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Internal quark symmetries and colour SU (3) entangled with Z 3 -graded Lorentz algebra

In the current version of QCD the quarks are described by ordinary Dirac fields, organized in the following internal symmetry multiplets: the SU (3) colour, the SU (2) flavour, and broken SU (3) providing the family triplets. In this paper we argue that internal and external (i.e. spacetime) symmetries are entangled at least in the colour sector in order to introduce the spinorial quark fields in a way providing all the internal quark's degrees of freedom which do appear in the Standard Model. Because the SU (3) colour algebra is endowed with natural Z3-graded discrete automorphisms, in order to introduce entanglement the Z3-graded version of Lorentz and Poincaré algebras with their realizations are considered. The colour multiplets of quarks are described by 12-component colour Dirac equations, with a Z3-graded triplet of masses (one real and a Lee-Wick complex conjugate pair). We argue that all quarks in the Standard Model can be described by the 72-component master quark sextet of 12-component coloured Dirac fields.

Introduction

In the current version of Quantum Chromodynamics the massive quarks are treated as Dirac fermions endowed with additional internal degrees of freedom. In the minimal version, Standard Model displays the exact SU (3) colour and the SU (2) flavour symmetries, as well as strongly broken SU (3) describing three quark families ( [START_REF] Gaillard | The standard model of particle physics[END_REF], [START_REF] Cottingham | An Introduction to the Standard Model of Particle Physics[END_REF], [START_REF] Bustamante | Beyond the Standard Model for Montañeros[END_REF]).

If we introduce "master quark Dirac field" supposed to incorporate all internal quark symmetries, we should deal with 4 × 3 × 2 × 3 = 72-component fermionic master field (the first factor 4 corresponds to the four degrees of freedom of classical Dirac spinor, the next factor 3 stays for three colours, next factor 2 gives flavours, and the last factor 3 corresponds to the three families). Our aim here is to look for a framework introducing algebraic and group-theoretical structure which permits to incorporate all the internal quark symmetries enumerated above in the irreducible representations of Z 3 -graded generalization of Lorentz algebra.

Because in the quark sector of Standard Model e.g. u and d quarks behave as fermions, the two-quark states uu or dd should be excluded, unless there are extra parameters distinguishing the states in a pair. This was the origin of colour degrees of freedom, and of an exact SU (3) colour symmetry treating quarks as colour triplets which incorporate three distinct eigenstates, labeled as red, green, and blue. With such enlargement of the Hilbert space describing single quark states we arrive (in Sect. 3) at new 12-component fermionic colour Dirac field, introduced in [START_REF] Kerner | The discrete quantum origin of the Lorentz group and the Z 3 -graded ternary algebras[END_REF], [START_REF] Kerner | Ternary generalization of Pauli's principle and the Z 6 -graded algebras[END_REF], with colour Dirac Γ µ matrices whose structure is described symbolically by the following tensor product:

M 3 (C) ⊗ H 2 ⊗ H 2 (1) 
M 3 (C) represents colour 3×3 matrices, H 2 are the 2×2 Hermitiean ones, and in our approach the generalized 12 × 12-dimensional generalized Dirac Γ µ -matrices employ in M 3 sector the generators of the particular ternary Clifford algebra discussed in Sect. 2; similar constructions were recently considered in [START_REF] Cerejeiras | Ternary Clifford Algebras[END_REF], [START_REF] Ab Lamowicz | On Ternary Clifford Algebras On Two Generators Defined by Extra-Special 3-Groups of Order 27[END_REF]. The colour symmetry is somehow hidden in Nature, because the states with non-zero colour charges are not observed in experiments due to the quark confinement mechanism ( [START_REF] Greensite | An introduction to the confinement problem[END_REF]). We should further argue that in a quark model only the composite hadronic states are described asymptotically by the well known Dirac and Klein-Gordon (KG) equations. We assume that on the level of single quark states we need not to postulate the description of colour quark triplets by standard Dirac fields, and we propose instead its 12-component colour generalization, incorporating the Z 3 -grading and generating colour entanglement.

In our approach quark fields satisfy the sixth-order generalization of Klein-Gordon's equation, which factorizes into the triple product of the standard Klein-Gordon operator with real mass, and a pair of Klein-Gordon operators with complex-conjugated Lee-Wick masses (see e.g. [START_REF] Lee | Finite Theory of Quantum Electrodynamics[END_REF], [START_REF] Anselmi | Perturbative Unitarity of Lee-Wick Quantum Field Theory[END_REF]), in our case given by three Z 3 -graded mass parameters m, jm and j 2 m, j = e time plane are realized as Z 3 -graded set of generalized Wick rotations τ r = e 2πri 3 , (r = 0, 1, 2) and permits to introduce in Sect. 4 the vectorial realization of Z 3 -graded Lorentz group and the Z 3 -graded Poincaré algebra (see also [START_REF] Kerner | Ternary Z 2 ×Z 3 graded algebras and ternary Dirac equation[END_REF], [START_REF] Kerner | The Z 3 -graded extension of the Poincaré algebra[END_REF]. 1 in Sect. 5, we present the complete set of spinorial realizations of the Z 3graded Lorentz algebra which has been introduced in [START_REF] Kerner | Z 3 -graded colour Dirac equation for quarks, confinement and generalized Lorentz symmetries[END_REF] (see also [START_REF] Kerner | The Z 3 -graded extension of the Poincaré algebra[END_REF], [START_REF] Kerner | Towards the Z 3 -graded approach to quarks' symmetries[END_REF]).

In order to describe all quark symmetries, both exact (colour) and broken ones (flavour, generations), we consider in Sect. 6 in explicit way the action of Z 3 -graded Lorentz algebra L = L (0) ⊕ L (1) ⊕ L (2) on the sextet of generalized 12 × 12-component colour Dirac Γ µ matrices which provides an irreducible representation of the algebra L. It appears that such a sextet defines six 12component colour Dirac fields which span 72 quark states and takes into account all known internal symmetries of the quark model, describing colour, flavour and generations. Further, in Sect. 7 we introduce chiral flavour doublets and we show how to define chiral colour spinors in the framework using the colour Dirac equations.

In a short summary in final Sect. 8 we are pointing out the differences between our approach and the results of some other authors who were dealing only with possible modifications of internal symmetries sector in the quark models.

2 Ternary Clifford algebra, Z 3 -symmetry and the

SU (3) algebra

In a recent series of papers ( [START_REF] Kerner | The discrete quantum origin of the Lorentz group and the Z 3 -graded ternary algebras[END_REF], [START_REF] Abramov | Algebras with Ternary Composition Law Combining Z 2 and Z 3 Gradings[END_REF], [START_REF] Kerner | Ternary generalizations of graded algebras with some physical applications[END_REF], [START_REF] Kerner | Ternary Z 2 ×Z 3 graded algebras and ternary Dirac equation[END_REF], [START_REF] Kerner | The Quantum nature of Lorentz invariance[END_REF]) ternary algebraic structures have been introduced and discussed. Among others, a ternary generalization of Clifford algebra with two generators (see e.g. in [START_REF] Cerejeiras | Ternary Clifford Algebras[END_REF], [START_REF] Ab Lamowicz | On Ternary Clifford Algebras On Two Generators Defined by Extra-Special 3-Groups of Order 27[END_REF]) is of particular interest for high energy physics due to its close relation with the Lie algebra of the SU (3) group appearing as an exact color symmetry and as a broken symmetry mixing the three quark families. The standard 3 × 3 matrix basis of ternary Clifford algebra (which was first considered in XIX-th century by Cayley [18] and Sylvester [19], who called its elements "nonions" ) looks as follows:

Q 1 =   0 1 0 0 0 j j 2 0 0   , Q 2 =   0 1 0 0 0 j 2 j 0 0   , Q 3 =   0 1 0 0 0 1 1 0 0   , (2) 
Q † 1 =   0 0 j 1 0 0 0 j 2 0   , Q † 2 =   0 0 j 2 1 0 0 0 j 0   , Q † 3 =   0 0 1 1 0 0 0 1 0   , ( 3 
)
where j is the third primitive root of unity,

j = e 2πi 3 , j 2 = e 4πi 3 , 1 + j + j 2 = 0. ( 4 
)
1 In ( [START_REF] Kerner | The Z 3 -graded extension of the Poincaré algebra[END_REF]) the Z 3 -graded Poincaré algebra is introduced in an alternative way, realized on a Z 3 -graded triplet of Minkowskian space replicas: one real and two complex-conjugate ones. and M † denotes the hermitian conjugate of matrix M. We see that all the matrices (2, 3) are non-Hermitian. To complete the basis of 3 × 3 traceless matrices, we must add to (2) and (3) the following two linearly independent diagonal matrices:

B =   1 0 0 0 j 0 0 0 j 2   , B † =   1 0 0 0 j 2 0 0 0 j   . (5) 
In what follows, we shall often use alternative notation I A , A = 1, 2, ...8, with

I 1 = Q 1 , I 2 = Q 2 , I 3 = Q 3 , I 4 = Q † 1 , I 5 = Q † 2 , I 6 = Q † 6 , I 7 = B, I 8 = B † (6)
and can also add I 0 = l 1 3 . The Hermitian conjugation I † A (A = 1, 2, ..., 8) :

I † A = (Q † 1 , Q † 2 , Q † 3 , Q 1 , Q 2 , Q 3 , B † , B) = I A † (7) 
provides the following permutation of indices A → A † :

A = (1, 2 , 3, 4, 5, 6, 7, 8) 
→ A † = (4, 5, 6, 1, 2, 3, 8, 7). (8) 
We can introduce as well the standard complex conjugation M → M, which leads to the relations 

ĪA = ( Q1 = Q 2 , Q2 = Q 1 , Q3 = Q 3 , Q † 1 = Q † 2 , Q † 2 = Q † 1 B = B † ) = I Ā, (9) 
The 3 × 3 matrices Q 3 and Q † 3 are real, while Q 2 = Q1 are mutually complex conjugated, as well as their Hermitean counterparts

Q † 2 = Q † 1 .
The matrices (2) and (3) are endowed with natural Z 3 -grading

grade(Q k ) = 1, grade(Q † k ) = 2, (11) 
Out of three independent Z 3 -grade 0 ternary (i.e. three-linear) combinations, only one leads to a non-vanishing result. One can simply check that both j and j 2 ternary skew commutators do vanish

{Q 1 , Q 2 , Q 3 } j = Q 1 Q 2 Q 3 + jQ 2 Q 3 Q 1 + j 2 Q 3 Q 1 Q 2 = 0, ( 12 
)
{Q 1 , Q 2 , Q 3 } j 2 = Q 1 Q 2 Q 3 + j 2 Q 2 Q 3 Q 1 + jQ 3 Q 1 Q 2 = 0, (13) 
as well as the odd permutation, e.g.

