2

3

2
, (B2)

where 〈κ〉 is the desired mean, σ the target variance, and μ̃3 the
skewness. We use FLASK to generate maps of HEALPIX resolution
Nside = 4096, which corresponds to a pixel size of approximately

Figure B2. Upper panel: Logarithmic view of the κ correlation functions
measured from different simulations (data points). The lines show the halofit
predictions for full sky (solid and dotted line) and small patches of 5◦ and
3.5◦ with subtracted mean (dashed lines). To show the cut-off that is imposed
by using small patches with subtracted mean κ̄ , we plot measurements from
small patches cut from the FLASK full sky maps which have been generated
with the halofit power spectrum. MassiveNuS maps have been obtained from
maps including the mean κ̄ instead which restores large-scale power. Lower
panel: Residuals between the curves shown above.

0.86 arcmin, and then smooth to our required scales. In the end, we
find that the mean FLASK PDF agrees with the theoretical one to
within 1.25 per cent for all bins used in our Fisher analysis for both
smoothing scales. Note that our procedure relies on a theorem by
Szyszkowicz & Yanikomeroglu (2009). They show that the average
of correlated lognormal random variables yields a random variable
well described by a lognormal PDF with the same value of μ̃3. This
allows us to impose our desired value of the skewness on the grid
scale and obtain the same value also on larger smoothing scales.
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Figure B3. Variance of the κ two-point correlation function bins rescaled
to a common sky area of 15 000 deg2. We validate the theoretical prediction
from the lognormal model (black line) against the measurements from full sky
FLASK maps (black data points). We also show that considering small patches
with mean subtraction (blue and red crosses) underestimate the covariance and
are equivalent to imposing an lmin cut appropriate for the different patch sizes
in the theory (dashed lines). Those predictions are in broad agreement with the
measurements from small patch simulations of DUSTGRAIN-pathfinder (blue
points), with deviations driven by residuals of the two-point correlation with
respect to Halofit (see Fig. B2).

B5 Limitations of measurements in small simulated maps

In Fig. B2, we show a comparison of the measured two-point
correlation function in the Takahashi full-sky maps (Takahashi
et al. 2017), as well as the small patches from the DUSTGRAIN-
pathfinder simulations (Giocoli et al. 2018) and MassiveNuS (Liu
& Madhavacheril 2019) to the Halofit prediction (Takahashi et al.
2012; Bird et al. 2012) as implemented in CLASS. Note that the
convergence maps from the DUSTGRAIN-pathfinder simulations have
been constructed to remove the mean κ̄ , while this mean is included
in the MassiveNuS maps. The upper panel shows an overall good
agreement between the measurements and the predictions when
taking into account that a small map of side length L with mean
subtraction requires to perform a cut in the l-range with roughly lmin �
180◦/L. The lower panel focuses on residuals and shows an exquisite
agreement between Halofit and the full-sky maps from (Takahashi
et al. 2017), but a few-percent discrepancies between Halofit and
the two-point correlation functions measured from small maps of
DUSTGRAIN-pathfinder and MassiveNuS. To establish a baseline and
isolate potential errors coming from the finite range of l ∈ [lmin,
lmax = 20 000], we also show residuals for κ maps from FLASK
(generated from the Halofit Cls) when considering a full sky or
smaller patches (black lines). Note that the residuals seen in Fig. B2
are very consistent across all DUSTGRAIN-cosmo cosmologies, which
ultimately means that they cancel out in the derivatives and we find
very good agreement between simulation and theory.

In Fig. B3, we demonstrate that the covariance of the two-
point correlation measured from small patches significantly under-
estimates the covariance from full-sky maps. This can artificially
improve the constraining power of the two-point correlation function
(or equivalently the power spectrum Cl) compared to higher-order
statistics, which can be less affected from small patch sizes. As we
demonstrated in the main text, the covariance of the κ PDF bins
are largely independent of the patch size. Hence we caution that
analyses based on covariances from small patches can underestimate
the constraining power of the convergence PDF compared to the
two-point correlation.

APPENDI X C: PERFORMI NG THE LAPLACE
TRANSFORM USI NG AN EFFECTI VE MAPPING

To perform the inverse Laplace transform in equation (9), one can
apply a method first described in Bernardeau & Valageas (2000).
We assume the difference between the unsmoothed Gaussian initial
field and the evolved, smoothed field can be combined into a single
effective mapping, ζ (τ eff). In this case, the SCGF (see equation A5)
can be written as

ϕ(y) = yζ (τeff ) − 1

2
τ 2

eff . (C1)

The stationary condition (equation A6) then becomes

y = d

dζ

τ 2
eff

2
= τeff

(
dζ (τeff )

dτeff

)−1

. (C2)

The effective mapping ζ (τ eff) can now be written in the form of a
vertex generating function

ζ (τeff ) =
n∑

k=0

μk

k!
τ k

eff, (C3)

where μ0 = 0, μ1 = 1. The remaining coefficients can be fitted to
the derived SCGF we want to transform, and this fit can then easily
be continued into the complex plane. To fit the values of μ, we must
express both ζ (τ eff) and τ eff in terms of the variable y. This can be
achieved using equation (A5):

dϕ(y)

dy
= ζ (τeff ), (C4)

and from equation (C1) therefore

1

2
τ 2

eff = y
dϕ(y)

dy
− ϕ(y). (C5)

We find that the fitting of μ using a table of τ eff and ζ (τ eff) values
performs well with a polynomial of order 9. In practice one can also
perform the fit for the CGF φ(y) instead, with the μ values being
linked as μCGF

k = σ kμk . Ultimately, this allows for straightforward
numerical computation of the inverse Laplace transform.

Technically the convergence itself does not satisfy a large deviation
principle, unlike the projected density in slices used to build up the
model used here. However, this effective mapping approach still
works well for the convergence because the form of the bulk of
the PDF is dominated by the first few cumulants and its unimodality,
while the assumption of LDT only affects the PDF around the critical
point quite far into the tails. Barthelemy et al. (2021) tried applying
the effective mapping approach to individual redshift slices, but found
the result was not significantly different to that obtained by applying
the effective mapping approach directly to the convergence CGF.
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