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Abstract 
 
Our understanding of orbitofrontal cortex (OFC) function has progressed remarkably over the 
past decades in part due to theoretical advances in associative and reinforcement learning 
theories. These theoretical accounts of OFC function have implicated the region in progressively 
more psychologically refined processes from the value and sensory specific properties of 
expected outcomes to the representation and inference over latent state representations in 
cognitive maps of task space. While these accounts have been successful at modelling many of 
the effects of causal manipulation of OFC function in both rodents and primates, recent findings 
suggest that further refinement of our current models are still required. Here we briefly review 
how our understanding of OFC function has developed to understand two cardinal deficits 
following OFC dysfunction: reversal learning and outcome devaluation. We then consider recent 
findings that OFC dysfunction also significantly affects initial acquisition learning, often assumed 
to be intact. To account for these findings, we consider a possible role for the OFC in the 
arbitration and exploration between model-free and model-based learning systems, off-line 
updating of model-based representations. While the function of the OFC as a whole is still likely 
to be integral to the formation and use of a cognitive map of task space, these refinements 
suggest a way in which distinct orbital subregions, such as the rodent lateral OFC, might 
contribute to this overall function. 
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1. Introduction 
1.1 Introduction 
The orbitofrontal cortex (OFC) continues to attract research interest as a key region involved in 
flexible value-based decision making, a process fundamental to normal decision making and 
disorders such as addiction and schizophrenia (Kanahara et al., 2013; Schoenbaum et al., 2016; 
Schoenbaum & Shaham, 2008). Historically, OFC function has predominantly been understood 
in the context of the psychological constructs of associative learning theory (Delamater, 2007; 
Schoenbaum et al., 2009; Stalnaker et al., 2015). Recently, these ideas have been extended and 
incorporated into the computational models of reinforcement learning theory (RL) (Behrens et 
al., 2018; Bradfield & Hart, 2020; Niv, 2019; Wikenheiser & Schoenbaum, 2016; Wilson et al., 
2014). To date these RL models have had the most success in accounting for the extant 
literature on OFC function.  
 
In this article we will first present a brief and selective overview of OFC function in experimental 
research focusing on two cardinal deficits following OFC dysfunction (i.e. lesion, 
pharmacological, chemogenetic, optogenetic inactivation etc…): reversal learning deficits and 
outcome devaluation deficits. These deficits are remarkably consistent between rodents and 
primates (Boulougouris et al., 2007; Butter, 1969; Gallagher et al., 1999; Izquierdo et al., 2004; 
Izquierdo & Murray, 2004, 2005; Machado & Bachevalier, 2007; Panayi & Killcross, 2018; 
Pickens et al., 2003, 2005; Schoenbaum, Setlow, Nugent, et al., 2003; West et al., 2011) (but see 
also Rudebeck et al., 2013; Sallet et al., 2020) and must be accounted for by any theory of OFC 
function. Here we will discuss how theoretical accounts of OFC function have changed over time 
to reconcile these effects. Then, we will discuss how RL models of OFC function might account 
for recent findings that the OFC is involved in the initial acquisition of simple tasks, a process 
previously thought to be unaffected by OFC dysfunction (for a comprehensive review see 
Murray et al., 2007; Rudebeck & Murray, 2014; Stalnaker et al., 2015). 
 
1.2 The orbitofrontal cortex 
We shall consider evidence from non-human primates and rodent studies of OFC function as 
these have contributed to the majority of experimental evidence regarding OFC function. In 
primates, regions that have been considered as OFC encompass a large number of structures 
spanning medial and lateral orbital sulci, including Walker areas 11, 12, 13, 14 and aspects of 
agranular insular cortex (Ongur & Price, 2000; Price, 2007; Rudebeck & Murray, 2011a; Sallet et 
al., 2020). In rodents the OFC also encompasses a large number of prefrontal structures along 
the entire orbital surface including medial, lateral, dorsolateral, ventral OFC, and often 
encompasses the lateral structures of the rostral agranular insular cortex (Krettek & Price, 1977; 
Price, 2006). While there is no clear consensus of homologous OFC regions between rodents 
and primates, there is good evidence to suggest that homologies can be established based on 
similar patterns of anatomical projections and functional properties (Roesch & Schoenbaum, 
2006).  
 
However, it is also becoming increasingly apparent that there is significant functional 
heterogeneity within the OFC (see Barreiros et al., 2021 this issue). Here we will discuss 
evidence spanning several OFC subregions in both primates and rodents as the OFC region as a 



whole appears to be involved in similar aspects of flexible behavioural control, and there is still 
a paucity of evidence differentiating functional differences within the OFC (for a recent review 
see Izquierdo, 2017). Indeed, models of OFC function have often accounted for experimental 
findings spanning multiple OFC subregions and species in this manner (Rudebeck & Murray, 
2014; Wilson et al., 2014), suggesting a similar organization of functional principles across OFC 
subregions. Acknowledging this important caveat, we will first focus on the function of the OFC 
as a whole, and then explore how recent data specifically from the rodent lateral OFC might be 
interpreted as a subordinate function of the OFC as a whole. 
 
2. Cardinal features of OFC dysfunction  
2.1 Reversal Learning 
Modern experimental research interest in OFC function began with studies of reversal learning 
deficits in non-human primates (Butter, 1969; Butter et al., 1963; McEnaney & Butter, 1969). 
For example, in a discriminative conditioning task, subjects first learned the relationship 
between an object that lead to reward (A+) and an object that led to no-reward (B-) (Butter, 
1969). Subjects with OFC lesions can learn to choose A+ and inhibit choices to B- at a rate 
comparable to control subjects. However, when these initial cue-reward contingencies are 
reversed (i.e. A-/B+), OFC lesions impair the ability to flexibly update behaviour and subjects 
show perseverative responding to the no longer rewarded A-. This deficit is also seen in 
extinction procedures where an initially rewarded cue (A+) is no longer rewarded (A-), i.e. 
presented in extinction. Again, OFC dysfunction results in persistent responding to A- in 
extinction (Butter, 1969; Lay et al., 2020; Panayi & Killcross, 2014).  
 
One account of these reversal learning deficits is that the OFC is necessary for representing and 
updating the value of expected outcomes formed during Pavlovian cue-outcome learning. 
Population and single-unit neuronal firing in the OFC tracks many feature of reward value during 
learning, including firing to reward predictive cues i.e. expected value (Moorman & Aston-Jones, 
2014; Roesch et al., 2010; Schoenbaum et al., 2009; Schoenbaum, Setlow, Saddoris, et al., 2003; 
Takahashi et al., 2013; van Duuren et al., 2008; van Wingerden et al., 2010). In reinforcement 
learning, the expected value accrued to a cue is thought to be fundamental to prediction errors 
(Mackintosh, 1975; Pearce & Hall, 1980; Rescorla & Wagner, 1972; Sutton & Barto, 1998), the 
difference between expected and actual value of a reward. Indeed, OFC lesions have been 
found to disrupt normal mid-brain dopaminergic prediction error signals (Takahashi et al., 
2011), which have been shown to drive learning (Nasser et al., 2017; Schultz et al., 1997; 
Steinberg et al., 2013).  
 
If the OFC represents expected value, it makes sense that OFC lesions disrupt reversal learning 
since the reversal involves a significant change in outcome contingencies i.e. an expected 
reward is now omitted (A+ -> A-). Furthermore, the OFC appears to be necessary in other 
situations where expected value is necessary for updating learning such as Pavlovian 
overexpectation, a task in which combining the expected value of multiple cues leads to 
overestimation of reward and updating expected values accordingly (Lay et al., 2020; 
Lucantonio et al., 2015; Takahashi et al., 2009). However, OFC lesions do not disrupt initial 
acquisition (A+) where expected-value information for prediction-errors is also necessary for 



learning. Therefore, the OFC cannot simply represent expected value necessary for calculating 
prediction errors, and other candidates such as the ventral striatum shall be considered 
(Khamassi et al., 2008; McDannald et al., 2011) (for a discussion of negative vs. positive 
prediction-error representations within OFC see Stalnaker et al., 2015).  
 
