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ABSTRACT

The interpretation of cosmological observations relies on a notion of an average Universe, which is usually considered as the homo-
geneous and isotropic Friedmann-Lemaître-Robertson-Walker (FLRW) model. However, inhomogeneities may statistically bias the
observational averages with respect to FLRW, notably for distance measurements, due to a number of effects such as gravitational
lensing and redshift perturbations. In this article, we review the main known theoretical results on average distance measures in cos-
mology, based on second-order perturbation theory, and we fill in some of their gaps. We then comprehensively test these theoretical
predictions against ray tracing in a high-resolution dark-matter N-body simulation. This method allows us to describe the effect of
small-scale inhomogeneities deep into the non-linear regime of structure formation on light propagation up to z = 10. We find that
numerical results are in remarkably good agreement with theoretical predictions in the limit of super-sample variance. No unexpect-
edly large bias originates from very small scales, whose effect is fully encoded in the non-linear power spectrum. Specifically, the
directional average of the inverse amplification and the source-averaged amplification are compatible with unity; the change in area
of surfaces of constant cosmic time is compatible with zero; the biases on other distance measures, which can reach slightly less than
1% at high redshift, are well understood. As a side product, we also confront the predictions of the recent finite-beam formalism with
numerical data and find excellent agreement.
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1. Introduction

On very large scales, our Universe seems to be well described
by a spatially homogeneous and isotropic Friedmann-Lemaître-
Robertson-Walker (FLRW) model (Green & Wald 2014). This
model allows us to predict the dynamics of cosmic expansion as
a function of the Universe’s content, and of the laws of gravita-
tion. Furthermore, the FLRW model constitutes a rather efficient
framework to interpret the observation of remote light sources;
in particular, it provides the relation between their redshift z and
their angular or luminosity distance D.

The distance-redshift relation D(z) is prominent in cosmol-
ogy, as it is involved in the interpretation of various observables.
Its first derivative today defines the Hubble-Lemaître con-
stant, dD/dz|0 = c/H0, whose exact value is still subject to
a lively debate (Planck Collaboration VI 2020; Riess et al.
2019; Wong et al. 2019; Freedman et al. 2019). More gener-
ally, D(z) constitutes the essence of the Hubble diagram of type-
Ia supernovae (SNe, Scolnic et al. 2018; Abbott et al. 2019),
which historically revealed the acceleration of cosmic expansion
(Perlmutter & Aldering 1998; Riess et al. 1998), as well as
the Hubble diagram of gravitational-wave standard sirens in
the near future (Holz & Hughes 2005; Caprini & Tamanini
2016). The D(z) relation is also essential in the analysis of
the anisotropies of the cosmic microwave background (CMB,
Planck Collaboration VI 2020), or in the baryon-acoustic oscilla-
tion signal observed in galaxy, Lyman-α or quasar surveys (Alam
et al. 2021), because it converts the observed angular size of the

sound horizon θ∗ into a physical distance rs = D(z∗)θ∗ that may
be predicted by theory.

In the actual inhomogeneous Universe, however, the D(z)
relation is affected by various effects, such as gravitational lens-
ing (Schneider et al. 1992) which tends to focus and distort
light beams, thereby changing the apparent size and brightness
of light sources; it is also affected by the peculiar velocities of
the sources and the observer, which correct the observed redshift
via the Doppler effect (Hui & Greene 2006; Davis et al. 2011).
Such effects make D(z) line-of-sight dependent, but it is gener-
ally assumed that the FLRW prediction is recovered on average.

The fundamental question of whether the average D(z) is the
same as the D(z) of the average Universe goes back more than
50 years, when Zel’dovich (1964) and Feynman (in a colloquium
given at Caltech the same year)1 suggested the following: if the
Universe is lumpy, then a typical light beam should mostly prop-
agate through under-dense regions, and thereby be de-focussed
with respect to FLRW; this should imply that D(z) is actually
biased up. Many developments and counter-arguments followed
from that seminal idea; we refer the interested reader to the intro-
duction of Kaiser & Peacock (2016, hereafter KP16) and the
comprehensive review by Helbig (2020) for details.

In that debate, a significant step was made by Weinberg
(1976), who showed that in a Universe sparsely filled with point
masses, the average flux ∝〈1/D2(z)〉 is the same as if the mat-
ter in those lenses were homogeneously distributed in space.

1 This talk was mentioned in the introduction of Gunn (1967).
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Importantly, Weinberg’s calculation was made at first order in
the small projected density of the lenses2. As such, it also
implies that 〈D(z)〉 is unaffected by inhomogeneities at that
order, because the difference between 〈1/D2〉 and 1/〈D〉2 only
appears at second order. Weinberg nevertheless conjectured, on
the basis of flux conservation, that the invariance of 〈1/D2(z)〉
may be exact and hold for any matter distribution. As noted by
Ellis et al. (1998), this general flux-conservation argument is, in
fact, incomplete because it implicitly assumes that the area of
surfaces of constant redshift are unaffected by inhomogeneities,
which is a mere reformulation of the whole problem.

For a long period of time, all this discussion remained mostly
centred on the observation of individual sources, with the aim of
predicting possible biases on the Hubble diagram; it became a
somewhat marginal topic from the end of the 1980s, presum-
ably because the precision of cosmological measurements was
not sufficient to be sensitive to the expected biases on 〈D(z)〉.
Interest in that matter was nevertheless revived by Clarkson et al.
(2014), who made the rather surprising claim that lensing affects
the distance to the last-scattering surface (LSS) at percent level,
which would be dramatic for the standard interpretation of the
CMB. This claim was then retracted by (almost) the same team
in Bonvin et al. (2015a), who with KP16 clarified that: (i) the
average distance to the LSS is not relevant to the standard CMB
analysis; and (ii) one must distinguish between the concepts of
directional averaging, source-averaging, or ensemble-averaging,
which may yield different results (Bonvin et al. 2015b). Such
considerations on cosmological averages were actually elaborat-
ing on an earlier work by Kibble & Lieu (2005).

In the end, for the CMB just as for the Hubble diagram, the
whole problem boils down to the validity of Weinberg’s conjec-
ture which states that the area of LSS, A∗, or the area of constant-
redshift surfaces, A(z), are not significantly affected by inhomo-
geneities. KP16 undertook the difficult task to explicitly check
this conjecture in the framework of cosmological perturbations
at second order. With a rather intuitive approach, KP16 identified
several key effects such as the shortening of the radius reached
by rays due to their deflection, or the increase in A∗ due to its
wrinkles, and eventually reached the conclusion that A∗ cannot
be biased by more than a part in a million. They identified that
the relevant structures responsible for such a bias are rather large
in size, of the order of 50 h−1 Mpc.

Most of the theoretical work depicted above was done using
cosmological perturbation theory on an FLRW background (see
also Sasaki 1987; Bonvin et al. 2006; Ben-Dayan et al. 2012;
Umeh et al. 2014; Yoo & Scaccabarozzi 2016). However, this
theoretical framework is not guaranteed to provide a good rep-
resentation of the Universe, as it does not access the highly
non-linear regime of structure formation. That is why one may
prefer to rely on numerical simulations and ray-tracing methods,
in order to accurately describe the propagation of light in a real-
istic picture of the cosmos.

As a first step, a significant research endeavour was dedi-
cated to ray tracing and distance measurements in cosmological
toy-models, such as Swiss-cheese models (Brouzakis et al. 2007,
2008; Marra et al. 2008; Biswas & Notari 2008; Vanderveld et al.
2008; Valkenburg 2009; Clifton & Zuntz 2009; Bolejko 2009,
2011; Bolejko & Célérier 2010; Szybka 2011; Flanagan et al.
2013; Fleury et al. 2013; Fleury 2014; Troxel et al. 2014; Peel

2 In a more modern language, we may say that the calculation was
made at first order in the micro-lensing optical depth τ, which coincides
with the convergence κ if the density of the lenses were smoothed out;
see, for instance, Sect. II.C of Fleury & García-Bellido (2020).

et al. 2014; Lavinto & Rasanen 2015; Koksbang 2017, 2019a,b,
2020a), plane-parallel Universes (Di Dio et al. 2012), or lattice
models (Clifton & Ferreira 2009a,b, 2011; Clifton et al. 2012;
Liu 2015; Bruneton & Larena 2013; Bentivegna et al. 2017;
Sanghai et al. 2017; Koksbang 2020b). These works generally
agreed with the relevant theoretical predictions. Using N-body
simulations, Odderskov et al. (2016) showed that at low redshift
(z < 0.1), the averaged luminosity distance is very close from
its value in an FLRW background. Within the field of numeri-
cal relativity, Giblin et al. (2016) showed that 〈log D〉 (or aver-
aged magnitude) was not affected by inhmogeneities, at least
until z = 1.5. However, both studies used simulations with rather
low resolution, which might be subject to large variance and
therefore could not highlight second-order effects. More recently,
Adamek et al. (2019) used the general-relativistic simulation
gevolution (Adamek et al. 2016), and accurate ray tracing
to find null geodesics between sources and observer and pro-
duce realistic halo catalogues. They found that when averaging
over sources, 〈1/D2(z)〉 is very close to its value from a homo-
geneous Universe, until z = 3, thereby confirming Weinberg’s
conjecture, while 〈D(z)〉 is slightly biased as expected. Albeit a
high-resolution,gevolution remains a particle-mesh code with-
out adaptive-mesh refinement, which thus cannot access very
small scales.

In the present article, we propose a short theoretical review,
and a detailed numerical study of the bias in the distance-redshift
relation with respect to the standard FLRW prediction. The
theory part builds upon KP16 and fills minor conceptual gaps
therein. In the main, numerical, part we use a high-resolution
N-body simulation part of the ‘Raygal’ suite and propagate
photons on null geodesics to infer distance measures, account-
ing for gravitational lensing and redshift perturbations. Taking
advantage of very large statistics and wide redshift range (up to
z = 10), we investigate the different averaging procedures and
study the statistics to the related observables. Furthermore, we
numerically estimate the area bias depending on the choice of
light-cone slicing.

The article is organised as follows. Section 2 presents the for-
malism for light propagation and the bias on statistical quantities
with respect to the homogeneous case, depending on the aver-
aging procedure; we connect these notions to the area of slices
of the light cone. The numerical simulation, ray-tracing meth-
ods, and analysis techniques, are presented in Sect. 3, while the
results are exposed in Sect. 4. We conclude in Sect. 5.

Notation and conventions. Greek indices (µ, ν, . . .) run from
0 to 3 and Latin indices (i, j, . . .) from 1 to 3. Bold symbols
denote Euclidean two-dimensional or three-dimensional vectors,
and matrices. Over-barred symbols denote quantities computed
in a homogeneous-isotropic FLRW model. We adopt units in
which the speed of light is unity, c = 1.

2. Theory

This section gathers a number of already-established theoreti-
cal results about light propagation in the inhomogeneous Uni-
verse, as well as a few novel elements, such as the distinction
between lensing magnification and amplification and its inter-
pretation. We shall focus on the statistical averages of distance
measures, and how they relate to the area of light-cone slices.

2.1. Light propagation in a perturbed FLRW Universe

We consider a cosmological space-time described by a spatially
flat FLRW model with scalar perturbations. The associated line
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element reads, in the Newtonian gauge

ds2 = a2(η)
[
−(1 + 2φ)dη2 + (1 − 2φ)dx2

]
, (1)

where η denotes the conformal time (hereafter simply referred
to as time), xi are comoving coordinates, a(η) the scale fac-
tor describing cosmic expansion, and φ the Bardeen potential
(Bardeen 1980) caused by inhomogeneities in the matter density
field. We assume that anisotropic stress is negligible so that this
potential is unique. Except in the vicinity of compact objects,
φ � 1 can be treated as a perturbation. The time at the observa-
tion event (here and now) is denoted η0, where the scale factor is
conventionally set to unity, a0 = a(η0) = 1.

Light propagates along null geodesics of the space-time
geometry. In the absence of perturbations (that is, for φ = 0), such
geodesics are straight lines in comoving coordinates, travelled
with unit coordinate speed. In the presence of perturbations, light
rays are bent and the coordinate speed of light effectively varies
(Schneider et al. 1992). These effects are encoded in the null
geodesic equation kν∇νkµ = 0, with kµ ≡ dxµ/dλ and λ denotes
a past-oriented affine parameter for the light ray. The temporal
and spatial components of the geodesic equation read

dk0

dλ
= −2H

(
k0

)2 − 2
dφ
dλ

k0 + 2
∂φ

∂η

(
k0

)2
, (2)

dki

dλ
= −2Hk0ki + 2

dφ
dλ

ki − 2
∂φ

∂xi

(
k0

)2
, (3)

where H ≡ a−1da/dη is the conformal expansion rate. Equa-
tion (2) rules the evolution of light’s frequency in the cosmic
frame; combined with the latter, Eq. (3) describes light bending.

2.2. Gravitational lensing

Light bending implies that the images of light sources are dis-
placed and distorted when seen through the inhomogeneous Uni-
verse. Let θ denote the position of such an image of a point
source, and β its FLRW counterpart, that is, the position where
the image would be seen in the absence of cosmological pertur-
bations. It is customary to refer to β as the source position.

2.2.1. Geometric distortions of infinitesimal images

The distortions of an infinitesimal image are then fully encoded
in the Jacobi matrix of the mapping θ 7→ β, also called distortion
matrix. This matrix may be parameterised as

A ≡ ∂β

∂θ
=

(
cosω − sinω
sinω cosω

) (
1 − κ − γ1 −γ2
−γ2 1 − κ + γ1

)
, (4)

with κ, γ = γ1 + iγ2, and ω are respectively called the conver-
gence, complex shear, and rotation. As a rule of thumb, κ, γ are
typically first order in cosmological perturbations, while ω is
second order (see for example Fleury 2015, Sect. 2.3.2).

We define the signed geometric magnification of an image as

µ =
1

detA
=

1
(1 − κ)2 − |γ|2 · (5)

By definition of the determinant of a matrix, its absolute value
|µ| = d2θ/d2β is the ratio of the angular size of an infinitesimal
image, d2θ, and the angular size of the underlying source, d2β.

As indicated by its name and definition, the signed magni-
fication of an image can be either positive or negative, which
indicates its orientation relative to the source. An image at θ is

said to have positive parity if µ(θ) > 0, and negative parity oth-
erwise. In a Universe made of transparent lenses, any source has
an odd total number 2n + 1 of images, with n ≥ 0 images of
negative parity and n + 1 images of positive parity (Burke 1981;
Schneider et al. 1992).

The total geometric magnification of a source β is the sum of
the absolute magnifications of its 2n + 1 images θi(β),

µtot(β) ≡
2n+1∑
i=1

|µ[θi(β)]|. (6)

It represents the total increase in apparent size of a source rela-
tive to is unlensed counterpart.

2.2.2. Geometric-magnification integrals

In a transparent Universe, the map θ 7→ β(θ), which to an image
associates its source, is a well-defined surjective function of S2

onto S2. In other words, any image has one and only one source,
and every source has at least one image. These properties imply∫
S2

d2θ µ−1(θ) = 4π, (7)∫
S2

d2β µtot(β) = 4π, (8)

which we refer to as the geometric-magnification integrals.
We note that in the absence of multiple imaging, θ 7→ β(θ)

is a diffeomorphism of S2, so that Eqs. (7) and (8) are merely
changes of variables in an integral. The true interest of the mag-
nification integrals is that they hold even in the presence of
strong lensing and multiple images.

The total magnification integral (8) is the full generalisation
of the result found by Weinberg (1976) at linear order and with
point lenses. To the best of our knowledge, it was first formu-
lated by Wucknitz (2008). The proof goes as follows. For each
source element d2β, d2θtot = µtot(β) d2β is the total solid angle
occupied by the associated images. As one sums over d2β, the
image sphere gets progressively covered. On the one hand, the
whole sphere is eventually covered, because any image has a
source – for any θ, there is always a corresponding β. On the
other hand, every image point θ is covered only once, because
an image cannot have more than one source.

The inverse-magnification integral (7) can be found in
Kibble & Lieu (2005). Its proof relies on the relative number of
positive- and negative-parity images, mentioned in Sect. 2.2.1.
For each element d2θ of the image sphere, d2β = |µ−1(θ)| d2θ
is the corresponding solid angle in the source sphere. As one
sums over d2θ, the entire source sphere is covered, again because
every source has at least one image. Multiple imaging implies,
however, that some regions of the source sphere may be cov-
ered several times. When this occurs, since a source β always
has 2n + 1 images θi(β), n of which having negative parity, their
contributions cancel two by two but one,

2n+1∑
i=1

µ−1[θi(β)] d2θi =

2n+1∑
i=1

(−1)i d2β = d2β. (9)

Therefore, each source element is eventually covered once and
only once, which leads to Eq. (7). As pointed out by KP16,
albeit correct the inverse-magnification integral has little prac-
tical interest, because it is difficult to observe the parity of an
image.
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d2Ā d2A⊥

d2A

d2θ

d2β

ι

shift tilt

Fig. 1. Illustrating the difference between the geometrical magnification
µ = d2θ/d2β and the observable magnification µ̃(z) = [D̄A(z)/DA(z)]2 =
(d2Ā/d2A)×(d2θ/d2β). The causes of discrepancy are: (i) the position of
a source at z may be shifted from the background to the perturbed case,
d2Ā , d2A⊥; (ii) the beam’s cross section may be tilted due to lensing,
d2A⊥ = d2Az cos ι. This illustration equally applies if z is replaced with
λ, η, · · · .

2.2.3. Observable magnification: shift and tilt corrections

The geometric magnification µ = ±d2θ/d2β is a well-defined
theoretical notion, but it is not the most observationally relevant
one. This is because d2β represents the coordinate solid angle
associated with an image, rather than the unlensed apparent size
d2θ̄ of its source. There are two reasons why these quantities
differ, namely the ‘shift’ and ‘tilt’, which we elaborate on below.

Observable magnification. We consider an infinitesimal
source at redshift z with physical area d2A. Let d2θ be the appar-
ent size of an image of that source, and d2θ̄ its unlensed counter-
part, that is the solid angle under which d2A would be seen at the
same redshift in FLRW. The observable magnification is defined
as

µ̃(z, θ) ≡ ±d2θ

d2θ̄
, (10)

where the ± sign indicates the image parity. By definition, the
absolute observable magnification thus quantifies the change of
the area distance DA to an image due to cosmological perturba-
tions,

|µ̃(z, θ)| =
[

D̄A(z)
DA(z, θ)

]2

· (11)

We note that the above relies on a notion of area distance asso-
ciated with individual images θ.