Q 2 Q 1 Q 3 + jQ 1 Q 3 Q 2 + j 2 Q 3 Q 2 Q 1 = 0.
In contrast, the totally symmetric combination does not vanish but it is proportional to the 3 × 3 identity matrix I 0 = l 1 3 :

Q a Q b Q c + Q b Q c Q a + Q c Q a Q b = 3 η abc l 1 3 , a, b, ... = 1, 2, 3. ( 14 
)
with η abc given by the following non-zero components

η 111 = η 222 = η 333 = 1, η 123 = η 231 = η 312 = j 2 , η 213 = η 321 = η 132 = j (15)
and all other components vanishing. The above relation can be used as definition of ternary Clifford algebra (see e.g. [START_REF] Sylvester | A word on nonions[END_REF], [START_REF] Kerner | The discrete quantum origin of the Lorentz group and the Z 3 -graded ternary algebras[END_REF]).

Analogous set of relations is formed by Hermitian conjugates Q † ȧ := QT a of matrices Q a , which we shall endow with dotted indices ȧ, ḃ, ... = 1, 2, 3. They satisfy the relation

Q 2 a = Q † ȧ ( 16 
)
as well as the identities conjugate to the ones in ( 14)

Q † ȧQ † ḃQ † ċ + Q † ḃQ † ċQ † ȧ + Q † ċQ † ȧQ † ḃ = 3 η ȧḃ ċ l 1 3 , with η ȧḃ ċ = ηcba . ( 17 
)
It is obvious that any similarity transformation of the generators Q a keeps the ternary anti-commutator ( 14) invariant. As a matter of fact, if we define Qb = S -1 Q b S, with S a non-singular 3 × 3 matrix, the new set of generators will satisfy the same ternary relations, because it follows that

Qa Qb Qc = S -1 Q a SS -1 Q b SS -1 Q c S = S -1 (Q a Q b Q c )S, (18) 
and on the right-hand side we have the unit matrix which commutes with all other matrices, so that S -1 l 1 3 S = l 1 3 .

Here is the full multiplication table of the associative algebra of eight basis matrices I A (A = 1, 2, ...8).

Q 1 Q 2 Q 3 Q † 1 Q † 2 Q † 3 B B † Q 1 Q † 1 j 2 Q † 3 jQ † 2 1 B † B jQ 2 j 2 Q 3 Q 2 jQ † 3 Q † 2 j 2 Q † 1 B 1 B † jQ 3 j 2 Q 1 Q 3 j 2 Q † 2 jQ † 1 Q † 3 B † B 1 jQ 1 j 2 Q 2 Q † 1 1 j 2 B jB † Q 1 j 2 Q 3 jQ 2 Q † 3 Q † 2 Q † 2 jB † 1 j 2 B jQ 3 Q 2 j 2 Q 1 Q † 1 Q † 3 Q † 3 j 2 B jB † 1 j 2 Q 2 jQ 1 Q 3 Q † 2 Q † 1 B Q 2 Q 3 Q 1 jQ † 3 jQ † 1 jQ † 2 B † 1 
B † Q 3 Q 1 Q 2 j 2 Q † 2 j 2 Q † 3 j 2 Q † 1 1 B

Table I: The multiplication table of nonion algebra

It is also worthwhile to note that the six matrices Q a and Q † ḃ together with two traceless diagonal matrices B and B † from (2, 3) form the basis for certain Z 3 -graded representation of the SU(3)-algebra, as it was shown by V. Kac in 1994 (see [START_REF] Kac | Infinite-Dimensional Lie Algebras[END_REF]).

All these matrices are cubic roots of the 3 × 3 unit matrix, i.e. their cubes are all equal to l 1 3 . One can observe that two traceless matrices I 2 = Q 2 and I 7 = B generate, by consecutive multiplications, full 8-dimensional basis of the SU (3) algebra. The full basis of 3 × 3 traceless SU (3) matrices is generated by all possible powers and products of B and Q 2 , and is displayed in Table 1 below.

We endow the two diagonal matrices B and B † = B 2 with Z 3 grade 0, the matrices Q a with Z 3 grade 1, and their three hermitian conjugates Qḃ with Z 3 grade 2. Under matrix multiplication the grades are additive modulo 3.

The eight matrices B, B † , Q a , Q † b can be mapped faithfully onto the canonical Gell-Mann basis of the SU (3) algebra. The Lie algebra of the commutators between the generators I A is given in Appendix I. The linear combinations of matrices I A producing the Gell-Mann matrices are given in Appendix II.

Further we shall use the basis [START_REF] Cerejeiras | Ternary Clifford Algebras[END_REF] for the description of the generators of colour algebra, which satisfies the Lie-algebraic relations with particular properties of complex structure constants (see Appendix I, relation 139).

3 The Z 3 -graded Dirac's equation

We shall construct a generalized equation for quarks, incorporating not only their half-integer spin and particle-antiparticle content (due to charge conjugation, producing anti-quark states), but also the new discrete degree of freedom, the colour, taking three possible values.

Let us describe three different two-component fields (Pauli spinors), which will be distinguished by three colors, the "red" for ϕ + , the "blue" for χ + , and the "green" for ψ + ; more explicitly

ϕ + = ϕ 1 + ϕ 2 + , χ + = χ 1 + χ 2 + , ψ + = ψ 1 + ψ 2 + . (19) 
We follow the minimal scheme which takes into account the existence of spin by using Pauli spinors on which the 3-dimensional momentum operator acts through 2 × 2 matrix describing the scalar product σ • p.

To acknowledge the existence of anti-particles, we should also introduce three "anti-colors", denoted by a "minus" underscript, corresponding to "cyan" for ϕ -, "yellow" for χ -and "magenta" for ψ -; here, too, we employ the twocomponent columns:

ϕ -= ϕ 1 - ϕ 2 - , χ -= χ 1 - χ 2 - , ψ -= ψ 1 - ψ 2 - . (20) 
As a result, the six Pauli spinors (19) and (20) will form a twelve-component entity which we shall call "coloured Dirac spinor". This construction reflects the overall Z 3 × Z 2 × Z 2 symmetry: one Z 2 group corresponds to the spin 1 2 dichotomic degree of freedom, described by eigenstates; the second Z 2 is required in order to represent the particle-anti-particle symmetry, and the Z 3 group corresponding to color symmetry.

The "coloured" Pauli spinors should satisfy first order equations conceived in such a way that they propagate all together as one geometric object, just like E and B components of Maxwell's tensor in electrodynamics, or the pair of twocomponent Pauli spinors which are not propagating separately, but constitute one single entity, the four-component Dirac spinor.

This leaves not much space for the choice of the system of intertwined equations. Here we present the ternary generalization of Dirac's equation, intertwining not only particles with antiparticles, but also the three "colors" in such a way that the entire system becomes invariant under the action of the

Z 3 × Z 2 group.
The set of linear equations for three Pauli spinors endowed with colors, and another three Pauli spinors corresponding to their anti-particles characterized by "anti-colors" involves together twelve complex functions. The twelve components could describe three independent Dirac particles, but here they are intertwined in a particular Z 3 × Z 2 graded manner, mixing together not only particle-antiparticle states, but the three colors as well.

Let us follow the logic that led from Pauli's to (Z 2 -graded) Dirac's equation and extend it to the colors acted upon by the Z 3 -group. In the expression for the energy operator (Hamiltonian) the mass term is positive when it describes particles, and acquires negative sign when we pass to anti-particles, i.e. one gets the change of sign each time when particle-antiparticle components are interchanged.

We shall now assume that mass terms should acquire the factor j when we switch from the red component ϕ to the blue component χ, and another jfactor when we switch from blue component χ to the green component ψ. We remind that we use the notation introduced in (4), j = e 2πi 3 , j 2 = e 4πi 3 , j 3 = 1, and 1 + j + j 2 = 0.