One proposed solution to this problem is that, in addition to expected value, cues can come to 
predict multiple aspects of reward such as their sensory specific properties e.g. flavour, texture, 
location etc.… (Delamater, 2007, 2012; Delamater & Oakeshott, 2007; Hall, 2002; Killcross & 
Blundell, 2002; Wagner & Brandon, 1989). Therefore, in a reversal task, in addition to the value 
of the outcome changing at the point of reversal (A+ -> A-; i.e. High -> Low), the identity of the 
outcome also changes (sucrose -> nothing). Indeed, there is a rich history in associative learning 
theory of reward omission being considered a unique outcome (Delamater, 2004; Urcuioli, 
2005; Westbrook & Bouton, 2010). Furthermore, expected outcome activity within the OFC 
encodes many of these aspects of the expected outcome identity in addition to value and other 
features of reward outcomes (e.g. size, preference, identity, time, location, probability, 
certainty, salience (Delamater, 2007; Ogawa et al., 2013; Padoa-Schioppa, 2009; Sadacca et al., 
2018; Stalnaker et al., 2014; Takahashi et al., 2013; Zhou et al., 2019). Therefore, if the OFC is 
necessary for representing the identity of expected outcomes, OFC lesions might disrupt only 
reversal learning and not initial acquisition because outcome identity is only relevant to task 
performance at the point of reversal (Delamater, 2007). Clearer evidence for the functional role 
of the OFC in encoding sensory-specific outcome information comes from the second cardinal 
feature of OFC dysfunction: outcome devaluation deficits. 
 
2.2 Outcome Devaluation 
The second characteristic feature of OFC dysfunction is a deficit in outcome devaluation 
procedures (Gallagher et al., 1999; Izquierdo & Murray, 2000; Murray et al., 2015; Panayi & 
Killcross, 2018; Pickens et al., 2003, 2005). In a typical Pavlovian version of the procedure, 
subjects first learn about a specific cue-outcome (CS-US) relationship e.g. a 10s light predicts the 
delivery of a lemon flavoured sucrose reward. In a subsequent second stage, the value of this 
specific outcome is devalued, often by eating the outcome to satiety (sensory specific satiety) or 
pairing consumption with illness (via injection of Lithium Chloride) to establish a specific taste-
aversion. Importantly, this new learning that the outcome is no longer valuable is done 
independently of the predictive light CS. Next, the subjects are presented with the light CS to 
assess whether the subjects will continue to respond for the outcome that has now been 
devalued. Control subjects will appropriately reduce responding to the CS predicting the now 
devalued outcome relative to a non-devalued control condition (either a different non-devalued 
group or a different non-devalued CS-US relationship within the same subject).  
 
Subjects with OFC dysfunction are significantly impaired on outcome devaluation tests and will 
continue to respond to the devalued CS as if the outcome had not been devalued. Notably, OFC 
dysfunction does not appear to disrupt the initial acquisition of the CS-US relationship, or the 
outcome devaluation manipulation (specific satiety consumption or taste-aversion learning) 
(Gallagher et al., 1999; Izquierdo & Murray, 2000; Murray et al., 2015; Panayi & Killcross, 2018; 
Pickens et al., 2003, 2005). Therefore, it is only at test when the specific identity information 



about the expected outcome is relevant to adaptive behaviour that OFC dysfunction is detected. 
This supports the theoretical account of the OFC as the neural locus of the outcome-specific 
properties of expected outcomes (Delamater, 2007; Roesch & Schoenbaum, 2006; Schoenbaum 
et al., 2009). Informally, in a devaluation test, subjects with OFC dysfunction know that the light 
predicts a rewarding outcome, but they do not know that the reward is specifically, say, the 
lemon flavoured sucrose solution (which is now no longer very rewarding).  
 
More recently, model-based reinforcement learning (RL) theories of OFC function have 
proposed a complementary class of function to the OFC: the representation or use of latent 
states (Wilson et al., 2014). In a task such as Pavlovian conditioning, where a cue predicts an 
outcome, the task can be split into distinct observable physical states e.g. “cue absent”, “cue 
present”, and “reward”. However, after learning this task there may also be learning of latent 
states which are signalled by partially observable information and recalled into working memory 
such as reinforcement history. Together, these observable and latent state representations have 
been proposed as a cognitive map of task structure (Behrens et al., 2018; Wikenheiser & 
Schoenbaum, 2016; Wilson et al., 2014). The OFC is thought to represent these latent states, 
and OFC lesions are thought to disrupt learning or behaviour that involves making inferences 
over latent states (Bradfield & Hart, 2020; Niv, 2019; Sharpe et al., 2019). Examples of OFC 
deficits in latent state inferences include extinction and reversal learning (reinforcement history 
no longer matches current reinforcement contingencies) (Boulougouris et al., 2007; Panayi & 
Killcross, 2014; Rudebeck & Murray, 2011b; Schoenbaum et al., 2002), outcome devaluation 
(the value of the predicted outcome changes)(Gallagher et al., 1999; Panayi & Killcross, 2018; 
Pickens et al., 2003, 2005; West et al., 2011), Pavlovian overexpectation (combining the 
predicted value of multiple cues)(Takahashi et al., 2009), sensory preconditioning (inferring the 
future sequence of neutral events)(Hart et al., 2020; Jones et al., 2012). This RL account of OFC 
function is the most successful theoretical framework to date in accounting for the extant OFC 
literature. Furthermore, it provides a natural extension of concepts in associative learning 
theory that have historically been applied to understanding OFC function. 
 
2.3 Acquisition learning 
We have briefly introduced the two cardinal experimental features of OFC dysfunction, reversal 
learning and outcome devaluation deficits, and how they relate to predicted outcome 
representations within the OFC. We now focus on the lack of effect of OFC dysfunction on initial 
acquisition learning in these tasks, a critical null effect that must also be considered. This null 
effect has been replicated in many studies of OFC dysfunction (Izquierdo, 2017; Murray et al., 
2007; Murray & Rudebeck, 2018; Stalnaker et al., 2015), except in tasks with complex 
probabilistic cue-outcome relationships (Walton et al., 2010), or tasks in which correct 
responding depends on the identity of the predicted outcome (McDannald et al., 2005)). For 
example, OFC lesions disrupt the ability to discriminate quickly between two options that lead 
to unique outcomes compared to a common outcome (the differential outcome effect 
(McDannald et al., 2005; Ramirez & Savage, 2007; Trapold & Overmier, 1972)). 
 
This has led to the implicit assumption that, in a simple task such as Pavlovian conditioning with 
a single deterministic cue-outcome relationship (e.g. a 10s light always predicts delivery of the 



same sucrose reward), the OFC is not involved in initial learning. Indeed, computational 
modelling of OFC dysfunction might even suggest that the representations underlying initial 
acquisition are intact in animals with OFC lesions (Wilson et al., 2014). A superficial 
interpretation of these accounts would be that the OFC is not involved in initial acquisition at all. 
It is only when some established learning needs to be modified/updated that the OFC plays a 
role in learning and behaviour.  
 
However, theoretical accounts of OFC function predict that the nature of this initial learning 
should be impoverished in some way e.g. missing sensory specific information or an incomplete 
representation of the underlying task structure (Schoenbaum et al., 2009; Wilson et al., 2014). 
Therefore, the simple modelling of no deficits during initial acquisition must be considered a 
practical simplification and not a prediction of these models. Here, we highlight that, while it is 
often considered a null behavioural result, OFC dysfunction during acquisition should disrupt 
the associatively evoked representations formed during acquisition.  
 
