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Abstract14

Inspired by a width invariant defined on permutations by Guillemot and Marx [SODA ’14], we15

introduce the notion of twin-width on graphs and on matrices. Proper minor-closed classes, bounded16

rank-width graphs, map graphs, Kt-free unit d-dimensional ball graphs, posets with antichains17

of bounded size, and proper subclasses of dimension-2 posets all have bounded twin-width. On18

all these classes (except map graphs without geometric embedding) we show how to compute in19

polynomial time a sequence of d-contractions, witness that the twin-width is at most d. We show20

that FO model checking, that is deciding if a given first-order formula φ evaluates to true for a21

given binary structure G on a domain D, is FPT in |φ| on classes of bounded twin-width, provided22

the witness is given. More precisely, being given a d-contraction sequence for G, our algorithm23

runs in time f(d, |φ|) · |D| where f is a computable but non-elementary function. We also prove24

that bounded twin-width is preserved by FO interpretations and transductions (allowing operations25

such as squaring or complementing a graph). This unifies and significantly extends the knowledge26

on fixed-parameter tractability of FO model checking on non-monotone classes, such as the FPT27

algorithm on bounded-width posets by Gajarský et al. [FOCS ’15].28

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of29

computation → Fixed parameter tractability30

Keywords and phrases Twin-width, FO model checking, fixed-parameter tractability31

1 Introduction32

Measuring how complex a class of structures is often depends on the context. Complexity33

can be related to algorithms (are computations easier on the class?), counting (how many34

structures exist per slice of the class?), size (can structures be encoded in a compact way?),35

decomposition (can structures be built with easy operations?), and so on. The most successful36

and central complexity invariants like treewidth and VC-dimension tick many of these boxes37

and, as such, stand as cornerstone notions in both discrete mathematics and computer38

science.39

In 2014, Guillemot and Marx [22] solved a long-standing question by showing that40

detecting a fixed pattern in some input permutation can be done in linear time. This result41

came as a surprise: Many researchers thought the problem was W[1]-hard since all known42

techniques had failed so far. In their paper, Guillemot and Marx observed that their proof43

introduces a parameter and a dynamic programming scheme of a new kind and wondered44

whether a graph-theoretic generalization of their permutation parameter could exist.45
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2 Twin-width I: tractable FO model checking

The starting point of our paper is to answer that question positively, by generalizing their46

width parameter to graphs and even matrices. This new notion, dubbed twin-width, proves47

remarkably well connected to other areas of computer science, logic, and combinatorics. We48

will show that graphs of bounded twin-width define a very natural class with respect to49

computational complexity (FO model checking is linear), to model theory (they are stable50

under first-order interpretations), to enumerative combinatorics (they form small classes [4]),51

and to decomposition methods (as a generalization of both proper minor-closed and bounded52

rank-width/clique-width classes).53

1.1 A dynamic generalization of cographs54

When it comes to graph decompositions, arguably one of the simplest graph classes is the55

class of cographs. Starting from a single vertex, cographs can be built by iterating disjoint56

unions and complete sums. Another way to decompose cographs is to observe that they57

always contain twins, that is two vertices u and v with the same neighborhood outside {u, v}58

(hence contracting u, v is equivalent to deleting u). Cographs are then exactly graphs which59

can be contracted to a single vertex by iterating contractions of twins. Generalizing the60

decomposition by allowing more complex bipartitions provides the celebrated notions of61

clique-width and rank-width, which extends treewidth to dense graphs. However, bounded62

rank-width do not capture simple graphs such as unit interval graphs which have a simple63

linear structure, and allow polynomial-time algorithms for various problems. Also, bounded64

rank-width does not capture large 2-dimensional grids, on which we know how to design65

FPT algorithms.66

The goal of this paper is to propose a width parameter which is not only bounded on67

d-dimensional grids, proper minor-closed classes and bounded rank-width graphs, but also68

provides a very versatile and simple scheme which can be applied to many structures, for69

instance, patterns of permutations, hypergraphs, and posets. The idea is very simple: a70

graph has bounded twin-width if it can be iteratively contracted to a singleton, where each71

contracted pair consists of near-twins (two vertices whose neighborhoods differ only on a72

bounded number of elements). The crucial ingredient to add to this simplified picture is to73

keep track of the errors with another type of edges, that we call red edges, and to require74

that the degree in red edges remains bounded by a threshold, say d.75

In a nutshell (a more formal definition will be given in Section 3), we consider a sequence76

of graphs Gn, Gn−1, . . . , G2, G1, where Gn is the original graph G, G1 is the one-vertex77

graph, Gi has i vertices, and Gi−1 is obtained from Gi by performing a single contraction78

of two (non-necessarily adjacent) vertices. For every vertex u ∈ V (Gi), let us denote by79

u(G) the vertices of G which have been contracted to u along the sequence Gn, . . . , Gi. Two80

disjoint sets of vertices are homogeneous if, between them, there are either all possible edges81

or no edge at all. The red edges mentioned previously consist of all pairs uv of vertices of82