The momentum operator will be non-diagonal, as in the Dirac equation, systematically intertwining not only particles with antiparticles, but also colors with anti-colors. The system that satisfies all these assumptions can be introduced in the following manner ( [START_REF] Kerner | The discrete quantum origin of the Lorentz group and the Z 3 -graded ternary algebras[END_REF], [START_REF] Kerner | Ternary Z 2 ×Z 3 graded algebras and ternary Dirac equation[END_REF]):

Let us first choose the basis in which particles with a given colour and the particles with corresponding anti-color are grouped in pairs:

(ϕ + , ϕ -, χ + , χ -, ψ + , ψ -) T . ( 21 
)
where ϕ ± , χ ± and ψ ± are two-component Pauli spinors defined by eqs. (19) and (20). In such a basis our "coloured Dirac equation" takes the following form in terms of six Pauli spinors:

E ϕ + = mc 2 ϕ + + c σ • p χ -, E ϕ -= -mc 2 ϕ -+ c σ • p χ + E χ + = j mc 2 χ + + c σ • p ψ -, E χ -= -j mc 2 χ -+ c σ • p ψ + E ψ + = j 2 mc 2 ψ + + c σ • p ϕ -, E ψ -= -j 2 mc 2 ψ -+ c σ • p .ϕ + (22) 
Let us remark that while in the Schroedinger picture the energy E and the momentum p are represented by differential operators

E → -i ∂ ∂t , p → -i ∇, (23) 
in [START_REF] Kac | Infinite-Dimensional Lie Algebras[END_REF] we use their Fourier-transformed image, in which E and p are interpreted as multiplication by the corresponding numerical eigenvalues. The particle-antiparticle Z 2 -symmetry is obtained if m → -m and simultaneously (ϕ + , χ + , ψ + ) → (ϕ -, χ -, ψ -) and vice versa; the Z 3 -colour symmetry is realized by multiplication of mass m by j each time the colour changes, i.e. more explicitly, Z 3 symmetry is realized by the following mappings:

m → jm, ϕ ± → χ ± → ψ ± → ϕ ± , (24) 
m → j 2 m, ϕ ± → ψ ± → χ ± → ϕ ± . ( 25 
)
The system of equations ( 22) can be written using 12 × 12 matrices acting on the 12-component colour spinor Ψ build up from six "coloured" Pauli spinors.

In shortened form we can write

E Ψ = c 2 M + cP Ψ, (26) 
where E = E l 1 12 , with l 1 12 denoting the 12 × 12 unit matrix, and the matrices M and P given explicitly below:

M =         m l 12 0 0 0 0 0 0 -m l 12 0 0 0 0 0 0 jm l 12 0 0 0 0 0 0 -jm l 12 0 0 0 0 0 0 j 2 m l 12 0 0 0 0 0 0 -j 2 m l 12         (27) 
P =         0 0 0 σ • p 0 0 0 0 σ • p 0 0 0 0 0 0 0 0 σ • p 0 0 0 0 σ • p 0 0 σ • p 0 0 0 0 σ • p 0 0 0 0 0         (28) 
The two matrices M and P in ( 27) and ( 28) are 12 × 12-dimensional: all the entries in M are proportional to the 2 × 2 unit matrix, and the entries in the second matrix P contain 2 × 2 Pauli's sigma-matrices, so P is as well a 12 × 12 matrix. The energy matrix operator E is proportional to the 12 × 12 unit matrix.

One can easily see that the diagonalization of the system is achieved only at the sixth iteration. The final result is extremely simple: all the components satisfy the same sixth-order equation,

E 6 ϕ + = m 6 c 12 ϕ + + c 6 | p | 6 ϕ + , E 6 ϕ -= m 6 c 12 ϕ -+ c 6 | p | 6 ϕ -. (29) 
and similarly all other components. It is convenient to use the tensor product notation for the description of the matrices E, M and P.

Using two 3 × 3 matrices B and Q 3 defined in (2),

B =   1 0 0 0 j 0 0 0 j 2   and Q 3 =   0 1 0 0 0 1 1 0 0   , (30) 
the 12 × 12 matrices M and P can be represented as the following tensor products:

E = E l 1 3 ⊗ l 1 2 ⊗ l 1 2 = E l 1 12 , M = m B ⊗ σ 3 ⊗ l 1 2 , P = Q 3 ⊗ σ 1 ⊗ (σ • p) (31) 
where

l 1 2 = 1 0 0 1 , σ 1 = 0 1 1 0 , σ 3 = 1 0 0 -1 .
Let us rewrite the system [START_REF] Kac | Infinite-Dimensional Lie Algebras[END_REF] involving six coupled two-component spinors as one linear equation for the "colour Dirac spinor" Ψ, conceived as column vector containing twelve components of three "colour" fields, in the basis [START_REF] Sylvester | A word on nonions[END_REF] given byΨ = [ϕ + , ϕ -, χ + , χ -, ψ + , ψ -] T , with energy and momentum operators E and P on the left hand side and the mass operator M on the right hand side:

E l 1 3 ⊗ l 1 2 ⊗ l 1 2 Ψ -Q 3 ⊗ σ 1 ⊗ c σ • p Ψ = mc 2 B ⊗ σ 3 ⊗ l 1 2 Ψ. ( 32 
)
Like in the case of the standard Dirac equation, let us transform this equation in a way that the mass operator becomes proportional the the unit matrix.

For such a purpose, we multiply the equation ( 32) on the left by the matrix B † ⊗ σ 3 ⊗ l 1 2 . Now we get the following equation which enables us to interpret the energy and the momentum as components of the Minkowskian four-vector c p µ = [E, cp]:

E B † ⊗ σ 3 ⊗ l 1 2 Ψ -Q 2 ⊗ (iσ 2 ) ⊗ c σ • p Ψ = mc 2 l 1 3 ⊗ l 1 2 ⊗ l 1 2 Ψ, ( 33 
)
where we used the fact that (σ

3 ) 2 = l 1 2 , B † B = l 1 3 and B † Q 3 = Q 2 .
The sixth power of this operator gives the same result as before,

E B † ⊗ σ 3 ⊗ l 1 2 -Q 2 ⊗ (iσ 2 ) ⊗ c σ • p 6 = E 6 -c 6 p 6 l 1 12 = m 6 c 12 l 1 12 (34)
It is also worth to note that taking the determinant on both sides of the eq. ( 33) yields the twelfth-order equation:

E 6 -c 6 | p | 6 2 = m 12 c 24 . ( 35 
)
There is still certain arbitrariness in the choice of 3 × 3 matrix factors B † and Q 2 in the colour Dirac operator (33). This is due to the choice of j = e 2πi 3

as the generator of the representation of the finite Z 3 -symmetry group. If j 2 is chosen instead, in (33) the matrix B † will be replaced by B, Q 2 by Q 1 , which is its complex conjugate; the remaining terms keep the same form.

The equation ( 33) can be written in a concise manner by introducing the 12×12 matrix colour Dirac operator Γ µ p µ using Minkowskian space-time indices and metric η µν = diag(+, -, -, -):

Γ µ p µ Ψ = mc l 1 12 Ψ, with p 0 = E c , p k = [ p x , p y , p z ]. ( 36 
)
with 12 × 12 matrices Γ µ (µ = 0, 1, 2, 3) defined as follows:

Γ 0 = B † ⊗ σ 3 ⊗ l 1 2 , Γ k = Q 2 ⊗ (iσ 2 ) ⊗ σ k (37) 
The multiplication rules for B, B † , Q A and Q † B , (A, B, ... = 1, 2, 3) are given in the Table 1.

The 12-component colour Dirac equation ( 36) is invariant under an arbitrary similarity transformation, i.e. if we set

Ψ = R Ψ, (Γ µ ) = R Γ µ R -1 then (Γ µ ) p µ Ψ = mc Ψ , (38) 
we get obviously

[(Γ µ ) p µ ] 6 = (p 6 0 -| p | 6 ) l 1 12 (39) 
Following the formulae (37) for the colour Dirac Γ µ -matrices we see that they are neither real ( Γµ = Γ µ ) nor Hermitian ((Γ µ ) † = Γ µ ). From the colour Dirac equation (33) one gets the following equations for complex-conjugated Ψ and Hermitean-conjugated Ψ † :

Γµ p µ Ψ = mc Ψ, p µ Ψ † (Γ µ ) † = mcΨ † , ( 40 
)
where

Ψ is a column, Ψ † is a row, σk = -σ 2 σ k σ 2 , σ k = σ k , σ 0 = σ 0 = l 1 2 , and Γ0 = B ⊗ σ 3 ⊗ l 1 2 , Γk = Q 1 ⊗ (iσ 2 ) ⊗ σk , (Γ 0 ) † = B ⊗ σ 3 ⊗ l 1 2 , (Γ k ) † = Q 1 ⊗ σ 3 ⊗ σ k , (41) 
Further, the second equation of (40) can be written in terms of the matrices (37) if we introduce the Hermitian-adjoint colour Dirac spinor Ψ H = Ψ † C, where the 12 × 12-matrix C satisfies the relation

(Γ µ ) † C = CΓ µ . ( 42 
)
It can be also shown that neither Γµ nor (Γ µ ) † can be obtained via similarity transformation (38).