Unsurprisingly, there has been very little focus on the effect of OFC dysfunction on initial 
acquisition in simple single CS-US Pavlovian acquisition. One exception to this is studies of the 
role of the OFC Pavlovian sign- and goal-tracking behaviour in rodents. In a typical rodent sign-
tracking task (Boakes, 1977), a typical Pavlovian CS-US relationship is established by pairing the 
insertion of a lever with a food pellet reward. Initially, rats will approach the magazine site 
where the reward is delivered (goal-tracking), but over the course of acquisition rats will engage 
with the lever cue that signals the reward (sign-tracking). This sign-tracking behaviour has been 
conceptualized as the attribution of motivational value to the lever cue and the dominant 
influence of a feature-model-free learning system (Lesaint et al., 2014). OFC lesions and 
inactivation have been found to disrupt sign-tracking behaviour and shift responding towards 
goal-tracking (Chudasama & Robbins, 2003; Panayi & Killcross, 2018; Stringfield et al., 2017)(but 
see Chang, 2014). This suggests that OFC dysfunction can indeed disrupt some aspect of initial 
acquisition learning in simple Pavlovian CS-US procedures. 
 
Surprisingly, we have recently found that lateral OFC lesions in rats significantly disrupt simple 
single CS-US Pavlovian acquisition (Panayi & Killcross, 2020). Furthermore, whereas pre-training 
lesions significantly enhanced acquisition after extended training, post-training lesions and 
functional inactivation impaired subsequent acquisition. As discussed above, these effects are 
implied by RL models of OFC function but have not been explicitly predicted. Therefore, these 
results reveal a fundamental aspect of OFC function that must be accounted for by current RL 
model formulations. Next, we will first introduce the RL modelling framework that has been 
applied to understanding OFC function. Then we will consider what assumptions might be 
necessary to update our current models and accommodate these effects of OFC dysfunction on 
acquisition learning. Specifically, we will consider the role of the rodent lateral OFC as an 
arbitrator between model-free and model-based learning systems. 
 
3. Reinforcement learning systems 
 
3.1 Preliminary considerations 



Reinforcement learning theory. Modelling value-based decision-making and learning 
mechanisms involving the OFC’s subcircuits is often envisioned through the prism of the 
reinforcement learning (RL) theory (Sutton & Barto, 1998), in close interaction with economics 
models based on the notion of expected utility, such as in game theory (Daw & O’Doherty, 2014; 
Rustichini & Padoa-Schioppa, 2015; Schultz et al., 2017). Here, we will adopt an RL perspective 
and try to relate a series of experimental results with RL computational mechanisms. 
 
In the RL framework, the task is usually modelled as a succession of discrete Markovian states s 
taken from a finite set of states: 𝑠 ∈ 𝒮 (e.g., state s1: the agent is in the middle of the conditioning 
chamber; state s2: the agent is near the lever; state s3: the agent is near the lever and a food pellet 
has been delivered in the magazine, etc.). These states are called Markovian because we assume 
(for mathematical simplicity) that the Markov hypothesis is verified: being in a given state of the 
task is sufficient to determine what the consequence of the action will be; in other words, the 
effect of the present action does not depend on a remembered event from the past. 
Nevertheless, this does not prevent the agent from sometimes pausing its decision process about 
what action to perform in the real world in order to replay some elements in episodic memory so 
as to re-estimate an action’s value before deciding. We will also see cases where this off-line value 
update process (off-line because it occurs while the agent is momentarily suspending its 
interactions with the real-world) can be employed to mentally (virtually) simulate the anticipated 
consequences of an action (or of a sequence of actions) using a cognitive map (O’Keefe & Nadel, 
1978) in order to re-evaluate the action before deciding (Johnson & Redish, 2007). 
 
Action values. The decisions made by the agent rely on the comparison of action values, which 
represent their respective expected utilities. Specifically, the agent can choose among a finite set 
of actions 𝑎 ∈ 𝒜. The learned value Q(s,a) of an action a in a given state s informs the agent about 
how good this action was on average during past experience, and thus how desirable it is now. 
We neglect here action values estimated from instruction rather than from experience (Erev & 
Haruvy, 2016). Nevertheless, one could straightforwardly generalize the off-line value update 
process proposed here to also cover mental computations using information from task 
instructions. 
 
Reward model. In the RL context, the value is considered to reflect the agent’s sole motivation to 
try and maximize the amount of reward it can get from the environment. The reward is basically 
modelled as a positive scalar value 𝑟 ∈ ℝ( when the agent reaches a rewarding state (e.g., 
reaching the food pellet in a magazine), and zero in other states. Moreover, unless a reward 
devaluation (Dickinson & Balleine, 1995) occurs, we assume for the sake of simplicity that the 
agent’s drive for the reward is constant throughout the task. Despite such a simplicity, the same 
RL principles generalize to more complex reward functions, such as those enabling to cope with 
both reward and punishment (i.e., negative reward/positive punishment) (Palminteri et al., 2015), 
multidimensional reward functions were each dimension represents a particular need for 
homeostatic regulation (food, water, temperature) (Keramati & Gutkin, 2014; Konidaris & Barto, 
2006), and even models where some reward dimensions represent information obtained from 
the environment (Genzel et al., 2019), which roughly corresponds to the notion of epistemic value 
used in the active inference framework (Friston et al., 2017). 



  
Learning action values so as to maximize reward. Now the central question for the agent is: How 
to acquire a behaviour which enables it to maximize reward from the environment? In 
reinforcement learning models applied to neuroscience and psychology, such a behavioural 
output of the agent can either be an instrumental action (i.e., pressing a lever) in operant 
conditioning tasks (Daw et al., 2005), a Pavlovian response such as an approach in Pavlovian 
conditioning paradigms (Dayan et al., 2006; Lesaint et al., 2014), or even a movement following a 
cardinal direction in navigation experiments (Dollé et al., 2018a). In all these cases, the estimated 
state-action value Q(s,a) represents the mathematical expectation 𝔼[. ] of the sum of future 
rewards r after performing this action: 𝔼[∑ 𝛾/𝑟(𝑠/, 𝑎/)3

/45 ], where 𝛾(𝛾 < 1) is a discount factor 
which assigns weaker weights to long-term rewards than to short-term rewards. Rather than 
focusing on the immediate reward following action a, this equation takes into account long-term 
consequences of the action, which is important in tasks where a sequence of actions is required 
to get rewarded, such as in the “two-step” task (Daw et al., 2011). 
 
Learning state/stimulus values. Interestingly, RL models not only permit to learn action values, 
but also state (or stimulus) values. For instance, in the Actor-Critic model (Joel et al., 2002; 
Khamassi et al., 2005; Sutton & Barto, 1987), the reward is used to reinforce both the probability 
to perform certain actions in the Actor, and the value of states in the Critic. In the case of a 
navigation task where a state can represent a particular position within a cognitive map, a state 
value learning process can be used to model conditioned place preference (Arleo & Gerstner, 
2000). In the general case, a state does not necessarily represent an allocentric position in space, 
but can also represent any state where a meaningful event occurs for the task, such as the 
presentation of a stimulus or the delivery of a food pellet (Daw et al., 2005; Khamassi & 
Humphries, 2012; Wilson et al., 2014). While the story can become a bit more complicated when 
stimulus values are learned without relying on the notion of state (Schmajuk et al., 1996), or when 
some models learn the value of specific features of stimuli (texture, shape, colour, etc.) (Niv et 
al., 2015), in the following we will simply consider that the appearance of a stimulus triggers a 
state change (i.e., from stimulus off to stimulus on). 
 
3.2 Different value learning systems 
Importantly, in the machine learning literature, there are different possible learning strategies to 
estimate action values and state values. In particular, two famous ones, called model-based and 
model-free RL, turn out to be relevant for the study of OFC functions (Bradfield & Hart, 2020; Niv, 
2019; Sharpe et al., 2019; Wilson et al., 2014). Before diving into their description, it is important 
to arm the reader with a few precautions. As with any computationally-grounded distinction, 
there comes the risk of oversimplification (Collins & Cockburn, 2020). Indeed, considering two 
different learning mechanisms to update action values does not imply that the two underlying 
learning systems are completely disjoint nor in total competition. Instead, there can be 
cooperation between them so that a sequence of actions within the same trial can rely on the 
alternation between decisions of each one (Dollé et al., 2010); there can be mutual help between 
MB and MF processes through learning by observing each other’s output (Dollé et al., 2018a); 
there can be bootstrapping of MF learning through MB offline replay (Cazé et al., 2018; Mattar & 
Daw, 2018), etc.. Nevertheless, we argue here that the MB/MF distinction still represents a useful 



clarification of distinct computational mechanisms for value update, which generate distinct 
hypotheses and predictions that can guide future experiments. This can help to better understand 
value-based decision-making in a variety of contexts, such as economic choices (Lee et al., 2014), 
instrumental conditioning (Daw et al., 2005; Keramati et al., 2011), Pavlovian conditioning 
(Lesaint et al., 2014), or even navigation (Khamassi & Humphries, 2012; Pezzulo et al., 2013; Van 
Der Meer et al., 2012).  
 
