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Abstract

We use numerical bootstrap techniques to study correlation functions of traceless sym-
metric tensors of O(N)with two indices ti j . We obtain upper bounds on operator dimen-
sions for all the relevant representations and several values of N. We discover several
families of kinks, which do not correspond to any known model and we discuss possi-
ble candidates. We then specialize to the case N = 4, which has been conjectured to
describe a phase transition in the antiferromagnetic real projective model ARP3. Lattice
simulations provide strong evidence for the existence of a second order phase transition,
while an effective field theory approach does not predict any fixed point. We identify a
set of assumptions that constrain operator dimensions to a closed region overlapping
with the lattice prediction. The region is still present after pushing the numerics in the
single correlator case or when considering a mixed system involving t and the lowest
dimension scalar singlet.
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1 Introduction

The conformal bootstrap [1, 2] (see [3, 4] for a review) has successfully classified many 3D
CFTs, providing stringent predictions of operator dimensions, which translate in precise deter-
minations of the corresponding critical exponents [5–11]. These techniques have been used to
study many problems including multiple scalars [12–17], fermions [18–20], currents [21,22],
stress tensors [23] and various global symmetry representations [24–44].

In this work we push this program further and explore the space of three dimensional
conformal field theories (CFTs) containing a scalar operator t i j , which is a traceless symmetry
tensor of O(N) with rank-2. While such operators are also present in the well studied O(N)-
vector models, here we want to target fixed points of gauge theories, where the operator t i j
can arise as the simplest gauge invariant scalar made from more elementary fields, charged
under the gauge symmetry.

Similar studies have been done for adjoint representations of SU(N f ) in four dimensions,
with application to the conformal window of QCD-like theories. In that case, however, boot-
strap bounds have not revealed any surprise [37, 38]. On the contrary, the present setup will
show many interesting features.

In addition to the general exploration of CFTs, in the present work we also address the
existence of a fixed point observed in the antiferromagnetic real projective model with N com-
ponents ARPN−1, in the specific case N = 4. Lattice simulations present strong evidences of a
second order phase transition, driven by an order parameter transforming in the rank-2 repre-
sentation of O(4); on the contrary, an effective approach based only on the Landau-Ginzburg-
Wilson paradigm seems to disagree [45]. We will present bootstrap evidences confirming the
existence of a fixed point. We will also discuss new prediction for certain operator dimensions
and OPE coefficients that could be tested by future lattice studies.

Before entering in the bootstrap setup and present our results, let us broadly discuss what
theories must be consistent with our bootstrap bounds. The following analysis will also guide
us through the choice of reasonable assumptions to isolate theories of interest.
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1.1 RPN−1 and ARPN−1 models

We begin with a simple lattice model, the (A)RPN−1, which is defined as a system of spins sx
taking values in the real projective space RPN−1, with the index x labelling the lattice site.
Equivalently, we can describe the system by considering sx to take values in RN , with the
restriction sx · sx = 1 and the identification sx ∼ −sx; the latter condition can be viewed as a
Z2 gauge symmetry, since one can change sign to each spin independently, i.e. locally. The
hamiltonian can be written as

HRPN−1 = J
∑

〈x,y〉

�

�sx · sy

�

�

2
, (1)

where 〈x,y〉 indicates that the sum runs over pairs of nearest neighbors. For negative J the
system is ferromagnetic while for positive J it is antiferromagnetic. This model has been
studied in the antiferromagnetic regime and for N ≤ 4 using lattice simulations [45]. It was
found that for N = 2, 3 the IR admits a second order phase transition, and the IR fixed point
seems to be in the same universality class of the O(2) and O(5) model respectively. The case
N = 4 is particularly interesting, since it still presents evidences of a second order phase
transition but this time the critical exponents do not correspond to those of the O(m)-model,
for any m. Moreover the transition appears to be driven by an order parameter transforming
in the traceless symmetric representation of O(4).

Let us briefly discuss the structure of the order parameter, as it will be useful also for the
discussion in the next sections. In the ferromagnetic case, the energy is minimized by aligning
the directions of the spins. Thus, at low energy the system breaks O(N) symmetry by aligning
in a preferred direction. This configuration preserves translational invariance. In the stan-
dard LGW approach one looks for a gauge invariant order parameter that is non-zero in the
ordered phase and vanishes in the disordered phase. This order variable is built from the site
variable, Pab

x = sa
x sb

x −δ
ab/N . We then define the order parameter as its sum over lattice sites

M ab =
∑

x Pab
x . We see that in the ordered phase the contributions to M ab are cumulative, due

to the preferred direction, resulting in a non-zero matrix. At high temperature, in the isotropic
phase, contributions will cancel so that M ab → 0 in the infinite temperature limit. This order
parameter transforms as a traceless symmetric representation of O(N) and is invariant under
a lattice symmetry that interchanges two sublattices.1

In the antiferromagnetic case the energy is instead minimized by taking sx ·sy = 0 for neighbor-
ing sites. Thus, in the ordered phase every spin is orthogonal to its nearest neighbor. Unlike
anti-correlation in the usual ferromagnetic case, here one can divide the lattice in two sublat-
tices, and the spins are orthogonal among the two. Orthogonality does not fix the configuration
uniquely unlike correlation or anti-correlation. Thus, it is not immediately clear what the sym-
metries of the ordered state are and what order parameter has a non-zero expectation value
in the ordered phase. In [46], for the similar case of C P2, it was shown that the order param-
eter must also break the symmetry that interchanges the sublattices. This proof can easily be
extended to the case of ARP2. Unfortunately we don’t know of any proof for N > 2. If we
assume the same holds for general N the correct order parameter is built from a staggered
site variable Aab

x = px Pab
x , where px = exp

�

iπ
∑3

k=1 xk

�

, i.e. the parity of the lattice site.

Summing over the staggered site variable the order parameter is given by M ab =
∑

x Aab
x . This

order parameter also transforms as a traceless symmetric representation of O(N) but this time
is odd under the Z2 symmetry.

1Gauge invariance forbids a linear order parameter sa
x so the next simplest order parameter is quadratic. The

vanishing of the order parameter in the disordered phase forces the subtraction of the trace resulting in the traceless
symmetric representation.
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The lattice analysis2 for ARP3 led to the following estimates of the critical exponents:

∆s = 3−
1
ν
= 1.28± 0.13 , ∆t =

1+η
2
= 0.54± 2 , ∆s′ > 3 (lattice results [45]) . (2)

1.2 The Landau-Ginzburg-Wilson effective action

In many cases of physical interest one can understand the critical behavior of a lattice system
also starting from a UV description in terms of a field theory of a scalar field with only a few
renormalizable interactions. Thanks to the properties of the RG flow, if the two UV theories
belong to the same universality class, they will flow to the same fixed point in the IR.

Physically this is equivalent to identifying the order parameter that describes the fluctu-
ations near criticality and writing an effective Hamiltonian. The order parameter is chosen
such that it vanishes in the disordered phase and is non-zero in the ordered phase. Thus, it is
expected to be small near criticality and it make sense to consider only the leading terms.

If one is interested in describing the phase transition observed for ARPN−1, the order pa-
rameter Φi j is a traceless symmetric rank-2 tensor of O(N), odd under an additional Z2 sym-
metry. The LGW Hamiltonian reads:

H = Tr
�

∂µΦ
�2
+ r TrΦ2 + u0(Tr

�

Φ2
�

)2 +
v0

4
TrΦ4 . (3)

The analysis of the β-functions for the couplings u0 and v0 in ϵ-expansion at one loop reveals
the existence of four fixed points. Two of them are well known: the free Gaussian theory
(u∗0 = v∗0 = 0) and the O(N ′) Wilson-Fisher fixed point (v∗0 = 0), with N ′ = N(N + 1)/2− 1
the total number of scalars encoded in the tensor Φ. In addition, there are two fixed points,
with both coupling non-zero, that merge at N = Nc and turn complex for N > Nc . A Borel
resummation of the five-loop ϵ-expansion predicts Nc ≈ 3.6 [45]. For N = 2,3 the additional
relation TrΦ4 = (TrΦ2)2/2 holds. So even for N < Nc the new fixed points can be mapped
respectively to the O(2) and O(5) model. In conclusion, the LGW analysis predicts that no
fixed point exist for this model besides the WF ones. This is in tension with the lattice results
discussed in the previous section.

1.3 Scalar gauge theories

Traceless symmetric tensors of O(N) can arise in a many different theories. A general bootstrap
analysis will be sensitive to all of them. As an example, in this section we review the known
results for a model based on a theory with local O(M) gauge invariance and a global O(N)
symmetry (see for instance [47, 48] and the references therein). The lagrangian for such a
model is given by:

L= −1
4

F a
µνF aµν +

1
2

∑

i=1

�

Dµφi

�α
(Dµφi)

α + V (φαi ) ,

�

Dµφi

�α
= ∂µφ

α
i − (T

b)αβφ
β
i Ab
µ , V (φαi ) = u0 S2 + v0

∑

i, j

Q i jQ i j ,

S =
∑

a,k

(φαkφ
α
k ) , Q i j =

∑

a

φαi φ
α
j −

1
N
δi jS . (4)

2The analysis of [45] used finite-size-rescaling to study the RG invariant Rξ =
ξ
L , where ξ is the correlation

length and L the lattice’s size. It is observed that lines of different L’s meet at a critical temperature βc = 6.779(2)
and the critical exponent ν = 0.59(5) was estimated. The error is due to different methods of fitting the data,
while the statistical error is much smaller. Moreover, they were able to extract the critical exponent η = 0.08(4)
by analyzing the behavior of the susceptibility around the fixed point. Finally, a study of the Binder parameter
shows sizeable corrections due to scaling possibly indicating an un-tuned singlet with a dimension that is close to
relevant. However, the data was insufficient to give a reliable estimate on the corresponding critical exponent.
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where µ and ν are spacetime indices, α,β ,γ= 1, . . . , M are fundamental indices of the gauge
group O(M), a, b, c = 1, . . . , M(M−1)/2 are adjoint indices and i, j, k = 1, . . . , N are indices of
the global flavor group. The presence of a gauge symmetry imposes that, at the fixed points,
local operators must be made from gauge invariant combinations of the fields φαi and the field
strength F a

µν. In particular the smallest dimensions scalars are the singlet S and the traceless
symmetric O(N) tensor Q i j defined in (4).