Shift and tilt. We now relate the observational magnification
µ̃ to the geometric magnification µ. For simplicity, we identify
the source with an infinitesimal patch of the surface of con-
stant redshift. However, the results obtained in this paragraph
are much more general; in particular, we refer the reader to
Appendix A for an alternative approach based on a spherical
source.

Let d2β be the coordinate solid angle covered by the source.
We may multiply and divide the expression (11) of |µ̃| by
d2θ/d2β to get

|µ̃(z, θ)| = d2θ

d2β
× D̄2

A(z) d2β

D2
A(z, θ) d2θ

= |µ(z, θ)| × d2Ā
d2A

, (12)

where d2Ā = D̄2
A(z) d2β is the physical area sub-tended by the

coordinate solid angle d2β in the absence of perturbations.
As illustrated in Fig. 1, d2Ā differs from d2A for two rea-

sons. First, for a given redshift z, the time and radial position of
the source event are not necessarily the same in the background
(η̄, r̄) as in the perturbed Universe (η, r); the coordinates of that
event are shifted. We call d2A⊥ the area sub-tended by d2β at the

shifted event; we have

d2A⊥ = a2[η(z)] r2(z) d2β , a2[η̄(z)] r̄2(z) d2β = d2Ā. (13)

Second, because of light deflection, the orientation of the
source is tilted by an angle ι with respect to how it would be
seen in FLRW. Because they are sub-tended by the same solid
angle d2β, the tilted area d2A is larger than its untilted counter-
part d2A⊥ = d2A × cos ι.

Summarising, the observable and geometrical magnifica-
tions are related as

µ̃(z, θ)
µ(z, θ)

=
d2Ā

d2A⊥︸︷︷︸
shift

d2A⊥
d2A︸︷︷︸

tilt

=
a2[η̄(z)] r̄2(z)
a2[η(z)] r2(z)

cos ι. (14)

We generally expect the shift to be the main driver of the dif-
ference between µ and µ̃, because the tilt cos ι ≈ 1 − ι2/2 is a
second-order quantity. Specifically, in the numerical results dis-
cussed in Sect. 4.1, the effect of tilt will always be sub-dominant;
it will be precisely quantified in Sect. 4.3.

Physical origin of the shift. While µ is a pure-lensing
quantity, µ̃ depends on other phenomena, such as time delays,
Sachs-Wolfe (SW) and integrated Sachs-Wolfe (ISW) effects,
or peculiar velocities. The latter in particular may lead to sig-
nificant differences between µ(z) and µ̃(z) at low redshift. If
a source has, for instance, a centripetal peculiar velocity with
respect to the observer, then its redshift is smaller compared to
a comoving source at the same position. Thus, for a given red-
shift z its comoving distance must be slightly larger than the one
that it would have if it were comoving, r(z) > r̄(z). Because
the source event belongs to the observer’s past light cone, this
also means that it happens slightly earlier, η(z) < η̄(z). At low z,
this typically results in d2A⊥ > d2Ā, implying that µ̃(z) < µ(z).
The conclusion would be opposite if the peculiar velocity were
centrifugal.

To be more specific, at first order in the peculiar velocities
of the source, us and of the observer, us, the shift3 reads (Kaiser
1987; Sasaki 1987)(

d2A⊥
d2Ā

)
v
≡ 1 + 2κ̃v, κ̃v ≡

(
1
Hr
− 1

)
(uo − us) · β + uo · β, (15)

where β is the unit vector in the background direction of the
source. The 1/(Hr) term in Eq. (15) shows that for sources at
small distances, κ̃v may reach large values.

The quantity κ̃v is sometimes called ‘Doppler convergence’
(Bonvin 2008; Bolejko et al. 2013; Bacon et al. 2014), although
it is unrelated to lensing. This expression and notation originate
from the fact that we may define an observable distortion matrix
Ã, which is to the distortion matrixA what µ̃ is to µ. Namely, if

Ã(z, θ) ≡ D̄−1
A (z)D(z, θ), (16)

whereD is the Jacobi matrix of the Sachs formalism (for exam-
ple Fleury 2015, Sect. 2.2), then µ̃ = 1/ det Ã. We may then
introduce a convergence-shear decomposition of Ã similarly to
Eq. (4), thereby defining κ̃, to which κ̃v is an important contribu-
tion.
3 In fact, Eq. (15) not only allows for the shift of the iso-z surface, but
also for the optical aberration effect due to the observer’s velocity. If the
observer moves towards the source (uo · r̂ > 0), then the source appears
smaller to them, d2θ⊥ < d2θ̄z.
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Fixing other parameters. In the above, we have defined the
observable magnification µ̃ at fixed redshift. This choice was
made for concreteness, but the definition of µ̃ could be adapted if
we were to fix another parameter, such as the comoving radius,
the emission time, or the affine parameter. A little intellectual
challenge would consist in determining which light-cone slic-
ing may ensure µ̃ = µ. To our knowledge, there is currently no
answer to that particular question.

2.2.4. Amplification and luminosity distance

Small or remote sources, such as SNe or quasars, are generally
unresolved by telescopes. In that context, the key observable is
the observed flux, that is the total power received from the source
per unit of telescope area, rather than the apparent size of images.
We may define the amplification of a source β at z as the ratio of
the observed flux S (z,β) with its unlensed counterpart S̄ (z). By
virtue of Etherington’s reciprocity law (Etherington 1933), and
assuming a transparent Universe, the amplification is nothing but
the total observable magnification,

S (z,β)
S̄ (z)

= µ̃tot(z,β) ≡
2n+1∑
i=1

|µ̃[z, θi(β)]|. (17)

By definition of the luminosity distance DL, we also have

µ̃tot(z,β) =

[
D̄L(z)

DL(z,β)

]2

· (18)

This could seem to be at odds with Eq. (11) and the well-known
distance-duality relation DL = (1 + z)2DA. This apparent para-
dox is due to the fact that we have defined DA for a single image,
while DL accounts for all the images of a given source. The two
approaches are reconciled if we consistently distinguish between
image-based definitions and source-based definitions. For exam-
ple, we could define the area distance of a multiply imaged
source DA(z,β) from the total apparent area occupied by all its
images. In that case [D̄A(z)/DA(z,β)]2 = µ̃tot(z,β) consistently
with distance duality.

Finally, we note that Eq. (17) is only valid if one compares
the background and perturbed fluxes at the same redshift z. Had
we compared the two situations, for instance, at fixed affine
parameter, the background and perturbed redshift would have
differed, which would have affected fluxes through the energy
and the reception rate of individual photons.

2.3. Averaging in cosmology

The interpretation of cosmological observations, and their con-
frontation with theoretical predictions, involve various notions
of averaging, which are non-trivially related in the presence of
gravitational lensing. We review here the relevant definitions and
properties of cosmological averages, elaborating on Bonvin et al.
(2015b), Kaiser & Peacock (2016), Fleury et al. (2017a).

Importantly, from now on we shall neglect multiple imag-
ing, except explicitly stated otherwise. Thus, the lens mapping
θ 7→ β is assumed to be a diffeomorphism of S2, and the result-
ing magnifications are positive. In that context, there is no dif-
ference between signed, absolute, and total magnifications any
more. We may also treat observable magnification and amplifi-
cation as synonyms, both denoted µ̃. This assumption is justified
by the relatively rare occurrence of strong lensing from a cos-
mological perspective, and by the huge gain of simplicity that it
brings to the discussions of this section.

2.3.1. Directional averaging

Let X(θ) be an observable in the direction θ on the observer’s
celestial sphere, such as the temperature anisotropies of the cos-
mic microwave background, or the apparent surface density of
galaxies. Directional averaging 〈. . .〉d corresponds to a statisti-
cal average of X(θ) where all the observation directions θ have
the same statistical weight; the average is thus weighted by the
image solid angle d2θ,

〈X〉d ≡ 1
4π

∫
S2

d2θ X(θ). (19)

One may ask how lensing affects directional averages, in partic-
ular for distance measurements. We first note that, by virtue of
Eq. (7), the directional average of the inverse geometric magni-
fication is unity,〈
µ−1

〉
d
≡ 1

4π

∫
S2

d2θ µ−1(θ) = 1. (20)

This property is exact and applies to any slicing of the light-cone.
However, as pointed out in Sect. 2.2.3, Eq. (20) has only little
observational relevance, because the actually observable quan-
tity is µ̃, which differ from µ by the shift and tilt described in
Fig. 1. Despite that concern, we may still conclude that〈
µ̃−1

〉
d
≈ 1, (21)

in the limit where the tilt/shift corrections are sub-dominant
compared to the most relevant gravitational-lensing effects.

Unlike Eq. (20), the accuracy of Eq. (21) depends on
which parameter is fixed in the definition of µ̃. For instance,
Kibble & Lieu (2005) argued that 〈µ̃−1(λ)〉d = 1 was accurate for
sources at fixed affine parameter λ; this was checked numerically
with ray tracing in post-Newtonian cosmological modelling
(Sanghai et al. 2017). However, we shall see in Sect. 4.2.5 that
the use of the affine parameter is quite risky at very high red-
shift. If instead the redshift is kept fixed, then significant depar-
tures from 〈µ̃−1(z)〉d = 1 are expected at low z due to peculiar
velocities.

2.3.2. Source-averaging and areal averaging

We now consider an observable Y which is associated with a
specific population of sources, such as the distance to type-Ia
supernovae or the Lyman-α absorption in quasar spectra. The
natural averaging procedure associated with such an observable
is called source averaging 〈. . .〉s, and is defined as

〈Y〉s =
1
N

N∑
s=1

Ys =

∫
S2

d2θ
1
N

d2N
d2θ

Y(θ), (22)

where N denotes the number of observed sources, and in the sec-
ond equality we took the continuous limit. The difference with
directional averaging is that the sky is not necessarily homo-
geneously sampled. Clearly, if the sources are not homoge-
neously distributed in the Universe, then their projected density
N−1d2N/d2θ tends to favour some regions of the sky more than
others, thereby breaking the apparent statistical isotropy.

But even if sources are homogeneously distributed in space,
gravitational lensing implies that they do not evenly sample the
observer’s sky. Indeed, lensing tends to make light beams ‘avoid’
over-dense regions of the Universe, thereby favouring under-
dense regions in source-averages. This specific effect may be
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captured in the notion of areal averaging. For example, if all the
sources are observed at the same redshift z, we may define the
areal average of Y as

〈Y(z)〉a ≡ 1
A(z)

∫
Σ(z)

d2Az Y(x), (23)

with Σ(z) the surface of constant redshift z and A(z) its total
proper area. The definition must be adapted if the sources are
observed on other slices of the light cone, for instance all at the
same emission time η or affine parameter λ.

Using the area distance, d2Az = D2
A(z) d2θ, we may convert

areal averages in terms of directional averages as follows,

〈Y(z)〉a =

∫
S2 d2θ D2

A(z, θ) Y(z, θ)∫
S2 d2θ D2

A(z, θ)
=
〈µ̃−1(z) Y(z)〉d
〈µ̃−1(z)〉d , (24)

from which we immediately conclude, substituting Y = µ̃, that

〈µ̃(z)〉a =
1

〈µ̃−1(z)〉d ≈ 1, (25)

by virtue of Eq. (21). Areal averaging exactly coincides with
source-averaging if the sources are homogeneously distributed
on Σ(z), because then the number of observed sources scales as
the area that they occupy, so that N−1d2N/d2θ = d2Az/d2θ =
D2

A(z). If not, corrections arise from the correlation between the
fluctuations of the density of sources and the amplification; fur-
ther corrections such as redshift-space distortions, must also be
accounted for if the sources are observed in redshift bins (Fleury
et al. 2017a; Fanizza et al. 2020). Such discrepancies between
source-averaging and areal averaging typically remain below
10−5, and hence they may be neglected. Combining this approx-
imation with Eq. (25) then yields

〈µ̃(z)〉s ≈ 1. (26)

Equation (26) was shown to be accurate at the 10−3 level up to
z = 3 by Adamek et al. (2019).

2.3.3. Ensemble averaging and cosmic variance

We shall close this discussion with the notion of ensemble aver-
aging. Within the standard lore, we envisage all cosmological
structures as originating from quantum fluctuations in the pri-
mordial Universe (Peter & Uzan 2013). From that point of view,
φ(η, x) is a particular realisation of an intrinsically stochastic
field, which is believed to be initially Gaussian. In that frame-
work, the ensemble average of any field Z(η, x) that depends on
φ, which we may simply denote as 〈Z(η, x)〉, would be its expec-
tation value over an infinite number of realisations the Universe.

Contrary to directional, areal, or source-averages, ensemble-
averaging is thus a strictly theoretical procedure, which is
nevertheless used in any cosmological prediction. Ensemble
averaging may be connected to other averaging procedures via
the ergodicity principle. Which observable averaging is mim-
icked by ensemble averaging then depends on which quantities
are kept fixed when making multiple realisations of the Universe
as illustrated in Fig. 2. For example, if the observed direction
of light θ and redshift z are kept fixed, then we get directional
averaging,

〈X(z, θ)〉 = 〈X(z)〉d, (27)

because any θ is virtually affected the same statistical weight. In
this scenario, the source position βmay change from one cosmic

β

θ

ensemble observational

z = cst

Fig. 2. Correspondence between ensemble averaging and observational
averaging procedure depends on which quantity is kept fixed.

realisation to another. An alternative scenario would consist, on
the contrary, in fixing β while allowing θ to vary from one reali-
sation to another; this yields

〈X(z,β)〉 = 〈µ−1(z)X(z)〉d. (28)

We may divide the above with 〈µ−1〉d if directional average is
taken on a fraction of the sky only. Other possibilities would
consist in fixing another parameter than the redshift, such as time
or affine parameter, which would correspond to averaging across
other slices of the light cone.

Importantly, ergodicity is sensible only if the region of the
Universe over which an observational averaging is performed
is statistically homogeneous. In other words, there should not
be super-sample inhomogeneity modes. Such an assumption is
not satisfied in the standard lore, which predicts inhomogeneity
modes at all scales. Thus, any observational average is subject
to an irreducible source of uncertainty, called cosmic variance.
Equations (27) and (28) only hold up to cosmic variance.

2.4. Biased distance measurements

Equations (21) and (26) show than only very specific quantities
are (almost) unbiased by cosmic inhomogeneities; in particular,
most distance measurements happen to be biased. We describe
here the nature and amplitude of these biases.

We introduce for convenience the dimension-less distance

d(z, θ) ≡ DA(z, θ)
D̄A(z)

= |µ̃(z, θ)|−1/2. (29)

Because d is a non-linear function of µ̃, it exhibits a statistical
bias for both directional and source-averaging. For directional
averaging we may expand d at second order in µ̃−1 − 1 and use
Eq. (21) to get

〈d(z)〉d − 1 ≈ −1
8

〈
[µ̃−1(z) − 1]2

〉
d
< 0. (30)

Similarly, for areal or source-averaging we may expand d in
terms of µ̃ − 1 which, together with Eq. (26) yields

〈d(z)〉s − 1 ≈ 3
8

〈
[µ̃(z) − 1]2

〉
s
> 0. (31)

The biases appearing in Eqs. (30) and (31) are not indepen-
dent, and are usually expressed in terms of the convergence.
Indeed, if the amplification is expressed in terms of some conver-
gence and shear similarly to Eq. (5), that is, µ̃ = [(1−κ̃)2−|γ̃|2]−1,
then at second order in κ̃, γ̃,

(µ̃ − 1)2 = (µ̃−1 − 1)2 = 4κ̃2. (32)
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Since κ̃2 is a second-order quantity, the difference between its
directional, source-, or ensemble-average would be of higher
order, and hence it should not matter much which averaging pro-
cedure is considered when substituting κ̃2 in Eqs. (30) and (31).
Furthermore, if we neglect again the shift and tilt corrections4

and write κ̃ = κ, then we simply have

〈d(z)〉d ≈ 1 − 1
2

〈
κ2(z)

〉
, (33)

〈d(z)〉s ≈ 1 +
3
2

〈
κ2(z)

〉
. (34)

If Eq. (34) is applied at the redshift of the CMB, z∗ ≈
1100, and κ(z) is computed from linear perturbation theory, then
the corresponding bias reaches the percent level. This is how
Clarkson et al. (2014) concluded that the standard analysis of
the CMB, which does not account for such a bias, might be
flawed. That conclusion was shown to be incorrect by Bonvin
et al. (2015a), Kaiser & Peacock (2016), because the analysis
of the CMB is in fact not sensitive to 〈d(z∗)〉s. However, super-
nova cosmology is. In supernova surveys, it is customary to use
the distance modulus rather than the luminosity distance as a
distance measure; its perturbation due to inhomogeneities reads
∆m = 5 log10 d, and hence its source-averaged bias is

〈∆m(z)〉s ≈ 5
4 ln 10

〈
[µ̃(z) − 1]2

〉
s
≈ 5

ln 10

〈
κ2(z)

〉
. (35)

For z < 2, this bias remains below 10−3 and hence is negligible in
current SN surveys, except for reconstructions of the evolution of
the dark-energy equation of state (Fleury et al. 2017a). It would
be easily removed if next-generation surveys were using 1/D2

L(z)
instead of magnitude as a distance indicator.

We finally note that all the above only holds in a transparent
Universe. If this assumption is relaxed, then distance measure-
ments may be further biased by selection effects. For instance,
in a Universe made of opaque matter lumps, observed light
beams do not evenly sample the density field – they experi-
ence an effectively under-dense Universe. This result in an effec-
tive de-focussing of light as originally described by Zel’dovich
(1964), later generalised by Dashevskii & Slysh (1966) and
Dyer & Roeder (1974) on the basis of Einstein-Straus Swiss-
cheese models (Kantowski 1969; Fleury 2014). The resulting
bias on luminosity distance measurements typically reaches 10%
at z = 1 for very lumpy models (Fleury et al. 2013). In
Okamura & Futamase (2009), the authors made an attempt to
determine the fraction of such opaque lumps based on the halo
model of Sheth & Tormen (1999). To date, however, there is no
compelling evidence of any large effect of opaque lumps on dis-
tance measurements in our Universe (Helbig 2020).