This computational distinction also recently turned out useful in understanding how the balance 
between different learning strategies evolves through development (Decker et al., 2016), or how 
it varies between different individuals in Pavlovian conditioning paradigms, such as sign- versus 
goal-tracking behaviours (Cinotti, Marchand, et al., 2019; Lesaint et al., 2015). Finally, it is worth 
noting that this distinction is currently also a hot topic in machine learning and robotics (Khamassi, 
2020; Kober et al., 2014; Wang et al., 2019), so that upcoming breakthroughs in these disciplines 
can later on fertilize computational neuroscience models of learning and decision-making. 
 
While MB and MF learning processes have been extensively described in the literature (e.g., see 
(Daw et al., 2005; Keramati et al., 2011; Khamassi & Humphries, 2012)), here we briefly recount 
the main computational distinctions between the two so as to derive clear distinctive 
interpretations of experimental results in the next sections. 
 
Model-based learning. A model-based agent is an agent which manipulates an internal model of 
the world to make decisions (Sutton & Barto, 1998). In the case of navigation, where states 
represent different allocentric positions within the environment, such an internal model takes the 
form of a cognitive map (O’Keefe & Nadel, 1978). The cognitive map hypothesis of OFC function 
(Wilson et al., 2014) thus relies on the notion of internal models. We will now describe how 
internal models are built and manipulated by a model-based agent in the RL theory. 
 
Conventionally, this model is a set of two mathematical functions: a reward function 
𝑅(𝑠, 𝑎): (𝒮,𝒜) ⟶ ℝ, and a transition function 𝑇(𝑠, 𝑎, 𝑠′): (𝒮,𝒜, 𝒮) ⟶ [0; 1]. The former 
represents the agent’s memory of how much reward can ultimately be obtained from the 
environment when performing an action a in a state s. If we consider discrete states and actions 
(as is the case here), this can be represented as a table where each (state,action) couple has an 
associated average reward value. In practice, each (state,action) couple can be associated with a 
probability distribution over reward magnitude if the agent obtains variable quantities of reward 
(e.g., 45mg food pellet, 42mg, 46mg, 0mg, etc.). Conversely, the latter transition function 
represents the agent’s estimation of all possible transition probabilities between couples of states 
(s,s’) of the environment, given a performed action a. One can conceive this transition estimation 
as a simple count of the frequencies of each encountered (s,a,s’) transition. For instance, if the 
agent has performed 10 times action a1 (e.g., press the lever) in state s1 (e.g., being close to the 
lever with the light CS on) and observed 8 times out of 10 the state s2 where a reward has been 
delivered, while 2/10 times the agent remained in state s1 (thus no reward delivered), then we 
have the estimated transition probabilities 𝑝(𝑠@|𝑠B, 𝑎B) = 8/10, 𝑝(𝑠B|𝑠B, 𝑎B) = 2/10, and 
𝑝(𝑠G|𝑠B, 𝑎B) = 0 for all other states 𝑠G, 𝑖 ∉ {1,2}. 
 



At each timestep t, the agent can either interact with the world or use its current internal model 
of the world to infer what is its current estimation of the value QMB(s,a) of a given (state,action) 
couple. The former can be done by performing an action a in the current state s and observing 
the resulting state s’ and subsequent reward r in order to update the model (i.e., update the 
transition and reward functions). The latter can be achieved by picking a (state,action) couple 
(s,a) (for the moment, let’s say randomly, but we will see in the off-line learning subsection that 
the agent can choose to “replay” specific sequences of (state,action) couples) and, using the 
transition and reward functions then perform a value iteration (Sutton & Barto, 1998) process: 

𝑄MN
(/(B)(𝑠, 𝑎) = 𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑇(𝑠, 𝑎, 𝑠′)max

S∈𝒜
𝑄MN
(/) (𝑠T, 𝑘)VT  (1) 

 
Cognitive map theories of OFC function suggests that the OFC represents the states and the link 
between states (i.e., state transitions) that make up an internal model of the world (Wilson et al., 
2014). Thus, following OFC dysfunction, in a given state s following a given action a, an organism 
is unable to infer the identity and value of future state s’ and reward r without actually performing 
the action and observing the consequence in the environment. 
 
Model-free learning. In contrast to a model-based agent, a model-free agent does not have 
access to a model of the world. Instead, it has to iteratively update its model-free estimate of 
value function 𝑄MW(𝑠, 𝑎) through interaction with world: 

𝑄MW
(/(B)(𝑠, 𝑎) = 𝑄MW

(/) (𝑠, 𝑎) + 𝛼 Y𝑟/ + 𝛾maxS∈𝒜
𝑄MW
(/) (𝑠T, 𝑘) − 𝑄MW

(/) (𝑠, 𝑎)[ 𝜂/(𝑠) (2) 

where 𝛼 ∈ [0; 1] is the learning rate, 𝜂/(𝑠) ∈ [0; 1] is the current attention level paid to a 
particular state (or stimulus), and the term between parentheses, often written 𝛿/, is called the 
temporal-difference error in machine learning (Sutton & Barto, 1998) or the reward prediction 
error (Schultz et al., 1997) in neuroscience. The only difference between this equation and 
standard model-free reinforcement learning is the attention level. This simply captures the fact 
that the agent may pay more attention to a stimulus or to a state than to another, so that learning 
will be modulated by the attention level (Lesaint et al., 2014; Niv et al., 2015), a common 
consideration in learning models (Mackintosh, 1975; Pearce & Hall, 1980). In the extreme case, 
learning will occur only for the attended stimulus (𝜂/(𝑠) = 1) but not for unattended stimuli 
(𝜂/(𝑠G) = 0, 𝑖 ≠ 𝑠), which can occur when initial learning with stimulus s alone results in 
overshadowing when other stimuli are presented concomitantly. 
 
Decision-making. Each time the agent is in a state s and wants to decide which action a to perform 
next, no matter if the agent is model-free or model-based, the agent will have to normalize the 
values of all possible actions in this state, so that they sum to one, thus representing a probability 
distribution over actions, and so that it can then pick an action within this probability distribution. 
Practically, this action probability distribution is computed using a Boltzmann softmax function: 

𝑃(/)(𝑎|𝑠) = `abcde
(f)(g,h)

∑ `abcde
(f)(g,i)

i∈𝒜

 (3) 

where 𝑥 = 𝑀𝐵	𝑜𝑟	𝑀𝐹, and 𝛽 is the inverse temperature which tunes the random exploration 
level (Cinotti, Fresno, et al., 2019): 𝛽 close to 0 means that the action probability distribution will 
be nearly flat, so that all actions are equiprobable (exploration); when 𝛽 is high, or even tends 



towards infinity, the probability of performing the action with the highest value will be close to 1 
(exploitation). 
 
