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Abstract—With the advent of data living on vertices of graphs,
there is much interest in processing the so-called graph signals for
partitioning tasks. As active contours have had much impact in
the image processing community, their formulation on graphs is
of importance to the field of graph signal processing. This paper
proposes an adaptation on graphs of a model that combines
the Geodesic Active Contour and the Active Contour Without
Edges models. In addition, specific terms depending on graphs
are introduced in the formulation. This adaptation is solved
using a level set formulation with a gradient descent that
can be expressed as a morphological front evolution process.
Experimental results on different kinds of graphs signals show
the benefit of the approach.

I. INTRODUCTION

Recent technological advances in terms of acquisition pro-

cesses and digital simulations are currently generating a very

large amount of digital data, which may be of different types or

natures. This data can come from different application areas,

such as digital imaging, complex networks (social, biological

or computer), graphical computing or bioinformatics. This data

can be, for example, images, videos, meshes, point clouds,

networks or databases. On the contrary to classical images and

videos, these data do not necessarily lie on a Cartesian grid

and can be irregularly distributed. To represent a large number

of data domains, the most natural and flexible representation

consists in using weighted graphs by modeling neighborhood

similarity relationships. Therefore, there is much interest in

the transposition of signal and image processing tools for the

processing of functions on graphs [1], [2]. An example of such

effort include, e.g., spectral graph wavelets [3], [4] or PDEs

on graphs [5]–[7]. In this paper, we consider active contour

models. They can be casted in two approaches: geometric

approaches with level sets and variational approaches with

Total Variation. We consider the first approach in this paper

and propose an adaptation on graphs that combines and

extends the Geodesic Active Contour and the Active Contour

Without Edges models.

II. OPERATORS ON GRAPH SIGNALS

In this section, we introduce the formulation of a discrete

calculus framework for graphs signals [7]. These basic ingre-

dients will be used to adapt active contours for graph signals.

A. Notations

A graph G= (V,E) consists in a finite set V= {v1, . . . ,vm}
of vertices and a finite set E ⊂ V×V of edges. We assume

G to be undirected, with no self-loops and no multiple edges.

Let (vi,v j) be the edge of E that connects two vertices vi

and v j of V. Its weight, denoted by wi j = w(vi,v j), represents

the similarity between its vertices and is computed using a

positive symmetric function w. The notation vi ∼ v j is used

to denote two adjacent vertices. The degree of a vertex vi is

defined as deg(vi) = ∑v j∼vi
w(vi,v j). Let H (V) be the Hilbert

space of real-valued functions defined on the vertices of a

graph. A function f ∈ H (V) assigns real-valued vectors f (vi)
to each vertex vi ∈ V. Such a function is called a graph signal

and is represented by the mapping f : G → R
d . By analogy

with functional analysis on continuous spaces, the integral of

a function f ∈ H (V), over the set of vertices V, is defined as∫
V

f = ∑V f . Similarly, let H (E) be the space of real-valued

functions defined on the edges of G. Both Hilbert spaces are

endowed with the usual inner products.

B. Difference operators

Let f : V → R be a function of H (V). The weighted

difference operator [6] of f , noted dw : H (V) → H (E), is

defined on an edge (vi,v j) ∈ E by:

(dw f )(vi,v j) = w(vi,v j)
1/2( f (v j)− f (vi)) (1)

Based on the difference operator, the weighted morphological

external and internal difference operators are respectively [8]:

(d+
w f )(vi,v j)=max

(

0,(dw f )(vi,v j)
)

and (2)

(d−
w f )(vi,v j)=−min

(

0,(dw f )(vi,v j)
)

(3)

The adjoint of the difference operator, noted d∗
w : H (E) →

H (V), is a linear operator defined, for all f ∈ H (V) and all

H ∈ H (E), by 〈dw f ,H〉H (E) = 〈 f ,d∗
wH〉H (V). This adjoint op-

erator d∗
w =−divw, of a function H ∈ H (E), can by expressed

at a vertex vi ∈ V by the following expression:

(d∗
wH)(vi) = ∑

v j∼vi

w(vi,v j)
1/2(H(v j,vi)−H(vi,v j)) . (4)

C. Gradients and norms

The weighted gradient operator of a function f ∈ H (V), at

a vertex vi ∈ V, is the vector operator defined by

(∇w f )(vi) = [(dw f )(vi,v j) : v j ∼ vi]
T . (5)