To obtain a general solution of the colour Dirac equation one should use its Fourier transformed version (see (36)). In the momentum space it becomes:

(Γ µ p µ -m l 1 12 ) Ψ(p) = 0. ( 43 
)
The sixth power of the matrix Γ µ p µ is diagonal and proportional to m 6 , so that we have

(Γ µ p µ ) 6 -m 6 l 1 12 = p 6 0 -| p | 6 -m 6 l 1 12 = 0. ( 44 
)
Now we should find the inverse of the matrix (Γ µ p µ -m l 1 12 ). Let us note that the sixth-order expression on the left-hand side in (44) can be factorized as follows:

(Γ µ p µ ) 6 -m 6 = (Γ µ p µ ) 2 -m 2 (Γ µ p µ ) 2 -j m 2 (Γ µ p µ ) 2 -j 2 m 2 . ( 45 
)
The first factor can be expressed as the product of two linear operators, one of which defines the colour Dirac equation (36) (see also (43):

(Γ µ p µ ) 2 -m 2 = (Γ µ p µ -m) (Γ µ p µ + m) (46) 
Therefore the inverse of the Fourier transform of the linear operator defining the colour Dirac equation ( 43) is given by the following matrix:

[Γ µ p µ -m] -1 = (Γ µ p µ + m) (Γ µ p µ ) 2 -j m 2 (Γ µ p µ ) 2 -j 2 m 2 (p 6 0 -| p | 6 -m 6 )
.

The inverse of the six-order polynomial can be decomposed into a sum of three expressions with second-order denominators, multiplied by the common factor of the fourth-order. Let us denote by Ω the sixth root of (| p | 6 +m 6 ),

Ω = 6 | p | 6 +m 6 . (48) 
Then we have

1 (p 6 0 -| p | 6 -m 6 ) = 1 3 Ω 4 1 p 2 0 -Ω 2 + 1 j p 2 0 -Ω 2 + 1 j 2 p 2 0 -Ω 2 (49) 
As long as there is a non-zero mass term, we do not encounter the infrared divergence problem at | p |→ 0. Each of the three inverse of a second-order polynomial can be in turn expressed as a sum of simple first-order poles, e.g.

1 jp 2 0 -Ω 2 = 1 2 Ω 1 j 2 p 0 -Ω - 1 j 2 p 0 + Ω , (50) 
and similarly for the other two fractions. After such a substitution in (47), six simple poles do appear. Figure [START_REF] Gaillard | The standard model of particle physics[END_REF] shows the location of these six simple poles in the complex p 0 plane. In order to introduce the propagators in the with two real ones ±Ω and two conjugate Lee-Wick poles ±jΩ, ±j 2 Ω. The Lee-Wick complex-conjugate masses were introduced in [START_REF] Lee | Finite Theory of Quantum Electrodynamics[END_REF]; see also [START_REF] Anselmi | Perturbative Unitarity of Lee-Wick Quantum Field Theory[END_REF].

coordinate space, one has to perform integrals in the momentum space. The contours corresponding to the second and the third term in the formula (49) are obtained by the Wick rotations by 120 o and 240 o , which multiply respectively the real energy component p 0 by j and j 2 .

It should be stressed that the colour Dirac equation (40) breaks the Lorentz symmetry O(1, 3) reducing it to O 3 , because the 3 × 3-matrices describing "colour" are different for the Γ 0 and Γ k components. However we shall show in the following Section 4 that one can introduce a Z 3 -graded generalization of the Lorentz transformations, acting in covariant way on three "replicas" of the energy-momentum four-vector introduced above. Similar extensions of spacetime were discussed in [START_REF] Finkelstein | Hyperspin manifolds[END_REF], [26].

4 Z 3 -graded Wick rotations in complex energy plane and Z 3 -graded Lorentz transformations

The mass shell condition (35) for coloured Dirac equation can be decomposed into the usual relativistic Klein-Gordon invariant multiplied by a strictly positive factor as follows:

C 6 = p 6 0 -Ω 6 = (p 2 0 -Ω 2 )(p 4 0 + p 2 0 | p | 2 + | p | 4 ), (51) 
which can be further decomposed into the product of the following three secondorder polynomials,

C 6 = (0) C 2 (1) C 2 (2) C 2 , (52) with (0) 
C 2 = p 2 0 -p 2 , (1) 
C 2 = j p 2 0 -p 2 , (2) 
C 2 = j 2 p 2 0 -p 2 . ( 53 
)
Let us denote the four-vectors whose quadratic invariants are of the form

(0) C 2 , (1) 
C 2 and (2) 
C 2 by corresponding superscripts (0), ( 1) and ( 2), endowing them with a Z 3 grading, so that one has, explicitly,

(0)2 p 0 - (0)2 p = (0) C 2 , (1)2 p 0 - (1)2 p = (1) C 2 , (2)2 p 0 - (2)2 p = (2) C 2 , (54) 
From any given four-vector p µ one can produce its two "replicas" with p 0 in the complex plane, obtained by the generalized Wick rotations by j and by j 2 in the following way. Let us introduce three 4 × 4 matrices acting on Minkowskian 4-vectors:

(0) A = diag (1, 1, 1, 1) = l 1 4 , (1) 
A = diag (j 2 , 1, 1, 1), (2) 
A = diag (j, 1, 1, 1), (55) providing a (reducible) matrix representation of the cyclic Z 3 group, (r)

A (s) A = (r+s) A . ( 56 
)
where the superscripts (r + s) are added modulo 3, e.g. 1 + 2 → 0, 2 + 2 → 1, etc.

Acting on a given four-vector p µ = (p 0 , p by one of the matrices

A we produce its three Z 3 -graded "replicas" belonging correspondingly to sectors p :

p 0 p → (0) p µ , j 2 p 0 p → (1) p µ , jp 0 p → (2) p µ , (57) 
In what follows, we shall use for both the Lorentz boosts and the Wick rotations a short-hand notation whenever no ambiguity can arise:

p µ = L ν µ p ν → p = Lp, (r) 
p µ = (r) A ν µ (0) p ν → (r) p = (r) A (0) p (58) 
In particular, let us label 

L 00 ) ν µ (0)

p ν = (0) p µ → (0) L 00 (0) p = (0) p , (59) 
where lower indices (00) refer to the property that we are mapping the sector 

p into a vector from another sector r,

p . Using the shorthand notations (58) and (59), we have:

(r) p = (r) A (0) p = (r) A (0) L 00 (0) p (r) A (0) L 00 (s) A -1 (s) A (0) p (60) 
The relation ( 60) is satisfied due to the validity of the following formula:

(r) p = (r-s) L rs (s)
p , with (r-s)

L rs = (r) A (0) L 00 (s) A -1 , (61) 
which describes the transformation from sector s onto sector r; the superscript (r -s) is taken modulo 3 and indicates the Z 3 -grade attributed to such transformations.

One can replace the absolute value of the momentum vector |p| by a single spatial component, say p 1 , because for any given 4-vector p µ = (p 0 , p) we can choose the coordinate system in such a way that its first axis should be aligned along the vector p, i.e. p = (p 1 , 0, 0). In such a frame the Lorentz rotations reduce only to the boost in (0, 1) plane, which is given by the following transformation:

p 0 p 1 = chu shu shu chu p 0 p 1 , (62) 
The calculus of the explicit form of the generalized Z 3 -graded Lorentz boosts is easier in the two-dimensional case. We get the following triplet of homogeneous transformations:

(0) L 00 , (0) 
L 11 and

(0)

L 22 : (0) L00 (u) = chu shu shu chu , (0) 
L11 (u) = chu j 2 shu jshu chu , (0) 
L22 (u).0 = chu jshu j 2 shu chu (63)

The matrices (63) are self-adjoint:

(0) † L00 = (0) L00 , (0) 
† L11 = (0) L11 , (0) 
† L22 = (0) L22 (64) 
More explicitly, in four dimensions we have:

(0) p µ = ( (0) L 00 ) ν µ (0) p ν , (1) 
p µ = ( (0) L 11 ) ν µ (1) p ν , (2) 
p µ = ( (0) L 22 ) ν µ (2) p ν , (65) 
The generalized Lorentz boosts (63) conserve the group property: the product of two Lorentz boosts acting in the r-th sector is a boost of the same type. The product of two boosts acting in the r-th sector (r = 0, 1, 2) looks as follows:

(0) L rr (u) • (0) L rr (v) = (0) 
L rr (u + v) (no summation over r !) (66)

The full set of three independent "classical" Lorentz boosts belonging to the subgroup denoted by

(0)
L 00 requires the introduction of three 4 × 4 matrices, with three independent parameters u, v, w:

    chu shu 0 0 shu chu 0 0 0 0 1 0 0 0 0 1     ,     chv 0 shv 0 0 1 0 0 shv 0 chv 0 0 0 0 1     ,     chw 0 0 shw 0 1 0 0 0 0 1 0 shw 0 0 chw     (67)
Next, let us recall the general set of matrices (see ( 61)) transforming the s-th sector into the r-th one, (r)

p µ = ( (r-s) L rs ) ν µ (s) p ν , r, s = 0, 1, 2, r = s. ( 68 
)
There are two types of such matrices, one raising the Z 3 index and another lowering the Z 3 index by 1. The matrices raising the Z 3 index (r) of the generalized momentum four-vectors (r)

p µ are: 2 (1) 
L10 = j 2 chu j 2 shu shu chu , (1) 
L21 = j 2 chu jshu jshu chu , (1) 
L02 = j 2 chu shu j 2 shu chu (69) 
The determinant of each of these matrices is equal to j 2 . The matrices lowering the Z 3 index by one (or increasing it by 2, what is equivalent from the point of view of the Z 3 -grading) are:

(2)

L01 = jchu shu jshu chu , (2) 
L12 = jchu j 2 shu j 2 shu chu , (2) 
L20 = jchu jshu shu chu (70)
The determinant of each of these matrices is equal to j.

The above two sets of three matrices each are mutually Hermitian adjoint:

(1) † L01 = (2) L10 , (1) 
† L12 = (2) L21 , (1) 
† L20 = (2) L02 (71) 
It should be stressed that the superscript over each matrix

(t)
L rs is equal to the difference between its two lower indices according to the formula (t) = (r -s).