Off-line learning. In addition to learning through the direct interaction with the environment, we 
will call off-line learning any update process that occurs while the agent is immobile (e.g., quiet 
wakefulness or sleep). During such an immobility, the agent could do some mental simulations of 
action sequences that would update their model-based values through Equation 1 before moving 
to the next decision (Johnson & Redish, 2007). Alternatively, the agent may replay some 
previously performed actions (and the memorized resulting states and rewards) in order to 
consolidate memory, which can be captured by updating these actions’ model-free values 
through Equation 2 (Cazé et al., 2018). The latter is called experience replay in machine learning. 
Finally, during long periods of inactivity where the agent does not actively update action values, 
these action values may be progressively forgotten (Kato & Morita, 2016; Khamassi et al., 2015; 
Niv et al., 2015): 

𝑄MW
(/(B)(𝑠, 𝑎) = 𝑄MW

(/) (𝑠, 𝑎) + 𝜅 r𝑄MW
(5)(𝑠, 𝑎) − 𝑄MW

(/) (𝑠, 𝑎)s (4) 

where 𝑄MW
(5)(𝑠, 𝑎) is the initial value of this (state,action) couple (e.g., 0) and 𝜅 ∈ [0;1] is the 

forgetting rate. Importantly, day-to-day forgetting can be (at least partly) compensated by doing 
model-based mental simulation, so that action values are preserved. As we will argue later on, 
the increased day-to-day forgetting observed in OFC-inactivated animals (Panayi & Killcross, 
2014), may be due to the impairment of such a model-based off-line compensation mechanism. 
 
Arbitration between learning systems. A classical way of arbitrating between MB and MF 
learning systems is to orchestrate an uncertainty-based competition (Daw et al., 2005; O’Doherty 
et al., 2020): the most certain system is considered the most reliable and makes decisions, while 
both can learn from the outcome of the other system’s decisions (Dollé et al., 2010). When the 
learning systems are implemented as approximate Bayesian learners, the imprecision (or spread) 
of the distributions over estimated action values can be used as a marker of uncertainty (Daw et 
al., 2005; Keramati et al., 2011). Under some conditions, alternative measures of uncertainty can 
give similar proxies to uncertainty at a lower computational expense, such as squared prediction 
errors (Lee et al., 2014), absolute variations of action values (Cazé et al., 2018), or even the 
systems’ relative choice uncertainty in simple stationary tasks (Viejo et al., 2015). Finally, in some 
models arbitration is performed by a third system, called the meta-controller, which learns 
through reinforcement which system to select in each state of the environment (Dollé et al., 2008, 
2010, 2018b). Here, because our goal is not to propose a new model but rather to illustrate how 
impaired arbitration may mimic some experimental results under OFC inactivation, we will show 
model simulations using squared reward prediction errors to estimate each system’s reliability 
(Lee et al., 2014):  

𝑅a
(/(B) = (1 − 𝛼)𝑅a

(/) + 𝛼 r1 − tfu

tvhe
us (5) 

where 𝑥 = 𝑀𝐵	𝑜𝑟	𝑀𝐹, 𝑅a
(/) is the reliability of system 𝑥, 𝛼 ∈ [0; 1] is the same learning rate as 

the one used in Equation 2, and 𝛿wxa is the maximum possible value of 𝛿/ in the task. The meta-
controller then decides which system 𝑒 ∈ ℰ (e for “expert” (Caluwaerts et al., 2012; O’Doherty et 
al., 2020)) to rely on for the next action choice by comparing systems’ uncertainty:  



𝑃(/)(𝑒|𝑠) = `ab{|e
(f)

∑ `ab{|i
(f)

i∈ℰ

 (6) 

where 𝜆 is the meta-controller’s inverse temperature. 
 
Random exploration system. Importantly, as in Dollé et al. (2018b), here the meta-controller 
does not choose between two systems only (MB or MF), but rather between three systems (MB, 
MF, EXP), where EXP is a random exploration generator. This has the advantages of avoiding the 
need to accumulate random exploration in both MB and MF system, and to produce clear 
decisions to explore rather than simply relying on an uncontrolled decisional noise. In any state 
of the tasks considered here, because we will always consider two alternative actions (magazine 
entry versus not moving), the EXP system always outputs a flat [0.5 0.5] action probability 
distribution. 
 
Modeling impaired arbitration due to OFC lesion/inactivation. In order to test the hypothesis 
that OFC lesion/inactivation could result in impaired arbitration between MB, MF and EXP 
systems, in the model simulations presented in this paper we test a simple way of perturbating 
arbitration. When the OFC lesion/inactivation occurs before the beginning of the task, we 
consider that arbitration has not even been initiated for this task, so that a single learning system 
is chosen. Because we are agnostic about whether this single learning system would be MF or MB 
after an OFC lesion, we will show simulations of both alternatives in comparison to normal 
arbitration. In contrast, when the OFC lesion/arbitration occurs in the middle of the task, we 
consider that the arbitration has been initialised and used for this task. In that case, at the very 
moment when lesion/arbitration occurs, the system currently considered as the winning system 
by the arbitration mechanism sees its reliability decrease, while the two other systems’ reliability 
increase until they are all selected 1/3 of the time.  
 
In the following sections we will present four experimental findings from rodent lateral OFC that 
do not fit a priori model predictions derived from current MB cognitive map theories of overall 
OFC function (Wilson et al., 2014). We will then demonstrate how some of the RL model 
modifications we have described i.e. arbitration between learning systems and off-line learning, 
can account for these experimental findings. The code for our model simulations is available at 
https://github.com/MehdiKhamassi/OFC-MBMFarbitrationModel . 
 
4. Experiment 1: Pre-training lateral OFC lesions enhance simple Pavlovian acquisition 
4.1 Experimental results 
While OFC lesions in rodents have often been reported to have no effect on simple Pavlovian 
acquisition, these studies have often stopped initial acquisition training after approximately 
around 9-12 days (Burke et al., 2008; Gallagher et al., 1999; McDannald et al., 2011; Ostlund & 
Balleine, 2007; Panayi & Killcross, 2018), and proceed with an experimental manipulation e.g. 
devaluation. In this initial acquisition period, it is not always clear that behaviour has reached 
asymptote. We have recently found that after training rats for 21 days to reach a stable 
behavioural asymptote, lateral OFC lesions significantly enhanced performance relative to 
sham-operated control animals (Figure 1A). Consistent with previous reports, there were no 



significant differences between groups over the first 9-12 days acquisition. These findings are 
not what might be predicted by current theories of OFC function (Delamater, 2007; Rudebeck & 
Murray, 2014; Wilson et al., 2014). Specifically, the experimental protocol involved a simple 
single auditory CS always followed by a pellet US, this CS-US contingency was stable, the value 
of the US did not change, and the identity of the predicted outcome was irrelevant to task 
performance. 
  



 

 
Figure 1. Pre-training lateral OFC lesions enhance simple Pavlovian acquisition. (A) Acquisition 
to a simple single Pavlovian CS-US relationship. Experimental parameters were a 15s auditory 
clicker CS immediately followed by the delivery of a grain pellet into a magazine receptacle, a 
total of 16 CS presentations per session with a variable inter-trial interval averaging 90s. 
Responding presented as CS-PreCS magazine frequency, i.e. rate of anticipatory approach to the 
magazine during the CS period minus the immediately preceding PreCS baseline period. Lateral 
OFC lesions did not significantly affect the rate of acquisition over the first 9 days (Blocks 1-3), 
but were significantly higher than sham control rats from days 10-21 (Blocks 4-7). Error bars 
represent ±SEM. Adapted from Figure 1 in Panayi & Killcross (2020) (B) Model simulation 
results. The top part shows the trial-by-trial evolution of the probability of selection of the 
model-based (MB) system, the model-free (MF) system, and the random exploration (EXP) 
system, when the arbitration mechanism is spared (‘sham’ model). The bottom part shows the 
probability of magazine entry in the sham model compared to those produced by MB-alone or 
MF-alone variants of the model. Both variants roughly reproduce the experimental results in 
(A). 
 