Gi such that u(G) and v(G) are not homogeneous in G. If the red degree of every Gi is at83

most d, then Gn, Gn−1, . . . , G2, G1 is called a sequence of d-contractions, or d-sequence. The84

twin-width of G is the minimum d for which there exists a sequence of d-contractions. Hence,85

graphs of twin-width 0 are exactly the cographs (since a red edge never appears along the86

sequence when contracting twins). See Figure 1 for an illustration of a 2-sequence.87

This basic definition proves to be extremely rich. The main algorithmic application88

presented in this paper is the design of a linear-time FPT algorithm for FO model checking89

on binary structures with bounded twin-width, provided a sequence of d-contractions is90

given.91
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Figure 1 A 2-sequence of contractions to a single vertex shows that the original graph has
twin-width at most 2.

1.2 FO model checking92

A natural algorithmic question given a graph class C (i.e., a set of graphs closed under taking93

induced subgraphs) is whether or not deciding first-order formulas ϕ on graphs G ∈ C can94

be done in time whose superpolynomial blow-up is a function of |ϕ| and C only. A line of95

works spanning two decades settled this question for monotone (that is, closed under taking96

subgraphs) graph classes. It was shown that one can decide first-order (FO) formulas in97

fixed-parameter time (FPT) in the formula size on bounded-degree graphs [30], planar graphs,98

and more generally, graphs with locally bounded treewidth [13], H-minor free graphs [11],99

locally H-minor free graphs [8], classes with (locally) bounded expansion [9], and finally100

nowhere dense classes [21]. The latter result generalizes all previous ones, since nowhere101

dense graphs contain all the aforementioned classes. Let us observe that the dependency on102

|V (G)| of the FPT model checking algorithm on classes with bounded expansion is linear103

[9], while it is almost linear (i.e., |V (G)|1+ε for every ε > 0) for nowhere dense classes [21].104

In sharp contrast, if a monotone class C is not nowhere dense then FO model checking on105

C is AW[∗]-complete [24], hence highly unlikely to be FPT. Thus the result of Grohe et106

al. [21] gives a final answer in the case of monotone classes. We refer the reader interested107

in structural and algorithmic properties of nowhere dense classes to Nestril and Ossona de108

Mendez’s book [27].109

Since then, the focus has shifted to the complexity of model checking on (dense) non-110

monotone graph classes. Our main result is that FO model checking is FPT on classes with111

bounded twin-width. More precisely, we show that:112

I Theorem 1. Given an n-vertex (di)graph G, a sequence of d-contractions G = Gn, Gn−1,113

. . . , G1 = K1, and a first-order formula ϕ, we can decide G |= ϕ in time f(|ϕ|, d) · n for114

some computable, yet non-elementary, function f .115

This unifies and extends known FPT algorithms for116

H-minor free graphs [11],117

posets of bounded width (i.e., size of the largest antichain) [15],118
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Figure 2 Hasse diagram of classes on which FO model checking is FPT, with the newcomer
twin-width. The dash-dotted edge means that polynomial expansion may well be included in
bounded twin-width. Bounded twin-width and nowhere dense classes roughly subsume all the
current knowledge on the fixed-parameter tractability of FO model checking. Do they admit a
natural common superclass still admitting an FPT algorithm for FO model checking?

permutations avoiding a fixed pattern [22]1 and proper subclass of permutation graphs,119

bounded rank-width or bounded clique-width [7],2120

since we will establish that these classes have bounded twin-width, and that, on them, a121

sequence of d-contractions can be found efficiently. By transitivity, this also generalizes the122

FPT algorithm for L-interval graphs [20], and may shed a new unified light on geometric123

graph classes for which FO model checking is FPT [23]. In that direction we show that a124

large class of geometric intersection graphs with bounded clique number, including Kt-free125

unit d-dimensional ball graphs, admits such an algorithm. We also show that map graphs126

have bounded twin-width but we only provide a d-contraction sequence when the input comes127

with a planar embedding of the map. FO model checking was proven FPT on map graphs128

even when no geometric embedding is provided [10]. See Figure 2 for the Hasse diagram of129

classes with a fixed-parameter tractable FO model checking.130

Permutation patterns can be represented as posets of dimension 2. Then any proper131

(hereditary) subclass of posets of dimension 2 contains all permutations avoiding a fixed132

pattern. Posets can in turn be encoded by directed graphs (or digraphs). Thus we formulated133