The matrices

(1)

L rs and

(2)

L rs (r, s = 0, 1, 2) raising or lowering respectively the Z 3 -grade of the particular type of the 4-vector do not form a Lie group; however, together with matrices

(0)
L rs can be used as building blocks of bigger 3 × 3 matrices forming a Z 3 -graded generalization of the Lorentz group. This 

p 1 = (r)
|p| , 0, 0). To pass to the 4 × 4 matrices in a general coordinate system, the elements of the 2 × 2 matrices (69-70) should be displayed accordingly to the scheme shown in formulae (67). construction is possible due to the chain rule obeyed by these matrices, resulting from the definition (61). which displays the group property. We have:

(r-s) L rs (p 0 , p 1 ; u) (s-t) L st (p 0 , p 1 ; v) = (r-t) L rt (p 0 , p 1 ; (u + v)). ( 72 
)
Let us write a Z 3 -extended four-momentum vector (

(0) p µ , (1) 
p µ , (2) 
p µ ) T containing all three Z 3 gradings as a column with 12 entries, and let us describe in the following way the three sectors L rs are not displayed):

(0) Λ =      (0) L00 0 0 0 (0) L11 0 0 0 (0) L22      (1) Λ =      0 0 (1)

L02

(1)

L10 0 0 0 (1) L21 0      (2) Λ =      0 (2) L01 0 0 0 (2)

L12

(2)

L20 0 0      . ( 73 
)
It should be stressed that in each of the 12 × 12 matrices Λ -matrix depends on three parameters corresponding to three independent Lorentz boosts.

One can show that the matrices (73) display the following Z 3 -graded multiplication rules:

(0) Λ • (0) Λ ⊂ (0) Λ , (0) Λ • (1) Λ ⊂ (1) Λ , (0) Λ • (2) Λ ⊂ (2) Λ , (1) Λ • (1) Λ ⊂ (2) Λ , ( 74 
) (2) Λ • (2) Λ ⊂ (1) 
Λ ,

Λ • (2) Λ = (2) Λ • (1) Λ ⊂ (0) Λ . ( (1) 
) 75 
The multiplication table (74, 75) with the Z 3 -graded structure can be described in a compact way by the following formula:

(r) Λ • (s) Λ ⊂ (r+s)|3
Λ , with r, s, .. = 0, 1, 2, (r + s) taken modulo 3. (76)

The three sets of matrices (73) with 4 × 4 blocks ordered in the particular way describe the Z 3 -graded extension of three independent Lorentz boosts. In order to obtain the entire Z 3 -graded Lorentz group we should add as well the Z 3graded extension of space rotations, also represented as 12 × 12 matrices. made of 4 × 4 matrices used as building blocks, just like the Z 3 -graded boosts. It is easy to see that due to the fact that spatial coordinates in in three replicas of momentum 4-space are equal and identical with the ordinary 3-dimensional space, the space rotations should be the same in all sectors. However, as in the case of Lorentz boosts, besides the rotations that leave the transformed 3momentum in the same sector, the non-diagonal space transformation must be also introduced, which map one of the Z 3 -graded sectors onto another one.

The construction of the Z 3 -graded rotations completing the Z 3 -graded boosts (73) is the following. Let us denote by R i the usual space rotation around the i-th axis, represented as a 3 × 3 matrix. When incorporated into the fourvector representation of the Lorentz group, it becomes a sub-matrix of a 4 × 4

Lorentzian matrix according to the formula

(0) R i = 1 0 0 R i . The Z 3 -graded
space rotations supplementing the Z 3 -graded boosts (73) are constructed as the following 12 × 12 matrices:

(0)

R i = l 1 3 ⊗ (0) R i , (1) 
R i = Q † 3 ⊗ (0) R i , (2) 
R i = Q 3 ⊗ (0) R i , (77) 
where the choice of the colour generators Q † 3 and Q 3 is imposed by the Z 3 -graded structure of the generalized Z 3 -graded boosts (73);

The Z 3 -graded infinitesimal generators of the Lorentz boosts can be obtained by the linearization (i.e. taking the differential) of the matrices

Λ , what amounts to the replacements of the entries shu by 1, and of all other entries, chu and 1 alike, by 0. The resulting 12 × 12 matrices are the Lie algebra generators of the generalized Lorentz boosts, which we shall denote in a usual manner as (r) K i , r = 0, 1, 2. By taking their commutators we obtain the following Z 3 -graded extension of the space rotations:

[ (r) K i , (s) K j ] = -ijk (r+s) J k (78) 
In such a way we completed the set of generators of the Z 3 -graded Lorentz algebra which satisfy the following commutation relations:

J (r) i , J (s) k = ikl J (r+s) l , J (r) 
i , K

(s) k = ikl K (r+s) l , K (r) i , K (s) k 
=-ikl J (r+s) l . ( 79 
)
firstly introduced and studied in ( [START_REF] Kerner | Z 3 -graded colour Dirac equation for quarks, confinement and generalized Lorentz symmetries[END_REF]).

In this Section we were considering the vectorial realizations of the Z 3 -graded Lorentz group and extended it to the realizations of Z 3 -graded Poincaré algebra (see also ([12])) In the next two sections we will present our main result: how the sextet of the colour Dirac matrices Γ µ appears in the construction of faithful spinorial representation of the Z 3 -graded Lorentz algebra. In such a way we will be able to describe all internal symmetries of quark sector in the Standard Model.

symmetries. In particular, the

Z 3 ⊗ Z 2 ⊗ Z 2 structure of Γ µ -matrices implies that due to the identities (Q a ) 3 = (Q † a ) 3 = l 1 3 , B 3 = (B † ) 3 = l 1 3
and (σ i ) 2 = l 1 2 their sixth powers are proportional to the unit matrix l 1 12 (see also (35)). Let us first derive the Z 3 -graded Lorentz algebra, which follows from the covariance properties of the colour Dirac equation (36).

The two standard commutators of Γ µ matrices, namely

J i = i 2 ijk Γ j , Γ k , K l = 1 2 [Γ l , Γ 0 ] (80) 
provide only the first step towards the construction of the generators of a Z 3 -graded Lorentz algebra. Surprisingly, one can check that the generators 

J (0) i , K (0) 
K i , (0) 
K k ] = -ikl (0) J l , [ (0) 
J i , (0) 
K k ] = ikl (0) K l , (0) 
J i , (81) [ (0) 
J k ] = ikl (0) J l . (0) 
can be defined by double commutators of 12 × 12 matrices J i , K l as follows:

[J i , [J j , J k ]] = (δ ij δ kl -δ ik δ jl ) J (0) l , [K i , [K j , K k ]] = (δ ij δ kl -δ ik δ jl ) K (0) l . (83) 
Using the definition of standard colour Γ µ -matrices (37) and substituting it in (80 and 83), we get

J i = - i 2 Q † 2 ⊗ l 1 2 ⊗ σ i , K l = - 1 2 Q 1 ⊗ σ 1 ⊗ σ l , J (0) 
i = - i 2 l 1 3 ⊗ l 1 2 ⊗ σ i , K (0) 
l = - 1 2 l 1 3 ⊗ σ 1 ⊗ σ l . (84) 
In order to introduce the Z 3 -graded Lorentz algebra

L = L (0) ⊕ L (1) ⊕ L (2) (85) 
where

L (0) =(J (0) i , K (0) 
j ), L (1) =(J (1) 
i , K

j ),

L (2) =(J (2) 
i , K

j ), one should supplement the relations (83) by the pairs of other possible double commutators:

[J i , [J j , K k ]] = (δ ij δ kl -δ ik δ jl ) K (2) l , [K i , [K j , J k ]] = (δ ij δ kl -δ ik δ jl ) J (1) l , (86) 
In particular, besides the representation (84) we get the following realizations:

J (1) l = - i 2 Q 3 ⊗ l 1 2 ⊗ σ l , K (2) 
i = - 1 2 Q † 3 ⊗ σ 1 ⊗ σ i . (87) 
The three-linear double commutators in (83) and (86) are related with Z 3grading; when taken into account, the full set of Z 3 -graded relations defining the Z 3 -graded Lorentz algebra introduced in [START_REF] Kerner | Z 3 -graded colour Dirac equation for quarks, confinement and generalized Lorentz symmetries[END_REF] (where r, s, = 0, 1, 2, r + s are taken modulo 3), results in the following set of commutation relations ( [START_REF] Kerner | Z 3 -graded colour Dirac equation for quarks, confinement and generalized Lorentz symmetries[END_REF]):

J (r) i , J (s) k 
= ikl J (r+s) l , J (r) 
i , K

(s) k = ikl K (r+s) l , K (r) 
i , K

(s) k =-ikl J (r+s) l . (88) 
From the commutators [K (1) , K (1) ] J (2) and [J (1) , J (1) ] J (2) one gets the realization of remaining generators of L,

J (2) i = - i 2 Q † 3 ⊗ l 1 2 ⊗ σ i , K (1) m = - 1 2 Q 3 ⊗ σ 1 ⊗ σ m . (89) 
The formulae (84), ( 87) and (89) describe the spinorial realization of the Lie algebra L which is implied by the choice (37) of matrices Γ µ . Let us introduce a unified notation englobing all possible choices of Γ µ -matrices (A = B)

Γ 0 (A;α) = I A ⊗ σ α ⊗ σ 0 , Γ i (B;β) = I B ⊗ (iσ β ) ⊗ σ i , (90) 
where I 0 = l 1 3 , I A with A = 1, 2, ..., 8 are given in [START_REF] Cerejeiras | Ternary Clifford Algebras[END_REF], and α, β = 2, 3 but {σ α , σ β } + = 0 i.e. we always have either α = 2, β = 3 or α = 3, β = 2.