4.2 Model simulation results 
To account for this unexpected effect of OFC lesions on acquisition we explored a model where 
OFC function impairment is assumed to be mediated by an impaired arbitration mechanism 
between Pavlovian model-based (MB) reinforcement learning, Pavlovian model-free (MF) 
reinforcement learning, and a random exploration (EXP) system. The key hypothesis here is that 
a pre-training perturbation of the arbitration mechanism results in a single Pavlovian learning 
system operating during the whole task, since the arbitration mechanism is already impaired 
even before the very first decision made by the animal. In other words, we assume that the OFC 
lesion makes it unable to adaptively disinhibit particular systems during the task, so that the 
behaviour is controlled by a single learning process. Because we are agnostic about whether this 
single learning system would be MF or MB after an OFC lesion, we simulated both alternatives 
in comparison to normal arbitration. Figure 1B shows the simulation results for the three 
variants of the model. The top part shows how a normal arbitration mechanism (‘sham’ model) 
initially relies on the three systems (MB, MF and EXP), then gives dominance to the MB one for 
initial learning, while the MF system progressively increase its contribution as its performance 
slowly improves. Because the proposed arbitration mechanism slowly decreases the 
contribution of EXP, but never completely gives it up, the resulting performance curve 
(probability of magazine entry, at the bottom of Figure 1B) increases during about 50 trials and 
then converges to an asymptote around 0.95. This means that the simulated rats still 
occasionally explore after learning. In contrast, when the arbitration mechanism is blocked, the 
model learns with a single system (either MF or MB) which reaches an asymptote at 1 (optimal 
performance). Interestingly, the MB system alone learns faster than all model variants, because 
it is not perturbed by any competition with other systems. Strikingly, an MF system alone learns 
at a non-distinguishable speed to the ‘sham’ model but then stabilizes at a higher asymptote, 
similar to the experimental results (Figure 1A). The MF system here learns slower than the MB 
system because of (1) a lower learning rate, and (2) the absence of the MB system to 
compensate for day-to-day forgetting through MB-driven off-line learning.  
 
It is of note that here an MF-alone model is compatible with both the idea that OFC lesion 
impaired the arbitration mechanism or that it impaired the MB system, as in previous theories 
(Wilson et al., 2014). Moreover, it is interesting that in such a simple task, the results could also 
be accounted for by a spared MB system learning the task alone. In the next experiments, we 
will see that transiently impairing the arbitration mechanism after initial learning results in non-
trivial arbitration dynamics that can help capture other experimental data. 
 
5. Experiment 2: Post-training lateral OFC inactivation disrupts simple Pavlovian acquisition 
5.1 Experimental results 
Given that pre-training OFC lesions enhanced acquisition behaviour, we expected that post-
training OFC dysfunction would also enhance acquisition. Surprisingly, post-training OFC 
inactivation (Figure 2A) and lesions (Panayi & Killcross, 2020) significantly impaired acquisition. 
Specifically, whereas control animals continued to acquire responding, responding did not 
change when OFC was inactivated (Session 12-15). Finally, when OFC function is returned 
(Session 16-17), impaired responding is recovered and no different to the control group. This 
might suggest that OFC inactivation may have disrupted the behavioural expression but not 



underlying learning during acquisition in this task. The opposing effects of pre- and post-training 
OFC dysfunction might simply reflect differences in compensatory function of other neural 
regions (in depth discussion of alternative explanations are considered in Panayi & Killcross, 
2020). The computational results presented hereafter suggest that this can also be interpreted 
in terms of a transiently disrupted arbitration mechanism while learning in the MB system was 
spared. 



 
 
Figure 2. Post-training lateral OFC inactivation disrupts simple Pavlovian acquisition. (A) 
Acquisition to a simple single Pavlovian CS-US relationship identical to parameters in Figure 1. 
After 9 days of acquisition (Session 1-9), cannulae targeting lateral OFC were implanted, and 
animals were given brief re-training (2 days) following post-operative recovery (Post). Next, 
acquisition was tested following OFC inactivation (Session 12-15) and return of function (no 
infusions; Session 16-17). Control animals (Saline) continued to acquire responding, whereas 
OFC inactivation prevented further increases in responding (Session 12-15). The effect of OFC 
inactivation was no longer detected when OFC function was returned (Session 16-17). Error bars 
represent ±SEM. Adapted from Figure 2 in Panayi & Killcross (Panayi & Killcross, 2020)  (B) 
Model simulation results. The top part shows the trial-by-trial evolution of the probability of 
selection of the model-based (MB) system, the model-free (MF) system, and the random 
exploration (EXP) system, when the arbitration mechanism is spared (‘sham’ model). The 
bottom part compares the probability of magazine entry in the sham model compared to a 
variant where the arbitration mechanism is perturbed during about 100 trial (i.e., inhibition of 
MB and MF systems’ output while increasing random exploration). 
 
5.2 Model simulation results 
To account for the disruption of acquisition following OFC dysfunction we explored two variants 
of the model: one in which the arbitration mechanism and all Pavlovian learning systems are 



intact (‘saline’ model), and one in which the arbitration mechanism is perturbed during about 
100 trials and then restored, while all individual Pavlovian learning systems have been 
preserved (‘muscimol’ model). Figure 2B shows the simulation results. Like in Experiment 1, the 
sham model quickly leaves the control over behaviour most of the time to the MB system, while 
EXP slowly decreases, and MF slowly improves. When the arbitration mechanism is perturbed, 
because its operations are required to maintain the right proportions of MB, MF and EXP (in 
contrast to the pre-training situation of Experiment 1), a single system cannot immediately take 
over. In contrast, we assume that the infusion of muscimol is here progressively pushing the 
model to inhibit the currently winning system’s output (here MB), thus eventually relying 
equally on all systems. Moreover, because the MB system is now less often selected, it is not 
able to compensate for day-to-day forgetting in the MF system through MB-driven off-line 
learning. In the present simulations, we voluntarily used a larger forgetting rate than in 
Experiment 1 (but the same as in Experiments 3 and 4) in order to better illustrate the impact 
when the OFC is inactivated. As a consequence, both the saline and muscimol model show a 
slower initial acquisition, due to day-to-day forgetting, until the MB system becomes 
preponderant. Strikingly, during simulated muscimol infusion, the number of magazine entries 
produced by the model decreases, like in the experimental data, because of the increased 
contribution of the MF system (which now forgets more) and the EXP system (which explores 
more). When the infusion stops, because the MB systems has been spared, the performance 
can instantaneously be restored, again like in the experimental data. 
 
6. Experiment 3: Lateral OFC inactivation disrupts simple Pavlovian extinction 
6.1 Experimental results 
The observation of impaired Pavlovian acquisition are consistent with reports of impaired 
extinction in reversal learning tasks (Izquierdo, 2017), and simple Pavlovian extinction 
procedures (Lay et al., 2020; Panayi & Killcross, 2014; Zimmermann et al., 2018) following OFC 
dysfunction. We have previously shown that OFC inactivation disrupts extinction learning over 
multiple sessions, however within each extinction session OFC inactivation did not prevent 
extinction behaviour (i.e. decreasing responding). Indeed, within-session extinction appeared 
more rapidly under OFC inactivation (Figure 3A). This demonstrates clear behavioural flexibility 
within a session, but an inability to update or consolidate behaviour and/or learning between-
sessions. Only after OFC function was returned were OFC inactivated animals able to 
demonstrate appropriate extinction learning between sessions. Notably, current RL models of 
OFC function predict that both between- and within-session extinction should be impaired, with 
performance eventually extinguishing over trials at a much slower rate than controls (Wilson et 
al., 2014). Therefore, it is important to reconcile these findings within an RL model of OFC 
function. 
  



 
Figure 3. Lateral OFC inactivation disrupts between-session Pavlovian extinction. (A) 
Acquisition and then extinction of a simple single Pavlovian CS-US relationship. Acquisition 
parameters were identical to those described in Figure 2; after 9 days of acquisition, cannulae 
targeting lateral OFC were implanted, and animals were given brief re-training (2 days) following 
post-operative recovery (Acq). Next, animals received 6 days of extinction with a drug infusion 
prior to the first 3 days (Infusion; Day 1-3) but not the last 3 days (No Infusion; Day 4-6). OFC 
inactivation impaired between-session extinction (Days 1-3), but not within-session extinction. 
Error bars represent ±SEM. Adapted from Figure 2 in Panayi & Killcross, 2014). (B) Model 
simulation results. The top part shows the trial-by-trial evolution of the probability of selection 
of the model-based (MB) system, the model-free (MF) system, and the random exploration 
(EXP) system, when the arbitration mechanism is spared (‘saline’ model; dashed lines), versus 
when it is perturbed (‘muscimol’ model; plain lines). The bottom part shows the difference in 
the within- and between-session dynamics of extinction between the two variants of the model. 
 