The above models have been extensively studied: the ϵ-expansion [48] predicts the exis-
tence of a fixed point only for

N > 44(M − 2) . (5)

Moreover, the ϵ-expansion shows that the gauge invariant model is always stable compared
to the enhanced O(N M) model. Alternatively, one can study the model in 3d, in the large-N
limit at fixed M . For instance one obtains [47]:

∆S = 1+
16

3π2N
(9M − 7) +O

�

1
N2

�

,

∆Q = 1−
16

3π2N
(3M − 5) +O

�

1
N2

�

. (6)

Clearly the above expressions cannot be trusted at small values of N . Nevertheless one could
compare these expressions with the bootstrap bounds. The main issue is that, given N , there
are in principle infinitely many underlining gauge theories with the same global symmetry but
different CFT-data, as shown already by the leading corrections in Eq. (6).3

Let us conclude this overview by discussing a few basic differences among the theories
discussed so far. First of all, in presence of a continuous gauge symmetry, the spectrum of the
CFT will be richer, given the presence of extra states such as glue-balls (F a

µν)
2 or combination

of the two fundamental fields.4 On the contrary, if the gauge symmetry is discrete, as is the
case for the discrete Z2 gauge symmetry of RPN models, we do not expect these extra states.

Interestingly, this is not the only difference. Consider for instance the smallest operator
transforming in the representation described by a squared Yang-tableau with four boxes, .
We call it the Box representation. We will see in the next section that such representation
appears in the OPE of two rank-2 tensors. In a gauge theory like in (4), the smallest scalar in
the Box representation is given by

Oi j,kl ∼Q ikQ jl −Q ilQ jk − traces . (7)

The non-triviality of this operator is guaranteed by the internal gauge indices. However, if
these were absent, one could not construct it: given a real scalar operator si the smallest non
trivial operator in the Box representation that one can construct requires two derivatives

O′i j,kl ∼ JµikJµ jl , Jµi j = si∂
µs j − s j∂

µsi , (8)

or more fields. This reasoning is valid only in a neighborhood of the UV description, however
it gives us an intuition about which operators we should expect in the CFT. Hence, we do not
expect the IR fixed point of (A)RPN models to have light scalars in the Box representation.

More in general, the impossibility to construct light operators in a given representation
can be a guiding principle to distinguish different theories, especially when gauge symme-
tries are involved. Let us view another example: in the LGW model the fundamental field

3Note that (6) has been obtained in the limit of large N , while keeping M fixed. If instead one consider M ∼ N
then the expansion would change.

4Only a subset of those operators, such as glueballs, are accessible with the bootstrap setup considered in this
paper.
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is a traceless symmetric tensor, while in a gauge theory the fundamental field is a vector of
O(N), with an additional gauge index. Although φαi is not gauge invariant, the existence of
a more fundamental building block has important consequences and does have an impact on
the spectrum of the CFT. For instance, it is possible to construct a barion-like state of the form
B[i1···iM ] ∼ εα1···αM

φ
α1
[i1
· · ·φαM

iM ]
, transforming in the antisymmetric representation with M in-

dices of SO(N).5 This has a small dimension for small values of M . In the LGW theory the
lightest state in same representation would be much heavier.

Finally, a major difference between the gauge model (4) and the LGW description is that
the latter displays a Z2 symmetry in the UV, while the former doesn’t. From the CFT point of
view, this symmetry imposes the vanishing of three point functions 〈Φi jΦklΦrs〉 in a putative
fixed point of the LGW model, while the correlator 〈Q i jQklQrs〉 is allowed to be non-zero in
the model based on a gauge theory.

2 Setup

In this section we explain the bootstrap setup of the 〈t t t t〉 correlator and its extension to the
mixed t − s bootstrap. We first discuss the operators that can be exchanged in the t × t OPE.
We then explain how to write the crossing equations and the resulting sum rules for the single
〈t t t t〉 correlator. Next we present the extension to the mixed t − s bootstrap. In appendix C
we also show how this bootstrap setup for the traceless symmetric bootstrap of O(N) is related
to the vector bootstrap of O(N ′) with N ′ = N(N + 1)/2− 1.

2.1 The t × t OPE

We can write the t × t OPE as

t × t =
∑

∆,l

λS
∆,lS +λ

T2

∆,l T
2 +λT4

∆,l T
4 +λA2

∆,lA
2 +λH

∆,l H ++λB
∆,l B . (9)

Here S, T2, T4, A2 refer respectively to the singlet, traceless symmetric, four-index symmetric
and the antisymmetric representations. H refers to the mixed symmetry {3, 1} representation
which we will call Hook representation, while B refers to the {2, 2} representation or Box
representation. In the rest of the paper we will leave out the young tableau notation and refer
to a dimension ∆ and spin l operator as R∆,l , where R ∈ {S, T2, T4, A2, H, B}.

Important special cases of operators are the first antisymmetric vector, i.e. the conserved
current J = A2

2,1, the first spin-two singlet, i.e. the stress tensor T = S3,2. The first antisym-
metric vector after the current will be denoted J ′ and the first spin-2 singlet after the stress
tensor T ′. Furthermore, we will refer to the first singlet scalar as s and the external trace-
less symmetric scalar as t. Again higher dimensional operators will be referred to by adding
primes. For example s′ refers to the second lowest dimensional singlet operator. t ′ will de-
note the first traceless symmetric operator other than t-itself. Similarly, the first scalar in the
Box representation and the first vector in the Hook representation will be denoted by b and h
respectively.

Under exchange of x1 and x2 the spatial part of the three point function



t(x1)t(x2)O∆,ℓ(x3)
�

goes to (−1)ℓ times itself. Thus, for even spins the global tensor struc-
ture must be symmetric under the exchange of the indices of the first and second operator, and
antisymmetric for odd spins. The {S, T2, T4, B} representations only allow a symmetric struc-
ture while the A and H representations only allow an antisymmetric tensor structure. Thus,

5This operator is invariant under SO(M) and not the full O(M) symmetry, however our bootstrap setup does
not distinguish between SO(M) and O(M) symmetries so such a theory could also show up in our bounds.
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the former set of representations will be exchanged for even spin and the latter set for odd
spin.

Two OPE coefficients are of special interest. Ward identities relate the OPE coefficients of
stress tensor T and the conserved current J respectively to the central charges CJ and CT :

CJfree

CJ
= λ2

t tJ , (10)

CTfree

CT
=
λ2

t tT

∆2
t
=
λ2

ssT

∆2
s

. (11)

In order to construct the correct O(N) tensor structures for 3 and 4pt functions we used
an index free notation similar to the one introduced for spacetime indices in [49]. The young
tableaux describing the O(N) irreps illustrate how indices corresponding to blocks appear-
ing in the same row are symmetrized while blocks appearing in the same column are anti-
symmetrized. The symmetrization of any row can automatically be enforced by contracting
all indices corresponding to the same row with the same polarization vector S. Similarly, in-
dices corresponding to the next row are contracted with U and so on (in this paper no irreps
with more than two rows appear). One then only needs to enforce the anti-symmetry and
tracelessness by hand. We review in details our method in appendixes A and B.

2.2 4pt functions and the crossing equations

The crossing equations are obtained in the standard way by equating the s-channel and t-
channel decompositions of the 4pt-function. The 4pt-function 〈t t t t〉 has six independent ten-
sor structures, each providing a crossing equation of the form

∑

R,OR

λ12OR
λ34OR

g∆12,∆34
∆OR ,ℓOR

(z, z̄)

(zz̄)
∆1+∆2

2

=
∑

R′,O′
R′

λ32O′λ14O′
R′

g∆32,∆14
∆O′

R′
,ℓO′

R′
(1− z, 1− z̄)

((1− z)(1− z̄))
∆3+∆2

2

. (12)

Here z and z̄ are the standard crossing ratios and g is the scalar conformal block. For the single
correlator (of identical operators) both R and R′ run over {S, T2, T4, A2, H, B} and∆i j = 0∀ i, j.

The final crossing equations for 〈t t t t〉 can be written as

∑

O
λ2
OVS,∆,ℓ +

∑

O
λ2
OVT2,∆,ℓ +

∑

O
λ2
OVT4,∆,ℓ +

∑

O
λ2
OVB,∆,ℓ +

∑

O
λ2
OVA,∆,ℓ +

∑

O
λ2
OVH,∆,ℓ = 01×6 , (13)

where VR,∆,ℓ is a 6 dimensional vector describing the contribution of a primary operator O of
dimension∆, spin ℓ, and representation R. The vector VR,∆,ℓ is expressed in terms of the usual
F ’s and H ’s

H =u
1
2 (∆2+∆3)g∆12,∆34

∆,ℓ (v, u) + v
1
2 (∆2+∆3)g∆12,∆34

∆,ℓ (u, v) ,

F =v
1
2 (∆2+∆3)g∆12,∆34

∆,ℓ (u, v)− u
1
2 (∆2+∆3)g∆12,∆34

∆,ℓ (v, u) .
(14)

Here g∆12,∆34 is the scalar conformal block normalized as entry 1 of Table I in [3]. In this
section the only correlation under consideration is 〈t t t t〉 and this simplifies to

H =u∆t g∆,ℓ(v, u) + v∆t g∆,ℓ(u, v) ,

F =v∆t g∆,ℓ(u, v)− u∆t g∆,ℓ(v, u) .
(15)
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The crossing equations can also be represented by a 6 by 6 matrix. Its explicit form is6

M〈t t t t〉,O(N)=

















F 0 0 0 1
2 F(N + 4)(N − 1) −FN

0 F 0 0 1
2 F(N − 2) − FN

2
0 0 −F 0 1

2 F(N + 4) −1
2 F(N + 2)

0 0 0 F −3F 2F
H 0 −2H(N−1)

N −H(N+4)(N+6)(N−1)
12N −H(N+4)(N−2)(N−1)

4N −H(N+2)(N−3)(N−2)
6N

0 H −H(N+4)(N−2)
N(N+2) −H(N+6)(N−2)

3N
H(N+4)(N−2)

N(N+2)
H(N+4)(N−3)

3N

















. (16)

Here rows correspond to the six different equations and columns correspond to the vectors
{VS , VT2 , VA, VT4 , VH , VB} in equation 13. The bootstrap problem consists of finding a positive
linear functional α such that

¨

α(VI) = 1 ,

α(VR)≥ 0 ∀R ∈ {S, T2, T4, A2, H, B}, ∀∆R,∆,ℓ >∆
∗
R,∆,ℓ .

(17)

If such a functional exists it excludes a spectrum with ∆R,∆,ℓ > ∆
∗
R,ℓ. ∆

∗
R,∆,ℓ is usually taken

to be the unitarity bound except when we try to find the maximal allowed gap for a certain
operator or when we have reason to assume a gap above the unitarity bound for a theory that
we are trying to isolate.

In practice the crossing equations are truncated by taking derivatives around the cross-
ing symmetric point z = z̄ = 1/2 and the maximal number of derivatives is denoted by Λ.
These truncated crossing equations are used as input in the arbitrary precision semi-definite
programming solver SDPB (version 2) [50, 51]. The truncations and parameters used in the
numerical implementation can be found in tables 2 and 1.The computations were managed
using Simpleboot [52].