The choice α = 1 is not present in the formula (90) because it is reserved for the description of symmetry generators L (see (87), (89)). Further, eight colour 3 × 3 matrices I A ( A = 1, 2, ...8 ) with the multiplication rules given in Table 1 span the ternary basis of the SU (3) algebra ( [START_REF] Kac | Infinite-Dimensional Lie Algebras[END_REF], Sect. 8).

The characteristic feature of "colour" Γ-matrices is that the 3 × 3 matrices I A appearing as the first tensorial factors in (90) are different for temporal and spatial components of the matrix-valued 4-vector Γ µ . We see that the choice of the colour factor in (90) depends on two sets of values of the four-vector index: µ = 0 or µ = i where i = 1, 2, 3. This property can be interpreted as the entanglement of colour and Lorentz symmetry degrees of freedom. In the notation (91) basic Γ-matrices (37) derived in Section 3 can be denoted as 3 × 3 "colour" matrices, while in the remaining two Z 2 × Z 2 factors matrices σ i commuted with the 2 × 2 unit matrices. However, when we consider the commutators of the operators ( (r)

J i , (s) 
K m ), r, s = 1, 2 with two colour Dirac matrices Γ µ

(1) , Γ µ (2) defined above, we generate subsequently new commutators we need to calculate.

Let us observe how the new set (97) of Γ µ -matrices is produced. Calculating the commutators with the grade 1 generators we use the multiplication rule for tensor products of matrices: (106) We recall also the well known identities involving Pauli's σ-matrices:

(a ⊗ b) • (c ⊗ d) = (a • c) ⊗ (b • d), (105) 
σ i σ j = δ ij l 1 2 + i ijk σ k , {σ i , σ k } = 2δ ik l 1 2 (107) 6.3.1 
Grade 1 space rotations: sector J

Let us start with grade 1 rotations acting on Γ µ (1) = (Γ 0 (8;3) , Γ i (2;2) ), forming the 12 × 12 matrix valued four-vector (37) appearing in the colour Dirac equation (36): With the use of the rules of matrix multiplication of tensor products, we arrive at the following sequences of commutators:

J (1) i , Γ 0 (8;3) = - β 2 Γ i (2;3) = - β 2 Γ i (4) ; J (1) 
i , Γ k (2;3) = -

1 2 k i m Γ m (4;3) + α 2 δ k i Γ 0 (4;3) = - 1 2 k i m Γ m (2) + α 2 δ k i Γ 0 (3) ; J (1) i , Γ 0 (4;3) = - γ 2 Γ i (8;3) = - γ 2 Γ i (6) ; J (1) i , Γ k (4;3) = - j 2 2 k i m Γ m (8;3) + γ 2 δ k i Γ 0 (8;3) = - j 2 2 k i m Γ m (6) + γ 2 δ k i Γ 0 (1) ; (108) J (1) i , Γ k (8;3) = - j 2 k i m Γ m (2;3) + β 2 δ k i Γ 0 (2;3) - j 2 k i m Γ m (4) + β 2 δ k i Γ 0 (5) ; J (1) 
i , Γ 0 (2;3) = -

α 2 Γ i (4;3) = - α 2 Γ i (2) ,
where we use the following shortened notation for the coefficients appearing on the right-hand side:

α = j -j 2 , β = j 2 -1, γ = 1 -j, (j = e 2πi 3 ). ( 109 
)
We see that with the relations (108), the six commutators with J

(1) i close on the following 36-component multiplet of obtained from six colour Γ µ (a) matrices:

C + = Γ 0 (1) , Γ i (2) , Γ 0 (3) , Γ i (4) , Γ 0 (5) , Γ i (6) , (110) 
which describes the following triplet of Γ µ -matrices given by formula (98) with α = 3:

C + = Γ µ (2;3) , Γ µ (4;3) , Γ µ (8;3) , (111) 
In a short-hand notation the relations (108) look as follows:

[J

i , Γ (2;3) ] Γ (4;3) , [J

i , Γ (4;3) ] Γ (8;3) , [J

i , Γ (8;3) ] Γ (2;3) , (112)

Now let us generate a new sequence of commutators starting from Γ k (2;2) :

J (1) i , Γ k (2;2) = - 1 2 k i m Γ m (4;2) + α 2 δ k i Γ 0 (4;2) = - 1 2 k i m Γ m (5) + α 2 δ k i Γ 0 (6) ; J (1) i , Γ 0 (4;2) = - γ 2 Γ i (8;2) = - γ 2 Γ i (3) ; J (1) i , Γ k (4;2) = - j 2 2 k i m Γ m (8;2) + γ 2 δ k i Γ 0 (8;2) = - 1 2 k i m Γ m (3) + γ 2 δ k i Γ 0 (4) ; J (1) 
i , Γ 0 (8;2) = -

γ 2 Γ i (2;2) = - γ 2 Γ i (1) ; J (1) i , Γ k (8;2) = - j 2 k i m Γ m (2;2) + β 2 δ k i Γ 0 (2;2) = - j 2 k i m Γ m (1) + β 2 δ k i Γ 0 (2) ; (113) J (1) 
i , Γ 0 (2;2) = -

α 2 Γ i (4;2) = - α 2 Γ i (5) 
;

We get the 36-component multiplet C -of 12 × 12 dimensional matrices Γ µ (a) :

C -= Γ 0 (2) , Γ i (1) , Γ 0 (4) , Γ i (3) , Γ 0 (6) , Γ i (5) , = Γ µ (2;2) , Γ µ (4;2) , Γ µ (8;2) , (114) 
and the counterpart of the relations (112) for the triplet C -is obtained by replacing in the corresponding Γ-matrices the indices (A; 3) by (A; 2). The union By analogy with calculation of covariance under the generators J

C µ = (C + ⊕ C -) describes the 72-component sextet Γ µ = Γ µ ( 
(1) i

we consider now the closure of actions of the generators K (1) i (see 89) on the multiplets of colour Γ µ matrices. If we start with the boost transformations acting on the first One obtains in such a way the irreducible actions of sector L (2) on the sextet (119) of Hermitean-conjugated Γ µ -matrices which describe the grade 2 counterparts of the relations (108), ( 113) and (115). In the sector L (2) one can introduce as well the Hermitean-conjugate Lorentz doublets (Γ µ (a) ) † , ( Γµ (a) )) † The commutators of the sextet Γ (see (100)) with grade 2 generators J

(2) i of spatial rotations form the same two closed sets of relations for the multiplets (110) and (114) (see also formula (98), which are analogous to the realizations of the generators J

(1) i , with grade 1. More explicitely,

J (2) i , Γ 0 (8;3) = - β 2 Γ i (4;3) = - β 2 Γi (6) ; J (2) i , Γ k (4;3) = - 1 2 k i m Γ m (2;3) - α 2 δ k i Γ 0 (2;3) = - 1 2 k i m Γm (2) - α 2 δ k i Γ0 (1) 
J

i , Γ 0 (2

;3) = γ 2 Γ i (8;3) = γ 2 Γi (4) J (2) i , Γ k (2;3) = - j 2 k i m Γ m (8;3) - β 2 δ k i Γ 0 (8;3) = - j 2 k i m Γm (4) - β 2 δ k i Γ0 (3) (124) J (2) i , Γ 0 (4;3) = - α 2 Γ i (2;3) = - α 2 Γi (2) J (2) i , Γ k (8;3) = - j 2 k i m Γ m (4;3) + β 2 δ k i Γ 0 (4;3) = - j 2 k i m Γm (6) + β 2 δ k i Γ0 (5) 
The next chain of commutators with J (2) we begin with Γ k (2;2) :

J (2) i , Γ k (2;2) = - j 2 2 k i m Γ m (8;2) - γ 2 δ k i Γ 0 (8;2) = - j 2 2 k i m Γm (1) - γ 2 δ k i Γ0 (6) 
J

i , Γ 0 (8;2) = β 2 Γ i (4;2) == β 2 Γi (3) J (2) i , Γ k (8;2) = - j 2 k i m Γ m (4;2) - β 2 δ k i Γ 0 (4;2) = - j 2 k i m Γm (3) - β 2 δ k i Γ0 (2) 
J (2) i , Γ 0 (4;2) = - α 2 Γ i (2;2) = - α 2 Γi (5) (2) 
J (2) i , Γ k (4;2) = - 1 2 k i m Γ m (2;2) + α 2 δ k i Γ 0 (2;2) = - 1 2 k i m Γm (5) + α 2 δ k i Γ0 (125) 
J (2) i , Γ 0 (2;2) = γ 2 Γ i (8;2) = γ 2 Γi (1) (4) 
Similar series of commutators, starting with the "basic" colour Dirac matrix Γ µ

(1) and then continuing to closed commutators structure is produced by the following actions of boosts from the grade 2 Lorentz sector L (2) :

K (2) i , Γ 0 (8;3) = - j 2 Γ i (4;2) = - j 2 Γi (3) ;
It is well established that the first generation splits into an SU (2) chiral flavour doublet u + , d + and a pair of anti-chiral flavour singlets u -and d -. In order to introduce three quark generations as described by second (non-colour) SU (3) internal symmetry, one should also assume analogous chiral structures for the doublets (s, c) and (t, b). However, in phenomenological Lagrangeans, if we take into consideration quark interactions without imposing a priori chiral structure of Feynman graph vortices, it appears quite reasonable to keep the doublets (s, c) and (t, b) as non-chiral ones (see e.g. [START_REF] Sogami | Renovation of the Standard Model with Clifford-Dirac algebras for chiral-triplets[END_REF])

Having introduced chiral and anti-chiral colour Dirac matrices, we can define respective 12-component chiral colour Dirac spinors and corresponding chiral colour Dirac equations (see [START_REF] Kac | Infinite-Dimensional Lie Algebras[END_REF]). The chiral and anti-chiral states can be formed by pairs of quarks (s, c) and (t, b) of other generations, i.e. one can use the same scheme for the doublets in each of three generations.