Theorem 1 with graphs and digraphs, to cover all the classes of bounded twin-width listed134

after the theorem. Twin-width and the applicability of Theorem 1 is actually broader: one135

may replace “an n-vertex (di)graph G” by “a binary structure G on a domain of size n” in136

the statement of the theorem, where a binary structure is a finite set of binary relations.137

Let us observe that the non-elementary dependence of the function f of Theorem 1 in138

the formula size |ϕ| and the twin-width d is very likely to be necessary. Indeed Frick and139

Grohe [14] show that any FPT algorithm for FO model checking on trees (which we will see140

have twin-width 2) requires a non-elementary dependence in the formula size, unless FPT =141

AW[∗]. Let us also mention that we cannot expect polynomial kernels of size (d+ k)O(1) on142

graphs of twin-width at most d for FO model checking of formulas of size k, actually even for143

k-Independent Set. Indeed we will see that twin-width is invariant by complementation144

1 Guillemot and Marx show that Permutation Pattern (not FO model checking in general) is FPT
when the host permutation avoids a pattern, then a win-win argument proper to Permutation Pattern
allows them to achieve an FPT algorithm for the class of all permutations.

2 for this class, even deciding MSO1 is FPT, which is something that we do not capture.
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and disjoint unions. More precisely, the complete sum of t graphs G1, . . . , Gt of twin-width145

at most d has twin-width at most d. So the complete sum of t instances of the NP-hard146

problem Max Independent Set on graphs of twin-width d is an OR-composition (that147

preserves the parameter d+ k). Max Independent Set is indeed NP-hard on graphs of148

twin-width d, for a sufficiently large fixed value of d, since we will see that planar graphs have149

constant twin-width. Therefore a polynomial kernel would imply the unlikely containment150

NP ⊆ co-NP/poly [3].151

Roadmap for the proof of Theorem 1.152

Instead of deciding “G |= ϕ” for a specific formula ϕ, we build in FPT time a tree MT ′`(G)153

which contains enough information to answer all the queries of the form is φ true on G?,154

for every prenex sentence φ on ` variables. A prenex sentence φ starts with a quantification155

(existential and universal) over the ` variables, followed, in the case of graphs, by a Boolean156

combination φ′(x1, . . . , x`) of atoms of the form x = y (interpreted as: vertex x is vertex y)157

and E(x, y) (interpreted as: there is an edge between x and y). A simple but important158

insight is that once Existential and Universal players have chosen the assignment v1, . . . , v`,159

the truth of φ′(v1, . . . , v`) only depends on the induced subgraph G[{v1, . . . , v`}] and the160

pattern of equality classes of the tuple (v1, . . . , v`). Indeed the latter pair carries the truth161

value of each possible atom.162

Imagine now the complete tree MT`(G) of all the possible “moves” assigning vertex vi to163

variable xi. This tree, called morphism-tree, has arity |V (G)| and depth `. Thus MT`(G) is164

too large to be explicitly computed. However, up to labeling its different levels with ∃ and ∀,165

it trivially contains what is needed to evaluate any `-variable prenex formula on G. In light of166

the previous paragraph, MT`(G) contains way too much information. Assume, for instance,167

that two of its leaves v`, v′` with the same parent node define the same induced subgraph168

G[{v1, . . . , v`−1, v`}] ∼= G[{v1, . . . , v`−1, v
′
`}] and the same pattern of equality classes. Then it169

is safe to delete the “move v′`” from the possibilities of whichever player shall play at level `.170

Indeed “move v`” is perfectly equivalent: As it sets to true the same list of atoms, it will171

satisfy the exact same formulas φ′, irrelevant of the nature of the quantifier preceding x`.172

We generalize this notion to any pair of sibling nodes at any level of the morphism-tree, and173

we call reduction a morphism-tree obtained after removing equivalent sibling nodes (and174

their subtree). It can be observed that a reduct, that is, a reduction that cannot be reduced175

further, has size bounded by ` only. Thus it all boils down to computing a reduct MT ′`(G)176

in FPT time.177

Now the contraction sequence comes in. Actually, more convenient here than the178

successive graphs G = Gn, Gn−1, . . . , G1, we consider the equivalent partition sequence:179

Pn,Pn−1, . . . ,P1, where Pi is the partition of V (G) whose parts correspond to the vertices of180

V (Gi) (v(G) ∈ Pi is the set of all the vertices of V (G) contracted to form v ∈ V (Gi)). Recall181

that two parts of Pi are homogeneous if they are fully adjacent or fully non-adjacent in G.182