In addition to finding the feasible set of ∆R,∆,ℓ we can also find lower and upper bounds
on squared OPE coefficients λ2

t tO by picking the corresponding vector Vλ to define the normal-
ization of α, i.e. α(Vλ) = ±1 and maximizing the objective α(VI).7

2.3 Setup of mixed t − s bootstrap

In this section we write the bootstrap equations for the system of correlators involving the
traceless symmetric operator t and the leading singlet s. We will restrict ourselves to the case
in which t is odd under a Z2 symmetry, since our goal is to study the ARP3 model discussed in
section 1.1. In that case the full system of crossing equations is given by the crossing equations
of the correlators 〈t tss〉 and 〈st ts〉, 〈tsts〉, and 〈ssss〉. Crossing equations involving three t-
operators vanish because t×s can only exchangeZ2 odd operators while t×t can only exchange
Z2 even operators. All new correlators are constrained to exchange only a single irrep: s × s
can only exchange neutral operators while t × s can only exchange operators in the T2 irrep.
The t× s OPE does not have the permutation symmetry that the t× t OPE had and thus allows
the exchange of both odd and even spin traceless symmetric operators.

Note that when we do not impose a gap forbidding the exchange of the external operator
t in t × t results using this setup also hold for Z2-even t.8

6The exact form depends on the normalization of the OPE coefficients. We are free to rescale columns by any
positive factor and absorb this into the OPE coefficients. We are of course also free to rescale rows, i.e. equations,
by any factor.

7Normalizing α(Vλ) = 1 will give us an upper bound on the OPE coefficient, while α(Vλ) = −1 will give a lower
bound.

8The inclusion of 〈t t ts〉 would add a new crossing symmetric O(N) tensor structure where only the product
of OPE coefficients λt tOλtsO enter.
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Restricting to the crossing equations for Z2-odd t there are four additional crossing equa-
tions, two between 〈sst t〉 and 〈tsst〉, one from 〈tsts〉 and one from 〈ssss〉. The crossing equa-
tions can now be written as

∑

O
(λt tO λssO)VS,∆,ℓ

�

λt tO
λssO

�

+
∑

OE

λ2
t tOE

VT2,E,∆,ℓ +
∑

OO

λ2
tsOO

VT2,O,∆,ℓ +
∑

O
λ2
OVT4,∆,ℓ

+
∑

O
λ2

t tOVB,∆,ℓ +
∑

O
λ2

t tOVA,∆,ℓ +
∑

O
λ2

t tOVH,∆,ℓ + (λt ts λsss)Vext.

�

λt ts
λsss

�

= 01×10 ,

Here we have chosen to separate out the contributions proportional to the OPE coefficients of
the external vector into a separate vector Vex t.. Since the A, T4, H and B representations can-
not be exchanged in the new correlators the vectors VA, VT4 , VH , VB remain unaffected (apart
from padding them with an appropriate number of zeros at the end). The entries of VS become
matrices since there are now contributions proportional to λ2

t tS , λt tSλssS and λ2
ssS . Further-

more, we split the traceless symmetric contribution into a Z2 even part coming from the t × t
OPE and a Z2 odd part coming from t×s OPE. The Z2 even part remains identical to the vector
VT2 in equation 16. The t × s OPE exchanges traceless symmetric operators of both odd and
even spin. The new vectors VS , VT2,O and Vext. are given by

VS =































1
2

��

N + N 2
�

− 2
�

F11
∆t t∆t t

000
000
000

1
2

��

N + N 2
�

− 2
�

H11
∆t t∆t t

000
000

− 1
2H12

∆ss∆ss

1
2F12

∆ss∆ss

F22
∆ss∆ss































, VT2 ,O =































0
0
0
0
0
0

F∆ts∆ts

(−1)LH∆ts∆ts

(−1)LF∆ts∆ts

0































, Vext. =































1
2

��

n+ n2
�

− 2
�

F11
∆t t∆t t

000
000
000

1
2

��

n+ n2
�

− 2
�

H11
∆t t∆t t

000
F11
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∆ts∆ts − 1

2H12
∆ss∆ss

F11
∆ts∆ts + 1

2F12
∆ss∆ss

F22
∆ss∆ss































, (18)

where we defined the matrices

(F∆1,∆2
i j )mn =

¨

F∆1,∆2 , (i = n∧ j = m)∨ (i = m∧ j = n) ,
0 , else,

(F∆1,∆2
i j )mn =

¨

H∆1,∆2 , (i = n∧ j = m)∨ (i = m∧ j = n) ,
0 , else.

(19)

Finally, let us comment that the mixed t − s setup does not break the map between the
O(N ′) vector bootstrap and the O(N) traceless symmetric bootstrap and the same relations
between positive functionals described in appendix C still hold.

3 A systematic study of general N

Here we present a systematic study of bounds on the dimension of the first operator in all
representations for general N . Specifically we examine N = 4,5, 10,20, 100 and occasionally
N = 1000 to study the asymptotic of certain kinks at large N . The bounds on the leading
operators in the singlet representation are identical to the corresponding bounds found in the
O(N ′)-vector bootstrap,9 where N ′ = N(N + 1)/2− 1. For other representations there is not
such relation.

9This is proven in appendix C.
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Figure 1: Bound on the dimension of the first singlet scalar. The blue, orange, green,
red and purple lines correspond respectively to N = 4,5, 10,20, 100. These bounds
have been obtained at Λ = 27. The dotted lines indicate the same bound at Λ = 19
and are included to illustrate the convergence. All bounds show a clear kink corre-
sponding to the O(N ′) model. An additional more dull kink is visible in the region
0.52 < ∆t < 0.58. This kink gets less sharp and less precisely localized at larger N .
For N = 4 an additional kink is visible around ∆t = 1.1. The bounds get strictly
weaker for larger N .

3.1 Bounds on operator dimensions

Singlets

The bound on the dimension of the first singlet scalar ∆S shows a clear kink corresponding to
the O(N ′) model under the identification φa → t i j . In addition there is a second set of (dull)
kinks in the region 0.52 < ∆t < 0.58 whose exact location becomes less and less clear as N
increase. An additional kink is visible around ∆t ≈ 1.1 for N = 4. These bounds are shown in
figure 1. In the scalar singlet sector we do not find any new interesting feature.

Next, we explored bounds on ∆T ′ , the dimension of the first spin-2 singlet after the stress
tensor. For small N this bound shows a clear peak in the region 0.52 <∆t < 0.58. For larger
N the peak fades and the most discernible feature becomes a kink around ∆t ≈ 0.7. However
it seems that especially for larger N the bounds are far from converged even at Λ= 27. These
bounds are shown in figure 2.
It is a bit surprising that the bounds on the second spin-2 singlet are not very constraining.
In fact, in most of CFTs based on a LGW description the next operator after the stress tensor
has dimension 4 ≲ ∆T ′ ≲ 5 [53, 54]. Similarly, in a gauge theory one expects to find an
almost conserved spin-2 operator, coming from a combination the two stress tensors of the UV
theory.10 We believe these bounds are far from optimal: we will see an explicit example for
the case N = 4 in the next section.

10In the limit of vanishing gauge coupling the theory contains two stress tensors, schematically
Tµν1 ∼ φαi ∂

µ∂ νφαi and Tµν2 ∼ FµρFν
ρ

: in the IR one combination remains conserved while the orthogonal com-
bination acquires an anomalous dimension.
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Figure 2: Bound on the dimension of the first spin-2 singlet after the stress ten-
sor. The blue, orange, green, red and purple lines correspond respectively to
N = 4, 5,10, 20,100. These bounds have been obtained at Λ = 27. The dotted lines
indicate the same bound at Λ = 19 and are included to illustrate the convergence.
For small N a peak is visible. For larger N the peak fades and the most discernible
feature becomes a kink around∆t ≈ 0.7. The bounds get strictly weaker for larger N .

Antisymmetric representation

More interesting features are visible in the bound on the first spin-1 antisymmetric vector after
the conserved current, shown in figure 3. This is the first instance where the bounds are neither
strictly weaker nor stronger when increasing N . At large ∆t we see the usual behavior found
for singlet operators, i.e. the bounds get weaker for larger N . Near the unitarity bound the
trend is instead reversed. The bounds start quite above the value expected in a GFT, which
however doesn’t contain a conserved current. For N = 4,5 we observe a sudden drop of the
bound (a reversed kink) followed by a smooth bound. For larger values the kink fades way,
and a second bump appears for N ∼ 10 close to the unitarity bound.
All the bounds diverge as ∆t → 1 and for large values of N an additional kink emerges.

The comparison of the bounds at Λ = 19 and Λ = 27 indicates a slow numerical conver-
gence of the bounds for ∆t ∼ 1, which get worse as N increases.

Box representation

Next we examine the bound on the dimension of the first scalar Box operator, see figure 4. For
small N there are clear kinks in the region 0.54 ≲∆t ≲ 0.6 . Additionally there is a family of
very sharp kinks for all N moving to the right towards ∆t = 1 as N increases. In this case the
location of the kinks is quite stable when passing from Λ= 19 to Λ= 27 and the bounds seem
to be converged.

It would be tempting to identify the family of kinks at large N with fixed points of gauge the-
ories or (A)RPn models. Gauge theories discussed in section 1.3, however, are expected to con-
tain operators with smaller dimension. On the other hand, (A)RPn are expected to have a large
gap in this sector. In this case, one would expect ∆t ∼ 1+O(1/N), while ∆b ∼ 4+O(1/N).
Unfortunately, the location of the kinks doesn’t scale linearly with 1/N , and it is unclear if
they converge at all to (∆t ,∆b) = (1,4) in the Λ→∞, N →∞ limit (see figure 18a in the
appendix).

One possibility proposed in [55] is that bootstrap bounds for crossing equations based on
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Figure 3: Both figures: Bound on the dimension of the first spin-1 antisymmetric
vector after the conserved current. The blue, orange, green, red and purple lines
correspond respectively to N = 4, 5,10, 20,100. The bounds have been obtained at
Λ= 27. On the left: A zoom of the region 0.5<∆t < 0.58. On the right: Overview
of the same bound on 0.5 < ∆t < 1. A second kink appears for N = 10, 20,100
around ∆t = 0.8. The bounds diverge near ∆t = 1.

a symmetry GN are in fact shaped by solutions with smaller symmetry HM ⊂ GN . This mech-
anism could explain the milder dependence on N : if for instance the expansion parameter of
HM is 1/M ∼ 1/N s, with s < 1, then one would have a different scaling.

A different mechanism to produce kinks was proposed in [56]. In this case one could
consider the difference between the 4pt function of a field t i j ∼ φiφ j + . . . made from two
generalized free fields φi and the 4pt function of a generalized free field Ti j . Since the former
contains all the operators of the latter, it’s possible to subtract the two 4pt functions and still
have a decomposition in conformal blocks with positive coefficients. By subtracting the two,
one can create large gaps and jumps in the bounds. This mechanism however would only
explain kinks at ∆t ≥ 1, as unitarity requires ∆φ ≥ 1/2.