Final remarks

The Standard Model (SM) of elementary particles is without doubt very successful experimentally tested part of theoretical physics; however, its grouptheoretical structure still requires further investigations. The internal symmetries are the product of three unitary groups SU (3)×SU ( 2)×U (1), with special role of colour SU (3) group describing strongly interacting quarks which are not observable as free asymptotic states. The full spectrum of quarks requires still another SU (3) symmetry which should be interpreted with the help of the additional geometric structure, describing from group-theoretical point of view the full set of all SM elementary particles as given by irreducible representations of a new group, intertwining Lorentz and colour symmetries, as proposed here.

Unifying efforts went along various paths, with two basic ways of unification: the first preserves the tensor product structure of space-time and internal symmetries (see e.g. [START_REF] Sogami | Unified description of quarks and leptons in a multi-spinor field formalism[END_REF], [26], [START_REF] Paschke | Can (non-commutative) geometry accomodate lepto-quarks?[END_REF], [START_REF] Todorov | Deducing the symmetry of Standard Model from automorphism and structure groups of the exceptionla Jordan algebra[END_REF], [START_REF] Bochniak | A spectral geometry for the Standard Model without the fermion doubling[END_REF], [START_REF] Dubois-Violette | Superconnection in the spin factor approach to particle physics[END_REF]), and a more radical way, intertwining the relativistic and internal symmetries. An example of such unification scheme is provided by the known passage from bosonic symmetries to supersymmetries, which describe the supermultiplet containing commuting bosons and anti-commuting fermions both incorporated in one common Z 2 -graded algebraic structure.

In our paper we deal exclusively with fundamental quark degrees of freedom, described by the collection of anti-commuting fields, with triplets of quark states with different colours, which permits the introduction of Z 3 -graded algebraic structure. The Z 3 -grading does not change the fermionic statistics of quarks, but leads to particular link between relativistic (Lorentz) symmetry and internal (colour) symmetries, which cease to be described by a tensor product group structure.

In field-theoretic description of quarks the appearance of Z 3 -grading provides the passage from the standard three copies of 4-dimensional Dirac fields to the 12-dimensional colour Dirac field (see Sect. 3) which is covariant under Z 3 symmetry

The physical observation that the world of quarks is described by six colour triplets leads to the idea that one should look for an algebraic scheme providing 72-dimensional module incorporating and unifying six colour triplets of fermions inside one irreducible representation. We demonstrate in this paper how this goal can be achieved by introduction of the Z 3 -graded Lorentz and Poincaré symmetries.

Usually the efforts to incorporate all existing quarks in a unique irreducible multiplet are restricted only to the description of internal degrees of freedom. Our approach, which leads to particular extension of standard relativistic symmetries, implies as well the modification of quark dynamics, what can be seen from the wave equations for quarks implying dispersion relations of the sixth order, satisfied by all the components of the sextet of Z 3 -graded quark fields satisfying the set of coloured Dirac equations. The dispersion relations lead to the appearance of complex wave vectors (see Sect. 3 and 4) and produce damped exponential solutions along with freely propagating waves. Such modification, as we suppose, can be related with confinement of asymptotic quark fields.

In the present paper we are still not elaborating neither on the Lagrangean nor on the gauge fields for the Z 3 -graded modification of SM; this is going to be the subject of our future research.

The structure of the SU (3) Lie algebra is now clearly visible. It is illustrated by the root diagram (2), displaying the third roots of unity (1, j, j 2 ) and third roots of -1 (-1, -j, -j 2 ), as well as the roots (±α, ±β, ±γ). 

The mapping between the Cartan subalgebras, B and B † on one side and λ 3 and λ 8 on the other side, is given by the following linear combinations:

1 j -1 B + 1 j 2 -1 B † = λ 3 , - j √ 3 B - j 2 √ 3 B † = λ 8 , (143) 

  which corresponds to another permutation of indices A, A = (1, 2, 3, 4, 5, 6, 7, 8) → Ā = (2, 1, 3, 5, 4, 6, 8, 7).
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	6.3.2	(1) i Grade 1 boosts generated by K

Z 3 -graded generalized Lorentz algebra and its spinorial matrix realizationThe 12×12 matrices Γ µ (see (37)) appearing in the coloured Dirac equation (36), (see also 37) are linked with the Z 3 -graded generalization of classical Lorentz

Historically, for the classification purposes, the flavours were firstly ordered into the SU (3) (u, d, s) multiplet however at present we know that dynamically the coset SU (3)/U (2) is badly broken

Acknowledgements J.L. has been supported by the Polish National Science Centre (NCN) Research Project 2017/27/B/512/01902

Both authors express their thanks to Stefan Groote for valuable suggestions and remarks, and one of the authors (J.L.) would like to thank Andrzej Borowiec for interesting discussion and valuable remarks.

In order to get a closed formula for the adjoint action S (0) Γ µ [S (0) ] -1 of classical spinorial Lorentz group (see (81,82), where a i , b k , (i, k = 1, 2, 3) are the six real SL(2, C) Lie group parameters

we should introduce the following pairs of Γ µ -matrices Γ µ = (Γ i (A;2) , Γ 0 (B;3) ) and Γµ = (Γ i (B;2) , Γ 0 (A;3) ),

where we have chosen in (91) α = 3 and β = 2. Although for any choice of the first factor I A in Γ µ (A;α) 's (see 90) we have

i , Γ 0 (A;α) = 0, (94) the boosts K (0) i (see ( 84)) act covariantly only on doublets Γ µ , Γµ , with (A = B), because only for such a choice we can get the closure of commutation relations: [K

i , Γ j (A;2) ] = δ j i Γ 0 (A;3) , [K

i , Γ 0 (B;3) ] = Γ i (B;2) ,

i , Γ j (B;2) ] = δ j i Γ 0 (B;3) , [K

i , Γ 0 (A;3) ] = Γ i (A;2) .

It follows from ( 94), (95) that the standard Lorentz covariance requires the pair of coloured Dirac equations described by the doublet (Γ µ , Γµ ) of coloured Dirac matrices (see 93), which we shall call "Lorentz doublets". In particular, the Γ µ matrices (37) from Sect. 3 should be supplemented by the following Lorentz doublet partner:

Further we will show that the Lorentz doublets of Γ µ -matrices required by the standard Lorentz covariance can be useful for the description of weak isospin (flavour) doublets of the SU (2)×U (1) electroweak symmetry. In such a way one can show that the internal symmetries SU (3)×SU ( 2)×U (1) of Standard Model are linked with the presence of standard Lorentz covariance which generates three 24-component Lorentz doublets of colour Dirac spinors.

Next, we will show that in order to obtain the closure of the faithful action of generators (J

) which describe the Z 3 -graded spinorial transformations of matrices Γ µ , we need two Hermitean-conjugate sextets (Γ µ (a) , Γ µ ( ȧ) = (Γ µ (a) ) † ) (a = 1, 2, ...6) of coloured 12 × 12 Dirac matrices. We will also show that the sextet Γ µ (a) defines three Lorentz doublets needed for the implementation of classical Lorentz covariance.

6 Irreducible spinorial representation of Z 3 -graded Lorentz algebra and colour Γ µ matrices as its module 6.1 Sextet of Γ µ -matrices following from the Z 3 -graded Lorentz covariance

Let us choose (J

m ) as given by Eqs. (87), (89), and assume that Γ µ

describes the Γ µ -matrix (37) and respectively, Γµ , its doublet partner (96). By calculating the multicommutators of J

i , K

∈ L (1) with the set Γ µ (a) , (a = 1, 2...6), we will show that the following sextet of Γ-matrices which break the Lorentz covariance is closed under the action of L (1) :

It is easy to see that from the six components of the sextet (97) one can construct as well the set of six Γ µ -matrices Γ µ (A;α) , A = 2, 4, 8 and α = 2, 3, which can be described as well as three Lorentz doublets (93), with (A, B) = (2, 8), [START_REF] Cottingham | An Introduction to the Standard Model of Particle Physics[END_REF][START_REF] Kerner | The discrete quantum origin of the Lorentz group and the Z 3 -graded ternary algebras[END_REF] and [START_REF] Kerner | The discrete quantum origin of the Lorentz group and the Z 3 -graded ternary algebras[END_REF][START_REF] Greensite | An introduction to the confinement problem[END_REF].. More explicitly,

where

m employed as first tensorial factor the 3 × 3 matrices l 1 3 for r, s = 0, Q 3 for r, s = 1 and Q † 3 for r, s = 2. From the remaining six generators of the SU (3) Lie algebra in the Kac basis, only three do appear in the sextet (98). In order to implement the full SU (3) color symmetry, the remaining matrices Q 1 , Q † 2 and B should be included in the module on which acts via commutation the spinorial representation of the Z 3 -graded Lorentz algebra. This means that the following sextet should be also taken into consideration, obtained by replacing the matrices I A by their complex conjugates, and keeping the remaining tensorial factors unchanged:

The realization of L (2) sector acting on colour Γ µ matrices is obtained by introducing the Hermitean-conjugate sextet Γ µ

linearly related with the tilded Γ-matrices Γµ ( ȧ) = ( Γµ (a) ) † which are required by standard Lorentz covariance described by the grade 0 sector L (0) (see (81), ( 82) and ( 85), (86)).