Let GPi
be the graph whose vertices are the parts of Pi, and edges link every pair of non-183

homogeneous parts. It corresponds to the red edges of Gi. We also extend morphism-trees184

to partitioned graphs: MT`(G,Pi) denotes the morphism-tree MT`(G) where reductions are185

only allowed between two vertices of the same part of Pi. And for X ∈ Pi, MT`(G,Pi, X) is186

the morphism-tree MT`(G,Pi) restricted to parts of Pi in the relatively close neighborhood187

of X. Again MT ′`(G,Pi, X) denotes the reduct of MT`(G,Pi, X).188

By dynamic programming, we will maintain for i going from n down to 1, reducts189

MT ′`(G,Pi, Xj) for every Xj ∈ Pi. Pn is a partition into singletons {v} (for each v ∈ V (G)),190

so we initialize the reducts to paths of length ` labeled by v. Indeed all the variables can only191
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be instantiated to v, so the associated morphism tree has out-degree 1; hence is a path. P1 is192

the trivial partition {V (G)}, so the eventually computed reduct MT ′`(G, {V (G)}, V (G)) is193

exactly the reductMT ′`(G) that we were looking for. Say that, to go from Pi+1 to Pi, we fuse194

two sets X ′i, X ′′i into Xi. We shall now update the reducts MT ′`(G,Pi, Xj) for every Xj ∈ Pi,195

being given the reducts MT ′`(G,Pi+1, Xj) for every Xj ∈ Pi+1. For parts Xj at distance196

more3 than 3` of Xi in GPi , nothing happens: we set MT ′`(G,Pi, Xj) := MT ′`(G,Pi+1, Xj).197

The value 3` is chosen so that two parts Y, Y ′ further apart than this threshold cannot198

“interact” via non-homogeneous pairs of parts. This implies that the choice of a precise vertex199

in Y does not affect in any way the choice of a precise vertex in Y ′.200

We therefore focus on the at most d3`+1 parts (this is where the bound d on twin-width201

comes into play) of Xj at distance at most 3` of Xi in GPi . We first combine, by a so-called202

shuffle operation, a bounded number of MT ′`(G,Pi+1, Y ) for Y ∈ Pi+1 sufficiently close203

to Xi in GPi , then strategically prune redundant nodes, and reduce further the obtained204

morphism-tree (T,m). The aggregation of the two former steps is dubbed pruned shuffle205

and is the central operation of our algorithm. To define MT ′`(G,Pi, Xj) we finally project206

(or prune further) (T,m) on the nodes that are inherently rooted at Xj . To be formalized207

the latter requires to introduce an auxiliary graph, called tuple graph, and a notion of local208

root. These objects are instrumental in handling overlap or redundant information.209

A crucial aspect of the algorithm relies on the following fact. If two connected components,210

say X and Y , of GPi+1 are united in GPi , then reductions of morphism-trees on X ′ ∪Y ′ with211

X ′ ⊆ X and Y ′ ⊆ Y are obtained by just interleaving (actually shuffling) MT ′`(G,Pi+1, X
′)212

and MT ′`(G,Pi+1, Y
′). Indeed X ′ and Y ′ are by construction homogeneous to each other,213

so the precise choices of vertices in X ′ and in Y ′ are totally independent. We can finally214

observe that at each step i, we are updating a bounded number of reducts of bounded size.215

Therefore the overall algorithm takes linear FPT time (see bottom part of Figure 3).216

Although the use of the red graph is reminiscent of Gaifman’s locality theorem, or217

extensions of this theorem, we do not rely on any classic from the logic toolbox (apart from218

the prenex normal form). Therefore our algorithm and its presentation in Section 7 are219

self-contained. We take a very combinatorial stance towards FO model checking. Formulas220

are quickly converted into trees whose nodes are naturally mapped to subgraphs induced by221

tuples. That way, our proof only deals with elementary mathematical objects such as tree222

isomorphisms and auxiliary graphs. We thus hope that this novel way of solving FO model223

checking is at the same time broadly accessible and could, in its first opening steps, help224

outside of bounded twin-width.225

1.3 How to compute the contraction sequences?226

Given an arbitrary graph or binary structure, it seems tremendously hard to compute a227

good –let alone, optimum– contraction sequence. Fortunately on classes with bounded228

twin-width, for which this endeavor is algorithmically useful (in light of Theorem 1), we can229

often exploit structural properties of the class to achieve our goal. In Section 4 we present a230

simple polynomial-time algorithm outputting a (2k+1 − 1)-contraction sequence on graphs of231

boolean-width at most k (see Theorem 3) and a linear-time algorithm for a 3d-contraction232

sequence of (subgraphs of) the d-dimensional grid of side-length n (see Theorem 4). The233

bottleneck for the former algorithm would lie in finding the boolean-width decomposition in234