Hook representation

A similar family of kinks can be seen in the bound on the dimension of the first spin-1 Hook
vector as is shown in figure 5. However, the location of the kink in∆t does not precisely match
the location of the kinks in the bound on the first scalar Box operator.

Again it would be tempting to identify these kinks with CFTs admitting a large-N expansion
but, as in the previous subsection, the dependence of the kink on 1/N doesn’t seem to be linear
or to converge to (1,4), at least at this value of Λ. In this case the situation is less clear, since
the bounds seem farther from convergence in Λ, the features are less sharp, and they don’t
seem to strongly depend on N for N ≥ 1000.11

Rank-2 tensor

For N > 2 the OPE of two rank-2 symmetric tensors contains again rank-2 tensors. This
offers the possibility to test the effect of a Z2 symmetry in the CFT. If t i j is odd under such a
symmetry, then the 3pt function 〈t t t〉 must vanish. When inputting gaps on the rank-2 scalar
sector above the external dimension ∆t , we then have the choice to allow the presence of an
isolated contribution with ∆ = ∆t or forbid it. This corresponds to the assumption that t is
respectively even or odd under a Z2 symmetry. We find strong evidence for a theory with a

11Neither the Hook nor the Box bound moves substantially when changing N = 1000 to N = 1016 (this bound
is not included in the figures).

12

https://scipost.org
https://scipost.org/SciPostPhys.14.4.068


SciPost Phys. 14, 068 (2023)

0.5 0.6 0.7 0.8 0.9
Δt1

2

3

4

5

6

Δb

Figure 4: Bounds on the dimension of the first Box scalar. The blue, orange, green,
red, purple and brown lines correspond respectively to N = 4,5, 10,20, 100,1000.
For N = 4, 5 there are kinks at ∆t = 0.54 and ∆t = 0.60 respectively. For larger N
this kink disappears. A family of sharp kinks is visible for all N .

Z2-even t at large N . In figure 6 the bound on ∆t ′ is shown both under the assumptions that
t × t exchanges itself and without it. When we assume the exchange of t itself in the t × t
OPE, multiple sharp kinks appears for large N . The kink gets sharper as N increases.
Given the large values of ∆t ′ at the kinks, we don’t have plausible CFT candidates.

Rank-4 tensor

Finally, the bounds on the four-index-symmetric tensor are shown in figure 7. For small N the
only feature is the kink corresponding to the O(N ′)model. For large N a second kink emerges,
for example at N = 100 a kink located around ∆t ≈ 0.82.

The bounds continue smoothly for larger values of ∆t . If we assume accuracy of the value
of ∆t predicted for O(N)-vector models by large N computations then these bounds force the
presence in the spectrum of a relevant scalar for N ⪆ 10.12 The presence of this relevant
operator makes the O(N) models unstable with respect to (hyper)cubic perturbations. The
same operator also drives the flow to the biconal fixed point with O(m) ⊕ O(N − m) global
symmetry [57]. In [11] it was recently shown by numerical bootstrap applied to all correlators
involving the first singlet, the first vector, and the first traceless symmetry scalar of O(3) that
∆T4 < 2.99056. Thus, this operator is likely relevant for O(N) models for all N > 3.

External operator as the lowest dimensional operator of its kind

There is one intuitive assumption that we have not used yet. We did not assume that
∆t ′ ≥ ∆text

, i.e. that the external operator corresponds to the lowest dimensional traceless
symmetric operator in the spectrum.13,14 This assumption excludes for example a solution
with both an operator t ′ with∆t ′ =∆text

and an operator t with∆t <∆t ′ . However, the same

12Here we assume that the values predicted for ∆t by the large-N expansion are reliable for these values of N
at the percent level.

13Thanks for Ning Su for bringing this to our attention.
14In this section we make a distinction between ∆text

the dimension of the external operator text and the lowest
dimensional or second lowest dimensional operators t and t ′ in a CFT solution.
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Figure 5: Bounds on the dimension of the first Hook vector. The blue, orange, green,
red, purple and brown lines correspond respectively to N = 4,5, 10,20, 100,1000.
Again a family of sharp kinks is visible for all N . The locations of the kinks does
not coincide with the family of kinks shown in the figure 4. The bounds have been
obtained at Λ= 27.

solution also has to appear at ∆text
=∆t . It is therefore not actually an additional assumption

on the CFT. It merely keeps solutions from appearing twice at different values of ∆text
.

This can be generalized to the assumption that an external operator Or is the m-th lowest
dimensional operator in its representation r. Let’s call this number an operator’s dimensional
ordering number m. Above we gave an example how in the setup studied in this paper we can
impose that t is the lowest dimensional traceless symmetric scalar in the CFT, i.e. m = 1. We
can do this because the t× t OPE exchanges itself. In general this type of assumption can only
be enforced if the representation of the external operator also appears as an exchanged internal
operator. In that case we can instead also impose that the external operator corresponds to
m-th lowest dimensional operator for any m ∈ Z+. However, this comes at the cost of having
to scan over the dimensions of the m− 1 lower dimensional operators. If we do not impose
any such condition at all we can only find the weakest bound among all these cases m ∈ Z+.

In figures 8a and 8b we show the effect of the m = 1 assumption on the bound on the
dimension of the first Hook and Box scalars. For the region with ∆t < 0.65 this assumption
does not lead to significant effects. However, in the region ∆t > 0.65 we find that the two
families of kinks we found earlier move substantially. Importantly we now see that the family
of kinks in the bound on lowest dimensional box operators asymptotes at large N to the value
expected in a large N theory. Under this assumption the positions of the kinks seem to be well
described by a 1/N expansion as can be seen in figures 18a and 18b. Moreover, a second family
of (less pronounced) kinks, of which we previously could only see the N = 4 and N = 5 case
becomes visible under this assumption. This family of kinks seems to asymptote towards (1,3).

For N = 100 this less pronounced kink also coincides with the large N estimate of ∆t in
a theory with a global O(N = 100) and a gauged O(M = 4) symmetry [47]. Perturbatively a
fixed point for such a theory is only expected to exist for M = 1, 2,3, 4. Of these the M = 4
case is estimated to have the lowest value for ∆t and should therefore be the first such theory
to show up in our bounds (see equation 6).

The kinks in the bound on the first Hook scalar shown in figure 8b also show significant
movement but still do not asymptote at large N to a value predicted by a large N limit. Some
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Figure 6: Bound on the dimension of the first traceless symmetric operator. The blue,
orange, green, red and purple lines correspond respectively to N = 4, 5,10, 20,100.
On the left: No additional assumptions. Various families of kinks are visible: One
corresponding to the O(N ′) model, one in the region 0.55 < ∆t ′ < 0.6, one in the
region 0.6 < ∆t ′ < 0.75 (this one disappears at N = 100), and a last one in the
region 0.75<∆t ′ < 1. On the right: The same bound assuming that t× t exchanges
t itself. The last family of kinks becomes much sharper and more pronounced under
this assumption especially for N = 20,100. This is strong evidence that the kink
corresponds to a theory with a Z2 even traceless symmetric operator. All bounds
have been obtained at Λ= 27.

further assumption might be necessary to discover the “true” location of these kinks.
We also note that these bounds no longer diverge at∆text

= 1. Instead they diverge around
∆t = 2. This is an important observation. It has been noted before that numerical bootstrap
bounds often diverge when an external operator dimension approaches some integer value
(see for example also [22]). The origin of some of these divergences can now be explained.
For the Hook and Box bounds we see that the divergences can be removed by assuming that
the external operator is the lowest dimensional operator of its type. Note that the divergence
occurs exactly where we expect a new class of theories with ∆t ′ = ∆text

to start to exist.15

Given the existence of these theories it is thus not that surprising that in this region the m= 2
bounds dramatically weaken. This in turn implies that the bound where no assumption is
made on the dimensional ordering number weakens at least as much.

Imposing the dimensional ordering number of the external operator could thus be an es-
sential tool to exploring regions of large external operator dimensions.16 Exploring larger
values of m increases the dimensionality of the search space and thus used to be prohibitively
expensive. However using the new navigator method [58,59], this should now be feasible due
to this method’s superior scaling with the dimensionality of the search space.

One might also ask whether the position of the kinks we initially found could still be mean-
ingful. Indeed a priori the kinks could still correspond to physically interesting CFTs with
∆text

= ∆t ′ . However, such a CFT would contain an operator t with ∆t < ∆t ′ . In that case
we would expect that the t × t OPE exchanges the same operators as the t ′× t ′ operator (this
holds even if t is Z2-odd and t ′ Z2-even or vice versa). That means that the bound found at
∆text

=∆t also applies to the spectrum exchanged in the t ′× t ′ OPE. It is then easy to see from

15Think for example of free theories and generalized free theories where ∆′t ≥ 1.
16Although this assumption does not eliminate all such divergences. Note that the bound on ∆J ′ remains

divergent at ∆text
= 1 even when we impose m = 1. Moreover in [22] similar divergences were observed even

though there m= 1 was imposed there (in fact in that case a stronger condition was imposed since the J ×φ OPE
only exchanges φ itself due to a ward Identity).
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Figure 7: Bound on the dimension of the first four-index-symmetric scalar. The blue,
orange, green, red and purple lines correspond respectively to N = 4, 5,10, 20,100.
Apart from a kink at the location of the O(N ′) model few features are visible. At
N = 100 an additional kink becomes visible. These bounds have been obtained at
Λ = 27. The dotted lines indicate the same bound at Λ = 19 and are included to
illustrate the convergence. The bounds get strictly stronger for larger N .

our monotonically increasing bounds that this excludes the kinks we initially found and that
they are thus unphysical.

4 Focusing on O(4)

Let us now focus on the case N = 4. This is the smallest N we can discuss with the present
formalism.17 While it will be harder to compare against any large N prediction, for this specific
case there is a well defined candidate CFT to compare with. This is the ARP3 lattice model
studied in [45].

Our goal is to isolate an island in the OPE data corresponding to the ARP3 model (or
alternatively to exclude the existence of a plausible theory in the region predicted by lattice
computations). Lattice computations find a fixed point with a traceless symmetric scalar with a
dimension∆t = 0.54±0.02 and exactly one relevant singlet with dimension 1.28±0.13 [45].

We will first review the bounds presented in the previous section but zooming in on the
region where the ARP3 is expected to live. Next, we will also present a similar discussion about
bounds on the OPE coefficients λt tT , λt tJ and λt t t . Finally, we will choose a set of reasonable
assumptions that allow to isolate the ARP3 model.

