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INSTABILITY OF MARTINGALE OPTIMAL TRANSPORT

IN DIMENSION d ≥ 2

MARTIN BRÜCKERHOFF NICOLAS JUILLET

Abstract. Stability of the value function and the set of minimizers w.r.t. the given
data is a desirable feature of optimal transport problems. For the classical Kan-
torovich transport problem, stability is satisfied under mild assumptions and in
general frameworks such as the one of Polish spaces. However, for the martingale
transport problem several works based on different strategies established stability
results for R only. We show that the restriction to dimension d = 1 is not accidental
by presenting a sequence of marginal distributions on R

2 for which the martingale
optimal transport problem is neither stable w.r.t. the value nor the set of minimiz-
ers. Our construction adapts to any dimension d ≥ 2. For d ≥ 2 it also provides a
contradiction to the martingale Wasserstein inequality established by Jourdain and
Margheriti in d = 1.

Keywords: Mathematics Subject Classification (2010):

1. Introduction

For two probability measures µ and ν on R
d let Π(µ, ν) denote the set of all couplings

between µ and ν, i.e. the set of all probability measures on R
d×R

d which have marginal
distributions µ and ν. Let c : Rd ×R

d → R be measurable and integrable with respect
to the elements of Π(µ, ν). The classical optimal transport problem is given by

(OT) Vc(µ, ν) = inf
π∈Π(µ,ν)

∫

Rd×Rd

c(x, y) dπ(x, y).

For the cost function c1(x, y) := ‖y − x‖ (where ‖ · ‖ is the Euclidean norm) the 1-
Wasserstein distance W1 := Vc1 is a metric on P1(R

d), the space of probability measures
µ that satisfy

∫

Rd ‖x‖dµ(x) < ∞.

Two probability measures µ, ν ∈ P1(R
d) are said to be in convex order, denoted by

µ ≤c ν, if
∫

Rd ϕdµ ≤
∫

Rd ϕdν for all convex functions ϕ ∈ L1(ν). If µ ≤c ν, Strassen’s
theorem yields that there exists at least one martingale coupling between µ and ν. A
martingale coupling is a coupling π ∈ Π(µ, ν) for which there exists a disintegration
(πx)x∈Rd such that

(1.1)

∫

R

y dπx(y) = x for µ-a.e. x ∈ R
d.

If µ ≤c ν, the martingale optimal transport problem is given by

(MOT) V M
c (µ, ν) = inf

π∈ΠM (µ,ν)

∫

Rd×Rd

c(x, y) dπ(x, y)

where ΠM (µ, ν) denotes the set of all martingale couplings between µ and ν.
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Stability in d = 1. Let us recall two reasons why stability results are crucial from
an applied perspective. Firstly, they enable the strategy of approximating the problem
by a discretized problem or by any other that can rapidly be solved computationally
(cf. [1, 12]). Secondly, any application to noisy data would require stability for the
results to be meaningful. In relation with (MOT), this discussion is motivated by its
connection to (robust) mathematical finance (cf. [3, 10]).

Let µ, ν ∈ P1(R) with µ ≤c ν, and (µn)n∈N and (νn)n∈N be sequences of prob-
ability measures on R with finite first moment such that limn→∞W1(µn, µ) = 0,
limn→∞W1(νn, ν) = 0 and µn ≤c νn for all n ∈ N. The following stability results
are available:

(S1) Accumulation Points of Minimizers: Let c be a continuous cost function which
is sufficiently integrable (e.g. |c(x, y)| ≤ A(1 + |x| + |y|)) and let πn be a min-
imizer of the (MOT) problem between µn and νn for all n ∈ N. Any weak
accumulation point of (πn)n∈N is a minimizer of (MOT) between µ and ν.

(S2) Continuity of the Value: Let c be a continuous cost function which is sufficiently
integrable (e.g. |c(x, y)| ≤ A(1 + |x|+ |y|)). There holds

lim
n→∞

V M
c (µn, νn) = V M

c (µ, ν).

(S3) Approximation: For all π ∈ ΠM (µ, ν) there exists a sequence (πn)n∈N of mar-
tingale couplings between µn and νn that converges weakly to π.

This constitutes the heart of the theory of stability recently consolidated for the
martingale transport problem on the real line. Before we go more into the details of
the literature let us stress that with (S3) any minimizer can be approximated by a
sequence of martingale transport with prescribed marginals. Therefore, under mild
assumptions (S3) implies (S2). Moreover, due to the tightness of

⋃

n∈NΠM (µn, νn),
(S2) implies (S1).

Early versions of (S1) and (S2) for special classes of cost-functions were obtained
by Juillet [14] and later by Guo and Obloj [9]. The general version of (S1) and (S2)
was first shown by Backhoff-Veraguas and Pammer [2, Theorem 1.1, Corollary 1.2]
and Wiesel [19, Theorem 2.9]. Only very recently, Beiglböck, Jourdain, Margheriti
and Pammer [4] have proven (S3). We want to stress that (S1), (S2) and (S3) are
given in a minimal formulation and that in the articles some aspects of the results are
notably stronger. For instance, the cost function c in (S1) and (S2) can be replaced by
a uniformly converging sequence (cn)n∈N [2]. Moreover, it is an important achievement
that on top of weak convergence we have convergence w.r.t. (an extension of) the
adapted Wasserstein metric for the approximation in (S3) [4] and for the convergence
in (S1) [5], see also [19]. Finally, these stability results also hold for weak martingale
optimal transport which is an extension of (MOT) w.r.t. the structure of the cost
function (cf. [5, Theorem 2.6]). For further details we invite the interested reader to
directly consult the articles.

The martingale Wasserstein inequality introduced by Jourdain and Margheriti in
[11, Theorem 2.12] belongs also to the context of stability and approximation and it
appears for example as the important last step in the proof of (S3) in [4]. In dimension
d = 1 there exists a constant C > 0 independent of µ and ν such that

(MWI) M1(µ, ν) ≤ CW1(µ, ν).

where M1(µ, ν) is the value of the (MOT) problem between µ and ν w.r.t. the cost
function ‖x− y‖. Moreover, they proved that C = 2 is sharp. For their proof Jourdain
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Figure 1. The construction for m = n = 2 and m = n = 3. The red
circles indicate the Dirac measures of µm each with mass 1

m
and the

blue circles indicate the Dirac measures of νm,n each with mass 1
2m .

and Margheriti introduce a family of martingale couplings π ∈ ΠM (µ, ν) that satisfy
∫

R×R
|x− y|dπ(x, y) ≤ 2W1(µ, ν) (including the particularly notable inverse transform

martingale coupling).

Instability in d ≥ 2. The stability of (OT) (and its extension to weak optimal trans-
port [5, Theorem 2.5]) is independent of the dimension. However, Beiglböck et al. had
to restrict their stability theorem for (weak) (MOT) in the critical step to dimension
d = 1 (cf. [5, Theorem 2.6 (b’)]). Similarly, in dimension d ≥ 2, Jourdain and Margher-
iti could only extend the martingale Wasserstein inequality for product measures and
for measures in relation through a homothetic transformation, see [11, Section 3]. The
difficulties in expanding these stability results to higher dimensions are not of technical
nature but a consequence of instability of (MOT) in higher dimensions without further
assumptions.

In the following we construct a sequence of probability measures on R
2 for which

(S1), (S2) and (S3) do not hold. Moreover, we provide an example that shows that
the inequality (MWI) does not hold in dimension d = 2 for any fixed constant C > 0
without further assumptions. Since one can embed this example into R

d for any d ≥ 3
by the map ι : (x, y) 7→ (x, y, 0, ..., 0), these results also fail in any higher dimension.

We denote by Pθ the one step probability kernel of the simple random walk along
the line lθ that makes an angle θ ∈

[

0, π2
]

with the x-axis. More precisely:

Pθ : R
2 ∋ (x1, x2) 7→

1

2

(

δ(x1,x2)+(cos(θ),sin(θ)) + δ(x1,x2)−(cos(θ),sin(θ))

)

∈ P1(R
2).

For m,n ∈ N≥1 we define two probability measures on R
2 by

µm :=

m
∑

i=1

1

m
δ(i,0) and νm,n := µmP π

2n

where µmP π
2n

denotes the application of the kernel P π
2n

to µm. Figure 1 illustrates

(µ2, ν2,2) and (µ3, ν3,3).

Since for any convex function ϕ : R2 → R Jensen’s inequality yields
∫

R2

ϕdνm,n =

∫

R2

(
∫

R2

ϕdP π
2n
(x, ·)

)

dµm(x) ≥

∫

R2

ϕdµm,

we have µm ≤c νm,n for all m,n ∈ N≥1.

Lemma 1.1. The martingale coupling πm,n := µm(Id, P π
2n
) is the only martingale

coupling between µm and νm,n for all m,n ∈ N≥1.
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The sequence (µ3, ν3,n)n∈N serves as a counterexample to analogue versions of (S1),
(S2) and (S3) in dimension d = 2. The crucial observation is that whereas ΠM (µ3, ν3,n)
consists of exactly one element for all n ∈ N by Lemma 1.1, there are infinitely many
different martingale couplings between µ3 and the limit of (ν3,n)n∈N.

Proposition 1.2. There holds limn→∞W1(ν3,n, µ3P0) = 0.

Moreover, we have the following:

(i) Let c1(x, y) := ‖y − x‖ for all x, y ∈ R
2 and πn := µ3(Id, P π

2n
) for all n ∈ N≥1.

The martingale couplings πn are minimizers of the (MOT) problem between µ3

and ν3,n w.r.t. c1. Moreover, (πn)n∈N is weakly convergent but the limit is not
an optimizer of (MOT) w.r.t. c1 between (its marginals) µ3 and µ3P0.

(ii) Let c1 be defined as in (i). There holds

lim
n→∞

V M
c1

(µ3, ν3,n) = 1 > V M
c1

(µ3, µ3P0).

(iii) The set ΠM (µ3, µ3P0) \ {µ3(Id, P0)} is non empty and no element in this set
can be approximated by a weakly convergent sequence (πn)n∈N of martingale
couplings πn ∈ ΠM (µ3, ν3,n).

The sequence (µn, νn,n)n∈N shows that there cannot exist a constant C > 0 for which
the inequality (MWI) holds in dimension d = 2.

Proposition 1.3. There holds

lim
n→∞

M1(µn, νn,n)

W1(µn, νn,n)
= +∞.

Remark 1.4. The theory of MOT in dimension two and further is also challenging in
other aspects. For instance, the concept of irreducible components and convex paving
can be directly reduced to the study of potential functions in dimension d = 1, whereas
there are at least three different advanced approaches in dimension d ≥ 2 (cf. [8, 6, 17]).
On the level of processes we would like to remind the reader that a higher dimensional
version of Kellerer’s theorem is still not proved or disproved. One major obstacle is
that the one-dimensional proof via Lipschitz-Markov kernels cannot be extrapolated, see
[13, Section 2.2] where a method similar to ours is used.

2. Proofs

We denote by f#µ the push-forward of the measure µ under the function f .

Proof of Lemma 1.1. Let m,n ≥ 2 be integers and θn := π
2n . We denote by Lθn the

projection parallel to the line lθn = {(x1, tan(θn)x1) : x1 ∈ R} onto the x-axis, i.e.

Lθn : R2 ∋ (x1, x2) 7→ x1 − tan(θn)
−1x2 ∈ R.

Moreover, by setting ν̃ := (Lθn)#νm,n and µ̃ := (Lθn)#µm one has

(2.1) ν̃ =
1

m

m
∑

i=1

δi = µ̃.

Let π ∈ ΠM (µm, νm,n). As Lθn is a linear map, π̃ := (Lθn ⊗ Lθn)#π is a martingale
coupling of µ̃ and ν̃. Indeed, for all ϕ ∈ Cb(R

2) there holds
∫

R2

ϕ(x)(y − x) dπ̃(x) = Lθn

(
∫

R2

ϕ(Lθn(x))(y − x) dπ(x)

)

= 0
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and this property is equivalent to π̃ being a martingale coupling. Jensen’s inequality
in conjunction with (2.1) yields

∫

R

x2 dµ̃(x) ≤

∫

R

(
∫

R

y2 dπ̃x(y)

)

dµ̃(x) =

∫

R

y2 dν̃(y) =

∫

R

x2 dµ̃(x)

where (π̃x)x∈R is a disintegration of π̃ that satisfies (1.1). Since the square is a strictly
convex function, there holds

∫

R
y2 dπ̃x = x2 if and only if π̃x = δx. Thus, π̃ = µ̃(Id, Id)

and we obtain

x1 = Lθn(x1, x2) = Lθn(y1, y2) for π-a.e. ((x1, x2), (y1, y2)) ∈ R
2 × R

2

because supp(µm) ⊂ R × {0}. Hence, the martingale transport plan π is only trans-
porting along the lines parallel to lθn . Since there are exactly two points in the support
of νm,n that lie on the same line, and we are looking for a martingale coupling, we have

π = µm(Id, Pθn). �

Lemma 2.1. For all m ∈ N \ {0} and θ ∈
[

0, π2
]

one has

W1(µmP0, µmPθ) ≤ θ.

Proof. The inequality consists merely of a comparison of angle and chord. Alternatively,
for all m ∈ N and θ ∈

[

0, π2
]

we directly compute

W1(µmP0, µmPθ) ≤

∫

R2

W1(δxP0, δxPθ) dµm(x)

= |(sin(θ), cos(θ)− 1)| =
√

2(1− cos(θ)) = 2 sin(θ/2) ≤ θ. �

Proof of Proposition 1.2. By Lemma 2.1, we know

lim
n→∞

W1(ν3,n, µ3P0) = lim
n→∞

W1(µ3P π
2n
, µ3P0) = 0.

Moreover, for all n ∈ N Lemma 1.1 yields that πn := µ3(Id, P π
2n
) is the only martingale

coupling between µ3 and ν3,n and therefore automatically the unique minimizer of the
(MOT) problem between these two marginals w.r.t. to any cost function. The sequence
(πn)n∈N converges weakly to π := µ3(Id, P0) ∈ ΠM (µ3, µ3P0). Note that

π′ :=
1

6

(

δ((1,0),(1,0)) + 2δ((2,0),(2,0)) + δ((3,0),(3,0))
)

+
1

24

(

3δ((1,0),(0,0)) + δ((1,0),(4,0)) + δ((3,0),(0,0)) + 3δ((3,0),(4,0))
)

is a martingale coupling between µ3 and µ3P0 = µ3 −
1
3

(

δ1+δ3
2 − δ0+δ4

2

)

different from

π where only the mass not shared by µ3 and µ3P0 is moved.

Item (i): Since π is the weak limit of the sequence (πn)n∈N, it is the only accumulation
point. But as we see below in (ii), π is not the minimizer of the (MOT) problem between
µ3 and µ3P0 w.r.t. c1.

Item (ii): There holds

lim
n→∞

V M
c1

(µ3, ν3,n) = lim
n→∞

∫

R2×R2

‖x− y‖dπn = 1

>
1

2
=

∫

R2×R2

‖x− y‖dπ′ ≥ V M
c1

(µ3, µ3P0).

In fact, according to Lim’s result [16, Theorem 2.4], under an optimal martingale
transport w.r.t. c1 the shared mass between the marginal distribution is not moving.
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Since π′ is the unique martingale transport between µ3 and µ3P0 with this property, it
is the minimizer of this (MOT) problem and V M

c1
(µ3, µ3P0) =

1
2 .

Item (iii): Since π is the weak limit of the solitary elements of ΠM (µ3, ν3,n), no
element of ΠM (µ3, µ3P0) \ {µ3(Id, P0)} can be approximated and π′ is an element of
this set. �

Proof of Proposition 1.3. Let n ∈ N. By Lemma 1.1, µn(Id, P π
2n
) is the only martingale

coupling between µn and νn,n. Thus,

M1(µn, νn,n) = 1.

Since W1 is a metric on P1(R
2), the triangle inequality yields

W1(µn, νn,n) ≤ W1(µn, µnP
0) +W1(µnP

0, νn,n).

We can easily compute

µnP
0 =

1

2n

(

n
∑

i=1

δ(i−1,0) +
n
∑

i=1

δ(i+1,0)

)

and therefore W1(µn, µnP
0) = 1

n
. By Lemma 2.1, there holds W1(µnP

0, νn,n) ≤ π
2n .

Hence, we obtain

lim
n→∞

M1(µn, νn,n)

W1(µn, νn,n)
≥ lim

n→∞

1
1
n
+ π

2n

= +∞.

�

Remark 2.2 (Variations). Our construction may appear somewhat degenerate since
µm is discrete and supported on a lower dimensional subspace of R2. However, it is not
particularly difficult to adapt the present construction with new measures that appear
more general but yield the same result:

(ii) One could replace the rows of Dirac measures by uniform measures on parallel-
ograms. More precisely, we could set

µ̃m,n := UnifFm,n and ν̃m,n :=
1

2

(

UnifF+
m,n

+UnifF−

m,n

)

where Fm denotes the parallelogram spanned by the points

−vn, −vn + (m, 0), vn + (m, 0) and vn

with vn := 1
3

(

cos
(

π
2n

)

, sin
(

π
2n

))

∈ R
2 and F±

m,n is the translation of this par-
allelogram by ±3vn (cf. Figure 2). By the same argument as in Lemma 1.1,
any martingale coupling between µ̃m,n and ν̃m,n can only transport along lines
parallel to {(x, tan

(

π
2n

)

x) : x ∈ R}. In contrast to the situation in Lemma 1.1,
the martingale transport along one of these parallel lines is no longer unique but
every π ∈ ΠM (µ̃m,n, ν̃m,n) satisfies π

(

|x− y| < 1
3

)

= 0 for all m,n ∈ N because
the supports are disjoint. This restriction carries over to any weak accumu-
lation point of those martingale couplings and is sufficient to show analogous
versions of Proposition 1.2 and Proposition 1.3.

(iii) One could replace µm and νm,n by

µ̃m := (1− ǫ)µm + ǫγ and ν̃m,n := (1− ǫ)νm,n + ǫγ

where ε ∈ (0, 1) and γ is a probability measure with full support (e.g. a standard
normal distribution). There holds W1(µ̃m, ν̃m,n) = (1 − ǫ)W1(µm, νm,n) since
W1 derives of the Kantorovich-Rubinstein norm [15] (alternatively see [18, Bib.
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Figure 2. The construction in Remark 2.2 (i) for m = n = 2 and
m = n = 3. The red area is the support of µ̃m,n and the blue area the
supports of ν̃m,n.

Notes of Ch.6 ] or [7, §*11.8]) and M1(µ̃m, ν̃m,n) = (1− ǫ)M1(µm, νm,n) by a
result of Lim [16, Theorem 2.4].

Remark 2.3. Finally, we would like to point out that Propositions 1.2 and 1.3 and
their proofs are not depending on the choice of the Euclidean norm while defining c1.
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