3 More than c` with any fixed constant c > 2 would work, since we will only use the fact that 2 · c` < c`+1.
We choose c = 3 for simplicity.
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the first place. The latter result enables to find in polynomial time (3d
√
de)dk-contraction235

sequences for unit d-dimensional ball graphs with clique number k, provided the geometric236

representation is given.237

For other classes, such as planar graphs, directly finding the sequence proves challenging.238

Therefore we design in Section 5 a framework that reduces this task to finding an ordering σ239

–later called mixed-free order– of the n vertices such that the adjacency matrix A written240

compliantly to σ is simple. Here by “simple” we mean that A cannot be divided into a241

large number of blocks of consecutive rows and columns, such that no cell of the division is242

vertical (repetition of the same row subvector) or horizontal (repetition of the same column243

subvector). An important local object to handle this type of division is the notion of corner,244

namely a consecutive 2-by-2 submatrix which is neither horizontal nor vertical. The principal245

ingredient to show that simple matrices have bounded twin-width is the use of a theorem246

by Marcus and Tardos [26] which states that n× n 0,1-matrices with at least cn 1 entries247

(for a large enough constant c) admit large divisions with at least one 1 entry in each cell.248

This result is at the core of Guillemot and Marx’s algorithm [22] to solve Permutation249

Pattern in linear FPT time. As we now apply Marcus-Tardos theorem to the corners (and250

not the 1 entries), we bring this engine to the dense setting. Indeed the matrix can be packed251

with 1 entries, and yet we learn something non-trivial from the number of corners.252

By Marcus-Tardos theorem the number of corners cannot be too large, otherwise the253

matrix would not be simple. From this fact, we are eventually able to find two rows or254

two columns with sufficiently small Hamming distance. Therefore they can be contracted.255

Admittedly some technicalities are involved to preserve the simplicity of the matrix throughout256

the contraction process. So we adopt a two-step algorithm: In the first step, we build a257

sequence of partition coarsenings over the matrix, and in the second step, we extract the actual258

sequence of contractions. The overall algorithm taking A (or σ) as input, and outputting the259

contraction sequence, takes polynomial time in n. It can be implemented in quadratic time,260

or even faster if instead of the raw matrix, we get a list of pointers to corners of A.261

We shall now find mixed-free orders. Section 6 is devoted to this task for three different262

classes. Dealing with permutations avoiding a fixed pattern (equivalently, a proper subclass263

of posets of dimension 2), the order is easy to find: it is imposed. For posets of bounded width264

(that is, maximum size of an antichain or minimum size of a chain partition), a mixed-free265

order is attained by putting the chains in increasing order, one after the other. Finally for266

Kt-minor free graphs, a hamiltonian path would provide a good order. As we cannot always267

expect to find a hamiltonian path, we simulate it by a specific Lex-DFS. The top part of268

Figure 3 provides a visual summary of this section.269

1.4 How general are classes of bounded twin-width?270

As announced in the previous section, we will show that proper minor-closed classes have271

bounded twin-width. As far as we know, all classes of polynomial expansion may also have272

bounded twinwidth. However on the one hand, as we will show in an upcoming paper [4],273

cubic graphs have unbounded twin-width, whereas on the other hand, cliques have twin-274

width 0. Thus bounded twin-width is incomparable with bounded degree, bounded expansion,275

and nowhere denseness.276

Nowhere dense classes are stable, that is, no arbitrarily-long total order can be first-277

order interpreted from graphs of this class. In particular, unit interval graphs are not FO278

interpretations (even FO transductions, where in addition copying the structure and coloring279

it with a constant number of unary relations is allowed) of nowhere dense graphs. Thus even280

any class of first-order transductions of nowhere dense graphs, called structurally nowhere281
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binary structure G
of bounded twin-width
binary structure G

of bounded twin-width t-mixed-free order
d-contraction sequence
G = Gn, . . . , G1 = K1

d-contraction sequence
G = Gn, . . . , G1 = K1

Section 6
nO(1)

Theorem 10
nO(1)

Section 4
nO(1)

reduced morphism-tree
MT ′`(G) of size h(`)

reduced morphism-tree
MT ′`(G) of size h(`)

Query G |= φ

for any prenex φ of depth `
Query G |= φ

for any prenex φ of depth `

Theorem 25
O`,d(n)

Lemma 24
O`(1)

Figure 3 The overall workflow. Two paths are possible to get a d-contraction sequence from a
bounded twin-width structure G. Either a direct polytime algorithm as for bounded boolean-width,
or via a domain-ordering yielding a t-mixed free matrix followed by Theorem 10 which converts
it into a d-contraction sequence. From there, a tree of constant size (function of ` only) can be
computed in linear FPT time. This tree captures the evaluation of all prenex sentences φ on `

variables for G. Queries “G |= φ” can then be answered in constant time.