4.1 Bounds on operator dimensions and OPE coefficients

Let us begin with the singlet sector. Unlike the Ising and O(N) models for which precision
islands have been previously obtained [5–7, 27, 61] the ARP3 is not supposed to live close to
the kink of the singlet bound. Instead it is predicted to lie well within the allowed region,
see figure 9. As a consequence the theory is not easily isolated without making appropriate
assumptions on the spectrum. However, we will see that bounds on other representations will

17The case of O(3) is different because the OPE contains one representation less.
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Figure 8: On the top: The dashed lines indicates the bound on the dimension of the
first scalar Box operator under the assumption that ∆t ≥ ∆text

. The bound without
this assumption is also included for reference as a solid transparent line. The dashed
lines show a family of sharp kinks assymptoting towards the point (1, 4) (indicated
by a red dot) where a large N theory is expected to live. In addition a family of less
pronounced kinks is also visible for all N , possibly assymptoting towards (1,3). A red
dotted line indicates the estimated ∆t value in a theory with a global O(N = 100)
and a gauged O(M = 4) symmetry. A black dotted line indicates the GFF family of
solutions. On the bottom: The bound on the dimension of the lowest dimensional
Hook scalar with (dashed) and without (solid) the assumption ∆t ≥ ∆text

. The red
dot indicates the position of a continuous gauge theory at large N (see section 1.3).
A black dotted line indicates the GFF family of solutions. The blue, orange, green,
red and purple lines correspond respectively to N = 4, 5,10,20, 100. All bounds have
been obtained at Λ= 27.
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Figure 9: Bound on the dimension of the first singlet scalar. The black dashed lines
indicate the positions of two kinks. The blue cross indicates the position of the O(9)
model according to large N estimates [60] (as seen from the traceless symmetric
bootstrap under the identification va→ v i j). The green region shows the prediction
for the ARP3 model from lattice computations. The bounds have been obtained at
Λ= 27.

have features such as kinks and bumps which will drive our analysis.
Physical theories often stand out due to the presence of a large gap above known conserved

operators [22,62]. If we demand positivity on the stress tensor T and maximize the gap ∆T ′

until the next spin-2 neutral operator, we find a sharp peak as is shown in figure 10 (these
bounds match those of the O(N ′) vector bootstrap under the same assumption). The peak
coincides with the lattice expectations for the location of the ARP3 model. On the other hand
a high value of ∆T ′ is also expected close by due to the O(9) model at ∆t ≈ 0.519, which is
slightly before our region of interest.

Similarly the bound on∆J ′ , the dimension of the first spin-1 antisymmetric vector after the
conserved current, shows a clear feature within the region of interest. The kink in figure 11
hints at the existence of a theory with a high gap ∆J ′ in the region 0.52<∆t < 0.535.

Next we consider a bound on ∆b , the dimension of the first scalar Box operator. This
bound shows two kinks18 within the expected lattice region. This is shown in figure 12.

In the ARP3 model the lowest dimensional traceless symmetric operator t is expected to
be odd under a Z2 symmetry, thus forbidding the exchange of t itself in the t × t OPE. Thus,
we should ask what the maximal allowed gap ∆t ′ is. On the other hand, theories without
a symmetry forbidding this exchange are expected to exchange t itself as the first traceless
symmetric operator. In that case we can assume the exchange of t itself and bound the next
traceless symmetric operator t ′ by demanding positivity on ∆t ∪ [∆∗t ′ ,∞). Both bounds are
shown in figure 13. The first bound shows no special features in the region of interest. The
second shows two kinks in the ARP3 region. Also in the ARP3 region the second bound is
higher than the bound without this assumption. The two lines rejoin at a third kink outside
the expected ARP3 region (before separating again).

18One more pronounced, the other a mild change of slope.
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Figure 10: Bound on the dimension of the first spin-2 singlet after the stress tensor.
The blue dashed line indicates the large N estimate of ∆φ for the O(9) model. The
green region shows the prediction for the ARP3 model from lattice computations.
The bounds have been obtained at Λ= 27.

Finally for the sake of completion we show the bounds on the four-index symmetric scalar
and the first Hook vector in figures 14a and 14b respectively. Neither of these bounds show
any clear feature in the ARP3 region.

We can also find lower and upper bounds on the OPE coefficients squared. An upper
bound can be found for the OPE of any operator while a lower bounds can only be found if
the operator is disconnected from other similar operators by a gap. We are mainly interested
in the separable OPEs of the conserved operators T and J . As usual the bounds on both
of these OPE coefficients gets weaker for larger values of the external dimension. The λt tT
bound shows no clear features but the λt tJ shows a kink around ∆T = 0.535. The value
of the OPE found depends on the normalization of the conformal blocks (or equivalently the
choice of normalization of the three and two point function) and thus it is often preferable to
present the normalization invariant quantities of central charges divided by the value of the
central charge in the free theory using the same normalizations. The resulting lower bounds
on CT/CTfree

and CJ/CJfree
are shown in figures 15a 15b.

In the next section we will try isolating island in the (∆t ,∆s) and (∆t ,∆b) planes using
various assumptions. However, before we increase the dimensionality of the parameter space
of our search it is smart to see how various assumptions influence the bisection bounds above.

For example, the Box operator shows one very strong kink in the regions allowed by the
lattice bounds. However, by repeating that bound under the assumptions ∆T ′ > 5.5 and
∆′J > 3, we can see that simultaneously having both a high value near the top of the peak
seen in figure 10 and high value near the plateau in figure 11 is incompatible with ∆b taking
a value close to this kink. This is shown in figure 19a. This is the first indication that perhaps
the assumptions ∆T ′ > 5.5 and ∆J ′ > 3 are too strong. We will see more evidence for this
later on. We can also consider how assumptions on ∆T ′ , ∆h and ∆b influence the maximal
allowed gap ∆J ′ . An example of this is shown in figure 19b. This can be useful to already find
the allowed ∆t range under those assumptions in order to better locate any possible island in
the larger spaces (∆t ,∆s) and (∆t ,∆b).
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Figure 11: Bound on the dimension of the first spin-1 antisymmetric vector after the
conserved current. The blue dashed line indicates the large N estimate of∆φ for the
O(9) model. The green region shows the prediction for the ARP3 model from lattice
computations. We see a clear kink within this region indicated by a black dashed line.
In addition, various small kinks or wobbles appear in the region 0.51 < ∆t < 0.52
though not in correspondence with large N estimate of the location of the O(9)model
The bounds have been obtained at Λ= 27.

4.2 Isolating the ARP3 model

In this section we report the results of our investigation. We present in this section only a few
plots, and we refer to the appendix to support certain assumptions we make. Let us discuss
them in order

1. Lattice simulations support the assumption that the model has a single relevant defor-
mation and is not multi-critical. Unfortunately, assuming that s is the only relevant
scalar while∆s′ > 3 does not strongly narrow down the allowed region (see for instance
figure 21a in the appendix). Thus we need to inject more assumptions.

2. In the previous section we observed a pronounced peak in the bound on the next op-
erator after Tµν. In certain bootstrap studies, imposing a gap in this sector allows to
create islands in the region of interest [22,62]. In this case we tried several gaps: in the
single correlator case considered so far, small gaps do not have any effect, while more
aggressive gaps of∆T ′ ≥ 5.5, 6.5 create a small region, overlapping with the lattice pre-
diction (see figure 23a). However, when considering mixed correlators those aggressive
assumptions turn out to be completely disconnected from the lattice prediction or even
ruled out (see figure 27). Thus we settled for the milder assumption ∆T ′ ≥ 4.5.

3. A second strong feature was present in the bound on the first spin-1 antisymmetric op-
erator after the O(N) conserved current. Thus, we also add the assumptions that the
first antisymmetric vector after the conserved current has a dimension larger than 3, i.e.
assume that ∆J ′ takes a value somewhere in the raised plateau in figure 11. This as-
sumptions restricts the island further from the right and is compatible with the expected
ARP3 region (see an example in figure 23b).

4. In order to exclude the influence of the O(9) model and the free theory with O(9) sym-
metry, it is useful to assume a small gap on the fist Hook vector dimension ∆h. Due to
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Figure 12: Bound on the dimension of the first scalar Box operator. The blue cross
indicates the position of the O(9) model under the identification va → v i j , i.e.
(∆O(9)

v ,∆O(9)
t ), according to large N estimates [60]. The green region shows the

prediction for the ARP3 model from lattice computations. There are two kinks in
this region indicated here by black dashed lines. The bounds have been obtained at
Λ= 27.

the identification φα = t i j and the resulting re-organization of operators these theories
effectively have ∆h = ∆J = 2. Thus even a small gap above the unitarity bound can
exclude these. Furthermore, no theory where the symmetry group really is O(4) is ex-
pected to have a conserved Hook vector. If we assume, for example, that∆h > 2+δ, with
δ ∼ 10−2 the peninsula detaches from theories with O(9) symmetry (see for instance
figures 24, 25 and 26).

5. A final feature found in the previous section were two kinks in the bound on the first Box
scalar. If we compute the allowed region in the (∆t ,∆b) plane assuming the existence
of a single relevant box operator and the assumptions of point 2-4, we find an island
in the neighborhood of the kink. Unfortunately the island disappears when pushing the
numerics to Λ = 35 (see figure 22).If we relax the assumption of a single relevant box
operator, the island survives at Λ = 35, see figure 16a in this section. The island is
localized in the region ∆b ≥ 1.3.

In conclusion, assumptions 1-5 allow to carve an island in the (∆t ,∆s) plane that over-
laps with the lattice prediction and persists at Λ= 35. We show the result in figure 16b.

For the sake of completion we can investigate the existence of an island where the external t
is given by a Z2 even operator where t itself is exchanged in the t × t OPE. Such a solution
to the crossing equation is less likely to be a fake solution to crossing but it is also less likely
to correspond to the ARP3 CFT since t is expected to be Z2-odd. In order to impose the
exchange of t we impose that the dimension of the first traceless symmetric operator after t
has a dimension∆t ′ greater than would be allowed without the exchange of t itself, i.e. above
the blue line shown in figure 13. This imposes the exchange of t in t × t, but this assumption
also disallows theories exchanging ∆t and an additional operator with ∆t ′ both below the
bound shown in figure 13. The resulting island is shown in 20. The persistence of the island
means that we cannot exclude the island corresponding to a theory where t is Z2 even.
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Figure 13: The blue line shows the bound on the dimension of the first traceless
symmetric operator exchanged in the t× t OPE. The orange line shows the bound on
the dimension of the first additional traceless symmetric operator t ′ when assuming
the exchange of t itself. The blue cross indicates the large N estimate of the posi-
tion of the O(9) model. The green region shows the prediction for the ARP3 model
from lattice computations. In the ARP3 region allowing the exchange of t itself lifts
(weakens) the bound. The two lines join again at a third kink outside the expected
ARP3 region. The bounds have been obtained at Λ= 27.