2.5. Reformulation: the area of light-cone slices

We may now rephrase the average-amplification rules (21)
and (26) in terms of the area of light-cone slices, such as sur-
faces of constant redshift. We consider for instance the direc-
tional average of the inverse amplification:〈
µ̃−1(z)

〉
d

=
1

4πD̄2
A(z)

∫
S2

d2θ D2
A(z, θ) =

A(z)
Ā(z)

, (36)

where in the last equality we introduced the area A(z) of the sur-
face of constant redshift, Σ(z), as well as its background coun-
terpart Ā(z) = 4πD̄2

A(z). Equation (36) thus tells us that 〈µ̃〉d ≈ 1

4 This approximation fails at low-z, where peculiar velocities generate
Malmquist bias (Ben-Dayan et al. 2014; Kaiser & Hudson 2015).

η = cst

C

O

d2x
Σ(z)

d2θ

Fig. 3. Surface of constant redshift, Σ(z) (red), is a particular slicing
of the light cone C (blue) that is not included in constant-time hyper-
surfaces (grey). We represented light rays as straight lines for simplicity.

would be equivalent to A(z) ≈ Ā(z); meaning that the area of
iso-z surfaces is mostly unaffected by inhomogeneities.

Although it may seem quite natural, the last equality of
Eq. (36) is, in fact, not obvious. In the background FLRW space-
time, Σ̄(z) is a sphere (in comoving coordinates) at constant cos-
mic time; hence its proper area is clearly Ā(z) = 4πr̄2(z)/(1+z) =
4πD̄2

A(z). But things are less clear in the inhomogeneous Uni-
verse, where Σ(z) is wrinkly and is not limited to a constant-
time hypersurface. The definition of its proper area A(z) is then
subject to several questions about its uniqueness, if it is frame-
dependent and how it relates to the angular distance. We propose
to clarify these subtleties below.

2.5.1. Surfaces of constant redshift and their area

Surfaces of constant redshift, Σ(z), correspond to a particular
slicing of the light cone C of the observation event O, as illus-
trated in Fig. 3. We note that this slicing is generally not per-
formed at constant time, η(z) , const. This last property raises
the question of how to actually define the proper area of Σ(z).

Let d2x be the element of Σ(z) subtended by the solid angle
d2θ at O. For causality reasons, d2x must be space-like; thus,
there exists a frame such that d2x is strictly spatial. We shall call
it the ‘natural frame’5 of d2x, and define the area d2Az of d2x
in that frame. Applying that construction to all elements d2x of
Σ(z) and integrating over them then defines its total area A(z).

Now that we have defined the area of an iso-z surface, we
shall see how it relates to the angular distance DA(z). For that
purpose, we note that d2x is orthogonal to direction of light prop-
agation in its natural frame. We shall now prove this point. We
may see C as the hyper-surface defined by all the events that are
in phase with O, for a spherical wave converging at the observer.
If w denotes the phase of that wave and kµ = ∂µw is the asso-
ciated wave four-vector, then any displacement dxµ across C
satisfies kµdxµ = dw = 0. This applies, in particular, to any
dxµ ∈ d2x ⊂ Σ(z) ⊂ C. In the natural frame of d2x, this four-
dimensional orthogonality becomes three-dimensional because
dx0 = 0; in other words, k · dx = 0, where k is the wave-vector
in the natural frame.

The spatial orthogonality between k and d2x implies that
d2x forms a Sachs screen space in its natural frame. Thus, d2Az

5 The natural frame is not unique; there is in fact a class of natural
frames which are all related by Lorentz boosts in the local direction of
light propagation. The area of d2 x is invariant under such boosts, as long
as they go from one natural frame to another one.
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is not only the proper area of d2x, but also the cross-sectional
area of the light beam subtended by d2θ in that frame. By virtue
of Sachs’ shadow theorem (Sachs 1961, see also Sect. 2.1.2 of
Fleury 2015), the area of a beam is independent of the frame in
which it is evaluated, as long as it is projected on a Sachs screen.
This unique notion of a beam’s cross-sectional area then defines
the angular distance according to

d2Az = D2
A(z) d2θ. (37)

This confirms that the area of Σ(z) is indeed related to the angu-
lar distance as A(z) = 4π〈D2

A(z)〉d, thereby validating the last
equality of Eq. (36).

We finally note that the above reasoning actually applies to
any slice of the light cone. In other words, for any parameter
p such that the iso-p surface Σ(p) is space-like (p may stand,
for instance, for the affine parameter λ, time η, the comoving
radius r, etc.) the area of the element d2x subtended by the solid
angle d2θ reads d2Ap = D2

A(p)d2θ and the total area of the iso-p
surface is

A(p) = 4π
〈
D2

A(p)
〉

d
=

〈
µ̃−1(p)

〉
d

Ā(p). (38)

2.5.2. The photon-flux conservation argument

In the spirit of the second part of Weinberg (1976), we may
also connect the area-averaged amplification to A(z) on the basis
of photon conservation. Let F0 be the total number of pho-
tons received per unit time by an observer. If the photon num-
ber is conserved, then the same photons crossed Σ(z) at a rate
Fz = (1+z)F0, where the (1+z) factor accounts for time dilation.
Importantly, the latter relation holds regardless of the geometry
of Σ(z); in other words, Fz = F̄z.

Now, the photon flux may be written as

Fz =

∫
Σ(z)

d2x n · J(z) = A(z)〈|J(z)|〉a, (39)

where n is the outgoing normal to Σ(z), J is the photon flux
density vector, and in the second equality we used that in its
natural frame n is aligned with k and hence to J. Since J =
Π/(~ω), whereΠ ∝ 1/D2

L(z) is the Poynting vector, we conclude
that |J(z)| ∝ µ̃(z). Combining this with Fz = F̄z then yields

〈µ̃(z)〉a =
Ā(z)
A(z)
· (40)

Therefore, Eq. (25) is equivalent to stating that inhomogeneities
do not affect the area of iso-z surfaces. We stress again here that
Weinberg’s photon-flux-conservation argument does not imply
that 〈µ̃(z)〉a = 1, but rather shows that such an equality is equiv-
alent to A(z) = Ā(z).

2.5.3. CMB and the area of the last-scattering surface

Hitherto, our discussion has been focused on surfaces of constant
redshift because of their connection with observational averages.
The archetypal application would be the analysis of the Hub-
ble diagram in a non-homogeneous Universe, which involves the
source-averaged distance modulus. However, shall we be more
interested in the analysis of the CMB than in SNe, more relevant
would be the last-scattering surface (LSS) and its area A∗.

The area of the LSS is a relevant quantity indeed. As illus-
trated in Fig. 4, A∗ essentially drives how many sound horizons
rs the observer may count in the CMB, and hence their average

η = η∗

C

O

Σ(η∗) = LSS

rs

θ∗

Fig. 4. Last scattering surface, approximated as a constant-time slice
Σ(η∗) of the light cone C. Its area is connected to the number of sound
horizons rs that appear on the observer’s CMB, and hence to its average
apparent size θ∗.

angular size θ∗ which is one of the main direct CMB observables.
The problem is then to estimate to which extent is A∗ affected by
the inhomogeneities of our Universe. Following KP16, we shall
approximate the LSS as a surface of constant time6, Σ(η∗). By
virtue of Eq. (38) for p = η∗, we have A∗ ≈ Ā∗ where the depar-
ture from strict equality stems from the difference between µ̃(η∗)
and µ(η∗), that is from the small shift and tilt effects emphasised
in Sect. 2.2.3.

From a pedagogical point of view, surfaces of constant time
Σ(η) are very attractive because their natural frame (in the sense
of Sect. 2.5.1) is the comoving frame. Indeed, for any displace-
ment dxµ ∈ Σ(η) we have by definition dx0 = 0 in comoving
coordinates. Because of this, the shift and tilt corrections to the
area A∗ of the LSS can be made particularly explicit. Expressing
A∗ as the area of a polar surface, we have indeed

A(η∗) = a2(η∗)
∫
S2

d2β
r2
∗(β)

cos ι∗(β)
, (41)

cos ι∗ =

(
1 +

∣∣∣∣∣ 1
r∗
∂r∗
∂β

∣∣∣∣∣2)−1/2

, (42)

where r∗(β) ≡ r(η∗,β) , r̄(η∗) is the comoving radial coordinate
of the point of LSS with angular coordinates β, which is gen-
erally shifted with respect to its background counterpart r̄∗(β).
The angle ι∗(β) is the tilt between the normal to the LSS and the
radial direction; it encodes the wrinkles of the LSS which tend to
increase its area. Recall that β denotes the ‘true’ angular position
of a point of the LSS, not to be confused with the direction θ in
which that point would be observed.

In order to get a theoretical prediction for δA∗/Ā∗, we may
expand Eq. (41) at second order in cosmological perturbations,
and assume ergodicity to turn integrations over β into ensemble
averages (see Sect. 2.3.3). This yields

δA∗
Ā∗

=

〈
2δr∗(β)

r̄∗
+
δr2
∗(β)
r̄2∗

〉
︸                   ︷︷                   ︸

shift

+
1
2
〈ι2∗(β)〉︸   ︷︷   ︸

tilt

, (43)

with δA∗ ≡ A∗ − Ā∗.
KP16 proposed a quite intuitive analysis of the shift term,

δr∗; we shall paraphrase their idea here, while further details and

6 This is of course a gauge-dependent statement, see for example Ellis
& Durrer (2018) for a discussion.
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minor corrections are given in Appendix C. The first effect of
inhomogeneities is the presence of the gravitational potential φ,
which changes the effective (coordinate) speed of light as

ceff =

∣∣∣∣∣dx
dη

∣∣∣∣∣ =

√
1 + 2φ
1 − 2φ

= 1 + 2φ + O(φ2). (44)

As a consequence, during a fixed travel time η0−η, the comoving
distance travelled7 s is slightly changed, s(η) = η0 − η + δs(η).
At the LSS, this reads

δs∗(β) =

∫ η0

η∗
dη 2φ[η, x(η)], (45)

where x(η) is the photon trajectory connecting the observer to
the point β of the LSS. We note that this is nothing but the usual
Shapiro time delay seen from a different point of view.

Second, because of gravitational lensing, light rays are wig-
gly, and hence the comoving radius r that they reach after travel-
ling a comoving distance s is slightly smaller than s. At the LSS
we may write r∗ = s∗ + δrgeo, with

δrgeo(β) =

∫ s∗

0
ds [cos ι(s) − 1] ≈ −1

2

∫ r̄∗

0
dr ι2(r), (46)

at second order in perturbations, and where ι is the angle made
between the instantaneous photon propagation direction and the
axis spanned by β. It coincides with ι∗ at the LSS.

When both effects (time delay and wiggles) are taken into
account, the radial shift of the LSS with respect to its background
counterpart reads

δr∗(β) ≡ r∗(β) − r̄∗ = δs∗(β) + δrgeo(β). (47)

We note that δs∗ is first-order, while δrgeo is second-order in
cosmological perturbations. It is thus essential to go beyond
the Born approximation when evaluating δs∗ for consistency.
Because of that hierarchy, δs∗ may also be considered the main
driver of the wrinkles ι∗ of the LSS.

Once ensemble average is taken, Eq. (43) yields

δA∗
Ā∗

=

∫ r̄∗

0
dr

(2r̄∗ − r)r
r̄2∗

J(r) ≈ 5 × 10−7, (48)

J(r) ≡ 2
∫ ∞

0

dk
2π

k3Pφ (η0 − r, k) , (49)

where Pφ denotes the power spectrum of the gravitational poten-
tial. More details can be found in Appendix C. Equation (48)
agrees with Eq. (A.44) of KP16, albeit obtained via a slightly
different path.

2.6. Summary and goal of the remainder of this article

Inhomogeneities may bias cosmological observations, notably
via the effect of gravitational lensing on distance measurements.
Biases depend on the notion of averaging that is involved.
By virtue of the inverse-magnification integral 〈µ−1〉d = 1,
some specific observables are expected to be almost unbiased:
〈d2(z)〉d ≈ 1/〈d−2(z)〉s ≈ 1. Other combinations of d, such as
the magnitude, generally exhibit a potentially much larger bias,
on the order of 〈κ2〉. Departures from the exact 〈d2(z)〉d = 1 stem
from µ̃ , µ and may be interpreted as being due to shifts and tilts

7 In KP16 that same quantity is denoted λ. We adopt s instead in order
to avoid confusions with the affine parameter.

of iso-z surfaces with respect to their background counterpart.
Apart from these shift and tilt effects, the area of iso-z surfaces
is unaffected by inhomogeneities. An equivalent reasoning may
be applied to other slices of the light cone, such as surfaces of
constant time whose area is relevant for CMB observations.

In the remainder of this article, we propose to numerically
evaluate: (i) the accuracy of 〈d2(z)〉d ≈ 1/〈d−2(z)〉s ≈ 1; (ii) the
amplitude of the O(〈κ2〉) bias on other observables; (iii) the per-
formance of the prediction (48) for the area of iso-η surfaces.
Our investigation will be based on accurate ray tracing in a high-
resolution N-body simulation, so as to fully capture non-linear
effects which are difficult to control in a pure-theory approach.

3. Numerical methods

In this section, we present the numerical set-up and the various
tools that are used to obtain the results reported in Sect. 4.

3.1. Simulation

We use the N-body code ramses (Teyssier 2002; Guillet &
Teyssier 2011) with dark matter (DM) only. ramses uses
a Particle-Mesh with Adaptive-Mesh-Refinement (PM-AMR)
method, which computes the evolution of the gravitational
potential and density field from particles and gravity cells. AMR
allows one to probe high-density regions and hence the highly
non-linear regime of structure formation.

The simulation’s box comoving length is 2625 h−1 Mpc with
40963 particles in a ΛCDM cosmology with wmap-7 best-fit
parameters (Komatsu et al. 2011), namely h = 0.72, total-matter
density Ωm = 0.25733, baryon density Ωb = 0.04356, radia-
tion density Ωr = 8.076 × 10−5, spectral index ns = 0.963 and
power-spectrum normalisation σ8 = 0.801. The corresponding
DM-particle mass is 1.88 × 1010 h−1 M�. The initial power spec-
trum is computed with camb (Lewis et al. 2000). Initial condi-
tions are generated using a 2LPT version of Mpgrafic (Prunet
et al. 2008) to avoid transients (Scoccimarro 1998), which allows
us to start the simulation at z = 46.

Fidler et al. (2015, 2016) showed that Newtonian N-body
simulations, such as the one used in this article, yield physical
quantities computed in the so-called N-body gauge. In principle,
a small relativistic correction must be applied to translate such
results into the Newtonian gauge (Chisari & Zaldarriaga 2011).
We choose to neglect these corrections, and hence we identify
the coordinates and the gravitational potential computed from
the simulation with the coordinates and metric perturbation φ in
Eq. (1).

3.2. Light cones

To produce light cones from our simulation we use the onion-
shell method (Fosalba et al. 2008; Teyssier et al. 2009). At each
synchronisation (coarse) time step of the simulation, we output a
thin spherical shell whose mean radius is the comoving distance
to a central observer at the snapshot time. The shells contain all
the required information about the particles (positions and veloc-
ities) and about the grid cells (gravitational potential and accel-
eration). Furthermore, the shells are produced with a non-zero
thickness, in the sense that every spatial cell appears at different
times, which allows us to compute time derivatives.

We produce three different light cones for a given observer at
the centre of the simulation, which correspond to three different
depths and sky coverage. The simulation box size allows us to
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build a full-sky cone up to a radius equal to half the box length,
corresponding to z . 0.5. Going further would imply that some
parts of the cone would repeat due to the periodic boundary con-
ditions of the simulation. Such replication effects are suppressed
by reducing the angular width of the light cone beyond z ≈ 0.5.
An intermediate narrow cone is built up to z = 2 with a sky
coverage of 2500 deg2, while our deep narrow cone goes up to
z = 10 covering 400 deg2. The cones are oriented so that light
rays do not cross the same structures at different times.

Haloes on the light cones are identified using the parallel
Friend-of-Friend (PFoF) code (Roy et al. 2014) with linking
length b = 0.2 and at least 100 DM particles. A halo’s position
is defined from its centre of mass, while its velocity is defined as
the mean velocity of the particles that it contains. The properties
of the DM haloes of the present simulation have been studied in
the appendix of Corasaniti et al. (2018).

We choose to model neither the haloes’ intrinsic luminosity,
nor the luminosity threshold for their detection by the observer.
Thus, the results presented in this article exploit all the available
data within the redshift ranges of interest.

3.3. 3D relativistic ray tracing

Observables are extracted from the light cones using a fully rel-
ativistic ray-tracing procedure based on the Magrathea library
(Reverdy 2014). Ray-tracing is performed backwards, that is,
towards the past starting from the observation event where λ = 0.
Initial conditions are fixed by the observation direction n and by
setting k0 = 1. This means that the affine parameter coincides
with conformal time at O. The observer is chosen to be comov-
ing, meaning that its peculiar velocity is set to zero, uo = 0. This
implies that ki ∝ ni, where the proportionality factor is such that
kµkµ = 0.

From these initial conditions, the geodesic Eqs. (2) and (3)
are integrated numerically with a fourth-order Runge-Kutta inte-
grator. Specifically, photon trajectories are computed within the
3D AMR structure with four steps per AMR cell. Since the
underlying N-body code uses a Triangular Shaped Cloud (TSC)
interpolation scheme, we use an inverse TSC to estimate the
gravitational potential and acceleration at the exact position of a
photon. Using another interpolation method may lead to incon-
sistencies, such as self-accelerating particles.

The 3D TSC scheme requires 27 cells with the same refine-
ment level to interpolate the value of a field at a position x. In
practice, we start with the finest level, that is, the level of the
smallest cell that contains x; if there are less than 27 neighbour-
ing cells with the same refinement level, then we try again with
the next coarser level, and so on.

We stop the ray tracing if (and only if) that operation is
impossible even at the coarse level, which means that the ray
reaches the limits of our numerical background light-cones
(described in Sect. 3.2) and there is no more data available to
pursue its propagation. Importantly, we save all the information
about every integration step of each ray’s trajectory. Besides,
rays are traced irrespective of the structures that they encounter;
in other words, matter is assumed to be transparent.