dense, is incomparable with bounded twin-width graphs. There have been recent efforts282

aiming to eventually show that FO model checking is fixed-parameter tractable on any283

structurally nowhere dense class. Gajarský et al. [16] introduce near-uniform classes based284

on a so-called near-k-twin relation, and the equivalent near-covered classes. They show that285

FO model checking admits an FPT algorithm on near-covered classes, and that these classes286

correspond to FO interpretations (even transductions) of bounded-degree graph classes. Let287

us observe that the near-k-twin relation, as well as the related neighborhood diversity [25],288

can be thought as a static version of our twin-width. Gajarský et al. [19] gave the first step289

towards an FPT algorithm on classes with structurally bounded expansion by characterizing290

them via low shrub-depth decompositions. A second step was realized by Gajarský and291

Kreutzer who presented a direct FPT algorithm computing shrub-depth decompositions [18].292

We will show that bounded twin-width is preserved by FO interpretations and transduc-293

tions, which makes it a robust class as far as first-order model checking is concerned. Despite294

cubic graphs having unbounded twin-width, some particular classes with bounded degree,295

such as subgraphs of d-dimensional grids, have bounded twin-width. More surprisingly, some296

classes of expanders, will be shown to have bounded twin-width [4]. This showcases the297

ubiquity of bounded twin-width, and the wide scope of Theorem 1. Even more so, when298

in light of the previous paragraph, it implies that FO interpretations (such as elevating299

the graph to a bounded power) of these classes keep the twin-width bounded. As we will300

generalize twin-width to matrices, in order to handle permutations, posets, and digraphs, we301

can potentially define a twin-width notion on hypergraphs, groups, and lattices.302

1.5 Organization of the paper303

Section 2 gives the necessary graph-theoretic and logic background. In Section 3 we formally304

introduce contraction sequences and the twin-width of a graph. In Section 4 we get familiar305

with these new notions. In particular we show with direct arguments that bounded rank-306

width graphs, d-dimensional grids, and unit d-dimensional ball graphs with bounded clique307

number, have bounded twin-width. In Section 5 we extend twin-width to matrices and show308

a grid-minor-like theorem, which informally states that a graph has large twin-width if and309

only if all its vertex orderings yield an adjacency matrix with a complex large submatrix.310
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This turns out to be a useful characterization for the next section. In Section 6 we show311

how, thanks to this characterization, we can compute a witness of bounded twin-width, for312

permutations avoiding a fixed pattern, comparability graphs with bounded independence313

number (equivalently, bounded-width posets), and Kt-minor free graphs. In Section 7 we314

present a linear-time FPT algorithm for FO model checking on graphs given with a witness315

of bounded twin-width. In Section 8 we show that FO interpretations (even transductions)316

of classes of bounded twin-width still have bounded twin-width. Finally in Section 9 we list317

a handful of promising questions left for future work.318

A quick walk through the paper may consist of reading Sections 3 and 7 for the basic319

definitions and how bounded twin-width allows to efficiently solve FO model checking. This320

may be followed by reading Sections 4 to 6 for some examples of classes with bounded twin-321

width and how to compute on these classes the contraction sequences (witness of bounded322

twin-width) necessary for the efficient FO model checking.323

2 Preliminaries324

We denote by [i, j] the set of integers {i, i+ 1, . . . , j− 1, j}, and by [i] the set of integers [1, i].325

If X is a set of sets, we denote by ∪X the union of them.326

2.1 Graph definitions and notations327

All our graphs are undirected and simple (no multiple edge nor self-loop). We denote by328

V (G), respectively E(G), the set of vertices, respectively of edges, of the graph G. For329

S ⊆ V (G), we denote the open neighborhood (or simply neighborhood) of S by NG(S), i.e.,330

the set of neighbors of S deprived of S, and the closed neighborhood of S by NG[S], i.e.,331

the set NG(S) ∪ S. For singletons, we simplify NG({v}) into NG(v), and NG[{v}] into332

NG[v]. We denote by G[S] the subgraph of G induced by S, and G− S := G[V (G) \ S]. For333

A,B ⊆ V (G), E(A,B) denotes the set of edges in E(G) with one endpoint in A and the334

other one in B. Two distinct vertices u, v such that N(u) = N(v) are called false twins, and335

true twins if N [u] = N [v]. In particular, true twins are adjacent. Two vertices are twins if336

they are false twins or true twins. If G is an n-vertex graph and σ is a total ordering of337

V (G), say, v1, . . . , vn, then Aσ(G) denotes the adjacency matrix of G in the order σ. Thus338

the entry in the i-th row and j-th column is a 1 if vivj ∈ E(G) and a 0 otherwise.339

The length of a path in an unweighted graph is simply the number of edges of the path.340