4.3 Results mixed t-s bootstrap

In this section we report our investigation of the mixed correlator system of t i j and the leading
scalar singlet s. In this setup we always have to scan over both ∆t and ∆s. We assume
the existence of a single operator with dimension ∆s, rather than a generic combination of
operators with equal dimension. This is obtained by allowing a contribution with ∆s in both
t × t and s × s OPE and imposing a gap to the next scalar ∆s′ ≥ 3. In addition, we scan over
the ratio of OPE coefficients {λt ts,λsss}. The OPE scan was performed using the OPE scanning
algorithm of Simpleboot [52]. Simpleboot efficiently takes advantage of the occurrences of
both dual and primal jumps and the ability to hotstart SDPB from related points as well as the
ability to exclude additional regions in the OPE space by solving a quadratic equation for the
roots of the functional applied to the external vector contracted with generic ope coefficients,
i.e. solving α({1, x} · Vext · {1, x})> 0 for x .19

The assumption that s is the only relevant singlet has the net effect of restricting∆s > 1.052.20

In the present setup we also have access to the mixed OPE, schematically

t × s ∼ t + t ′ + . . . (20)

Previous bootstrap analysis of O(N) models considered a scalar φ in the fundamental repre-
sentation and studied mixed systems involving OPEs

φi ×φ j ∼ 1+ s+ s′ + . . . , s× s ∼ 1+ s+ s′ + . . . , φi × s ∼ φi +φ
′
i + . . . (21)

In those cases, islands could be obtained by imposing the irrelevance of s′, and φ′. In the
present setup, instead, a similar assumption would exclude completely the ARP3 region.

19We assumed λsss ∈ {−5000λt ts, 5000λt ts}. For example for the free theory λt ts = λsss in our normalization.
Primal ratio’s λt ts

λsss
that we encountered were generally of order O(1).

20This is expected since every critical (and not multi-critical system) was known to satisfy ∆s > 1.044 [13].
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Figure 14: On the left: Bound on the dimension of the first four-index symmetric
tensor. The blue cross indicates the large N estimate of the position of the O(9)
model. Note that the estimate is excluded by these bounds, indicating an error due
to higher order corrections and/or non-perturbative effects. On the right: The same
plot but for the bound on the dimension of the first Hook vector. The green region
shows the prediction for the ARP3 model from lattice computations. Neither figure
shows any features in this region. The bounds have been obtained at Λ= 27.

We can justify this behavior by considering the LGW model, although it does not predict a
fixed point for N = 4. The Hamiltonian (3) contains two independent terms in the scalar
potential. When imposing the equation of motion, one would become a descendant of t,
while the orthogonal combination remains unconstrained. Thus, one naturally expects two
relevant rank-2 scalars. In figure 17 we show the allowed region under these assumptions.21

Unfortunately, they are not sufficient to create a closed island. In the ARP3 region predicted
by lattice simulation we find ∆t ′ = 2± 0.25, while for larger ∆s and ∆t all values for ∆t ′ are
allowed.

In the same figure 17 we show a three dimensional extension of the island we found using
the single correlator bootstrap (shown in figure 16a). In order to avoid a four dimensional
scan we replace the assumption on ∆b′ with its resulting lower bound ∆b > 1.3. The use of
the mixed correlator and OPE scan do not significantly shrink the (∆t ,∆s) space.22

5 Conclusions

In this work we initiated a bootstrap study of scalar operators transforming in O(N) repre-
sentations beyond the usual fundamental one. In particular we considered traceless symmet-
ric rank-2 tensors t i j . These operators are present in O(N)-vector model, with dimension
∆t ∼ 1 + O(1/N). In this work, however, we investigated an alternative situation, in which

21All bounds obtained using the mixed-correlator bootstrap are shown in orange to distinguish them from the
single correlator bounds.

22When assuming a gap ∆T ′ above the stress tensor in the mixed setup, we can enforce the ward identity
λOOT =

∆Op
CT

. This is very effective, resulting in much stronger bounds than the equivalent single correlator

bounds. Bounds corresponding to various assumptions on the gap ∆T ′ are shown in figure 27. We find that the
peak in∆T ′ that we found earlier (see figure 23a) was given by a fake solution since it disappeared by the addition
of additional bootstrap equations (without making any additional assumptions). The new peak is no longer located
in the expected ARP3 region and is instead located at a much higher value of ∆s and lies closer to the O(9) model.
Notably, the assumption∆T ′ > 5.5 that we occasionally used in the previous sections is excluded for all∆s close to
the lattice bounds. This suggests more caution is required when interpreting peaks and plateaus as evidence for a
theory living high within that peak. Even so the “fake” peaks location is very suggestive and might still correspond
to the location of the true ARP3 model.
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Figure 15: (a): Lower bound on CT in units of CN=4
Tfree

. (b) Lower bound on CJ in units

of CN=4
Jfree

. The Dashed lines indicate the locations of kinks in the upper bound on λt tJ .
The red dots indicate the central charge values in the N = 9 free vector boson theory.
All bounds have been obtained at Λ= 27.

the operator t plays the role of “elementary” (or smallest dimension) operator. This is the case
for (A)RPN−1 models, where it is the simplest gauge invariant operator, and in gauge theories
with scalars in real representations.

A systematic study of the correlation function 〈t t t t〉 for general N revealed new and un-
explained kinks. Most notably, two families of sharp kinks appear for all N ≥ 4 in the bound
on the first Box scalar and the first Hook vector. Additionally, we found various kinks in the
bound on the dimension of the first traceless symmetric operator. Some of these kinks become
much sharper if one assumes that the t × t OPE exchanges t itself. We interpret this as evi-
dence of CFTs where t is even under any additional Z2 symmetry. This is the case for gauge
theories and RPN−1 models. Unfortunately none of the kinks agree with predictions obtained
by large-N expansions. Also, they do not seem to follow the expected pattern of anomalous
dimension in a large-N theory, i.e. γ ∼ O(1/N). We leave the investigation of these kinks (as
well as some others described in the main text) to future research.

Next, we focused on the case N = 4, in the attempt to isolate a region corresponding to the
phase transition observed in ARP3 models by lattice simulations [63]. We found that simple
assumptions, based on the number of relevant operators only, are unable to create an isolated
region, not even after considering the mixed system of t − s correlation functions. We found
however a minimal set of assumptions able to carve out a closed region, overlapping with the
lattice prediction.

By isolating a candidate island for the ARP3 model this paper gives a partial answer to the
discrepancy between the effective Landau-Wilson-Ginzburg description of ARPN model and
their lattice simulations. The former predicts that no stable fixed points exist for N > Nc ≃ 3.6,
while the lattice simulations show a clear second order phase transition. Possibly the pertur-
bative estimate of Nc is wrong despite it having a stable Padè-Borel approximation.

In order to settle completely this discrepancy it would very interesting to improve the anal-
ysis of [63] in order to extract additional information on other operators and compare them
with the set of constraints on operator dimensions and OPE coefficients that we obtained for
any CFT. In particular, we believe the scalar in the Box representation might play a fundamen-
tal role, see discussion in section 1.3. Moreover, by studying the pattern of symmetry breaking
in the ordered phase, one can extract information about the signs of couplings in the LGW po-
tential. Certain combination of signs could place the fixed point outside of the Borel summable
region, thus explaining the tension.
Finally, there remains the possibility that the transition is actually first order with a large but
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Figure 16: On the right: The light blue region shows the allowed region in the
(∆t ,∆b) plane under the assumption ∆B′ > 3. The dark region shows the allowed
region under the assumptions ∆T ′ > 4.5, ∆J ′ > 3, ∆h > 2.05 and ∆B′ > 2.8. The
green region shows the prediction for the ARP3 model from lattice computations. On
the right: Corresponding allowed region in the (∆t ,∆s) plane (assuming ∆b > 1.3
instead of ∆b′ > 2.8 to avoid scanning over a 3 dimensional parameter space). The
bounds have been obtained at Λ= 35.

finite correlation function. We find it unlikely however that a complex CFT [64, 65] could
produce the features observed in the bootstrap bounds presented in section 4.

It would also be interesting to repeat a similar analysis for higher values of N , looking for
evidences of phase transition in A(RP)N−1 models for generic N .
Alternatively, one could consider bootstrapping more correlation functions, along the lines
of [10,11].
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A 2pt and 3pt functions

Instead of working with explicit indices, we contract all SO(N) indices with suitable polariza-
tion vectors. As discussed in section 2, the OPE of two traceless symmetric representations
contains generically mixed symmetry representations. In those cases, we will use different
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Figure 17: Allowed values for∆t ′ given (∆t ,∆s) in the expected ARP3 region assum-
ing the existence of exactly one relevant singlet and exactly one additional relevant
Z2-odd operator besides t-itself. Darker: the same bounds under the additional as-
sumptions: ∆T ′ > 4.5, ∆J ′ > 3, ∆h > 2.05 and ∆b > 1.3. The bounds have been
obtained at Λ= 19.

polarization vectors, one for each antisymmetrized set of indices. Hence we will have:

O2(x , S) =Oi j
2 (x)S

iS j , O4(x , S) =Oi jkl
4 S iS jS jS l , (A.1)

O3,1(x , S, U) =Oi jk,l
3,1 (x)S

iS jSkU l , O2,2(x , S, U) =Oi j,kl
2,2 (x)S

iS jU jU l , (A.2)

O1,1(x , S, U) =Oi, j
1,1(x)S

iU j . (A.3)

where we did not write the Lorentz tensor structure. At this point it is straightforward to
compute the two and three point functions by imposing the correct symmetry (or antisymme-
try) and traceless-ness properties. As usual, we can forget about the traceless-ness condition
provided that we take all polarization vectors to be null: S2 = U2 = 0. The symmetrization
of indices is also already taken care of by the contraction with the polarization vector. The
only conditions left to impose are the antisymmetrization of indices corresponding to different
lines of the Yang-tableau. This is easily expressed by the simple fact that if one replaces an S
vector with a U vector, the result must vanish identically. More concretely the action of the
differential operator S · ∂∂ U must annihilate the expression. Moreover, if one contracts two
antisymmetrized indices, the results vanishes too. In terms of polarization vectors, this means
that the action of the differential operator ∂

∂ S ·
∂
∂ U should gives zero as well.