3.4. Infinitesimal beams

The most common way to numerically evaluate the distor-
tion matrix A is based on the multi-plane lensing formalism
(Blandford & Narayan 1986), where the matter distribution near
the line of sight (LOS) is projected onto various planes which
are then treated as thin lenses (Jain et al. 2000; Hilbert et al.

2009). Here we want to fully exploit the 3D information of the
ramses AMR octree. For that purpose, a first option consists in
integrating the projected Hessian matrix ∇a∇aφ of the gravita-
tional potential along the actual trajectories of light rays,

Aab = δab − 2
c2

∫ rs

0
dr

(rs − r)r
rs

∇a∇bφ[η(r), x(r)], (50)

where rs is the comoving distance to the source, a, b take the
values 1, 2, and the two-dimensional gradient ∇a is transverse to
n (to the LOS). In practice, the 3D Hessian ∂i∂ jφ is computed on
the mesh, and then converted in spherical coordinates to extract
its angular (transverse) part ∇a∇bφ.

We shall refer to this approach as the ‘infinitesimal-beam
method’, because it describes the distortions of an infinitesimal
light source. We note that this way of computing A is compa-
rable to the method used in Ray-Ramses (Barreira et al. 2016),
except that here ∇a∇bφ is evaluated on the actual ray trajectory
rather than on the background trajectory. In other words, we do
not resort to the Born approximation.

3.5. Ray bundles and finite-beam effect

The second option to compute the distortion matrix A is based
on a bundle of rays (a minima three), which may be seen as a
finite light beam subtended by an extended light source (Fluke
et al. 1999; Fluke & Lasky 2011). In that ‘ray-bundle method’,
each ray is accompanied with four auxiliary rays making an
angle ε with the central one, as depicted in Fig. 5. The compo-
nents ofA are then computed from finite coordinate differences
between the rays, rather than from gradients.

More precisely, our method goes as follows: First, stop the
central ray when the relevant parameter (such as redshift, time
or comoving distance) has reached the desired value; this defines
the fiducial source event S. Second, stop the auxiliary rays at the
same affine parameter λ as the central ray’s at S. This criterion
is arbitrary and other possibilities are implemented in the code.
Third, project the relative positions of the auxiliary rays on some
source plane. For simplicity, we chose it to be orthogonal to the
LOS8 θ. This defines the transverse separation ξ between the
auxiliary rays and the central one.

Our estimator Â for the distortion matrix is then motivated
by the fact that if two rays separated by a small ∆θ at O should
have angular coordinates differing by ∆β = ∆ξ/r = Â∆θ,

Â ≡ 1
2rε

[
(ξA − ξC) · e1 (ξB − ξD) · e1
(ξA − ξC) · e2 (ξB − ξD) · e2

]
, (51)

where r is the radial position where the central ray was stopped,
and e1, e2 are unit vectors defining the initial separation of the
auxiliary rays with respect to the central ray.

We note that the choices made in step 2 and 3 induce a spuri-
ous tilt in our estimate of the distortion matrix. We have checked
that the effect of this tilt is negligible in all the results involving
Â in this article. The specific analysis of the tilt in Sect. 3.8,
which require a better accuracy, will rely on a different method.

The finite separation of the rays in the bundle method may
cause some discrepancies with the infinitesimal-beam approach.
Those may be quantified using the finite-beam formalism devel-
oped by Fleury et al. (2017b, 2019a,b)9. In particular, the

8 We have also implemented another prescription where the screen is
orthogonal to the photon direction.
9 This formalism was initially developed to tackle the Ricci-Weyl para-
dox in the gravitational-lensing theory. It was later applied to determin-
ing the effect of the finite size of light sources in weak-lensing surveys.
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source plane
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Fig. 5. Ray-bundle method. A central light ray (dotted line) is accompa-
nied with four auxiliary rays A, B, C, D (red solid lines). Each auxiliary
ray makes an angle ε at O with respect to the central ray. The distortion
matrix is estimated by comparing the relative positions of the auxiliary
rays in a plane orthogonal to the line of sight θ.

finite-beam corrections to the angular power spectrum of con-
vergence, Pκ, and shear, Pγ, are found to read

Pκ(`; ε)
Pκ(`; 0)

=
1 + J2(2ε`) − J0(2ε`) + 2J2(

√
2ε`)

2(ε`)2 , (52)

Pγ(`; ε)
Pγ(`; 0)

=
1 − J0(2ε`)

(ε`)2 , (53)

where Pκ,γ(`; 0) denote the power spectra computed with the
infinitesimal-beam approach described in Sect. 3.4.

The complete derivation of Eqs. (52) and (53) is provided in
Appendix B; it relies on the weak-lensing, flat-sky, and Limber
approximations. We note that Eqs. (52) and (53) differ from the
results highlighted in Fleury et al. (2019a, Eqs. (120) and (121)),
because they correspond to different beam geometries. The latter
were computed from the distortions of circular beams, while the
former correspond to square-shaped beams as depicted in Fig. 5.

Figure 6 compares the predictions of Eqs. (52) and (53)
with ray tracing. Three different beam semi-apertures are con-
sidered: ε = 35 arcmin, 3.5 arcmin and 0.35 arcmin, to which
we may add ε = 0 corresponding to infinitesimal beams. For
each value of ε but 0, we compute the convergence and shear
using the ray-bundle method, at z = 1.95 on the interme-
diate narrow light cone, and for LOS dictated by Healpix
(Górski et al. 2005). Power spectra are extracted using PolSpice
(Szapudi et al. 2001; Chon et al. 2004), so as to correctly allow
for the angular selection function associated with the narrow
cone’s geometry.

Power-spectrum estimates from Healpix turn out to be
robust until ` ≈ nside10 Since finite-beam effects typically kick
in from ` ∼ ε−1, we set nside = 4096 for ε = 35 arcmin and
ε = 3.5 arcmin, while we set nside = 8192 for the smallest beam
size ε = 0.35 arcmin, so as to ensure that the power spectra are
reliable at the scales of interest.

The excellent agreement between Eqs. (52) and (53) and ray
tracing, as shown in Fig. 6, is the first numerical evidence of the
accuracy of the finite-beam formalism. This confirms that the
finite-beam corrections that may arise in the present work are
well understood and under control. In particular, the damping
of Pκ(`; ε) Pγ(`; ε) is expected to slightly reduce the variance of

10 The total number of pixels in a full-sky Healpix map is given by
Npix = 12 × nside2.
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Fig. 6. Finite-beam corrections to the angular power spectrum of con-
vergence (top panel) and shear (bottom panel) at z = 1.95, for different
semi-aperture sizes. Black lines indicate the theoretical predictions of
Eqs. (52) and (53), while coloured lines indicate ray-tracing results.

convergence and shear, which are involved in distance biases.
Such effects will not change the conclusions of our analysis.

Except otherwise stated, in the remainder of this article we
set ε = 0.35 arcmin. Smaller beam sizes are excluded because
they would exceed the resolution of the simulation.

3.6. Producing observables for statistical averages

We now turn to the generation of observables, for the purpose
of computing statistical averages. As seen in Sect. 2, directional
averaging and source averaging are distinct operations for which
different numerical techniques must be applied.

3.6.1. Healpix maps for directional averages

Directional averaging consists in affecting equal weights to all
directions of the observer’s sky. This condition is easily satisfied
by dividing the sky into pixels of equal area, which is the purpose
of Healpix. In order to estimate the directional average 〈X〉d of
an observable X, we thus shoot a ray bundle in each direction θ
dictated by Healpix, compute X(θ), and take their average.

3.6.2. Halo catalogues for source averaging

Source averaging gives the same statistical weight to each source
on the observer’s light cone. Thus, computing source averages
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Table 1. Three light cones are used for the present work.

Cone Area (deg2) zmax Nhaloes Nside

Full-sky – 0.5 1.4 × 107 2048
Intermediate narrow 2500 2 1.2 × 107 4096
Deep narrow 400 10 3 × 106 8192

Notes. This table indicates the type of light cone, the area covered, the
maximum redshift, the number of DM haloes in our catalogues and the
nside parameter used for Healpix maps (except otherwise stated).

requires to produce a source catalogue, and to determine the null
geodesic that connects each source to the observer.

In this work, sources are identified with the DM haloes,
which are extracted from the simulation as described in Sect. 3.2.
Geodesic identification, besides, follows Breton et al. (2019)
(see also Adamek et al. 2019). In a nutshell, a photon is shot
towards the comoving direction of a source; due to gravitational
lensing the photon generally misses the source, so that LOS must
be corrected and the operation iterated upon convergence at the
source (for an illustration, see Fig. 1 in Breton et al. 2019). This
procedure eventually yields the full trajectory of light for each
source, as well as its observed position. We note that we do not
account for multiple images of the same source, meaning that we
stop the geodesic-finding algorithm as soon as one valid ray is
found.

From the N-body code we also know the gravitational poten-
tial and velocity of each source in the catalogue. This data
notably allow us to accurately compute the redshift, accounting
for all the special- and general-relativistic effects at first order in
the metric perturbation. The quantitative features of the mocks11

used in this work are summarised in Table 1.

3.7. Surfaces on the light cone

In this article, we shall consider various ways to slice the
observer’s past light cone, depending on which parameter is
fixed; namely: Surfaces of constant redshift (iso-z), constant time
(iso-η), constant comoving distance travelled (iso-s), and con-
stant affine parameter (iso-λ). In the background FLRW model,
all these surfaces are spherical and correspond to each other fol-
lowing specific one-to-one relations. These are denoted with an
over-bar; for instance, z̄(η) is the background redshift on the
background iso-η surface. In practice, we determine these back-
ground relations by shooting a single ray in the simulation with
φ = 0.

In the inhomogeneous case, the surfaces are determined by
shooting rays in directions θ set by Healpix. Since all the prop-
erties of the ray and its location are saved at each integration step,
it is straightforward to determine the perturbed surfaces, such as
iso-η surfaces x(η), as well as the value of all the other param-
eters across the surfaces, so that z(η, θ) , z̄(η). The comoving
distance travelled s is computed at each integration step accord-
ing to si+1 = si + |xi+1 − xi|.

Subtleties arise in the case of iso-z surfaces. The significant
contribution of peculiar velocities to the observed redshift raises
two issues: First, since velocities are only defined for particles,
interpolation on the grid is necessary to estimate z at each time
step. For that purpose, we use a TSC interpolation using all the

11 The halo catalogues, as well as convergence and magnifica-
tion Healpix maps are available at http://cosmo.obspm.fr/
raygalgroupsims-relativistic-halo-catalogs

DM particles in the redshift range of interest with a buffer zone.
Second, it may happen that a light ray meets the same redshift
multiple times during its propagation. In other words, the func-
tion λ 7→ z(λ, θ) is not one-to-one in the inhomogeneous Uni-
verse; iso-z surfaces are not uniquely defined. In this work we
restrict the analysis to the two extremal iso-z surfaces, namely
the closest to the observer {x[rmin(z, θ), θ]}, and the farthest from
the observer {x[rmax(z, θ), θ]}. We denote these surfaces Σ−(z)
and Σ+(z) respectively.

3.8. Computing the area of wrinkly iso-η surfaces

In order to check the theoretical predictions of Sect. 2.5.3 regard-
ing the area of the LSS, and more generally of the iso-η surfaces,
we need to numerically evaluate the expression

A(η) = a2(η)
∫
S2

d2β r2(η,β)

√
1 +

∣∣∣∣∣∂ ln r
∂β

∣∣∣∣∣2, (54)

where β denotes the ‘true’ position of a point of the iso-η surface,
as opposed to the direction θ in which it would be observed.
Such a computation thus requires the numerical determination
of r(η,β) and its gradient ∂r/∂β.

In practice, however, we have a more direct access to r(η, θ)
because the iso-η surface is determined by ray shooting (see
Sect. 3.7), which yields r(η, θ) and β(η, θ) for each θ of a
Healpix map. One could in principle compute r(η,β) by find-
ing the null geodesics between the observer and the direction β at
each iso-η surface, but this procedure would be computationally
expensive. Another option consists in directly building a lower-
resolution Healpix β-map, such that in each pixel r(η,β) is the
average of the r(η, θ) for which β(η, θ) falls into that pixel.

An even cheaper possibility consists in using the fact that
the conversion between θ and β is dictated by lensing quantities,
which we do compute for each ray. We shall adopt this method
here. Specifically, in terms of θ, Eq. (54) reads

A(η) = a2(η)
∫
S2

d2θ
r2(η, θ)
µ(η, θ)

√
1 +

∣∣∣∣∣A(η, θ)
∂ ln r
∂θ

∣∣∣∣∣2, (55)

= 4πa2(η)
〈

r2(η)
µ(η)

√
1 +

∣∣∣∣∣A(η)
∂ ln r
∂θ

∣∣∣∣∣2〉
d
. (56)

The quantities r,A, µ are indeed evaluated in each direction θ
of our Healpix maps, thereby making the computation of A(η)
much easier. In fact, the corrections due to the presence of µ and
A, that is, the difference between integrating over θ or β, turn
out to be very small – about 1% of δA(η)/Ā(η); these corrections
could thus be neglected in first approximation.

We use two different methods to compute the gradient ∂r/∂θ
from the map r(η, θ) so as to better control numerical artefacts:
First, the ‘finite differences’ method, where we estimate deriva-
tives from finite differences between pixels. Second, the ‘spher-
ical harmonics’ method, where we first decompose the map into
spherical harmonics, r(η, θ) =

∑
`,m r`m(η)Y`m(θ) and then com-

pute gradients from the gradients of spherical harmonics. The
same procedure is applied to the mask (with zero padding),
which so as to normalise the gradient of the original map. We
use healpy routines (Zonca et al. 2019).

In practice, the spherical-harmonics method requires a
smoothing beforehand to ensure that we recover the initial map
through the operation map→ r`m → map. The smoothing scale
must be as small as possible but larger than pixel size; we thus
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adopt a Gaussian beam with FWHM = 5 arcmin. Although
smoothing is not needed in the finite-difference method, we
apply it as well to ensure that their results are comparable.

3.9. Uncertainties on numerical averages

When computing the (source or directional) average 〈X〉 of an
observable X from mock data, the result generally differs from
theoretical predictions; in other words, the ergodicity principle is
not exactly satisfied. This may happen for two reasons: First, the
number of mock observations in the sample is finite; this leads to
a Poisson uncertainty on the estimation of any average quantity.
Second, there may be super-sample inhomogeneity modes (Hui
& Greene 2006), which may bias the estimator of 〈X〉. This is
particularly relevant to the mock data extracted from the narrow
cones, which may be, for example, slightly over-dense or under-
dense with respect to the simulation box.

We shall account for this uncertainty by adding error bars on
any numerical average presented in the next section. The size of
such error bars, that is, the uncertainty σ on 〈X〉, is computed as

σ2 =
1
N

∞∑
`=0

2` + 1
4π

CX
`︸               ︷︷               ︸

Poisson

+ σ2
ss︸︷︷︸

super sample

. (57)

In Eq. (57), the first term represents the Poisson uncertainty due
to the finite sample size; CX

` denotes the `th multipole of X, and
N is the number of mock observations – the number of pixels
in the map for directional average, or the number of sources for
source-averaging. When N � 1, this first term may be neglected.

The second term in Eq. (57), σ2
ss, is the super-sample vari-

ance. This contribution may be understood as a generalisation
of the cosmic variance mentioned in Sect. 2.3.3. Suppose that
we compute the directional average of X within a cone with half
angle α at the observer,

〈X〉α =

∫ α

0
dϑ sinϑ

∫ 2π

0
dϕ X(ϑ, ϕ) =

∫
S2

d2θ W(θ) X(θ), (58)

with θ = (ϑ, ϕ), and where

W(θ) ≡ [ϑ < α]
2π(1 − cosα)

, (59)

is the cone’s window function. We note that 〈X〉α=π = 〈X〉d by
definition. 〈X〉α is a random variable, because it depends on the
actual orientation of the cone. Its variance is the super-sample
variance σ2

ss that we are looking for,

σ2
ss =

〈
〈X〉2α

〉
=

∫
d2θ d2θ′ W(θ) W(θ′)〈X(θ)X(θ′)〉. (60)

Decomposing the window function X and observable W in
spherical harmonics, for which

W`m =


δm0√

4π
` = 0,

δm0√
4π(2` + 1)

P`−1(cosα) − P`+1(cosα)
1 − cosα

` ≥ 1,
(61)

where P` are Legendre polynomials, we find

σ2
ss =

∑
`,m

|W`m|2 CX
` , (62)

=
1

4π

CX
0 +

∞∑
`=1

CX
`

2` + 1

∣∣∣∣∣P`−1(cosα) − P`+1(cosα)
1 − cosα

∣∣∣∣∣2
 · (63)

In the full-sky limit (α = π), the uncertainty on 〈X〉α is expect-
edly dictated by the monopole only, σ2

ss = CX
0 /4π.

3.10. Variance within a finite simulation box

The variance derived in Sect. 3.9 depends on CX
` , which ulti-

mately depends on the matter density power spectrum P(k). As
such, it would seem natural to use the information from all the
wavelengths available in P(k). However there is a subtlety when
estimating the variance from N-body simulations: these are usu-
ally cubic boxes with periodic boundary conditions, with a mean
density equal to zero inside the cubic volume by definition. This
means that, unlike the real Universe, there can be no inhomo-
geneity modes with wavelengths larger that the box itself.

To mimic this effect, Gelb & Bertschinger (1994) imposed a
cut-off in the matter power spectrum at kmin = 2π/L with L the
comoving size of the box. This approach has been widely stud-
ied either to estimate 3D statistics (Bagla & Ray 2005; Power
& Knebe 2006) or 2D weak-lensing analysis (Harnois-Déraps
& van Waerbeke 2015). To go further, one may convolve the
power spectrum with the appropriate cubic window function in
real space (Pen 1997; Sirko 2005); we found that this last cor-
rection was negligible because our box is large enough.

Finite-box corrections effectively change the low-k
behaviour of the power spectrum of any quantity that depends
on the gravitational potential or on the density contrast. As a
consequence, the angular power spectrum CX

` of any related
observable ` is modified at low ` compared to its theoretical
predictions in an infinite Universe. Depending on the shape of
CX
` , this effect may be more or less pronounced; in particular,

we expect a strong impact when most of the power is carried
by large scales. In that case, it is crucial to carefully account
for finite-box effects as well as evaluating power spectra
beyond Limber’s approximation. See Kilbinger et al. (2017)
and references therein for a review about low-` corrections in
weak-lensing studies.