6.2 Model simulation results 
To account for the disruption of between-session extinction following OFC inactivation we 
explored again a model where the post-training arbitration status is perturbed, inhibiting the 
currently winning system (here the MB system is largely dominant, which accounts for the fast 
behavioural extinction during the very first day of infusion) and making behaviour more 
random. It is important to note that here, if the perturbation of the arbitration had completely 
inhibited both MB and MF systems while favouring only random exploration, a sharp 



degradation of performance would have been produced during days 2 to 4. This is because a 
modelled pure random exploration would have had a probability 0.5 to enter the magazine. In 
contrast, because in this paper we modelled post-training OFC lesion/inactivation as resulting in 
equiprobable selection of MB, MF and EXP, the degradation of performance is only mild (Figure 
3B), consistent with the experimental results. 
 
As in the previous experiment, the perturbed arbitration mechanism does not allow the OFC to 
trigger timely off-line MB inference to compensate for the forgetting of action values (Equation 
4) which occurs overnight in the MF system. This enables the model to capture the day-to-day 
(between sessions) inability of rats to consolidate the extinguished behaviour. Nevertheless, 
because the disturbed arbitration mechanism decreases the contribution of MB, while still 
relying on it 1/3 of the time during task performance, rapid within session extinction is observed 
during days 2, 3 and 4 in the simulation results (Figure 3B). 
 
Finally, when the infusion stops, the arbitration returns to normal, favouring the MB system 
again, which promotes nearly full extinction as observed in the experimental results. 
 
7. Experiment 4: Lateral OFC inactivation during acquisition does not impair subsequent 
associative blocking 
7.1 Experimental results 
One possible account of impaired simple acquisition following OFC inactivation (Figure 2) is that 
learning about the CS-US relationship has been disrupted. To test this possibility, we employed a 
Pavlovian associative blocking procedure, a procedure commonly used to test prediction error 
learning (Nasser et al., 2017; Steinberg et al., 2013). In a blocking experiment (Figure 4A), first 
an animal is trained such that a cue (cue A) predicts an outcome (pellet). Next, A is presented in 
compound with a novel cue (cue B) which also leads to the same pellet outcome. If the animal 
has learned that cue A sufficiently predicts the pellet outcome already, then very little is learned 
about cue B i.e. learning about cue A blocks subsequent learning about cue B (Kamin, 1969; 
Rescorla & Wagner, 1972). However, if learning about cue A is insufficient, then learning about 
cue B should not be blocked. We predicted that if OFC inactivation is disrupting learning, then 
OFC inactivation during initial learning about cue A should disrupt the blocking effect. 
We found that while OFC inactivation during acquisition of cue A significantly disrupted 
behaviour (Figure 4B), cue A was still able to effectively block learning to cue B (Figure 4D). This 
suggests that the impaired acquisition behaviour observed following OFC inactivation did not 
reflect impaired learning about the CS-US relationship necessary for associative blocking. 
  



 



Figure 4. Impaired Pavlovian acquisition behaviour following lateral OFC inactivation does not 
disrupt subsequent associative blocking. The effect of OFC inactivation during acquisition on 
subsequent learning in a Pavlovian blocking design. (A) The design used to achieve blocking of 
learning to cue B during stage 2 by pre-training cue A in stage 1. OFC infusions of saline or 
muscimol were performed during stage 1 after the first 4 days of initial acquisition to cue A. 
Cues A and C were always visual cues, either darkness caused by extinguishing the houselight or 
flashing panel lights (5Hz). Cues B and D were always auditory cues, either an 80dB white noise 
or a 5Hz train of clicks. All cues lasted 10s, and reward was always a single food pellet. Cannulae 
placements depicted in Figure 3-figure supplement 3. (B) Pavlovian acquisition to cue A over 10 
days, with intact OFC (days 1-4) and following infusion of saline or muscimol to functionally 
inactivate the OFC (days 5-10). Muscimol infusions significantly suppressed responding to cue A. 
(C) Performance during stage 2 of blocking to cue compounds AB and CD in the saline (left) and 
muscimol (right) infusion groups. A focused analysis of responding within Day 12 is presented in 
Figure 3-figure supplement 4. (D) Responding during an extinction test to “blocked” cue B and 
the overshadowing control cue D. Significantly reduced responding to cue B relative to cue D 
indicates that learning about cue A effectively blocked subsequent learning to cue B in both the 
muscimol and saline groups. Pavlovian responding quantified by the rate of discriminative 
responding (CS-PreCS). Error bars depict ± SEM. Adapted from Figure 3 in Panayi & Killcross 
(2020) (E) Model simulation results. The top part shows the trial-by-trial evolution of the 
probability of selection of the model-based (MB) system, the model-free (MF) system, and the 
random exploration (EXP) system, when the arbitration mechanism is spared (‘saline’ model; 
dashed lines), versus when it is perturbed (‘muscimol’ model; plain lines). The bottom panel 
shows the resulting probability of magazine entries in both models during the different phases 
of the task. 
 
7.2 Model simulation results 
To account for the dissociation between Pavlovian acquisition and associative blocking following 
OFC inactivation we again simulated the same model where we assumed that the arbitration 
mechanism was perturbed by the muscimol injections. As a consequence, the three systems 
(MB, MF, and EXP) become equally selected and so that the model is unable to compensate for 
day-to-day forgetting with off-line MB inference (as in previous experiments).  
 
As in the previous simulated experiments, the model starts by relying more and more on the MB 
system, which correctly learns to enter magazine in presence of stimulus A and maintains a high 
level of responding during days 5-10 (Figure 4E).  In contrast, the `muscimol’ sharply decreases 
its probability of magazine entry during days 5-10. This is both due to an increased contribution 
of the EXP system which selects actions randomly, and to the reduced contribution of the MB 
system, which results in reduced MB compensation for MF forgetting. Thus, the CS value learnt 
by the MF system is decreased. As a consequence, the ‘muscimol’ model starts Day 12 with 
decreased responding to the AB compound, compared to the ‘saline’ model in which the 
arbitration mechanism is spared. Moreover, the decreased CS value in the MF system at the 
beginning of Day 12 leads to high positive prediction errors when reward is obtained, so that 
the MF system increases the value associated to stimulus B. In parallel, the contribution of the 
MB system makes learning rapid so that the ‘muscimol’ model does not respond less to AB 



anymore on Day 14, as in the experimental results (Figure 4C). Importantly, this high 
contribution of the MB system, where cue B is neglected, drastically reduces the influence of 
the small value acquired by B in the MF system during the last Test phase. Thus, cue B appears 
as (at least partially) blocked, as in the experimental results (Figure 4D). Here, the way states are 
defined in the model may potentially play an important role in enabling to replicate or not the 
blocking of B. Because A was presented during a long series of days in this context, and because 
the introduction of B in compound with A did not change the reward schedule, the model 
considered that the same state is governing the task in Stages 1 and 2, as in latent cause 
theories of conditioning (Gershman et al., 2010). Because this state is associated to a high value 
of cue A in the MB system, B is blocked. 
 
An important difference between the model simulations and the experimental results is the 
probability of magazine entry in response to CD during Stage 2 (Figure 4C vs. 4E). Indeed, the 
prior presentation of D without reward during Day 11 resulted in initial low responding of the 
model during Day 12. Nevertheless, the already high contribution of the MB system during 
Stage 2 compared to the first four days makes acquisition faster, so that the probability of 
magazine entry on Day 14 is not different between AB and CD. Nevertheless, the experimental 
results show an already high level of responding to CD on Day 12 (Figure 4C). This could be due 
both to an increase in responding because of the joint presentation of two stimuli (as the level is 
also high for AB on Day 12) and to some generalization of learning that any stimulus might mean 
reward, especially between cues A and C (both visual cues, whereas B and D are auditory). 
Nevertheless, for sake of parsimony, we cannot account for this phenomenon because we 
rather chose to simulate exactly the same model between the four Experiments. This leaves 
room to improve the model in the future. 
 