The Lp norm of this vector is defined by [6]:

‖(∇w f )(vi)‖p
p = ∑

v j∼vi

w(vi,v j)
p/2

∣

∣ f (v j)− f (vi)
∣

∣

p
(6)

Similarly, we have

(∇±
w f )(vi)=[(d±

w f )(vi,v j) : v j ∼ vi]
T (7)



and

‖(∇±
w f )(vi)‖p

p = ∑
v j∼vi

w(vi,v j)
p/2

∣

∣M±(0, f (v j)− f (vi)
)∣

∣

p
(8)

with M+ = max and M− = min. These norms exhibit the

following property [9]:

‖(∇w f )(vi)‖p
p = ‖(∇+

w f )(vi)‖p
p +‖(∇−

w f )(vi)‖p
p . (9)

D. Graph signal curvature operator

The weighted p-Laplace isotropic operator of a function

f ∈ H (V), noted ∆i
w,p : H (V)→ H (V), is defined by:

(∆w,p f )(vi) =
1
2
d∗

w(‖(∇w f )(vi)‖p−2
2 (dw f )(vi,v j)) . (10)

The isotropic p-Laplace operator of f ∈ H (V), at a vertex

vi ∈ V, can be computed by [6]:

(∆w,p f )(vi) =
1
2 ∑

v j∼vi

(γw,p f )(vi,v j)( f (vi)− f (v j)) , (11)

with (γw,p f )(vi,v j)=wi j

(

‖(∇w f )(v j)‖p−2
2 +‖(∇w f )(vi)‖p−2

2

)

.

When p = 1 this corresponds to the weighted curvature of

the graph signal f :(κw f )(vi) = (∆w,1 f )(vi).

III. ACTIVE CONTOURS

Now we briefly review the classical Geodesic Active Con-

tour (GAC) [10] and Active Contours Without Edges (ACWE)

[11] approaches.

A. Geodesic active contours

In the GAC framework, an energy functional that depends

on the content of an image I : [0,h]× [0,w]→ R
d is assigned

to a parametrized curve C (p) : [0,1]→ R
2:

EGAC(C ) =
∫ 1

0
g(I(C(p)))|C ′(p)|d p (12)

where g : Rd → R
+ is a strictly decreasing function such

that g(x)→ 0 as x → ∞, e.g., g(I(x,y)) = 1√
1+|∇Gσ∗I(x,y)|

with

Gσ ∗ I(x,y) a smoothed version of I by the Gaussian Gσ. This

function allows to select the regions of the image we are

interested in. It should have low values for edges and by this

way, the curve is attracted by image edges where g(I) is small.

The minimum energy C ∗ = argminC EGAC(C ) corresponds to

the geodesics of a Riemannian space whose metric is defined

by g(I) [12]. To find this geodesic curve, the minimization is

done with a steepest descent, that will give a local minimum

of Eq. (12), that is not convex. The Euler-Lagrange functional

gives the direction of the descent and a local minima is given

by
δC

δt
= (g(I) ·κ+∇g(I) ·N )N (13)

where N is the curve normal vector and κ is the curvature

value. This model has been modified in [13] to integrate a

balloon force to overcome cases where g(I) is too low:

δC

δt
= (g(I) ·κ+νg(I)+∇g(I) ·N )N (14)

This equation can be rewritten in the level-set framework as

[12]:

δ f

δt
= g(I)|∇ f |div

(

∇ f

|∇ f |

)

+νg(I)|∇ f |+∇g(I) ·∇ f (15)

with f a signed function that embeds the curve, κ= div
(

∇ f

|∇ f |

)

the curvature and ν a parameter. The first term is called the

smoothing force term and is a weighted version (by g(I))
of the mean curvature motion PDE. The second term is

called the balloon force and corresponds to a normal direction

motion. The last term is called the attraction force term and

corresponds to an external velocity field motion.

B. Active contours without edges

In the geodesic active contours, the region interior is not

considered and no region homogeneity criterion is required:

only the image structures under the curve are important to

find the solution. To cope with this, Chan and Vese [11]

have proposed an energy functional for image segmentation

that takes into account the content of the interior and the

exterior regions of the curve in contrast to the GAC that

takes into account only the places where the curve passes.