We finally mention that, besides the aforementioned low-k
corrections, there are high-k corrections due to mass assignment,
shot noise and aliasing. These are already well known (Hockney
& Eastwood 1981) and negligible in the present study.

3.11. Constrained Gaussian random field and ensemble
averaging

The ergodic principle does not hold when averaging over a small
volume. For example, the ensemble average of the gravitational
potential vanishes by definition, 〈φ〉 = 0; yet, its average over
a small spatial region around the observer should be almost
equal to φ0, which in general is non-zero. This mis-match, due
to small-scale correlations, may lead to spurious discrepancies
between ensemble averages and numerical averages at low red-
shift.

It is possible to smoothly transition from the constraint at the
observer to the expectation from ensemble average through the
constrained random field formalism (Hoffman & Ribak 1991;
van de Weygaert & Bertschinger 1996; Mitsou et al. 2020).
Take again the example of the gravitational potential φ near the
observation event, which is subject to the constraint φ(0) = φ0.
Following Desjacques et al. (2021), the constrained ensemble
average of φ then reads

〈φ(x)|φ0〉 = φ0
ξφ(r)
ξφ(0)

, (64)

where ξφ(r) is the unconstrained two-point correlation function
of the gravitational potential and ξφ(0) = σ2

φ its variance at z = 0.
We implicitly assume that all quantities are evaluated on the light
cone to alleviate notation, ξφ(r) ≡ ξφ(η0 − r, r). For numerical
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applications, ξφ(r) is estimated from the linear power spectrum
with an infrared cutoff at kmin = 2π/L, as per Sect. 3.10.

The constraint φ(0) = φ0 also impacts the two-point correla-
tion function of φ. Indeed, since its value is fixed at 0, we expect
the variance of φ to vanish as we approach that point. The con-
strained two-point correlation function reads

ζφ(x, x′) ≡ 〈φ(x)φ(x′)|φ0〉 − 〈φ(x)|φ0〉〈φ(x′)|φ0〉, (65)

= ξφ(|x − x′|) − ξφ(r)ξφ(r′)
ξφ(0)

· (66)

Equations (64) and (66) are particularly useful for fields that are
mostly correlated on large scales, such as the gravitational poten-
tial whose power spectrum scales as P(k)/k4.

4. Results

In this section, we confront the theoretical predictions of Sect. 2
with numerical results obtained with the methods described in
Sect. 3. Directional averages and source-averages of cosmolog-
ical distance indicators are considered in Sect. 4.1. In the next
sub-sections, we then focus on the rather subtle shift (Sect. 4.2)
and tilt (Sect. 4.3) corrections to the amplification µ̃, that is, to
the area of various light-cone slices.

4.1. Directional and source averages

4.1.1. Directional averaging

We analyse here the statistical properties of the Healpix maps
generated as described in Sect. 3.6.1 for directional averages. To
avoid numerical uncertainties due to short light propagation, we
focus on data with z ≥ 0.2.

Figure 7 shows how much the directional average of the
inverse geometric and observable magnifications depart from
unity. Dots indicate numerical averages, while error bars account
for both Poisson and super-sample variance as described in
Sect. 3.9; an exception is the full-sky estimate of 〈µ−1〉d for
z < 0.5, which is only affected by Poisson variance. The exact
expressions that we use are provided in Appendix D.1.

First of all, we note that we do not recover exactly
〈µ−1(z)〉d = 1, which yet should be exactly satisfied. For the full-
sky cone (z < 0.5) the discrepancy is extremely small (<10−6)
and is attributed to the discretisation of the full-sky map: aver-
ages are performed over a large but finite number of points. This
interpretation is supported by the fact that 〈µ−1(z < 0.5)〉d is con-
sistent with unity within the Poisson uncertainty. For the two
other cones (z > 0.5), the discrepancy is larger (∼10−4). This
should not come as a surprise, because 〈µ−1〉d = 1 is exact on
the full sky only. The intermediate and deep narrow cones are
simply slightly under-dense or over-dense with respect to the
average box. Again, this interpretation is supported by the fact
that 〈µ−1(z)〉d − 1 falls well into the error bars accounting for
super-sample variance.

The direction-averaged inverse amplification 〈µ̃−1(z)〉d
departs from 1 by almost 10−3 even for the full-sky data. We may
note that, unlike µ, µ̃ is subject to super-sample variance even on
a full sky; however, the main reason for which 〈µ̃−1(z)〉d , 1 at
low z is the shift effect due to peculiar velocities (see Sect. 2.2.3).
For the other two cones 〈µ̃−1(z)〉d − 1 is mostly due to the super-
sample variance as the one affecting 〈µ−1(z)〉d − 1.

Our results show that the approximation 〈µ̃−1(z)〉d ≈ 1 is
accurate up to 10−3 up to z = 10. They also indicate that incom-
plete sky coverage in actual observations may in the end be the
main cause of any departure from 〈µ̃−1(z)〉d = 1 at high redshift.

10-1 100 101

redshift

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Full-sky Intermediate Deep

|
〈
1/µ

〉
d−1|

|
〈
1/µ̃

〉
d−1|

Fig. 7. Departures from 1 of the directional average of the inverse geo-
metric magnification 〈µ−1(z)〉d and of the inverse observable magnifica-
tion 〈µ̃−1(z)〉d at constant redshift z. Dots indicate numerical averages
over Healpix maps, while error bars allow for super-sample and Pois-
son variance; see Appendix D.1 for their expressions. The full-sky vari-
ance on 〈µ−1(z < 0.5)〉d does not contain super-sample variance. The
three vertical dashed lines indicate the limits of our three light cones:
full-sky (z < 0.5), intermediate narrow (0.5 < z < 2), and deep narrow
(2 < z < 10).
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Fig. 8. Bias on the distance-redshift relation when averaged over direc-
tions, compared with the theoretical prediction 〈d(z)〉d = 1 − 〈κ2(z)〉/2.
Since the iso-z surface is not unique, we indicated results for the closest
surface Σ−(z) and farthest surface Σ+(z) from the observer. Expressions
for the error bars may be found in Appedix D.1.

We now turn to the bias of angular or luminosity distance.
For directional averaging, we expect d(z) to be negatively biased
according to 〈d(z)〉d ≈ 1 − 〈κ2(z)〉/2. We evaluate 〈κ2〉 from the
data directly as 〈κ2〉d, and we have checked that a pure-theory
estimate based on the matter power spectrum gives the same
results. As shown in Fig. 8, that theoretical prediction is in good
agreement with numerical results within the error bars domi-
nated by super-sample variance. Again, low-redshift departures
are due to peculiar velocities whose shift effect is not accounted
for in κ2. While 〈µ−1(z)〉d and 〈µ̃−1(z)〉d remains unity within
error bars, 〈d(z)〉d − 1 clearly departs from zero for z > 1.

We finally evaluate the accuracy of the expansion that
allowed us to express all distance biases in terms of 〈κ2(z)〉 in
Sect. 2.4. We shall take the direction-averaged magnification in
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Fig. 9. Accuracy of the second-order expansion for the direction-
averaged magnification. The error bars are only due to Poisson variance.

order to illustrate that point. Taylor-expanding µ at order n in
µ−1 − 1 yields

µ =
[
1 − (1 − µ−1)

]−1
=

n∑
k=0

(1 − µ−1)k

︸          ︷︷          ︸
µ(n)

+O(1 − µ−1)n+1. (67)

Figure 9 confronts 〈µ〉d with its Taylor-expansion 〈µ(n)〉d for
n = 2, 3, 4, where all these quantities are evaluated numerically.
The error bars only allow for Poisson errors, because super-
sample variance affects µ and µ(n) in the same way. We see that
the quadratic expansion 〈µ(2)〉d provides a good approximation
of the exact result for z < 1. Beyond that, we observe discrepan-
cies reaching about 10% at z = 10. These are due to departures
from the weak-lensing regime (|µ−1 − 1| � 1), which are more
likely to happen as the redshift increases. Figure 9 also illustrates
the convergence of the series expansion of Eq. (67).

4.1.2. Source averaging

We now analyse the mock halo catalogues produced for the three
light cones (full sky, intermediate narrow and deep narrow) as
described in Sect. 3.6.2. We arrange the haloes in tomographic
bins of width ∆z = 0.08, 0.2 and 1.5 for the full sky, intermediate
and deep light cones, respectively.

We have seen in Sect. 2.3.2 that the source-average of the
geometric and observable magnifications are expected to be
almost unity 〈µ(z)〉s ≈ 〈µ̃(z)〉s ≈ 112. Unlike directional aver-
aging, departures from equality may be caused by the non-trivial
clustering of sources in addition to the shift and tilt corrections
responsible for µ̃ , µ. Numerical results for 〈µ(z)〉s, 〈µ̃(z)〉s are

12 In principle these (approximate) relations should apply to the total
absolute magnification rather than to the signed magnification. As men-
tioned in Sect. 2.3, they coincide in the absence of multiple imaging,
which is a good approximation here. In fact, no negative-parity image
was found in our halo catalogue. This is mostly due to the source-
averaging procedure, which is expected to give less strong-lensing
events that the directional averaging one, coupled with the fact that there
are less sources at high redshift. Another reason is the use of ray bun-
dles, which tend to smooth out the matter inhomogeneities on very small
scales and thereby reduce the occurrence of strong lensing.

10-1 100 101

redshift

10-6

10-5

10-4

10-3

10-2

|
〈
µ
〉

s−1|

|
〈
µ̃
〉

s−1|

Fig. 10. Departures from 1 of the source-average of the geometric mag-
nification 〈µ(z)〉s and of the observable magnification 〈µ̃(z)〉d at con-
stant redshift z. Dots indicate numerical averages over binned halo cat-
alogues, while error bars allow for super-sample and Poisson variance;
see Appendix D.1 for their expressions. The full-sky variance on 〈µ(z)〉s
does not contain super-sample variance.

depicted in Fig. 10. Again, error bars account for both Poisson
and super-sample (cosmic variance) whose expressions are given
in Appendix D.1. Since the number of mock haloes per bin is
smaller than the number of pixels of the maps used in Sect. 4.1.1,
Poisson variance is larger here, especially at high redshift where
it exceeds super-sample variance.

For the full-sky data (z < 0.5), we observe that |〈µ(z)〉s − 1| ≈
10−5, which is about 100 times larger than what was found for
|〈µ−1(z)〉d − 1|. This discrepancy, which goes beyond the esti-
mated uncertainty, is due to the fact that the latter does not prop-
erly account for the spatial clustering of haloes. Halo clustering
is present in the d2N/d2θ kernel in the definition (22) of source
averaging. The correlation between spatial clustering and lens-
ing convergence was predicted to be on the order of 10−5 in
Fleury et al. (2017a), Fanizza et al. (2020), which agrees with
the present results. As for 〈µ̃〉s, just as in Fig. 7 the numerical
results are in agreement with unity within the error bars domi-
nated by peculiar velocities.

The interpretation of the results for the intermediate (0.5 <
z < 2) cone is similar to the directional-averaging case. The rela-
tive effect of the shift, that is, the main difference between µ and
µ̃, reduces as the impact of super-sample variance increases. As
for the deep cone, Poisson variance dominates due to the small
number of haloes per tomographic bin. In both cases, 〈µ〉s and
〈µ̃〉s are compatible with unity within error bars, so that no unex-
pected bias arises.

We now turn to more observationally relevant biases. For SN
surveys, the common practice consists in fitting the magnitude-
redshift relation m(z) with the FLRW prediction (Scolnic
et al. 2018). Such a method is thus biased by 〈∆m(z)〉s =
5〈log10 d(z)〉s. For standard-siren Hubble diagrams, it may be
more common to fit the luminosity distance-redshift relation,
which would be biased by 〈d(z)〉s. Numerical results on these
biases are reported in Fig. 11, and compared with the theoretical
predictions presented in Sect. 2.4. Similarly to Sect. 4.1.1, we
estimate the variance of the convergence from the data itself. We
note that 〈κ2(z)〉s slightly differs from 〈κ2(z)〉d; their relation is
essentially given by Eq. (24).
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Fig. 11. Bias of the source-averaged distance-redshift 〈d(z)〉s (blue)
and magnitude-redshift 〈m(z)〉s (yellow) relations. The associated solid
lines are the theoretical predictions for these quantities as presented in
Sect. 2.4. Error bars account for Poisson and super-sample variance;
their expressions can be found in Appendix D.1.

Again, our results agree with theoretical predictions within
the error bars. We note that 〈d(z)〉s reaches a few 10−3 at high
redshift, which may become non-negligible for the standard-
siren Hubble diagrams of the future LISA mission (Caprini &
Tamanini 2016). Such a bias would be easily removed by fitting
D−2

L (z) instead of DL(z), as pointed out by Fleury et al. (2017a).
We finally mention that, since d and m are non-linear

functions of µ, theoretical predictions on their bias based on
a second-order Taylor expansion are subject to the same small
inaccuracies as displayed in Fig. 9. These inaccuracies are how-
ever much smaller than the uncertainty on those quantities, and
hence may be safely neglected.

4.2. Focus on the shift correction

In Sect. 4.1, we have analysed the statistical biases to distance
measures for both directional and source averaging. In particular,
we have found no unexpected violation of 〈µ̃−1(z)〉d ≈ 1 within
numerical uncertainties. As seen in Sect. 2.5, this relation may be
understood in terms of the area of iso-z surfaces, namely A(z) ≈
Ā(z) – the area is unaffected by inhomogeneities.

We now propose to further focus on the two subtle correc-
tions that are making the above ‘≈’ differ from equality, namely
the shift and tilt effects (see Fig. 1). We start, in the sub-section,
with the analysis of the shift, that is, the discrepancy between
the mean radius of a given light-cone slice (such as iso-z or iso-
η) and its value in the FLRW background.

4.2.1. Wiggly ray effect: Mean distance reached at fixed
distance travelled

We first consider the mean comoving distance that is reached by
a photon after it travelled over a given comoving distance. As
briefly described in Sect. 2.5.3, because light rays do not travel
in straight lines, the radius reached for a distance travelled s is
shorter than r̄ = s. We may thus write r(s) = r̄(s) − δrgeo(s),
where δrgeo encodes this wiggly-ray effect. This is illustrated
with a Healpix map of δrgeo(s)/r̄(s) at z = 0.2 in Fig. 12. We

Fig. 12. Map of wiggly-ray effect, that is, the relative fluctuations of the
comoving distance reached at fixed distance travelled, δrgeo(s)/r̄(s) =
r(s)/r̄(s) − 1, for s = s̄(z = 0.2).

see that the fluctuations are very small, on the order of 10−8, and
vary on relatively small angular scales.

On average, the wiggly-ray correction is found to read (see
Appendix C.1.2)

〈δrgeo(s)〉
r̄(s)

= −
∫ r̄

0
dr

(r̄ − r)r
r̄2 J(r). (68)

It may be noted, however, that Eq. (68) was obtained with the
help of a few approximations, among which is Limber’s. A
slightly more accurate computation, in the spirit of Eq. (A.26)
in KP16, would yield

〈δrgeo(s)〉
r̄(s)

= −8
∫ r̄

0
dr

r̄ − r
r̄2 g(r)

∫ r

0
dR

R
r − R

g(R) ξ′φ(r − R),

(69)

with g(r) ≡ D+(η0 − r)/a(η0 − r) where D+ is the linear growth
factor, ξφ is the two-point correlation function of the gravita-
tional potential at z = 0, and ξ′φ is its derivative.

These theoretical predictions are successfully confronted
with numerical results in Fig. 13. Error bars allow for both
Poisson and correlated variance, whose expression is given in
Appendix D.2. We note that the predictions of Eqs. (68) and (69)
are very similar, but only the latter falls within error bars for the
full-sky (z < 0.5) and intermediate cones (0.5 < z < 2).

4.2.2. Shapiro effect: Mean distance reached at fixed time

We now investigate the mean comoving distance reached at con-
stant time 〈r(η)〉; in other words, we consider the shift of iso-η
surfaces, which would be relevant for CMB-like observations. A
Healpix map of δr(η)/r̄(η) is given in Fig. 14 for illustration.
Compared to Fig. 12, we note that fluctuations are much larger
(of order 10−4) and take place on much larger angular scales.

As discussed in Sect. 2.5.3, in theory this shift may be
decomposed in two components: (i) the wiggly-ray effect δrgeo
considered above; and (ii) the Shapiro time-delay effect. The lat-
ter indeed changes the comoving distance travelled s(η) during a
given time, compared to its background counterpart s̄(η) = η0−η,
depending on the path-integrated gravitational potential experi-
enced by light. Summarising,

r(η) = r̄(η) + δr(η), δr(η) = δrgeo(η) + δs(η), (70)

and as shown in Appendix C we expect

〈δr(η)〉 = −〈δrgeo(η)〉 > 0, (71)
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Fig. 13. Wiggly ray effect: Mean fractional reduction 〈r(s)〉/r̄(s) − 1
of the comoving distance r(s) reached after travelling a comoving dis-
tance s. The x-axis indicates the redshift z̄(s) instead of s for better read-
ability. Dots indicate directional averages in the simulation 〈r(s)〉d; the
dashed and solid lines respectively indicate the theoretical predictions
of Eqs. (68) and (69). Error bars are computed following Appendix D.2.

because of the post-Born corrections to δs which turn out to be
minus twice the geometrical contribution.

Numerical results are confronted with theory in Fig. 15.
The first striking feature is perhaps that error bars are about
two orders of magnitude larger than the ones of Fig. 13. This
is because the time-delay contribution δs(η) is a first-order
quantity, while δrgeo(η) is second-order. Thus, the correspond-
ing super-sample variance is much larger. As such, the predic-
tion (71) naturally falls in the error bars, which is not particularly
informative.

We may add an extra layer of refinement since we know the
exact value of the gravitational potential in the simulation at the
observer, φ0 ≈ −7× 10−6 (which is about −2 km s−1). This infor-
mation may be used to improve our prediction of δs(η) at low
redshift. Precisely, following the method outlined in Sect. 3.11,
we find that the average Shapiro contribution under the con-
straint φ(0) = φ0 totally overwhelms the geometrical and post-
Born terms13, yielding

〈δr(η)|φ0〉 = 2φ0

∫ r̄(η)

0
dr

ξφ(r)
ξφ(0)

� 〈δrgeo(η)〉. (72)

The corresponding prediction is indicated by a solid line in
Fig. 15, and is observed to reproduce the behaviour of numer-
ical results at low redshift.