Let us work out a simple example in details. The most general form of the two point
function of a field O1,1 in the adjoint representation is

〈O1,1(x1, S1, U1)O1,1(x2, S2, U2)〉=K2(x12)(a(S1 · U1)(S2 · U2) (A.4)

+ b(S1 · S2)(U1 · U2) + c(S1 · U2)(S2 · U1)) . (A.5)

Imposing that both Si ·
∂
∂ Ui

and ∂
∂ Si
· ∂∂ Ui

annihilate the above expression one can fix a = 0 and
b = −c. We can take b = 1 for definitiveness.
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Similarly one can get all other two point functions

〈O0(x1)O0(x2)〉=KO
2 (x12) , (A.6)

〈O2(x1, S1)O2(x2, S2)〉=KO
2 (x12)(S1 · S2)

2 , (A.7)

〈O4(x1, S1)O4(x2, S2)〉=KO
2 (x12)(S1 · S2)

4 , (A.8)

〈O1,1(x1, S1, U1)O1,1(x2, S2, U2)〉=KO
2 (x12) ((S1 · S2)(U1 · U2)− (S1 · U2)(U1 · S2)) , (A.9)

〈O3,1(x1, S1, U1)O3,1(x2, S2, U2)〉=KO
2 (x12)

�

(S1 · S2)
3(U1 · U2)−

(S1 · S2)
2(S1 · U2)(U1 · S2)−

2
N
(S1 · S2)

2(S1 · U1)(S2 · U2)
�

, (A.10)

〈O2,2(x1, S1, U1)O2,2(x2, S2, U2)〉=KO
2 (x12)

�

(S1 · S2)
2(U1 · U2)

2 + (S1 · U2)
2(U1 · S2)

2

+
2(S1 · U1)2(S2 · U2)2

(N − 1)(N − 2)
−

2(S1 · S2)(U1 · U2)(S1 · U1)(S2 · U2)
(N − 2)

− 2(S1 · U2)(U1 · S2)
�

(S1 · S2)(U1 · U2) +
1

N − 2
(S1 · U1)(S2 · U2)

�

�

. (A.11)

Starting from the above definitions and using the Todorov operator acting on the O(N) indices

Di(Z) =
�

N − 2
2
+ Z ·

∂

∂ Z

�

∂

∂ Z i
−

1
2

Zi
∂ 2

∂ Z · ∂ Z
, (A.12)

one can open the indices and obtain a tensor structure:

fi1...ir =
1

r!((N − 2)/2)r
Di1(Z) . . .Dir (Z) f j1... jr Z j1 . . . Z jr . (A.13)

For instance, one can obtain the three point function between two t operators and an operator
in the adjoint:

�

2
N − 2

�2

(S1 · S2)(S1 ·D3(S))(S2 ·D3(U))[(S · S3)(U · U3)− (S · U3)(U · S3)]

= (S1 · S2) ((S1 · S3)(S2 · U3)− (S1 · U3)(S2 · S3)) . (A.14)

Notice that here we had to add by hand a factor (S1 ·S2) to take care of the additional indices.
For representations with four indices this is not needed. Similarly one can produce all the
others. For example, starting from eq. A.11, we find the three point function between two t
operators and an operator in the Box representation:

4
N2(N − 2)2

(S1 ·D3(S))
2(S2 ·D3(U))

2[(S1 · S2)
2(U1 · U2)

2 + (S1 · U2)
2(U1 · S2)

2 + . . .]

= ((S1 · U3)(S2 · S3)− (S1 · S3)(S2 · U3))
2 +

2
(N − 2)(N − 1)

(S1 · S2)
2(S3 · U3)

2

−
2

N − 2
(S1 · S2)(S3 · U3) ((S1 · U3)(S2 · S3) + (S1 · S3)(S2 · U3)) . (A.15)

In a similar fashion one can also open the indices at point three and replace them with the
polarizations of two other t operators. This allows to create four point tensor structures.
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B Four point tensor structures

Following the procedure outlined in Appendix A we are able to construct the tensor structures
corresponding to each irrep exchange. Defining the basis:

B1 = (S1 · S2)
2(S3 · S4)

2 , B2 = (S1 · S2)(S1 · S3)(S2 · S4)(S3 · S4) ,

B3 = (S1 · S3)
2(S2 · S4)

2 , B4 = (S1 · S2)(S1 · S4)(S2 · S3)(S3 · S4) , (B.1)

B5 = (S1 · S4)
2(S2 · S3)

2 , B6 = (S1 · S3)(S2 · S3)(S2 · S4)(S1 · S4) ,

Then the tensors structures become:

T̂0 =
2

(N + 2)(N − 1)
B1 ,

T̂2 =
2N

(N + 4)(N − 2)

�

B4 + B2 −
2
N

B1

�

,

T̂4 =
1
6
(B5 + B3 + 4B6)−

4
3(N + 4)

�

B4 + B2

�

+
4

3(N + 2)(N + 4)
B1 ,

T̂1,1 =
2

N + 2

�

B2 − B4

�

,

T̂3,1 =
1
2
(B5 − B6)−

2
(N + 2)

�

B4 − B2

�

,

T̂2,2 =
1
3
(B5 + B3 − 2B6)−

2
3(N − 2)

�

B4 + B2

�

+
2

3(N − 2)(N − 1)
B1 .

(B.2)

In the above expression we have chosen the normalization such that the tensor structure are
projectors and satisfy a completeness relation.23 However, in order to keep the contribution
of the identity operator with a simple normalization, we rescale:

T̂r =
2

(N + 2)(N − 1)
Tr . (B.3)

In this way T0 = B1.
Similarly one can construct a tensor structure for the correlators 〈tsts〉, 〈t tss〉 and 〈tsst〉.

In this case there is a single tensor structure. For 〈t tss〉 it is of the form

Tt tss =
2N

N − 2
(S1 · S2)

2 , (B.4)

and all the others can be obtained by crossing.
In the main text we considered a mixed system of correlators involving 〈t t t t〉, 〈t tss〉 and

〈ssss〉. In order to connect the crossing equations resulting from the various correlators it is
important to enforce the equality of OPE coefficients whenever possible. In the specific case,
one would like to impose that the coefficient associated to the singlet exchange in the t × t
OPE is the same, modulo the proper tensor structure, to the coefficients associated to the t
exchange in the t × s OPE. The formal way to ensure this would be to follow the procedure
of [66]. Here we use a shortcut.
Let us begin defining the OPE coefficient

〈t(x1, S2)t(x2, S2)S(x3)〉= λt tS(S1 · S2)
2K3(x i ,∆i) , (B.5)

K3(x i ,∆i) =
1

|x12|∆1+∆2−∆3 |x13|∆1−∆2+∆3 |x23|−∆1+∆2+∆3
. (B.6)

23The sign of the projector gets fixed by imposing reflection positivity on the correlators in mirror symmetric
configurations, see for example section III.E.1 in [3].
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Next, we can compute this quantity in a solvable theory, for instance in a GFT, where

〈φi(x1)φ j(x2)〉=
δi j

|x12|2∆φ
, S =

1
p

2N
φiφi , t i j =

1
p

2

�

φiφ j −
1
N
δi jφkφk

�

. (B.7)

Notice that while S and t12 are unit normalized, t11 for instance is not. We obtain simply:

λSSS = λt tS = 2
Æ

2/N . (B.8)

Finally we compute the correlation functions 〈t t t t〉, 〈t tss〉 and 〈tsts〉 in GFT, single out the
contribution of the conformal block associated to t or s and read-off the correct normalization
of the tensor structures. In details:

Kt t t t(x i ,∆φ)
−1〈t t t t〉

�

�

�

�

T0

⊃ 1+λ2
t tS(4r)2∆φ (1+O(r)) ,

Kt tss(x i ,∆φ)
−1〈t tss〉

�

�

�

�

Tt tss

⊃ 1+λt tSλSSS(4r)2∆φ (1+O(r)) ,

Ktsst(x i ,∆φ)
−1〈tsst〉

�

�

�

�

Ttsst

⊃ λ2
tSt(4r)2∆φ (1+O(r)) .

One can check that the choice made in (B.2) and (B.4) are consistent.

C O(N) vs O(N(N + 1)/2− 1) vector bootstrap.

When bootstrapping the system of equations for a O(N) traceless symmetric operator the
bounds on the dimension of the first singlet scalar are actually dominated by solutions re-
lated to O(N ′) symmetry where N ′ = N(N + 1)/2− 1. The reason is that crossing equations
for an O(N ′) vector are related to those of an O(N) traceless symmetric operator by an identifi-
cation where the vector φa gets rewritten as φ i j where a ∈ {0, ..., N ′} and i, j ∈ {0, ..., N}. The
φ×φ OPE exchanges operators in the singlet (S), traceless symmetric (T) and antisymmetric
(A) representations.24 Any solution to the O(N ′) vector bootstrap equations also solves the
O(N) traceless symmetric bootstrap equation (giving a solution with ∆T2 = ∆T4 = ∆B = ∆T
and ∆A2 =∆H =∆A).

Seen from the dual problem, one can show that there exist a positive linear map T from
any functional that is positive on the vectors {VS , VT , VA} to a positive functional on the vectors
{VS , VT2 , VT4 , VA2 , VH , VB}. The resulting functional has the following (guaranteed) domain of
positivity depending on the positivity properties of the original functional:

SO(N ′) : αv → SO(N) : βt ,

∆∗R ≥











∆∗S , R= S ,

∆∗T , R ∈ {T2, T4, B} ,
∆∗A , R ∈ {A, H} ,

SO(N) : βt → SO(N ′) : αv ,

∆∗R ≥











∆∗S , R= S ,

max(∆∗T2 ,∆∗T4 ,∆∗B) , R= T ,

max(∆∗A,∆∗H) , R= A .

(C.1)

Here ∆∗R indicates the minimum of the domain of positivity, i.e. α(VR)> 0∀∆ ∈ [∆∗R,∞).
The proof below follows in the spirit of [55]were a similar relationship was proven between

coinciding bounds in the bootstrap of SU(N) fundamentals and the bootstrap of O(2N) vectors.

24In this section T stands for the traceless symmetric representation appearing in the φ ×φ OPE. We leave out
the superscript in order to differentiate it from the traceless symmetric operators appearing in the t × t OPE. The
same holds for the usage of A versus A2.
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Theorem: Given a set of functionals αa with a ∈ {1, ..., 3} which are positive on respectively
the three crossing equations of the O(N)-vector system, a set of positive functionals βi on the
six bootstrap equations of the O(N) traceless symmetric irrep can be found using positive linear
map T such that β j = αi Ti j .

Proof: The O(N)-vector equations can be written as
∑

O

λ2
OVS,∆,ℓ +

∑

O

λ2
OVT,∆,ℓ +

∑

O

λ2
OVA,∆,ℓ = 01×6 , (C.2)

or in matrix form as

M〈vvvv〉,SO(N ′) =





0 F −F
F

�

1− 1
N ′
�

F F
H −

� 1
N ′ + 1

�

H −H



= 0 , (C.3)

where the rows correspond to the three different equations and the columns correspond to the
vectors VS , VT and VA.