They called it Active Contours Without Edges (ACWE). In

this framework, two regions are separated by a curve C . The

solution is allowed to have only two values: c1 inside C and

c2 outside, corresponding to a piecewise constant model of the

two regions. The AWCE functional of a curve C is

EACWE(C ,c1,c2) = µ ·Length(C )+ν ·Area(inside(C ))+

λ1

∫
inside(C )

|I(x)− c1|2dx+λ2

∫
outside(C )

|I(x)− c2|2dx

(16)

where µ, ν, λ1 and λ2 are positive parameters to control the

strength of each term and c1, c2 are the two region averages.

The first term controls the regularity by penalizing the length.

The second term penalizes the enclosed area of C to control its

size. The last terms penalize the deviation from the piecewise

constant approximation of the image. The curve is represented

as a level-set of a function f and the minimization is solved by

alternating the updates of both c1 and c2 (the region averages)

and then of f . First, for a fixed f , c1 and c2 are updated by

computing the region averages. Second, for fixed c1 and c2,

the Euler-Lagrange equation of Eq. (16) gives the direction of

the descent and a local minima is expressed as

δ f

δt
= δε( f )

[

µdiv

(

∇ f

|∇ f |

)

−ν−λ1(I − c1)
2 +λ2(I − c2)

2

]

(17)

where δε is defined by δε(x) =
ε

π(ε2+x2)
that corresponds to the

derivative of a regularized Dirac function.

IV. ACTIVE CONTOURS FOR GRAPHS SIGNALS

In this section we propose an adaptation of active contours

for graph signals. Instead of considering separately the GAC

and ACWE approaches, we consider an unified active contour

formulation that combines both approaches. This is different



from previous works on active contours on graphs that con-

sidered each model separately [14]–[16].

A. Considered active contours

In [17], it was proposed to consider an energy functional

that combines the geodesic active contour and the Chan-

Vese models. In the spirit of this approach, we consider

the following energy functional for vector-valued signals of

dimension d, that has been introduced in [18]:

E(C ,c1,c2) =

µ

∫ 1

0
g(C (p))|C ′(p)|d p+ν ·

∫
inside(C )

g(C (p))dA+

λ1

d

∫
inside(C )

‖I(x)− c1‖2
2dx+

λ2

d

∫
outside(C )

‖I(x)− c2‖2
2dx

(18)

This can be solved using a gradient descent from the asso-

ciated Euler-Lagrange equations. We then get the following

evolution equation in the level-set framework (by using similar

derivation arguments than in [18], [19]):

δ f

δt
= δε( f )

[

µdiv

(

g(I)
∇ f

|∇ f |

)

+ν ·g(I)

−λ1

d
‖I − c1‖2

2 +
λ2

d
‖I − c2‖2

2

]

(19)

that we rewritten and simplify into

δ f

δt
= δε( f )

[

µ ·g(I)div

(

∇ f

|∇ f |

)

+µ∇g(I) ·∇ f +ν ·g(I)

−λ1

d
‖I − c1‖2

2 +
λ2

d
‖I − c2‖2

2

]

(20)

This provides a formulation similar to the one proposed in

[20]. One can see that this model combines the three terms

from the GAC with those of the ACWE, leading to a unified

formulation. In the sequel, we show how this can be adapted

to process signals on weighted graphs.

B. PDEs on graphs

In [14], we have proposed an adaptation of PDEs on graphs.

By analogy with the level-set formulation for the continuous

case, an evolving front Γ evolving on a graph G is defined as

a subset Ω0 ⊂ V and is implicitly represented at time t by a

level set function ft : V→{−1,+1} defined by ft = χΩt −χΩt

where χ : V → {0,1} is the indicator function and Ωt is the

complement of Ωt (one has Ωt ∪Ωt = V). The evolution of

the front Γ is influenced by a speed function F : V → R in

such a way that the propagation direction is controlled by the

sign of F . The front extends (i.e., vertices are added to Ωt )

when this sign is positive and retracts when it is negative (i.e.,

vertices are removed from Ωt ). The propagation of the front

on the graph can then be described by the following equation

δ f (vi, t)

δt
= F (vi)‖(∇w f )(vi, t)‖p

p (21)

with f (vi, t = 0) = f0 (the level-set representation of Ω0).