The fact that Fig. 15 is dominated by super-sample variance
makes it a priori impossible to check the unconstrained predic-
tion (71), which yet would be the most relevant at high redshift,
where the effect of φ0 becomes negligible. However, we may
apply the following trick to numerically extract the second-order
contribution of 〈δs(η)〉. We consider the following estimator

δ̂(2)s(η) =
〈µ−1(η)δr(η)〉d
〈µ−1(η)〉d − 〈δr(η)〉d. (73)

By construction, this combination eliminates the wiggly-ray and
first-order Shapiro contributions to δr(η), while preserving the

13 This finding does not contradict the conclusions of Hall (2020) that
the impact of our local gravitational potential is negligible in current
weak-lensing and galaxy-clustering surveys, because they concern very
different cosmological quantities.

Fig. 14. Map of the relative fluctuations of the comoving distance
reached at fixed time, r(η)/r̄(η) − 1 for η = η̄(z = 0.2). These fluctu-
ations are dominated by the first-order Shapiro time-delay effect.
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Fig. 15. Mean comoving distance reached at fixed time, 〈r(η)〉, com-
pared to its background counterpart r̄(η) = η0 − η. The difference
combines the wiggly-ray and Shapiro time-delay effects. The x-axis
indicates z̄(η) instead of η for better readability. Dots indicate numer-
ical results and error bars are computed according to Appendix D.4.
The dashed line indicates the unconstrained theoretical prediction (71),
while the solid line shows the prediction (72) that accounts for our
knowledge of the gravitational potential φ0 at the observer.

post-Born term of δs; see Appendix C.2.2 for details. Thus, we
expect δ̂(2)s = −2〈δrgeo〉. This is indeed roughly what is observed
in Fig. 16, although the error bars seem to be under-estimated.
This confirms our understanding of the subtle behaviour of r(η).

4.2.3. Doppler effect of peculiar velocities: Spatio-temporal
shift at fixed observed redshift

We now turn to observations performed at fixed redshift z. In
the inhomogeneous Universe, several phenomena may affect the
observed redshift of a source at a given position: Doppler effect
due to peculiar velocities, Sachs-Wolfe (SW) and ISW effects.
These imply that for a given redshift, light may have been emit-
ted slightly closer to the observer (and later), or slightly further
(and earlier) compared to the background FLRW case. In other
words, we have r(z) = r̄(z) + δr(z) and η(z) = η̄(z) + δη(z), with
δr = −δη the associated spatio-temporal shift of Σ(z).

The Doppler effect of peculiar velocities is expected to dom-
inate, especially at low-z. Assuming that the observer is comov-
ing (uo = 0), which is the case in the simulation, the shift due to
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Fig. 16. Second-order (post-Born) contribution to δs(η). Dots indi-
cate the numerical estimate from Eq. (73), while the solid line is
the theoretical prediction −2〈δrgeo(η)〉. Error bars are twice those
of Fig. 13.
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Fig. 17. Radial shift of surfaces of constant redshift. Dots indicate
numerical results for 〈δr(z)〉d/r̄(z) while error bars account for Poisson
variance and for the super-sample variance due to peculiar velocities
only. For each z, we provide two values of the mean shift: one across
the closest iso-z surface [Σ−(z), blue] and the other across the fathest
iso-z surface [Σ+(z), green].

the source’s peculiar velocity u reads

δr(θ, z)
r̄(z)

= −θ · u(θ, z)
H(z)r̄(z)

, (74)

at first order. We note that, combined with the (opposite) tempo-
ral shift, we find that the corresponding area perturbation reads
δ[a2(η)r2]/[a2(η̄)r̄2] = 2κ̃v, in agreement with Eq. (15).

Numerical results for 〈δr(z)〉d are shown in Fig. 17. Two val-
ues of δr(z) are provided for each z. This is because the fluctua-
tions of peculiar velocities may be important on the light cone,
so that several events may have the same redshift: Σ(z) is not
unique. We plotted here the smallest one, 〈min δr(z)〉d, and the
largest one, 〈max δr(z)〉d. Numerical values for 〈δr(z)〉d account
for all the redshift components at first order in metric pertur-
bations; however, the super-sample variance contribution to the
error bars only account for peculiar velocities, which are highly
dominant. See Appendix D.3 for their expression.

The mean shift is compatible with zero within the large error
bars, which is why we did not work on a more elaborate theo-
retical prediction for 〈δr(z)〉. We also note that the two extremal
surfaces Σ−(z),Σ+(z) that we have considered differ more as we
get closer to the observer. We shall now explain this point: at
high redshift there are few virialised objects, and hence veloc-
ity dispersion is small next to such objects; thus, at high z,
Σ(z) = Σ−(z) = Σ+(z) is typically unique. As z decreases, more
haloes form, which implies that more regions have high veloc-
ity dispersion14, thereby de-multiplying Σ(z) and spreading its
occurrences. The 1/(H r̄) factor in Eq. (74) further enhances that
spread.

4.2.4. Affine parameter at constant time

While surfaces of constant redshift Σ(z) or time Σ(η) are obser-
vationally relevant, we may also consider surfaces of constant
affine parameter Σ(λ), whose interest is strictly theoretical. Such
light-cone slices have the advantage of being defined regardless
of any specific model for the space-time metric. The analysis of
Kibble & Lieu (2005) was indeed conducted on Σ(λ). We shall
examine the time (or equivalently radial) shift at fixed affine
parameter, δη(λ), in the next sub-section. Before that, we pro-
pose to first consider the converse shift δλ(η) for pedagogical
reasons.

In the background FLRW model, the 0th component of the
geodesic Eq. (2) is integrated as

λ̄(η) =

∫ η0

η

dη′ a2(η′). (75)

In the presence of perturbations, this becomes

λ(η) =

∫ η0

η

dη′ a2(η′)
[
1 + 2(φ − φ0) − 2

∫ η′

0
dη′′

∂φ

∂η′′

]
· (76)

at first order (higher-order terms are negligible here). We note
that since 〈φ〉 = 0, the mean correction to the affine parameter
is simply 〈δλ(η)〉/λ̄(η) = −2φ0. However, we may account for
the fact that, in our simulation just as in observations, the grav-
itational potential at the observer is fixed, and estimate 〈δλ(η)〉d
with the following constrained ensemble average

〈δλ(η)|φ0〉 = −2φ0

∫ r̄(η)

0
dr a2(η0 − r)

[
1 − ξφ(r)

ξφ(0)

]
, 0, (77)

where we chose to neglect the small ISW term of Eq. (76). In the
high-z limit, this result may be approximated as

〈δλ(η)|φ0〉
λ̄(η)

≈ −2(1 − Ξ∞)φ0 = const., (78)

with

Ξ∞ ≡ lim
R→∞

1
λ̄(R)

∫ R

0
dr a2(η0 − r)

ξφ(r)
ξφ(0)

≈ 0.15. (79)

As shown in Fig. 18, the numerical results do follow the the-
oretical prediction of Eq. (77) within the error bars, although the
unconstrained prediction 〈δλ(η)〉/λ̄ = −2φ0 at first order would
also be validated by the data. In particular, 〈δλ〉/λ̄ is indeed
observed to converge to a constant at high z. For the deep cone
(z > 2) the error bars are dominated by super-sample variance,
but it seems that by chance the mean gravitational potential in
these 400 deg2 is very close to zero.

14 This is known as the Finger-of-God effect in galaxy clustering and
redshift-space distortions analysis.
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Fig. 18. Perturbation of the affine parameter at fixed time η. Dots are
numerical results obtained by directional averaging; the solid line indi-
cates the theoretical prediction (77); the dashed line shows−2φ0. Hence,
the fractional difference between the dashed line and the asymptote of
the solid line indicates Ξ∞. Error bars account for Poisson variance and
constrained super-sample variance; see Appendix D.4 for details.

We stress that error bars of Fig. 18 were computed in con-
figuration space to account for the constraint φ(0) = φ0 on the
variance (see Appendix D.4). For comparison, we also computed
the variance in harmonic space using Eq. (63). Results were sim-
ilar for the intermediate and deep cones, while for the full-sky
cone the unconstrained error bars were twice larger than the con-
strained one. Had we disposed of full-sky data up to z = 10, the
error bars at high-z would have been smaller than the bias of
〈λ(η)〉. In other words, 〈δλ(η)〉 = 0 would have been excluded.

4.2.5. Spatio-temporal shift at constant affine parameter

We now consider the time and radial shifts δη(λ) = −δr(λ) at
fixed affine parameter, which is the converse of the above. For
that operation, one would typically adopt a linearised approach
and write δη = (dη̄/dλ)δλ. However, since dη̄/dλ = 1/a2 =
(1 + z̄)2, this derivative can become quite large as the redshift
increases, so that δλ may actually get out of the linear behaviour
of η̄(λ). We may thus adopt a more accurate inversion that could
be extrapolated up to the LSS. Specifically, we use

η(λ) = η̄
{
λ̄[η(λ)]

}
, (80)

= η̄ {λ[η(λ)] − δλ[η(λ)]} , (81)
≈ η̄ {λ − δλ[η̄(λ)]} , (82)

which we shall refrain from further expanding.
We have checked numerically that the fluctuations of λ(η)

about its mean are much smaller than its bias 〈δλ(η)〉. This allows
us to express the average emission time at λ as

〈η(λ)〉 ≈ η̄ {λ − 〈δλ[η̄(λ)]〉} ≡ η̄(λ) + 〈δη(λ)〉, (83)

where 〈δλ〉 is given by Eq. (77).
As shown in Fig. 19, the prediction (83) interpreted as a

radial shift 〈δr(λ)〉 = −〈δη(λ)〉 is in excellent agreement with
the simulation data 〈δr(λ)〉d, although again 0 remains within
the error bars dominated by super-sample variance at high-z. As
expected, the amplitude of the shift blows up as λ increases.

In fact, a linear expansion of Eq. (77) would also match
our numerical results, whose redshift range is not large enough
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Fig. 19. Radial (or equivalently temporal) shift 〈δr(λ)〉 = −〈δη(λ)〉 at
fixed affine parameter λ. Dots indicate numercal results from directional
averaging; the solid line shows the theoretical prediction (83), while the
dashed line indicates r̄[(1 − 2φ0)λ] − r̄(λ) for comparison. Error bars
account for Poisson and super-sample uncertainties; see Appendix D.4.

for the non-linear prescription to be critical. However, it does
matter for the surface λ = λ∗, that is the surface of constant
affine parameter dictated by the background affine parameter of
the LSS. In that case the linearised version of Eq. (77) would
highly over-estimate the mean shift, which is already very large,
〈δr(λ∗)〉/r̄(λ∗) ∼ 10% with φ0 = −2 km s−1 of our simulation.

We now need to investigate the consequences of such a large
shift on the area A(λ∗) of the surface of affine parameter λ∗. Just
as for iso-z surfaces, the time and radial shifts of iso-λ surfaces
both contribute to the perturbation of their area, or equivalently
to 〈µ̃−1(λ)〉. Accounting for that shift only (the tilt being second-
order, it would be sub-dominant), we have

δA(λ∗)
Ā(λ∗)

=

〈
δ
{
a2[η(λ∗)]r2(λ∗)

}
a2[η̄(λ∗)]r̄2(λ∗)

〉
≈ a2[〈η(λ∗)〉] − a2[η̄(λ∗)]

a2[η̄(λ∗)]
, (84)

which is dominated by the difference in scale factor15. Again, we
shall refrain from linearising Eq. (84) because the time shift is
large enough to invalidate a first-order Taylor expansion of a(η).

We illustrate the behaviour of Eq. (84) in Fig. 20 (black
solid line) as a function of the observer’s potential. Even for
reasonable values of that quantity, such as φ0 ∼ −10 km s−1,
which is the order of magnitude expected within galaxy clusters
(Wojtak et al. 2011, 2015), we find an astonishing δA(λ∗)/
Ā(λ∗) ∼ 3000%. We note that the black solid line of Fig. 20
is only plotted for negative values of φ0. This is because for
φ0 > 0, 〈δη(λ∗)〉 < 0 quickly diverges as φ0 increases; since
limη→−∞ λ̄(η) < ∞, it may not even be defined.

At that point, we may note that the affine parameter is defined
up to an arbitrary normalisation. Here, this normalisation has
been chosen so that k0

o = 1 at the observer, hence λ coincides
with cosmic time at that point. Another sensible choice consists
in setting the observed frequency to unity, ωo = (1 + 2φ0)k0

o = 1.
This corresponds to a re-normalisation λ 7→ λ′ = (1 + 2φ0)λ,
where now λ′ represents proper time at the observer. This alter-
native normalisation eliminates the φ0 term in Eq. (76) and yields
〈δλ′(η)〉/λ̄(η) = 2Ξ∞φ0 instead of Eq. (78). However, the bias
on the area A(λ′∗) remains huge, as seen with the red line of

15 This is because the surface λ = λ∗ is very far from the observer. For
closer surfaces the radial shift would dominate.
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Fig. 20. Fractional change of the area A(λ∗) of the surface of constant
affine parameter λ = λ∗, as a function of the gravitational potential φ0
at the observer. The black and red lines correspond to two different nor-
malisations for the affine parameter.

Fig. 2016, which corresponds to that alternative normalisation
for the affine parameter. The only way to avoid such a huge bias
would be to define λ′′ with the quite un-natural normalisation
k0

o = 1 − 2(1 − Ξ∞)φ0.
The perhaps surprising results reported in this section must

be attributed to the fact that dλ̄/dη = a2(η) → 0 when η → −∞,
so that λ̄(η) flattens out and saturates in the early Universe. This
makes η extremely sensitive to even tiny changes in λ. All in
all, this indicates that the affine parameter is a rather dangerous
quantity to be used in theoretical analyses of light propagation
down to the early Universe. The huge bias on A(λ) shown in
Fig. 20 must be considered a theoretical hiccup with no observa-
tional consequences.

4.3. Focus on the tilt correction

We may close this section on numerical results by evaluating the
tilt, or wrinkly-surface effect, which tends to increase the inverse
amplification 1/µ̃ and the area of light-cone slices. As outlined
in Sect. 2.2.3 and illustrated in Fig. 1, the tilt is defined as the
angle ι between the radial direction β of a point and the local
direction of light propagation at that point.

The contribution of the tilt to the area A(p) of an iso-p surface,
or equivalently to the directional average of the inverse amplifi-
cation 〈µ̃−1(p)〉d, where p is any relevant parameter, goes as ι2(p);
it is always a second-order quantity. As such, it does not matter
much which parameter p is actually considered here. Indeed, for
any two parameters p, q (which can stand for z, η, λ, . . .) we have
ι(p)/ι(q) − 1 ∼ |shift(p) − shift(q)| � 1. In other words, the tilt
can be considered universal in first approximation.

In light of the above discussion, we shall consider the tilt
over surfaces of constant time, keeping in mind that the result
would equally apply to other ways to slice the light cone. The
choice of iso-η surfaces is also motivated by the fact that, in this
case17, ι coincides with the angle formed by the normal n to the

16 This red line is only plotted for φ0 ≥ 0 for the same reason as the
black line is only plotted for φ0 ≤ 0. Namely, 〈δη(λ′∗)〉 < 0 quickly
diverges and may not even exist when φ0 < 0.
17 This property would apply to other surfaces in their natural frame,
which is not necessarily the comoving frame.
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Fig. 21. Wrinkly-surface effect: relative increase of the area of surfaces
of constant time due to their non-sphericity. The black solid line indi-
cates the theoretical prediction (86) as originally found by KP16. The
green and red lines indicate numerical results obtained from the two
different methods outlined in Sect. 3.8.

surface and the radial direction β, as seen in Sect. 2.5.3. Thus,

cos ι(η,β) = β · n(η,β) =

[
1 +

∣∣∣∣∣ 1
r(η,β)

∂r
∂β

∣∣∣∣∣2]−1/2

· (85)

At second order, the area increase due to the tilt is predicted to
be (see Appendix C.4 for details),

δAtilt(η)
Ā(η)

= −1
2
〈ι2(η)〉 =

1
r̄2(η)

∫ r̄(η)

0
dr r2 J(r), (86)

with J(r) given in Eq. (49).
This prediction is successfully confronted with numerical

results following Sect. 3.8 in Fig. 21. This ends our series
of numerical checks of the remarkably accurate predictions of
KP16.

5. Conclusion

The general topic of this article was the effect of inhomogeneities
on cosmological observables, notably the average result of cos-
mic distance measurements. In the theoretical part (Sect. 2), we
started by emphasising the subtle difference between the notions
of geometric magnification µ and observable magnification µ̃.
We interpreted that difference in terms of shifts and tilts asso-
ciated with light propagation in the inhomogeneous Universe.
We then reviewed and compared various notions of averaging
involved in cosmology, in particular directional averaging 〈· · ·〉d
and source-averaging 〈· · ·〉s.

We argued that, because of the exact identity 〈µ−1〉d = 1,
one may expect the approximate relations 〈µ̃−1〉d ≈ 〈µ̃〉s ≈ 1.
Departures from the exact 〈µ̃−1〉d = 1 are due to the shift and
tilt effects. We rigorously showed that such statements may be
reformulated in terms of the area A of slices of the light cone;
namely A should be almost unaffected by cosmological inhomo-
geneities, which is the conjecture of Weinberg (1976). Finally,
we have reviewed how 〈µ̃−1〉d ≈ 〈µ̃〉s ≈ 1 allows one to predict
the statistical bias of any distance measure, such as the magni-
tude in SN surveys.

Most of the above theoretical considerations had been inves-
tigated in the past, notably in KP16, within the framework of cos-
mological perturbation theory at second order. The main addition
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of this article is their thorough analysis via ray tracing in a high-
resolution N-body simulation up to z = 10. This tool (Sect. 3)
allowed us to account for the inhomogeneity of the Universe down
to very small scales, where the perturbation theory fails. We pro-
duced Healpix maps and halo catalogues to generate direction-
averaged and source-averaged mock observations respectively.
Our main results are the following:
(i) At all redshifts, we confirmed that 〈µ−1(z)〉d ≈ 〈µ̃−1(z)〉d ≈
〈µ(z)〉s ≈ 〈µ̃(z)〉s ≈ 1 within our error bars, which account for
both Poisson and super-sample variance. Source-averaged
quantities were found to be more biased due to real-space
clustering.