The problem of positive semi-definiteness of the bootstrap equation (after taking out the
term corresponding to the unit operator) can be written as finding αi such that

(αS αT αA)≡ (α1 α2 α3) ·M〈vvvv〉,SO(N ′) ≥ 0 , ∀∆R,ℓ >∆
∗
R,ℓ . (C.4)

We will show the existence of Ti j such that β j = αi Ti j and

(αS αT2 αT4 αA2 αH αB)≡
�

β1 β2 β3 β4 β5 β6

�

·M〈t t t t〉,SO(N) ≥ 0 , ∀∆R′,ℓ >∆
∗
R′,ℓ . (C.5)

Decomposing the irrep contributions {VS , VT , VA}, according to the contributions to
{VS , VT2 , VT4 , VA, VH , VBox}, one finds the following branching rules:25

〈vvvv〉 of SO(N ′) 〈t t t t〉 of SO(N)

VS ←→ VS , (C.6)

VT ←→ VT2 + VT4 + VB, (C.7)

VA ←→ VA+ VH . (C.8)

This motivates us to restrict our search to a map T such that

(βS βT2 βT4 βA2 βH βB) =
�

αS x1αT x2αT x4αA x5αA x3αT

�

. (C.9)

In other words we assume that the map T relates the vectors βR′ to αR through βR′ = αR T̃R
R′

with

T̃ =





1 0 0 0 0 0
0 x1 0 x2 0 x3
0 0 x4 0 x5 0



 . (C.10)

For this ansatz to hold the related linear transformation T between αi ’s and βi ’s has to be of
the form

T = T̃ ·M−1
〈t t t t〉,O(N) . (C.11)

25It is essential that N ′ = N(N+1)−2
2 for other N ′ the branching of T would also contain a singlet.
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By imposing that the F and H equations do not mix we can fix the values x i and find a unique
map T (up to an overall constant). The values x i in this map are given by26

x⃗ =
1

N + N2 − 4

 
��

N + N2
�

− 2
�2

N2 + N + 2
N(N + 1)(N + 2)(N + 6)(N − 1)2

12 (N2 + N + 2)

×
N(N + 1)(N + 2)2(N − 3)(N − 1)

6 (N2 + N + 2)
N(N − 1)

1
4
(N + 1)(N + 4)(N − 2)(N − 1)

�

.

(C.13)

The important thing to note is that these x i are positive for n > 3. Thus, any functional α⃗
such that (αS αT αA) ≽ 0 guarantees that (βS βT2 βT4 βA2 βH βB) ≽ 0 since these are given
by a positive coefficient times αS , αT or αA. To be precise βS is guaranteed to be positive for
∆ > ∆S while βT2 , βT4 and βB are guaranteed to be positive for ∆ > ∆T and βA2 and βH
for ∆ > ∆A. (Positivity on this domain is guaranteed, but the functional can be positive on a
bigger domain.)

Similarly an inverse map T ′ can be found which provides a functional that is positive on
{VS , VT , VA} from functionals positive on {VS , VT2 , VT4 , VA, VH , VBox}. In this case we look for a
T ′ such that

(αS αT αA) =
�

βS x1βT2 + x2βT4 + x3βB x4βA2 + x5βH

�

. (C.14)

Again we find a unique solution for T ′ and the parameters x i

x i =
4

(n+ n2)− 2
, i = 1, 2,3, 4,5 . (C.15)

Here we see that αS ≽ 0 is guaranteed when βS ≽ 0, αT ≽ 0 is guaranteed to be positive
on the domain where each of βT2 ,βT4 and βB are positive, i.e. ∆ ≥ max(∆∗T2 ,∆∗T4 ,∆∗B) and
αA ≽ 0 is guaranteed to be positive if ∆ ≥ max(∆∗A2 ,∆∗H). The functional may be positive on
a bigger domain. Thus, the (guaranteed) domains of positivity under the mappings T and T ′

are as described in equation C.1.
This means that the bootstrap equations of the O(N) traceless symmetric scalar will gives

the same bounds as the bootstrap of the vector equations of O(N ′) as long as we assume
positivity of the form ∆A∗ = ∆H∗ and ∆T2∗ = ∆T4∗ = ∆B∗ . However, stronger bounds can be
found when we impose a different domain of positivity, i.e. different ∆O∗ , for these operators.

26The explicit form of T in our normalization is given by

T =











0 ((N+N2)−2)2

(N2+N+2)((N+N2)−4)
N(N−1)

(N+N2)−4
N(N+1)(N+2)(N+6)(N−1)2

12(N2+N+2)((N+N2)−4) 0 0

1 (12−8N+2N3+N4)−7N2

(N2+N+2)((N+N2)−4) − N(N−1)

(N+N2)−4
N(N+1)(N+3)(N+6)(N−2)(N−1)

12(N2+N+2)((N+N2)−4) 0 0

0 0 0 0 1 (2−N)−N2

(N+N2)−4











. (C.12)
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D Additional Plots
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Figure 18: On the left: approximate ∆t value of the kinks observed in the bound on
the Box representation (figure 4) as a function of 1/N . On the right: approximate
∆b value of the kinks as a function of 1/N . The yellow and blue dots corresponds to
Λ= 19,27 while the green dots are found under the additional assumption∆t ≥∆text

see also figures 8a and 8b. The lines shows the best linear fit.
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Figure 19: On the left: Bound on the dimension of the first scalar Box operator. The
blue line shows the bound under no assumptions while the orange line is found under
the assumptions ∆T ′ > 5.5 and ∆J ′ > 3. The orange line shows a maximum close
to the position of the first kink of the blue line. The green region shows the predic-
tion for the ARP3 model from lattice computations. These bounds were obtained at
Λ= 19 On the right: The bound on the first antisymmetric spin-1 operator after the
conserved current assuming ∆T ′ > 4.5, ∆h > 2.05 and ∆b > 1.37. This bound has
been obtained at Λ= 35.
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Δs'>3

+ ΔT ' ≥ 5.5

+ ΔJ' ≥ 3

+ Δt ' > Δ*
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0.5

1.0

1.5

2.0

2.5

Δt

Δ
s

Figure 20: Allowed region in the (∆t ,∆s) plane assuming the existence of exactly
one relevant singlet and successively more constraining assumptions as described
in the legend. The assumptions ∆t ′ > ∆∗ means that we allow the exchange of t
itself but assume a gap ∆t ′ >∆∗(∆t) where ∆∗(∆t) is the value of the upper bound
found on ∆t ′ without any additional assumptions(see figure 13). This assumption
excludes all theories where t itself is not exchanged (and hence should exclude the
ARP3 model. The green region shows the prediction for the ARP3 model from lattice
computations. The bounds have been obtained at Λ= 19.
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Figure 21: On the left: Allowed region in the (∆t ,∆s) plane assuming the existence
of exactly one relevant singlet. The green region shows the prediction for the ARP3

model from lattice computations. Three features stand out. The free theory can
be found at the sharp corner of the peninsula near the unitarity bound. Another
corner is controlled by the O(9) model. Lastly a small appendix can be seen around
∆s = ∆t = 0.58. The bounds have been obtained at Λ = 19. On the right: Zoom
of the small appendix on the bottom. As Λ is increased the appendix moves to the
right. The bounds have been obtained at Λ= 19 (solid) and Λ= 27 (dashed).
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Figure 22: Allowed region in the (∆t ,∆b) plane assuming the existence of exactly
one relevant Box scalar and ∆T ′ > 4.5, ∆J ′ > 3 and ∆h > 2.05. The green region
shows the prediction for the ARP3 model from lattice computations. The bounds have
been obtained at Λ= 19, 27,31 (light to dark). The isolated island disappears when
we push to Λ = 35, indicating that at least one of these assumptions is too strong.
The dashed line indicates the allowed region assuming only the existence of exactly
one relevant Box scalar without additional assumptions.

Δs'>3

+ ΔT ' ≥ 5.5

+ ΔT ' ≥ 6.5 (Λ=19)

+ ΔT ' ≥ 6.5 (Λ=27)
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Figure 23: On the left: Allowed region in the (∆t ,∆s) plane assuming the existence of
exactly one relevant singlet and ∆T ′ > 5.5, 6.5. The peak is clearly centered around
the expected ARP3 region. The bounds have been obtained at Λ= 19,27 as indicated
in the legend. On the right: Allowed region in the (∆t ,∆s) plane assuming the
existence of exactly one relevant singlet and the gaps∆T ′ > 5.5 and∆J ′ > 3. Allowed
regions under the lesser assumptions of one relevant singlet and the gap ∆T ′ > 5.5
are included for reference as described in the legend.
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Δs'>3

+ Δh≥ 2.03
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Figure 24: Allowed region in the (∆t ,∆s) plane assuming the existence of exactly
one relevant singlet and ∆h > 2.03. The green region shows the prediction for the
ARP3 model from lattice computations. The bounds have been obtained at Λ= 19.
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Figure 25: Allowed region in the (∆t ,∆s) plane assuming the existence of exactly
one relevant singlet and ∆T ′ > 5.5, ∆J ′ > 3 and ∆h > 2.03. The green region shows
the prediction for the ARP3 model from lattice computations. The bounds have been
obtained at Λ= 19.
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Figure 26: On the left: Allowed region in the (∆t ,∆b) plane assuming the existence
of exactly one relevant Box scalar and ∆T ′ > 5.5, ∆J ′ > 3. The green region shows
the prediction for the ARP3 model from lattice computations. The blue cross indi-
cates the large N estimate of the position of the O(9) model. The bounds have been
obtained at Λ= 19 and Λ= 27. On the right: The same bound under the additional
assumption that∆h > 2.05. As expected this assumption seems to effectively exclude
theories with O(9) symmetry. The bound has been obtained at Λ= 19.
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Figure 27: Allowed region in the (∆t ,∆s) plane assuming the existence of exactly
one relevant singlet scalar and the gaps ∆T ′ = 4.5,5, 5.5,5.6 (light to dark). For
reference the single correlator bounds under the assumptions ∆T ′ > 5.5 (dashed
line) and ∆T ′ > 6.5 (solid line) are indicated in blue. In the mixed setup no primal
points can be found for ∆T ′ ≥ 6. The bounds have been obtained at Λ= 19.
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E Parameters of the numerical implementation

The numerical conformal bootstrap problem was truncated according to the parameters in
table 1. The semi-definite problem was solved using sdpb with the choice of parameters given
in table 2.

Table 1: Values of the various parameters appearing in the numerical bootstrap prob-
lem.

Λ= 19 Λ= 27

Lset {0, ..., 26} ∪ {49,50} {0, ..., 30} ∪ {39,40, 49,50}
order 60 60

κ 14 18

Table 2: Parameters used in sdpb for respectively feasibility problems and for OPE
optimization.

Parameter feasibility OPE

maxIterations 500 500

maxRuntime 86400 86400

checkpointInterval 3600 3600

noFinalCheckpoint True False

findDualFeasible True False

findPrimalFeasible True False

detectDualFeasibleJump True False

precision 700 700

maxThreads 28 28

dualityGapThreshold 10−20 10−20

primalErrorThreshold 10−60 10−60

dualErrorThreshold 10−60 10−60

initialMatrixScalePrimal 1020 1020

initialMatrixScaleDual 1020 1020

feasibleCenteringParameter 0.1 0.1

infeasibleCenteringParameter 0.3 0.3

stepLengthReduction 0.7 0.7

choleskyStabilizeThreshold 10−40 10−40

maxComplementarity 10200 10200
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