Using (9) This evolution equation can then be expressed

as a combination of two morphological erosion and dilation

processes as [14]:

δ f (vi, t)

δt
=max

(

F (vi, t),0
)

‖(∇+
w f )(vi)‖p

p+

min
(

F (vi, t),0
)

‖(∇−
w f )(vi)‖p

p (22)

that explicitly shows that a dilation adds vertices to the front

when the speed is positive and that an erosion removes vertices

from the front when the speed is negative.

C. Adaptation on weighted graphs

Now we propose an adaptation of Eq. (20) on graphs. Before

to do so, we introduce local patches on graphs and use them

to define the potential function g on graphs as well as consider

patch-based region averages.

1) Local patches on graphs: A local patch Bk(vi) on a

graph at a vertex vi is a subgraph of the processed graph.

Given a vertex vi and a radius size k, the structuring element

is composed of all the vertices that can be reached from vi in

k walks:

Bk(vi) =











{vi} if k = 0

{v j ∼ vi}∪{vi} if k = 1

Bk−1(vi)∪
(

∪∀vl∈Bk−1(vi)B1(vl)
)

if k ≥ 2

(23)

The number of vertices in a given k-hop neighborhood Bk(vi)
depends on the vertex vi when the graph is irregular. On grid-

graphs such as images, Bk(vi) corresponds to a patch centered

on vi and is of size (2k+1)2. We will denote by Pk( f ,vi) the

set of graph signal values assigned to all the vertices of Bk(vi).

2) Potential function: For graph signals, a vertex can be

considered as an important structure if it is different from

its neighbors. This amounts to say that the vertex has high

spectral distances with its neighbors. In contrast, a vertex in

an almost flat area will have low spectral distances with its

neighbors. This can be used to construct a potential function

that differentiates the most salient structures in the graph

signal. We propose to consider a normalized sum of the

spectral distances between the vertex vi and its neighbors

within Bk(vi) to construct a potential function. It is defined

as:

ρ(vi) =

∑
v j∈Bk(vi)

d(Pα( f ,v j),Pα( f ,vi))

|Bk(vi)|
(24)

with α < k and d a distance to compare the values of two

patches.

g(vi) = 1− ρ(vi)−∧ρ

∨ρ−∧ρ
. (25)

where ∨ρ = maxvi
ρ(vi) and ∧ρ = minvi

ρ(vi) respectively

denote the maximum and minimum values of ρ(vi).



3) proposed adaptation: Using the operators presented in

Section II, and the notions of patch and potential on graphs,

we propose the following adaptation of (20):

δ f (vi, t)

δt
= δε( f (vi, t)) [µg(vi)(κw f )(vi, t)

+µ∇g(vi) · (∇w f )(vi, t)+νg(vi)

−λ1

d
∑
vi

d2(Pβ( fI ,vi),P
c1

β ( fI))+
λ2

d
∑
vi

d2(Pβ( fI ,vi),P
c2

β ( fI))

]

(26)

with fI the initial graph signal and P
c1

β ( fI) =

average{Pβ( fI ,vi) : f (vi) ≥ 0} and P
c2

β ( fI) =

average{Pβ( fI ,vi) : f (vi) < 0}. This means that we consider

average patch-based models to represents the regions and

not only their average values (recovered when β = 0). As

in Eq. (22), we can express the front propagation as a

combinaison of morphological gradients. We introduce a new

speed function defined as

F (vi, t) = νg(vi)+µg(vi)(κw f )(vi, t)

−λ1

d
∑
vi

d2(Pβ( fI ,vi),P
c1

β ( fI))+
λ2

d
∑
vi

d2(Pβ( fI ,vi),P
c2

β ( fI))

(27)

This is an extension of the speed function proposed in [14]

to include balloon and smoothing forces, weighted by the

potential g, and with patch-based models to represent regions.

Then the front propagation can be expressed as

δ f (vi, t)

δt
= δε( f (vi)) [µ∇g(vi) · (∇w f )(vi, t)

+max
(

F (vi, t),0
)

‖(∇+
w f )(vi)‖p

p

+min
(

F (vi, t),0
)

‖(∇−
w f )(vi)‖p

p ] (28)

The time variable is discretized using the explicit Euler

method as
δ f (vi

δt
= f t+1(vi)− f t (vi)

∆t
. The general iterative scheme

to compute f at time t +1 at a given vertex vi is given by

f t+1(vi) = f t(vi)+∆tδε( f )

[

µ ∑
v j∼vi

(dwg)(vi,v j)(dw f )(vi,v j)

+max
(

F (vi, t),0
)

‖(∇+
w f )(vi)‖p

p

+min
(

F (vi, t),0
)

‖(∇−
w f )(vi)‖p

p ] (29)

Given the front Ωt at time step t, its inner boundary set

is ∂−Ωt = {vi∈Ωt : ∃v j∈Ωt with (vi,v j)∈E} and its outer

boundary set is ∂+Ωt = {vi∈Ωt : ∃v j∈Ωt with (vi,v j)∈E}.