(ii) Still within error bars, the bias on the direction-averaged dis-
tance is 〈δd(z)〉d = −〈κ2〉/2, while the source-averaged dis-
tance and distance modulus are biased as 〈δd(z)〉s = 3〈κ2〉/2
and 〈∆m(z)〉s = 5〈κ2〉/ ln 10. All these numerical results thus
agree very well (within error bars) with theoretical predic-
tions. A large scatter is observed at low redshift due to pecu-
liar velocities.

(iii) In order to further test the accuracy of Weinberg’s conjecture,
we investigated in detail the discrepancy between geometric
and observable magnifications µ, µ̃, that is, the effects of shift
and tilt. We found that the fractional area perturbations of Σ(η)
are well recovered by the predictions of KP16, of the order of
order 10−7. However, this bias turned out to be much smaller
than the super-sample variance on time delays, which is on
the order of 10−5. Furthermore, we checked that propagating
light rays on a coarse grid (rather than the AMR grid) does not
impact the discrepancy between µ and µ̃, which shows that the
latter is relatively insensitive to very small scales.

Summarising, our results show no unexpectedly large bias for
source and direction-averaged observables. They also confirm
Weinberg’s conjecture that the area of surfaces of constant
redshift, or constant time, are almost unaffected by inhomo-
geneities, with corrections remaining below a part in a million
for the latter (while the former might be slightly larger at low z
due to peculiar velocities, but so is the associated variance).

As a theoretical curiosity, we also considered the area bias of
surfaces of constant affine parameter, Σ(λ). We found that at very
high redshift, the bias grows quickly and eventually diverges,
because η 7→ λ(η) reaches a flat asymptote for η→ −∞. In prac-
tice, this leads to absurdly large corrections to A(λ), and shows
that one should avoid the use of the affine parameter to describe
light rays in the early Universe.

For the present analysis we used finite ray bundles to com-
pute the lensing distortion matrix A. This allowed us, as a side
product, to test the predictions of the finite-beam formalism
developed by Fleury et al. (2017b, 2019a,b). Specifically, we
checked that the convergence and shear power spectrum for finite
ray bundles were suppressed for scales smaller than the bundle’s
width, in excellent agreement with Fleury et al. (2019a). Last,
we found that treating the gravitational potential field φ as a con-
strained field near the observer, improves the agreement between
numerical data and theoretical predictions.

Several extensions are possibles for this work: at very large
scale it could be interesting to see the impact of a fully gen-
eral relativistic treatment, either by correcting the results from
a Newtonian N-body code (Chisari & Zaldarriaga 2011; Fidler
et al. 2015) or by directly using GR simulations (Adamek et al.
2016; Barrera-Hinojosa & Li 2020). At smaller scales, one could
investigate the effect of strong lensing, allowing for multiple
images for a single source. Also, we studied the bias on the
distance-redshift relation within the ΛCDM framework. One
could perform a similar analysis using different cosmologies, for

example by changing the nature of the dark sector or departing
from GR, to see how such new physics may be degenerate with
observational biases.

Acknowledgements. This paper is the continuation of a work that started dur-
ing Vincent Reverdy’s PhD thesis (Reverdy 2014). MAB thanks Sylvain de la
Torre for pointing out the paper of Desjacques et al. (2021). We thank the ref-
eree John Peacock for many relevant comments which significantly improved
the quality of this manuscript, especially in Sect. 2. This work was granted
access to HPC resources of TGCC through allocations made by GENCI (Grand
Equipement National de Calcul Intensif) under the allocations A0050402287 and
A0070402287. PF received the support of a fellowship from “la Caixa” Founda-
tion (ID 100010434). The fellowship code is LCF/BQ/PI19/11690018.

References
Abbott, T., Allam, S., Andersen, P., et al. 2019, ApJ, 872, L30
Adamek, J., Daverio, D., Durrer, R., & Kunz, M. 2016, JCAP, 7, 053
Adamek, J., Clarkson, C., Coates, L., Durrer, R., & Kunz, M. 2019, Phys. Rev.

D, 100, 021301
Alam, S., Aubert, M., Avila, S., et al. 2021, Phys. Rev. D, 103, 083533
Bacon, D. J., Andrianomena, S., Clarkson, C., Bolejko, K., & Maartens, R. 2014,

MNRAS, 443, 1900
Bagla, J. S., & Ray, S. 2005, MNRAS, 358, 1076
Bardeen, J. M. 1980, Phys. Rev. D, 22, 1882
Barreira, A., Llinares, C., Bose, S., & Li, B. 2016, JCAP, 5, 001
Barrera-Hinojosa, C., & Li, B. 2020, JCAP, 01, 007
Ben-Dayan, I., Marozzi, G., Nugier, F., & Veneziano, G. 2012, JCAP, 11, 045
Ben-Dayan, I., Durrer, R., Marozzi, G., & Schwarz, D. J. 2014, Phys. Rev. Lett.,

112, 221301
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Appendix A: Alternative approach to the shift and
tilt corrections

d2θ

shift

tilt ι

d2β⊥
d2β

d2β⊥

d2θ̄

d2A

d2Ad2A

Fig. A.1. Illustration of the shift and tilt effects, implying that the
observable magnification differs from the geometric magnification, in
the case of an isotropic spherical source.

In Sect. 2.2.3 we have presented the shift and tilt corrections to
the magnification by assuming that the source was an infinitesi-
mal element of the iso-z surface. This choice of formulation was
justified by its tight connection with the subsequent considera-
tions on the area of light-cone slices. Having said that, the curi-
ous reader may wonder about the generality of the shift and tilt
corrections as defined therein. We may now consider an individ-
ual source instead of an element of iso-z surface. This appendix
aims to show that the results of Sect. 2.2.3 equally applies to this
case.

We assume, for simplicity, that the source at redshift z is
spherical with isotropic emission18. Recall that the geometric
and observational magnifications are respectively defined as

µ = ± d2θ

d2β
, (A.1)

µ̃ = ±d2θ

d2θ̄
, (A.2)

where d2θ is the angular size of an image, d2β the coordinate
solid angle covered by the source, and d2θ̄ the apparent size of
that source if it were placed at the same redshift in an FLRW
universe (see Fig. A.1). The difference between µ and µ̃ lies in
the subtle difference between d2β and d2θ̄.

Since the source is spherical, it is equivalent to a disk of area
d2A orthogonal to the direction of light propagation at emission.
However, due to light deflection, this disk is tilted with respect to
the radial direction. As a consequence, the disk covers a smaller
coordinate solid angle d2β than its non-tilted counterpart d2β⊥
(top of Fig. A.1). Both are related by d2β = d2β⊥ cos ι.

Besides, due to redshift corrections in the inhomogeneous
Universe (peculiar velocities, Sachs-Wolfe effect, etc.) the time
and radial coordinates of the source are shifted with respect to
their background counterparts. As a result, a source with a given
size is seen under a different solid angle in both cases (bottom of
Fig. A.1), namely

d2θ̄

d2β⊥
=

a2[η(z)] r2(z)
a2[η̄(z)] r̄2(z)

· (A.3)

18 Anisotropic emission would bring additional effects that go beyond
the problematic of this article.

Summarising, the geometric and observational magnifica-
tions are related by

µ̃(z, θ)
µ(z, θ)

=
d2β

d2θ̄
=

d2β⊥
d2θ̄︸︷︷︸
shift

d2β

d2β⊥︸︷︷︸
tilt

=
a2[η̄(z)] r̄2(z)
a2[η(z)] r2(z)

cos ι, (A.4)

which is indeed equivalent to Eq. (14).

Appendix B: Finite-beam corrections

In this appendix we derive the finite-beam corrections (52), (53)
to the power spectra of convergence and shear. The computa-
tion will follow the general philosophy of Fleury et al. (2017b,
2019a,b), but it will differ in the details, due to the specific four-
ray set-up used to compute κ and γ in this article.

B.1. Estimators of convergence and shear

As shown by Fleury et al. (2019a), finite-beam corrections to
cosmic convergence and shear occur on very small scales. Thus,
we can safely work in the flat-sky approximation in the follow-
ing. In that context, the lens equation reads

β = θ − α(θ), (B.1)

where β is the position of a point source, θ the position of its
image, and α the displacement angle. An infinitesimal image is
a collection of points θ whose separation is much smaller than
the typical angular scale over which α(θ) varies appreciably. In
that case, one Taylor-expands α(θ) at first order and gets

α(θ) = α(0) +

(
κ + γ1 γ2
γ2 κ − γ1

)
θ, (B.2)

which defines the convergence κ and shear γ. We note that we
neglected the rotation ω ∼ |γ|2 [see Fleury (2015)] for simplicity.
Since α(0) could be absorbed in a re-definition of the origin of
the source plane, we set it to zero for convenience, α(0) = 0.

In the following calculation, it will be very convenient to
associate a complex number θ = θx + iθy with any 2-dimensional
vector θ = θxex +θyey. The lens equation then reads β = θ−α(θ),
and for infinitesimal images

α(θ) = κ θ + γ θ∗, (B.3)

where a star denotes complex conjugation, and γ = γ1 + iγ2 is
the complex shear.

In this article, as explained in Sect. 3.5, the distortion matrix,
and hence convergence and shear, are estimated using a four-
ray-bundle method. About a direction θ, four rays are shot in
the directions θ ± εex, θ ± εey, and traced to get the associated
four source positions. With complex notations, the correspond-
ing estimators of convergence and shear are found to read

κ(θ; ε) =
1

4ε2

3∑
p=0

<
[
ε∗pα(θ + εp)

]
, (B.4)

γ(θ; ε) =
1

4ε2

3∑
p=0

εpα(θ + εp), (B.5)

where

εp ≡ εeip π
2 = ε ip p = 0, 1, 2, 3, (B.6)
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Fig. B.1. Convergence maps at z = 0.2 using Healpix with nside = 2048. Top right panel: coarse grid and ε = 0.35 arcmin. Top left panel: AMR
grid and ε = 35 arcmin. Bottom left panel: AMR grid and ε = 3.5 arcmin. Bottom right panel: AMR grid and ε = 0.35 arcmin.

are the four shifts with respect to the central ray θ used here.
We note that the infinitesimal-beam case is recovered as ε→

0,

lim
ε→0

κ(θ; ε) = <(∂α) = ∂α = κ(θ; 0), (B.7)

lim
ε→0

γ(θ; ε) = ∂∗α = γ(θ; 0), (B.8)

where we introduced the complex derivative

∂ ≡ ∂

∂θ
=

1
2

(
∂

∂θx
− i

∂

∂θy

)
· (B.9)

B.2. Fourier transform

Before moving to the actual computation of the power spectra if
κ, γ, it is useful to express their Fourier transforms, as a function
of their infinitesimal-beam counterparts. We use the convention

f̃ (`) =

∫
d2θ e−i`·θ f (θ), (B.10)

f (θ) =

∫
d2`

(2π)2 ei`·θ f̃ (`). (B.11)

In the infinitesimal beam case, this implies

κ̃(`; 0) =
1
2

i`∗ α̃(`), (B.12)

γ̃(`; 0) =
1
2

i` α̃(`). (B.13)

We start with convergence. Taking the Fourier transform of
Eq. (B.4), and using κ̃(−`; 0) = [κ̃(`; 0)]∗, we find

κ̃(`; ε) = C(`; ε) κ̃(`; 0), (B.14)

with the finite-beam filter

C(`; ε) ≡ 1
2ε2

3∑
p=0

=
[εp

`

]
eiεp·`. (B.15)

Similarly, the Fourier transform of shear reads

γ̃(`; ε) = S (`; ε) γ̃(`; 0), (B.16)

with the finite-beam filter

S (`; ε) =
1

2iε2

3∑
p=0

εp

`
eiεp·`. (B.17)

B.3. Power spectra

We are now ready to compute the power spectra of
κ(θ; ε), γ(θ; ε), and in particular to evaluate how the results of
the four-ray set-up may differ from the theoretical predictions
with infinitesimal beams. The convergence power spectrum can
be defined via

〈κ̃(`1; ε) κ̃(`2; ε)〉 = (2π)2δD(`1 + `2)Pκ(`1; ε), (B.18)

from which we deduce that

Pκ(`; ε) = C(`; ε)C(−`; ε)Pκ(`; 0). (B.19)

We note that, contrary to Pκ(`; 0), Pκ(`; ε) depends on the orien-
tation of `. This is due to the anisotropic square-like geometry of
the four-beam set-up. However, in practice we effectively calcu-
late the isotropic part from ray tracing,

Pκ(`; ε) ≡
∫ 2π

0

dψ
2π

Pκ(`; ε)· (B.20)
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where ψ denotes the polar angle of ` = `(cosψ, sinψ). After a
tedious but straightforward calculation, we finally get

Pκ(`; ε)
Pκ(`; 0)

=

∫ 2π

0

dψ
2π

C(`; ε)C(−`; ε), (B.21)

=
1 + J2(2ε`) + 2J2(

√
2ε`) − J0(2ε`)

2(ε`)2 · (B.22)

The calculation for shear is slightly different but technically sim-
pler. The power spectrum can be defined via

〈γ̃(`1; ε)γ̃∗(−`2); ε)〉 = (2π)2δD(`1 + `2) Pγ(`1; ε), (B.23)

so that

Pγ(`; ε) = |S (`; ε)|2 Pγ(`; 0). (B.24)

Taking the isotropic part then yields

Pγ(`; ε)
Pγ(`; 0)

=

∫ 2π

0

dψ
2π
|S (`; ε)|2 , (B.25)

=
1 − J0(2ε`)2

(ε`)2 · (B.26)

As we can see in Fig. B.1, similarly to resolution effects on
simulations (Lepori et al. 2020), the finite-beam effect acts as
a smoothing on weak lensing maps.

Appendix C: Details on the area of constant-time
surfaces: shift and tilt

In this appendix, we derive the theoretical predictions for the
perturbation of the area of surfaces of constant time. As shown
in Sect. 2.5.3, at second order, we have

δA(η)
Ā(η)

=

∫
S2

d2β

4π

[
2δr(η,β)

r̄(η)
+
δr2(η,β)

r̄2(η)
+

1
2
ι2(η,β)

]
, (C.1)

where δr(η,β) = r(η,β) − r̄(η) is the radial perturbation of the
iso-η surface, which may be decomposed into a geometrical and
a time-delay (Shapiro) contribution as δr = δrgeo + δs; ι denotes
the tilt between the normal iso-η surface and the radial direction.

We compute the ensemble average of δrgeo, δs, ι in the spirit
of KP16. Although our final result (48) agrees with KP16, our
derivations slightly differ. We also derive the angular correla-
tion functions for δrgeo and δs, which is necessary to estimate
their super-sample variance, and hence to allow a consistent con-
frontation of theory and numerical results.

C.1. Comoving radius reached at fixed comoving distance
travelled

Due to gravitational lensing, light rays are wiggly, and hence the
comoving radius that they reach is smaller than their comoving
distance travelled. For a given comoving distance travelled s, the
radius thus reads r = r̄ + δrgeo(s) with r̄ = s. Here we carefully
derive the expression of δrgeo < 0 and its statistical properties.

C.1.1. Expression of δrgeo

We consider a photon observed in the direction θ from a source
in the direction β; we may write its trajectory as x(r) = rβ+ξ(r),
where ξ ⊥ β is the transverse displacement with respect to the
axis spanned by β. If the source is located at rs, then by definition

ξ(0) = ξ(rs) = 0 and ξ̇(0) = θ−β ≡ α in the limit of small angles,
where a dot denotes a derivative with respect to r.

With such conditions, the equation of motion ξ̈ = −2∇⊥φ is
solved as

ξ̇(r) = α − 2
∫ r

0
dr′ ∇⊥φ(r′), (C.2)

ξ(r) = rα − 2
∫ r

0
dr′ (r − r′)∇⊥φ(r′). (C.3)

The condition ξ(rs) = 0 then implies the familiar

α = 2
∫ rs

0
dr

rs − r
rs
∇⊥φ(r). (C.4)

We note that the presence of α in Eqs. (C.2) and (C.3) comes
from our definition of ξ as the transverse displacement with
respect to the β-axis; had we considered, as KP16, transverse
displacement with respect to the θ-axis, α would not be present.
Our convention is more adapted (i) to the geometry of the prob-
lem, and (ii) to the fact that we will eventually consider ensemble
averages where β is fixed.

The total path length depends on the local inclination ι(r) =
|ξ̇(r)| of the ray with respect to the axis spanned by β. Specifi-
cally, we have, at second order,

s(rs) =

∫ rs

0

dr
cos ι(r)

= rs +
1
2

∫ rs

0
dr |ξ̇(r)|2︸             ︷︷             ︸

−δrgeo(rs)

, (C.5)

which defines the wiggly-ray correction δrgeo < 0 to the radius
reached after travelling s19. Substituting the expression (C.2) of
ξ̇ then yields

δrgeo ≡ −1
2

∫ rs

0
dr |ξ̇(r)|2, (C.6)

= −1
2

rs|α|2 + 2α ·
∫ rs

0
dr

∫ r

0
dr′ ∇⊥φ(r′),

− 2
∫ rs

0
dr

∫ r

0
dr′

∫ r

0
dr′′ ∇⊥φ(r′) · ∇⊥φ(r′′). (C.7)

We may now simplify this expression by playing with the
order of integration. We recommend the reader to draw the vari-
ous integration domains in order to make sense of the following
operations. The integrals in the second term of Eq. (C.7) read∫ rs

0
dr

∫ r

0
dr′ ∇⊥φ(r′) =

∫ rs

0
dr′

∫ rs

r′
dr ∇⊥φ(r′), (C.8)

=

∫ rs

0
dr′ (rs − r′)∇⊥φ(r′), (C.9)

=
1
2

rsα, (C.10)

so that the whole second term is simply rs|α|2. As for the third
term of Eq. (C.7), we may perform the following operations,
aiming at moving the integration over r to the right. The first
step is identical as above, and reads∫ rs

0
dr

∫ r

0
dr′

∫ r

0
dr′′ =

∫ rs

0
dr′

∫ rs

r′
dr

∫ r

0
dr′′. (C.11)

19 The cautious reader may note that our definition of δrgeo differs
from (A21) of KP16. Specifically, our approach involves the angle ι
between the photon direction and β, while KP16 consider instead the
angle between photon propagation and the instantaneous photon posi-
tion β + ξ(r)/r. Our methods yield the same final result for δrgeo.
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The second inversion is more involved because it features an
integration region made of right-angled triangle and a rectangle.
A possible operation is∫ rs

r′
dr

∫ r

0
dr′′ =

∫ r′

0
dr′′

∫ rs

r′
dr +

∫ rs

r′
dr′′

∫ rs

r′′
dr, (C.12)

so that after a couple of additional manipulations we have∫ rs

0
dr

∫ r

0
dr′

∫ r

0
dr′′ ∇⊥φ(r′) · ∇⊥φ(r′′)

= 2
∫ rs

0
dr′

∫ r′

0
dr′′ (rs − r′)∇⊥φ(r′) · ∇⊥φ(r′′). (C.13)

Gathering all three terms of Eq. (C.7) and using the symme-
try of the double integration in |α|2, we finally obtain

δrgeo = −4
∫ rs

0
dr

∫ r

0
dr′

(rs − r)r′

rs
∇⊥φ(r) · ∇⊥φ(r′), (C.14)

in agreement with the third line of (A21) in KP16.