 
8. Discussion 
 
Here we briefly reviewed the developments and changes in our understanding of OFC function 
which have closely followed developments in our understanding of associative learning theory 
and refined further by recent progress in RL modelling. OFC dysfunction has been successfully 
modelled as an impairment in MB inferences resulting from disruption of the formation of 
latent states necessary for a detailed cognitive map of task space (Wilson et al., 2014). While 
this function effectively accounts for diverse experimental findings relating to the overall 
function of the OFC, we have recently found that dysfunction specific to the rodent lateral OFC 
causes a complex pattern of deficits in simple acquisition and extinction learning that is not 
clearly predicted by these RL theories (Panayi & Killcross, 2014, 2020). Here we propose 
modifications to these RL models that can account for these findings. Indeed, there is an 
emerging understanding in the field that our current models of the OFC need to be modified 
and refined to account for a more nuanced role for the OFC in MB learning (Gardner & 
Schoenbaum, 2020). Specifically, we suggest that the role of the rodent lateral OFC in the 
formation and use of MB cognitive maps of task space is as an arbitrator between MB and MF 
learning systems.  
 



During initial task learning, an organism cannot know whether the task involves complex or 
simple stimulus-action-outcome contingencies. However, as the organism gains experience, 
particularly in a simple deterministic environment, an optimal trade-off between more complex 
(MB) and simple (MF) learning systems is likely to develop i.e. the optimal relative dominance of 
these systems will depend upon the complexity of task demands. Our simulations suggest that 
the role of the lateral OFC in initial acquisition can be modelled as an arbitrator of exploration 
between these systems that normally develops over the course of learning. We also consider a 
role for the rodent lateral OFC in consolidation via updating of MF values through MB inferences 
offline between learning events-sessions. These modifications make explicit the implicit 
understanding that there are numerous psychological processes that underlie even simple 
learning procedures that are often implicitly acknowledged by researchers. Indeed, this is 
reflected in the models we have considered by the surprisingly strong MB contributions to 
behaviour in simple Pavlovian tasks, consistent with other RL models of Pavlovian approach 
behaviour (Dayan & Berridge, 2014; Lesaint et al., 2014; Zhang et al., 2009). 
 
In our models we suggest that the OFC is indeed critical for MB inferences and the construction 
of a cognitive map (Bradfield & Hart, 2020; Niv, 2019; Sharpe et al., 2019; Wilson et al., 2014), 
however at the level of the rodent lateral OFC this is achieved by arbitration between MB and 
MF system control during learning. Therefore, the effects of lateral OFC dysfunction are 
predicted to interact with the underlying psychological demands and complexity of a task. For 
example, in a simple Pavlovian acquisition design, biasing learning systems from the start of 
training in favour of either MB or MF results in one system dominating learning and behaviour 
and enhancing Pavlovian approach. However, once arbitration between MB and MF has 
reached an equilibrium following initial learning, post-training OFC inactivation can significantly 
disrupt this equilibrium and reinstate behaviours that are no longer appropriate. A role for the 
lateral OFC in arbitration might also account for the high degree of diversity of task signals 
represented within the lateral OFC, a common target of rodent electrophysiological recordings, 
representing aspects of MB and MF states, actions, and values (Ogawa et al., 2013; Padoa-
Schioppa, 2009; Sadacca et al., 2018; Stalnaker et al., 2014; Takahashi et al., 2013; Zhou et al., 
2019). 
 
It is also important to highlight that the role of the rodent lateral OFC in the arbitration between 
learning systems is restricted to Pavlovian (cue-outcome) and not instrumental (action-
outcome) learning. The distinction between instrumental and Pavlovian learning systems is 
often not considered in within RL theories but can be a critical psychological distinction. For 
example, lateral OFC lesions significantly impair Pavlovian outcome devaluation, but do not 
appear to disrupt instrumental outcome devaluation (Ostlund & Balleine, 2007; Panayi & 
Killcross, 2018; Pickens et al., 2005), a finding that cannot be reconciled without considering this 
distinction. In contrast, rodent medial OFC dysfunction significantly disrupts instrumental but 
not Pavlovian outcome devaluation procedures (Bradfield et al., 2015; Gardner et al., 2018). 
Similarly, OFC lesions impair the ability to perform intradimensional shifts (J. Kim & Ragozzino, 
2005; McAlonan & Brown, 2003), as opposed to extradimensional shifts which involve the 
prelimbic cortex (Joel et al., 1997; Birrell and Brown, 2000; Ragozzino et al., 2003). This 
highlights that multiple regions of the prefrontal cortex may be required for different types of 



rule shifts (Haddon & Killcross, 2006; Sharpe & Killcross, 2018). Thus, in addition to the 
frontopolar cortex and the inferior lateral prefrontal cortex which have been found to play a 
role in MB-MF arbitration during instrumental tasks in humans (D. Kim et al., 2019; Lee et al., 
2014), here we further suggest that the lateral OFC may also play an important role in the MB-
MF arbitration when it comes to the Pavlovian domain. 
 
The proposed model of arbitration between learning systems within the rodent lateral OFC is 
consistent with proposals that the OFC as a whole is critical for MB learning (Niv, 2019; Wilson 
et al., 2014). There is emerging evidence that the OFC is comprised of a number of functionally 
heterogeneous subregions (Barreiros et al., 2021; Bradfield & Hart, 2020; Murray et al., 2015; 
Panayi & Killcross, 2018; Sallet et al., 2020). One possibility is that the lateral OFC coordinates 
sources of Pavlovian MB and MF information from adjacent OFC subregions via dense intra-OFC 
reciprocal projections (Barreiros et al., 2020). Possible sources of task state information might 
also come via indirect hippocampal inputs to OFC, which have been implicated in the 
representation of MB task state space structures (Wikenheiser et al., 2017; Wikenheiser & 
Schoenbaum, 2016), and reciprocal connections with the basolateral amygdala a region critical 
to OFC-dependent behaviours such as reversal learning and outcome devaluation (Chau et al., 
2015; Pickens et al., 2003; Rudebeck & Murray, 2008; Schoenbaum et al., 2000; Stalnaker et al., 
2007; Stolyarova & Izquierdo, 2017). Additionally, the submedius region of the thalamus is a 
defining anatomical input that topographically innervates all OFC subregions in the rodent 
(Barreiros et al., 2020; Kuramoto et al., 2017; Reep et al., 1996; Tang et al., 2009). While there is 
still little work on the function of the submedius nucleus of the thalamus, this region is 
necessary for flexibly updating Pavlovian cue-outcome contingencies (Alcaraz et al., 2015; 
Fresno et al., 2019) and may be a key pathway conveying MB and MF task information across 
the OFC. Neurochemically, strong noradrenergic and serotonergic innervation of the OFC are 
also likely to be provide a mechanism for arbitration between MB and MF learning systems 
(Cerpa et al., 2019, 2020; Miyazaki et al., 2020; Walker et al., 2009). Finally, at the level of 
behavioural output, arbitration between learning systems within the OFC would be able to exert 
control through topographical projections to the striatum (Heilbronner et al., 2016; Schilman et 
al., 2008), a region which might also allow for interactions with MB and MF learning systems 
associated with instrumental learning tasks (e.g. Daw et al., 2005). 
 
There has been an important focus recently on refining anatomical specificity when exploring 
medial prefrontal and orbitofrontal cortical function (Barreiros et al., 2021; Coutureau & 
Killcross, 2003; Killcross & Coutureau, 2003; Laubach et al., 2018). This has been driven by an 
emerging picture of functional heterogeneity within these cortical subregions. However, while 
the emerging picture shows functional heterogeneity and dissociations in anatomically adjacent 
substructures (Bradfield & Hart, 2020; Izquierdo, 2017; Panayi & Killcross, 2018), there is also a 
remarkable consistency of overall functional purpose tying these regions together (Roesch & 
Schoenbaum, 2006; Rudebeck & Murray, 2011a; Wilson et al., 2014). Here we suggest that in 
parallel to the emerging experimental literature, we must consider refined models of OFC 
subregion functions that account for these unique heterogeneous results, but also maintain a 
coherent computational role across the entire OFC. 
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