Since the (dw f )(vi,v j) are equal to zero on the contant areas

of f , the set of vertices to be updated at each iteration can be

restricted to ∂−Ωt ∪ ∂+Ωt . This means that at each iteration

only the vertices around the narrow band of the front have to

be considered. In addition, we reinitialize the level set function

f every ten iterations by f = min(max( f ,−1),1). Both these

tricks enable to speed up much the computing (convergence

can be obtained in around 100 iterations). The final solution

is given by the zero-level of the level-set function f t(vi).

The proposed formulation is valid for any p. However, for

p = 1, specific formulations can be derived thanks to the co-

area formula on graphs [15] with a convex formulation and

faster algorithms can be considered [23].

V. EXPERIMENTS

To illustrate the proposed approach (named GSAC), we

consider different types of graph signals : color images (color

signals on grid graphs), colored 3D meshes (color signals

on triangular meshes), and image databases. We fix some

parameters values: ε = 1, µ = 1, λ1 = λ1 = 1, ν =−1, p = 2.

We also set ∆t = 1
maxvi

deg(vi)
. To terminate the iterations, we

stop when the L2 difference between f t+1 and f t is below

10−2 and do not go beyond 100 iterations. The weights of the

graphs are obtained by

w(vi,v j) = exp

(

−d(Pβ( fI ,vi),Pβ( fI ,v j))
2

σ2

)

(30)

where d is L2 distance and fI the original graph signal.

A. Grid graph signals

First we consider the classical case of color images that are

represented as 8-adjacency grid graphs, giving graph signals

fI : V → R
3. We compare our model with the classical CV

method [11] (using the implementation of [21]), and the

CV adaption on graphs of [22]. We consider a checkerboard

initialization [21]. The classical CV approach fails to extract

the bird, whereas ours (with g(vi)= 1, β= 0) does succeed and

provide similar results to [22] (as them, we also consider Lab

values instead of RGB values). If we consider the use of non

constant potential function g with α = 2 (5× 5 patches) and

k = 7 (a neighborhood of size 15×15), small spurious regions

can be removed. Finally if we consider β= 1, which means the

use of patches to represent the regions and weight the graph,

a much more smooth contour is obtained, showing the benefit

of our whole formulation. Figure 2 provides a comparison

with the nonlocal active contours (NLAC) of [24]. We can

obtain competitive results with this approach. However this is

at the cost of using larger patches with β= 5 (11×11 patches)

whereas in [24] patches of size 7× 7 are considered. Figure

3 presents the results obtained on three different images, with

the same parameters and β = 2, starting from a checkboard

initialization. As it can be seen, our approach can successfully

extract the objects of interest in the images. The last image of

Figure 3 is from the Bayeux Tapestry1.

B. 3D colored meshes

Second we consider the more challenging case of 3D col-

ored meshes, where the graph is a triangular mesh and colors

are associated to vertices giving a graph signal fI : V → R
3.

The graph is irregular and vertices can have a different number

of neighbors, leading to patches of different sizes that are

therefore not directly comparable with a L2 norm. To cope

1Panorama of the Bayeux Tapestry, GREYC Image (UMR UNI-
CAEN/ENSICAEN/CNRS), CERTIC (UNICAEN) from the 2017 photo-
graphic campaign of La Fabrique de patrimoines en Normandie, 2017-2018.



(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 1. Comparison between the state-of-the-art and our approach with different parameters. From left to right: (a) Original image, (b) Checkerboard
initialization, (c) [21], (d) [22], (e) GSAC; g(vi) = 1, β = 0, (f) g(vi), (g) GSAC; g(vi), β = 0, (h) GSAC; g(vi), β = 1.

NLAC GSAC NLAC GSAC

Fig. 2. Comparison between NLAC and our approach.

Fig. 3. Results of our GSAC on various types of images.

with this, the distance d to compare the patches is the Earth

Mover Distance [25] between the color histograms of the

patches (with colors in the Lab color space as for images).