C.1.2. Ensemble average of δrgeo

For δA(η) we need to evaluate the average of δrgeo over β. Fol-
lowing Sect. 2.3.3, we apply the ergodicity principle to translate
this into an ensemble average,∫
S2

d2β

4π
δrgeo(η,β) = 〈δrgeo(η,β)〉, (C.15)

which holds up to super-sample variance.
Introducing the Fourier transform φ̃ of φ, we have

∇⊥φ =

∫
d3 k

(2π)3 eik·x (ik⊥) φ̃(k), (C.16)

and using Limber’s approximation we may proceed as

〈∇⊥φ · ∇⊥φ′〉 =

∫
d3 k

(2π)3

d3 k′

(2π)3 ei(k·x+k′·x′)

× (−k⊥ · k′⊥)〈φ̃(k)φ̃(k′)〉, (C.17)

=

∫
d3 k

(2π)3 eik·(x−x′) k2
⊥Pφ(η, η′, k), (C.18)

≈ δD(r − r′)
∫

d2`

(2πr)2

(
`

r

)2

Pφ

(
η,
`

r

)
︸                          ︷︷                          ︸

≡J(r)/2

, (C.19)

where we introduced the power spectrum Pφ of the gravitational
potential, which is evaluated down the background light cone
with η = η0 − r. In the last line we adopted the notation of KP16
and identified the integral

J(r) ≡ 2
r4

∫ ∞

0

d`
2π

`3Pφ

(
η0 − r,

`

r

)
, (C.20)

= 2
∫ ∞

0

dk
2π

k3Pφ (η0 − r, k) , (C.21)

= 2π
∫ ∞

0
kPφ (η0 − r, k) d ln k, (C.22)

wherePϕ denotes the dimensionless power spectrum of φ, which
is related to the standard one by 2π2k−3Pφ(k) = Pφ(k).

Substituting the above in the expression of δrgeo, we find

〈δrgeo〉 = −
∫ rs

0
dr

(rs − r)r
rs

J(r). (C.23)

Importantly, during that last step a factor 1/2 appears, due to the
integration of a Dirac delta on half of its domain:∫ r

0
dr′ δD(r′ − r) f (r′) =

1
2

f (r). (C.24)

C.2. Distance travelled at fixed time

We now turn to the effect of time delays, which implies that
during a time η0 − η, a photon travels a comoving distance
s = η0 − η + δs, with

δs(η) =

∫ η0

η

dη 2φ[η, x(η)]. (C.25)

Combined with the wiggly-ray effect, this implies that the radius
reached at fixed time reads r(η) = r̄(η) + δrgeo(η) + δs(η).

C.2.1. Post-Born expansion of δs

We note that δs is a first-order quantity evaluated on the per-
turbed trajectory x of the photon. Since it is involved in δr
together with δrgeo which is a second-order quantity, we must
account for post-Born corrections for consistency. These will
turn out to be exactly minus twice δrgeo.

Just as in Sect. C.1, we write the perturbed photon path as
x(r) = rβ + ξ(r), so that δs becomes

δs =

∫ rs

0
dr 2φ(r) +

∫ rs

0
dr 2ξ(r) · ∇⊥φ(r)︸                      ︷︷                      ︸

≡δspB

, (C.26)

where we changed to an integration over comoving radius with-
out any loss of generality. The second term, δspB, in Eq. (C.26)
encodes post-Born corrections. Substituting the expression (C.3)
of ξ we may rewrite it as

δspB = 4
∫ rs

0
dr

∫ rs

0
dr′

r(rs − r′)
rs

∇⊥φ(r′) · ∇⊥φ(r)

− 4
∫ rs

0
dr

∫ r

0
dr′ (r − r′)∇⊥φ(r′) · ∇⊥φ(r), (C.27)

= 4
∫ rs

0
dr

∫ rs

r
dr′

r(rs − r′)
rs

∇⊥φ(r′) · ∇⊥φ(r)

+ 4
∫ rs

0
dr

∫ r

0
dr′

r′(rs − r)
rs

∇⊥φ(r′) · ∇⊥φ(r), (C.28)

= 8
∫ rs

0
dr

∫ r

0
dr′

r′(rs − r)
rs

∇⊥φ(r′) · ∇⊥φ(r), (C.29)

δspB = −2δrgeo. (C.30)

C.2.2. Ensemble average of δs

The ensemble average of φ being zero, the only contribution
from the ensemble average of δs comes from the post-Born term,

〈δs〉 = 〈δspB〉 = −2〈δrgeo〉 > 0. (C.31)

The expression of 〈δrgeo〉 is given in Eq. (C.23).
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In Sect. 4.2.2 we find that numerical estimates of 〈δs〉 are
overwhelmed by the super-sample variance of its first-order con-
tribution. In order to check Eq. (C.31) numerically, it would be
convenient to extract its post-Born term. This can actually be
done with the following estimator for the average of δspB:

δ̂spB ≡ 〈µ
−1δs〉d
〈µ−1〉d − 〈δs〉d = 〈δs(β)〉 − 〈δs(θ)〉. (C.32)

A calculation along the same lines as before indeed shows that
the post-Born contribution drops from 〈δs(θ)〉, that is when
ensemble averaging is taken whilst θ is kept fixed. Since, how-
ever, the Born contribution to both 〈δs(β)〉, 〈δs(θ)〉 is identical,
their difference eliminates it from the final result.

C.2.3. Ensemble average of δs2

Since δs is a first-order quantity, we must also evaluate its mean
square as a contribution to the term 〈(δr/r̄)2〉 in Eq. (C.1). The
computation is straightforward and yields

〈δs2〉 ≈ 4
∫ rs

0
dr ξφ(r), (C.33)

in Limber’s approximation, where ξφ is the two-point correlation
function of φ.

C.3. Total effect of the shift

Gathering the geometric and time-delay effects, we conclude
that, at second order
δAshift(η)

Ā(η)
≡

〈
2δr(η,β)

r̄(η)
+
δr2(η,β)

r̄2(η)

〉
, (C.34)

=

〈
2δrgeo

rs

〉
+

〈
2δs
rs

〉
+

〈
δs2

r2
s

〉
, (C.35)

= 2
∫ rs

0
dr

(rs − r)r
r2

s
J(r) + 4

∫ rs

0
dr ξφ(r). (C.36)

In practice, the second term is negligible with respect to the first
one and it can be discarded.

C.4. Tilt or wrinkly-surface effect

We now turn to the increase of the area due to its wrinkles. As
seen in Eq. (C.1), this effect is controlled by the angle ι(η,β) =
|ξ̇(η,β)| formed by the normal to the iso-η surface and the direc-
tion spanned by β. Specifically,
δAtilt(η)

Ā(η)
≡ 1

2

∫
S2

dβ
4π

ι2(η,β) =
1
2

〈
|ξ̇(η,β)|2

〉
, (C.37)

From the expression (C.2) of ξ̇, we find

|ξ̇|2 = 4
∫ rs

0
dr

∫ rs

0
dr′

rr′

r2
s
∇⊥φ(r) · ∇⊥φ(r′), (C.38)

and hence, in Limber’s approximation,

1
2

〈
|ξ̇(η,β)|2

〉
=

∫ rs

0
dr

r2

r2
s

J(r), (C.39)

in agreement with Eq. (A41) of KP16.
Combining this wrinkly surface contribution with the total

contribution of the shift then yields the final result
δA(η)
Ā(η)

=

∫ rs

0
dr

(2rs − r)r
r2

s
J(r), (C.40)

up to the negligible δs2 term.

Appendix D: Variance calculations

For any statistical quantity X, its variance is given by Eq. (57),
which depends on the angular power spectra of X. In what fol-
lows, we give CX

` for the quantities in Sect. 4.

D.1. Variance for source and directional averages

The quantities of interest for source and directional averages are
functions of µ and µ̃, which can be rewritten in terms of κ and κ̃.
Their angular power spectra can be rewritten as

Cµ
`

= C1/µ
`

= 4Cκ
` , (D.1)

Cµ̃
`

= C1/µ̃
`

= 4C κ̃
` , (D.2)

Cd
` = C κ̃

` , (D.3)

C∆m
` = [5/ ln 10]2 C κ̃

` . (D.4)

Therefore, to estimate the variance we need to compute the angu-
lar power spectra of κ and κ̃.

As discussed in Eq. (15), κ̃ may be approximated as

κ̃ = κ + κ̃v, (D.5)

where the contribution from redshift perturbations κ̃v only con-
tain the effect of peculiar velocities. For simplicity, we only
account for the auto-correlation of κ and κ̃v, so that

C κ̃
` = Cκ

` + C κ̃v
`
. (D.6)

We generate Cκ
`

with Nicaea (Kilbinger et al. 2017) which uses
the non-linear prescription from Halofit (Smith et al. 2003;
Takahashi et al. 2012).

The angular power spectrum of κ̃v is simply

C κ̃v
`

= 4π
(
1 − 1
Hr

)2 ∫
dk
k

j2` (kr)
k3Pv(k)

2π2 , (D.7)

with Pv(k) the peculiar-velocity power spectrum.
We only consider the variance from κ and κ̃v for simplicity.

In principle, one should also account for cross-terms as well as
additional variance terms, for example due to real-space cluster-
ing for source-averaged quantities, see (Fleury et al. 2017a).

We note that we do not account for the constraint at the
observer (see Sect. 3.11), because this effect is only relevant
when the field of interest is very correlated at large scales,
such as the gravitational potential whose power spectrum scales
as P(k)/k4. This is not the case for the quantities investigated
here, hence we do not need to account for the constraint at the
observer.

D.2. Angular power spectrum of δrgeo

The geometrical shift δrgeo at fixed distance travelled is a second-
order quantity, which depends on the power spectrum of φ.
Hence its own angular power spectrum will depend on the four-
point function of φ. In that context, a full spherical-harmonic
computation would be rather involved; furthermore, expect most
of the power to be held by small scales. Hence, we choose to
compute a flat-sky power spectrum Pgeo(`) ≈ C`[δrgeo].

We start from the definition of the two-point correlation
function as

ξgeo(θ) ≡ 〈δrgeo(θ1) δrgeo(θ2)〉 − 〈δrgeo(θ1)〉〈δrgeo(θ2)〉, (D.8)
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Table D.1. Expressions used in Eq. (D.18) for various quantities studied
in Sect. 4.2, with KX ≡ KX(r) and HX ≡ HX(rθ, r′θ′). For HX we use
the relations in Sect. 3.11.

X KX HX

δr(η)/r̄(η) 2/r̄(η) 〈φ(rθ)φ(r′θ′)|φ0〉
δλ(η)/λ̄(η) 2a2(η)/λ̄(η) 〈(φ(rθ) − φ0)(φ(r′θ′) − φ0)|φ0〉
δr(λ)/r̄(λ) 2a2(λ)/(r̄(λ)ā2(λ)) 〈(φ(rθ) − φ0)(φ(r′θ′) − φ0)|φ0〉

with θ ≡ |θ1 − θ2|. We note that since δrgeo is second-order, it
does not really matter whether we are considering observed or
‘true’ angular positions here.

Substituting the expression (C.14) of δrgeo in the first term of
Eq. (D.8) and using its Fourier transform yields〈
δrgeo(θ1) δrgeo(θ2)

〉
= 16

∫ rs

0
dr1

∫ r1

0
dr′1

∫ rs

0
dr2

∫ r2

0
dr′2

×
[
(rs − r1)r′1

rs

] [
(rs − r2)r′2

rs

] ∫
d3 k1

(2π)3

d3 k′1
(2π)3

d3 k2

(2π)3

d3 k′2
(2π)3

× exp i
[
(r1 k1 + r′1 k′1) · θ1 + (r2 k2 + r′2 k′2) · θ2

]
× (k⊥1 · k⊥1

′)(k⊥2 · k⊥2
′)

〈
φ̃(k1)φ̃(k′1)φ̃(k2)φ̃(k′2)

〉
, (D.9)

which raises the difficulty of computing the four-point corre-
lation 〈φ̃(k1)φ̃(k′1)φ̃(k2)φ̃(k′2)〉. Assuming that φ is reasonably
modelled by a Gaussian random field, we may neglect the tri-
spectrum and apply Wick’s theorem as〈
φ̃(k1)φ̃(k′1)φ̃(k2)φ̃(k′2)

〉
=

〈
φ̃(k1)φ̃(k1′ )

〉 〈
φ̃(k2)φ̃(k2′ )

〉
+

〈
φ̃(k1)φ̃(k2)〉〈φ̃(k1′ )φ̃(k2′ )

〉
+

〈
φ̃(k1)φ̃(k2′ )〉〈φ̃(k1′ )φ̃(k2)

〉
. (D.10)

Each of the three terms leads to a different contribution. The
first one exactly compensates 〈δrgeo〉2 in Eq. (D.8); the third one
vanishes in Limber’s approximation; the second one holds the
interesting correlation and we eventually get

ξgeo(θ) = 16
∫ rs

0
dr

∫ r

0
dr′

[
(rs − r)r′

rs

]2 1
(rr′)4

×
∫

d2`

(2π)2

d2`′

(2π)2 (` · `′)2ei(`+`′)·(θ1−θ2)Pφ

(
`

r

)
Pφ

(
`′

r′

)
·

(D.11)

The power spectrum Pgeo(L) must satisfy

Cgeo(θ) =

∫
d2`

(2π)2 ei`·θ Pgeo(`). (D.12)

Thus, introducing the variable L ≡ ` + `′ and performing the
change of variable (`, `′) 7→ (`, L) in Eq. (D.11), we immediately
identify

Pgeo(L) = 16
∫ rs

0
dr

∫ r

0
dr′

[
(rs − r)r′

rs

]2 1
(rr′)4

∫
d2`

(2π)2

× [(L − `) · `]2 Pφ

(
η0 − r,

`

r

)
Pφ

(
η0 − r′,

|L − `|
r′

)
·

(D.13)

In the last integral, the direction of the vector L does not matter,
because integration over ` makes everything isotropic. In prac-
tice, one may take L to be aligned with ex. With that convention,

the two-dimensional integral over ` becomes∫
d2`

(2π)2 [(L − `) · `]2 Pφ

(
η0 − r,

`

r

)
Pφ

(
η0 − r′,

|L − `|
r′

)
=

∫ ∞

0

`d`
2π

Pφ

(
η0 − r,

`

r

) ∫ 2π

0

dψ
2π

[`(L cosψ − `)]2

× Pφ

η0 − r′,

√
L2 + `2 − 2L` cosψ

r′

 · (D.14)

Introducing the integration variable k ≡ `/r, and then making
the change L→ `, we get the final result

Pgeo(`) = 16
∫ rs

0
dr

∫ r

0
dr′

[
(r0 − r)

r0r′

]2

×
∫ ∞

0

k3dk
2π

∫ 2π

0

dψ
2π

(` cosψ − kr)2

× Pφ(η0 − r, k) Pφ

η0 − r′,

√
`2 + (kr)2 − 2`kr cosψ

r′

 ·
(D.15)

D.3. Angular power spectrum of δr(z)

Regarding the relative perturbations on the comoving distance
at constant observed redshift, since we only account for the
Doppler effect, the prediction is proportional to the velocity field.
We therefore compute its angular power spectrum similarly to
Eq. (D.7) but with the pre-factor 1/Hr instead of (1 − 1/Hr).

D.4. Constrained variance

All the other quantities that we investigate in Sect. 4.2, that
is δr(η), δλ(η) and δr(λ), are obtained by line-of-sight integra-
tions of the gravitational potential. As such, these are particu-
larly impacted by the constraint at the observer (see Sect. 3.11).
Here we show how to compute the variance for such quantities.

We consider a scalar quantity X that is a line-of-sight projec-
tion of the potential φ, with

X =

∫ rs

0
dr KX(r) φ(η0 − r, r), (D.16)

where KX is the kernel associated with X. To estimate the vari-
ance given the constrained field φ(r) it is easier to work in con-
figuration space and compute the variance using (see Sect. 3.9)

σ2
ss =

∫
d2θ d2θ′ W(θ) W(θ′)〈X(θ)X(θ′)〉. (D.17)

In Eq. (60) we used a window function for a cone-shaped geom-
etry with circular base for simplicity. Actually, our narrow cones
are pyramid-shaped (we expect the difference to be negligi-
ble compared to the circular case). To compute Eq. (D.17),
we set the integration boundaries to ϕ = [−∆/2,∆/2], ϑ =
[π/2 + ∆/2, π/2 − ∆/2], where (ϕ, ϑ) are the angles in spheri-
cal coordinates. For the intermediate and deep cones, ∆ = 50
and 20 degrees respectively.

Assuming that 〈X(θ)X(θ′)〉 = ωX(|θ − θ′|) is statistically
isotropic, we find

ωX(|θ − θ′|) =

∫ rs

0
dr

∫ rs

0
dr′ KX(r)KX(r′) HX(rθ, r′θ′). (D.18)

Then, to compute the relevant variance for Sect. 4.2, we used the
functions shown in Table D.1.
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