For two vertices u, v ∈ V (G), we denote by dG(u, v), the distance between u and v in G, that341

is the length of the shortest path between u and v. The diameter of a graph is the longest342

distance between a pair of its vertices. In all the above notations with a subscript, we omit343

it whenever the graph is implicit from the context.344

An edge contraction of two adjacent vertices u, v consists of merging u and v into a single345

vertex adjacent to N({u, v}) (and deleting u and v). A graph H is a minor of a graph G if346

H can be obtained from G by a sequence of vertex and edge deletions, and edge contractions.347

A graph G is said H-minor free if H is not a minor of G. Importantly we will overload348

the term “contraction”. In this paper, we call contraction the same as an edge contraction349

without the requirement that the two vertices u and v are adjacent. This is sometimes called350

an identification, but we stick to the shorter contraction since we will use that word often.351

In the very rare cases in which we actually mean the classical (edge) contraction, the context352

will lift the ambiguity. We will also somewhat overload the term “minor”. Indeed, in Section 5353

we introduce the notions of “d-grid minor” and “d-mixed minor” on matrices. They are only354

loosely related to (classical) graph minors, and it will always be clear which notion is meant.355
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2.2 First-order logic, model checking, FO interpretations/transductions356

For our purposes, we define first-order logic without function symbols. A finite relational
signature is a set τ of relation (or predicate) symbols given with their arity {R1

a1
, . . . , Rhah

};
that is, relation Riai

has arity ai. A first-order formula φ ∈ FO(τ) over τ is any string
generated from letter ψ by the grammar:

ψ → ∃xψ, ∀xψ, ψ ∨ ψ, ψ ∧ ψ, ¬ψ, (ψ), R1
a1

(x, . . . , x), . . . , Rhah
(x, . . . , x), x = x, and

x→ x1, x2, . . . an infinite set of fresh variable labels.

For the sake of simplicity, we will further impose that the same label cannot be reused357

for two different variables. A variable xi is then said quantified if it appears next to a358

quantifier (∀xi or ∃xi), and free otherwise. We usually denote by φ(xf1 , . . . , xfh
) a formula359

whose free variables are precisely xf1 , . . . , xfh
. A formula without quantified variables is said360

quantifier-free. A sentence is a formula without free variables. With our simplification that361

the same label is not used for two distinct variables, when a formula φ contains a subformula362

Qxiφ
′ (with Q ∈ {∃,∀}), all the occurrences of xi in φ lie in φ′.363

Model checking.364

A first-order (FO) formula is purely syntactical. An interpretation, model, or structure M of365

the FO language FO(τ) specifies a domain of discourse D for the variables, and a relation366

M(Riai
) = Ri ⊆ Dai for each symbol Riai

. M is sometimes called a τ -structure. M is a367

binary structure if τ has only relation symbols of arity 2. It is said finite if the domain D368

is finite. A sentence φ interpreted byM is true, denoted byM |= φ, if it evaluates to true369

with the usual semantics for quantified Boolean logic, the equality, and Riai
(d1, . . . , dai

) is370

true if and only if (d1, . . . , dai) ∈M(Riai
). For a fixed interpretation, a formula φ with free371

variables xf1 , . . . , xfh
is satisfiable if ∃xf1 · · · ∃xfh

φ is true.372

In the FO model checking problem, given a first-order sentence φ ∈ FO(τ) and a finite373

modelM of FO(τ), one has to decide whetherM |= φ holds. The input size is |φ|+ |M|,374

the number of bits necessary to encode the sentence φ and the modelM. The brute-force375

algorithm decidesM |= φ in time |M||φ|, by building the tree of all possible assignments.376

We will consider φ to be fixed or rather small compared to |M|. Therefore we wish to find377

an FPT algorithm for FO model checking parameterized by |φ|, that is, running in time378

f(|φ|)|M|O(1), or even better f(|φ|)|D|.379

FO(τ) Model Checking Parameter: |φ|
Input: A τ -structureM and a sentence φ of FO(τ).
Question: DoesM |= φ hold?