This distance is used in (30) instead of the l2 norm. We

compute the potential g with α= 2 and k= 1. Figure 4 presents

a small size Mesh from [26] and the computed potential

(inverted for visualization). Then two results obtained with

our GSAC approach from a checkerboard initialization are

presented: for β = 0 and β = 2. One can see that, as for

images, the use of patches to weight the graph and represent

regions provides better results (the red parts of the mesh

have been isolated in one single phase without the remaining

small regions obtained without patches). The last three results

present how a given region (Mario’s pants) can be extracted

from a manual initialization and recolored. This shows the

interest of our approach for mesh editing applications. There

are very few competing methods. As far as we know, only the

method of Lozes et al. [23] proposes nonlocal active contours

on graphs. In Figure 5, we provide a comparison with their

results. As it can be seen, we obtain similar results with the

same initialization. In our case we extract only one region

since our approach is not nonlocal. Figure 6 presents a last

segmentation result on a very large mesh (3.5 Million of

vertices) obtained from a checkerboard initialization. We were

able to accurately extract the different visual components of

the mesh.

C. Image dataset graph

To end up these experiments, we consider a last type of

graph. Given a dataset of images, a τ-nearest neighbor graph

is built. To compare images (assumed of the same size), we

use a L2 norm. The weights are defined as

w(vi,v j) = 1− ‖ f (vi)− f (v j)‖2

max
vk∼vl∈E

‖ f (vk)− f (vl)‖2
.

Once the graph has been constructed, we use an alternate

initialization into two classes: vertices of even indexes are

assigned to the first class, and vertices of odd indexes to

the other class. The first dataset we consider is composed

of the first two classes of the Outex13 color textures dataset

[27] (since it contains several classes and we can obtain only

two separated classes with our approach). The graph signal is

fI : V→R
3×1282

. With τ = 5, λ1 = λ2 = 0.5, k = 1, and α = 0,



(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. From top to bottom, left to right : (a) Original mesh, (b) g(vi) (inverted)
(c) Checkerboard initialization, (d) GSAC; g(vi), β = 0, (e) GSAC; g(vi),
β = 2, (f) manual initialization (g) extracted region with GSAC; g(vi), β = 2,
(h) re-colorisation of the extracted region.

Fig. 5. Comparison between [23] and our approach. From left to right: original
mesh, seeds, final result of [23], our result.

Fig. 6. Segmentation of a large mesh from a checkerboard initialization.

we obtain a classification rate of 100%. Figure 7 presents

the graph at initialization and after classification. This (toy)

example shows that our approach can be efficient to perform

classification. We have also considered subsets of the MNIST

dataset with only the 0 digit and another digit. The graph signal

is fI : V→ R
282

. We consider the same random initialization,

with parameters τ = 2, λ1 = λ2 = 0.5, k = 1, and α = 0. For

the 0 digit versus the 3 digit, we reach a classification rate

of 97%. Figure 8 presents a part of the graph at initialization

and after classification (the graph is too large to be displayed

as a whole). Table I shows the results for all the pairwise

combination between digit 0 and other digits. As it can be seen,

classification rates are always higher than 90%. These results

could be improved by using the two-sided tangent distance

[28] between the images instead of a simple L2 distance.

1 2 3 4 5 6 7 8 9

98.8 95.8 97 97.05 90,7 95.55 96.75 95.95 96.25
TABLE I

CLASSIFICATION SCORES FOR THE 0 DIGIT VERSUS EACH OTHER DIGIT OF

THE MNIST DATABASE.

VI. CONCLUSION

In this paper, we have proposed an adaptation of active

contours on graphs that combines the Geodesic Active Contour



0

1

2

3

45

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30 31

32

33

34

35

36

37

38

39

0

1

2

3

45

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25 26

27

28

29

30 31

32

33

34

35

36

37

38

39

Fig. 7. Classification of a subset of Outex13 dataset. Top: initialization,
bottom: final classification. The classes are shown with red and cyan rectangles
around each image.

and Active Contours Without Edges approaches. A level-

set formulation is adapted on graphs with a framework of

graph operators that can describe the evolution of a front on

a graph. The proposed approach incorporates specific graph

features extracted in the form of a potential function and local

graph patches to enhance the segmentation. Various results

and comparison with state-of-the-art approaches have shown

the benefit of the approach on different types of graphs.
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