Lorentz doublets and classical Lorentz symmetry -

sector

The action of zero-grade rotation generators J (0) i on coloured matrices Γ µ is described by the eq. (94). In particular, the space rotations leave the temporal component Γ 0 (A;α) invariant, and transform the space components as the coordinates of a D = 3 three-vector, while the commutators of boosts K (0) i with (Γ 0 (A,α) , Γ i (B;β) generate new Γ µ -matrices which permit to introduce the "Lorentz partners".

Let us start with the first "standard" choice of colour Γ µ -matrices (see 91)

When iterated, the commutators of boosts

-matrices yields the following result:

Apparently, we obtain a classical Lorentz doublet Γ µ (1) , Γµ

, where Γµ

, (see 97). It appears that in an analogous manner one can introduce classical Lorentz doublets for each colour Γ µ -matrix listed in (97) by adding to

, where b = a + 4 (mod 6) and c = a + 2 (mod 6).

After the calculation of commutators of the boosts K (0) i with all Γ µ -matrices which appear in (97), the following sextet of Lorentz doublets (Γ µ (a) , Γµ (a) ), (a = 1, 2, ..., 6) is obtained:

where we added, for the sake of completeness, the inverse formulae Γµ (a) → Γ µ (a) .

6.3 Sextet of colour Γ µ -matrices and representations of Z 3 -graded Lorentz algebra -sector L (1) = J

(1) i ⊕ K

(1) j

Calculating the commutators of matrices Γ µ (a) with the generators (J

m ∈ L (0) was rather easy, because the only non-commuting tensorial factors were the standard colour matrices Γ µ

(1) = (Γ 0 (8;3) , Γ k (2;2) ) of the sextet (101), we obtain the closure after the calculation of the following set of 12 commutators:

i , Γ 0 (2;3) = -

(115)

The relations (115) can be also expressed with a short-hand notation as follows [K (1) 

We see that all 72 components of the sextet (104) are needed in order to obtain the irreducible representation closed under the action of the boost generators K

(1)

i . The pattern of the coefficients appearing on the right-hand side of these 12 commutators bears the imprint of the underlying Z 3 × Z 2 symmetry. The six commutators of K (1) i with time-like components of Γ-matrices produce only the space-like components, multiplied by halves of all sixth-order roots of unity, i.e. ± 1 2 , ± j 2 , ± j 2 2 , while the commutators with spatial components Γ k

contain again the spatial components, multiplied by the coefficients ± α 2 , ± β 2 , ± γ 2 and time-like components Γ 0 (A;α) with the coefficients ± 1 2 , ± j 2 , ± j 2 2 , The full multiplication table of this Lie algebra over complex roots together with the diagram showing the structure constants on the complex plane are given in the Appendix I.

It is worth to observe that in the definitions (97) of the basic sextet Γ µ in the colour sector enters only the following triplet of colour generators (I 2 , I 4 , I 8 ) = (Q 2 , Q † 1 , B † ) which satisfies the following relations (see also the Table of commutators in Appendix I):

The closure of the action of Q 3 on the multiplet (Q 2 , Q † 1 , B † ) leads to the covariance of the 72-dimensional multiplet (100) under the action of the generators J

(1) i , K

(1) m ∈ L (1) , which do contain the matrix Q 3 as their first colour factor (see (89, 87)).

It can be recalled (see 100) that in order to construct the Lorentz doublets (Γ µ (a) , Γµ (a) ) (a = 1, 2, ..., 6) it is sufficient to use the components of the sextet of matrices Γ µ (a) suffice (see (104), and again the relations (117) imply the closure of Γµ (a) under the actions of generators belonging to L (1) .

6.4 Representations of Z 3 -graded Lorentz algebra -sector

The matrices of the sextet multiplet Γ µ are complex and non-Hermitean. Due to the relations

i , K

in order to obtain the closed action of grade 2 generators one should introduce the Hermitean-conjugate sextet Γ † of Γ µ -matrices (97)

One can deduce from the relations (108), ( 115) and (118) the covariant actions of generators from the sector L (2) by using the formulae

K

i , Γ 0 (2;3) = -

Γm

(2) -

Because from (117) follows the closure of the triplet

under the action of Q † 3 , (compare with ( 6)) one can as well reproduce the covariant action of L (2) on the Hermitean-conjugate doublets of Γ µ -matrices.

The general pattern of commutators in (124)-( 126) better explains why the irreducible representation is described by the sextet of colour Γ µ matrices. The generators

m contain as their 3×3 matrix factors the elements Q 3 and Q † 3 , which therefore cannot appear in the coloured Γ µ -matrices; the boosts contain as their second factor the matrix σ 1 , which as well can not appear in the sextet (97). Starting from the first "standard" colour Dirac operator whose Γ-matrices contain B † and Q 2 , commutators with Q 3 and Q † 3 can generate in the colour sector only the third colour matrix Q † 1 , besides B † and Q 2 . This reduces the number of Γ µ matrices spanning the spinorial realization of the Z 3 -graded Lorentz algebra to six, characterized by three colour matrices I A (A = 2, 4, 8) and two Pauli matrices σ α (α = 2, 3).

If we start with complex conjugate Dirac operator (36), (37

, we get the alternative sextet describing coloured Dirac equations for the complex-conjugated fields Ψ (see (40)), which contains as its colour factors the matrices Q † 2 , Q 1 and B. The flavour quark eigenstates in the Standard Model are represented by chirally projected Dirac spinors (see e.g. [START_REF] Sogami | Unified description of quarks and leptons in a multi-spinor field formalism[END_REF], [START_REF] Sogami | Renovation of the Standard Model with Clifford-Dirac algebras for chiral-triplets[END_REF]). If we introduce the D = 3+1 Clifford algebra defined by the relations

and define

then the standard chiral Dirac spinors are defined as

The ψ ± denote the four-component Dirac spinors satisfying the chirality conditions P ± ψ ± = ψ ± , P ∓ ψ ± = 0, where P ± = 1 2 (l 1 2 ±iγ 5 ) are the chiral projection operators.

For more clarity we shall use the following realization of Clifford algebra of Dirac matrices in terms of tensor products of 2 × 2 matrices:

This enables us to express the colour Dirac 12 × 12-matrices in a more concise manner:

The chiral projection operator acting on the matrices Γ µ (1) can be now defined as follows:

so that the chirally projected matrices Γ µ (1)± = P ± Γ µ (1) look as follows:

By adding the relations

(134)

one introduces chiral/anti-chiral triplets Γ µ (r) (r = 1, 2, 3) of colour Γ-matrices defined in terms of three pairs (Γ µ

(1) , Γ µ (4) ), (Γ µ (2) , Γ µ (5) ), (Γ µ (3) , Γ µ (6) ), or six matrices Γ µ (A;α) defined by formula (98). It is interesting to note that one can construct similar projection operators related with Z 3 -graded colour sectors. Let us define three projection operators:

One checks easily that the three projectors (136, 137) satisfy the expected relations

Π = 0, for r = s,

Π +

Π +

(2)

i.e. we obtain a Z 3 -graded generalization of the Z 2 -graded standard chiral projectors P ± , where P 2 + = P + , P 2 -= P -, P + P -= P -P + = 0 and P + + P -= l 1.

The flavour and generations in quark models and chiral colour Dirac multiplets

Three generations of quarks (called also "three families") are known, each formed by a flavour ("weak isospin") doublet:

• (u, d), or the "up -down" doublet ("First generation");

• (s, c), or the "strange -charm" doublet ("Second generation");

• (t, b), or the "top -bottom" doublet ("Third generation");

The flavour SU (2) symmetry is visible only if we consider chiral (left-handed) quarks, described by the doublet (u, d). In the case of 2 nd and 3 rd generation, possible flavour symmetries exchanging c with s or t with b are strongly violated and the internal symmetry is used mostly for the classification purposes. 3 

Appendix I

Here we give the multiplication table of the Lie algebra spanned by 8 generators; the six off-diagonal Q-matrices (Q a , Q † b ), (a, b = 1, 2, 3) and the pair of diagonal matrces (B, B † ). The entries correspond to the ordinary commutators [A, B] = AB -BA.

The overall pattern becomes clearly visible if we express all complex coefficients appearing in the table of commutators in terms of in terms of three Greek letters. Let us introduce the following notation:

Table 2. The commutators between eight 3 × 3 generators of SU (3) algebra in Kac's basis, with the coefficients α, β, γ given by (139).

The multiplication table is obviously anti-symmetric, and all complex coefficients have the same absolute value √ 3. If we renormalize the generators dividing every one by √ 3, the new generators Qa = Q a / √ 3 would satisfy the same commutator algebra with complex renormalized structure constants α = α/ √ 3, etc., with their moduli equal to 1.

The Lie algebra defined by this table is semi-simple, what can be seen from the property that each row and each column contains all six different coefficients, but each of them appearing only once.

Two 3×3 blocks containing brackets between the generators Q a or Q † a display the same set of coefficients, equal to ±α, while the Cartan subalgebra generators B and B † commute (see in Table 

The six Gell-Mann matrices (140), (141) can be expressed as linear combinations of ternary Clifford algebra generators Q a , Q † b as follows: