Bandwidth Allocation and Service Differentiation in D2D Wireless Networks
Résumé
Inspired by a new feature in 5G NR called bandwidth part (BWP), this paper presents a bandwidth allocation (BA) model that allows one to adapt the bandwidth allocated to users depending on their data rate needs. Specifically, in adaptive BA, a wide bandwidth is divided into chunks of smaller bandwidths and the number of bandwidth chunks allocated to a user depends on its needs or type. Although BWP in 5G NR mandates allocation of a set of contiguous bandwidth chunks, our BA model also allows other assumptions on chunk allocation such as the allocation of any set of bandwidth chunks, as in, e.g., LTE resource allocation, where chunks are selected uniformly at random. The BA model studied here is probabilistic in that the user locations are assumed to form a realization of a Poisson point process and each user decides independently to be of a certain type with some probability. This model allows one to quantify spectrum sharing and service differentiation in this context, namely to predict what performance a user gets depending on its type as well as the overall performance. This is based on exact representations of key performance metrics for each user type, namely its success probability, the meta distribution of its signal-to-interference ratio, and its Shannon throughput. We show that, surprisingly, the higher traffic variability stemming from adaptive BA is beneficial: when comparing two networks using adaptive BA and having the same mean signal and the same mean interference powers, the network with higher traffic variability performs better for all these performance metrics. With respect to Shannon throughput, we observe that our BA model is roughly egalitarian per Hertz and leads to a linear service differentiation in aggregated throughput value.
Mots clés
Bandwidth
Adaptation models
Throughput
Channel allocation
Wireless networks
Resource management
Bandwidth allocation
Cellular radio
Long Term Evolution
Probability
Radio networks
Radiofrequency interference
Resource allocation
Sochastic processes
Telecommunication network management
Wreless channels
5G NR
bandwidth part
BWP
Bandwidth allocation model
Smaller bandwidths
Contiguous bandwidth chunks
BA model
Chunk allocation
LTE resource allocation
User locations
User type
Linear service differentiation
Origine | Fichiers produits par l'(les) auteur(s) |
---|