380

We restrict ourselves to FO model checking on finite binary structures, for which twin-381

width will be eventually defined. For the most part, we will consider FO model check-382

ing on graphs (and we may omit the signature τ). Let us give a simple example. Let383

τ = {E2} be a signature with a single binary relation. Finite models of the language384

FO(τ) correspond to finite directed graphs with possible self-loops. Let φ be the sentence385

∃x1∃x2 · · · ∃xk
∧
i<j ¬(xi = xj) ∧

∧
i6=j ¬E(xi, xj). Let G be a τ -structure or graph. G |= φ386

holds if and if G has an independent set of size k. This particular problem parameterized387

by |φ| (or equivalently k) is W[1]-hard on general graphs. However it may admit an FPT388

algorithm when G belongs to a specific class of graphs, as in the case, for instance, of planar389

graphs or bounded-degree graphs.390
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FO interpretations and transductions.391

An FO interpretation of a τ -structureM is a τ -structureM′ such that for every relation392

R of M′, R(a1, . . . , ah) is true if and only if M |= φR(a1, . . . , ah) for a fixed formula393

φR(x1, . . . , xh) ∈ FO(τ). Informally every relation ofM′ can be characterized by a formula394

evaluated onM.395

Again we shall give some example on graphs since it is our main focus. Let G be a396

simple undirected graph (in particular, E(x, y) holds whenever E(y, x) holds). Then the397

FO (φ-)interpretation Iφ(G) is a graph H with vertex-set V (G) and uv ∈ E(H) if and398

only if G |= φ(x, y) ∧ φ(y, x). If for instance φ(x, y) is the formula ¬E(x, y), then Iφ(G) is399

the complement of G. If instead φ(x, y) is E(x, y) ∨ ∃zE(x, z) ∧ E(z, y), then Iφ(G) is the400

square of G. The FO (φ-)interpretation of a class C of graphs is the set of all graphs that401

are φ-interpretations of graphs in C, namely Iφ(C) := {H | H = Iφ(G), G ∈ C}. It is not402

very satisfactory that Iφ(C) is not hereditary. We will therefore either close Iφ(C) by taking403

induced subgraphs, or use the more general notion of FO transductions (see for instance [2]).404

An FO transduction is an enhanced FO interpretation. We give a simplified definition405

for undirected graphs, but the same definition generalizes to general (binary) structures.406

First a basic FO transduction is slightly more general than an FO interpretation. It is a407

triple (δ, ν, η), with 0, 1, and, 2 free variables respetively, which maps every graph G such408

that G |= δ to the graph ({v | G |= ν(v)}, {{u, v} | G |= η(u, v)}). Before we apply the409

basic FO transduction, we allow two operations: an expansion and a copy operation. An410

h-expansion maps a graph G to the set of all the structures obtained by augmenting G with411

h unary relations U1, . . . , Uh. A γ-copy operation maps a graph G to the disjoint union412

of γ copies of G, say, G1, . . . , Gγ , where V (Gj) = {(v, j) | v ∈ V (G)}. Moreover, it adds413

γ unary relations C1, . . . , Cγ , and a binary relation ∼, where Ci(v) holds whenever v ∈ V (Gi)414

and (u, i) ∼ (v, j) holds when u = v. Informally the unary relations indicate in which copy a415

vertex is, while the binary relation ∼ links the copies of a same vertex.416

Now, the (φ, γ, h)-transduction Tφ,γ,h(G) of a graph G is the set τ ◦γop ◦hop(G) where hop417

is the h-expansion, γop is the γ-copy operation, and τ = (δ, ν, η) is a basic FO transduction.418

Note that the formulas ν and η may depend on the edge relation of G as well as all the419

added unary relations and the binary relation ∼. Similarly to FO interpretations of classes,420

we define Tφ,γ,h(C) := {H | H ∈ Tφ,γ,h(G), G ∈ C}.421

As we will see in Section 8, a worthwhile property of twin-width is that every FO422

interpretation/transduction of a bounded twin-width class has bounded twin-width itself.423

3 Sequence of contractions and twin-width424

We say that two vertices u and v are twins if they have the same neighborhood outside425

{u, v}. A natural operation is to contract (or identify) them and try to iterate the process.426

If this algorithm leads to a single vertex, the graph was initially a cograph. Many intractable427

problems become easy on cographs. It is thus tempting to try and extend this tractability428

to larger classes. One such example is the class of graphs with bounded clique-width (or429

equivalently bounded rank-width) for which any problem expressible in MSO1 logic can be430

solved in polynomial-time [7]. A perhaps more direct generalization (than defining clique-431

width) would be to allow contractions of near twins, but the cumulative effect of the errors4
432

stands as a barrier to algorithm design.433

4 By error we informally refer to the elements in the (non-empty) symmetric difference in the neighborhoods
of the contracted vertices.
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An illuminating example is provided by a bipartite graph G, with bipartition (A,B),434

such that for every subset X of A there is a vertex b ∈ B with neighborhood X in A. Surely435

G is complex enough so that we should not entertain any hope of solving a problem like,436

say, k-Dominating Set significantly faster on any class containing G than on general437

graphs. For one thing, graphs like G contain all the bipartite graphs as induced subgraphs.438

Nonetheless G can be contracted to a single vertex by iterating contractions of vertices whose439

neighborhoods differ on only one vertex. Indeed, consider a ∈ A and contract all pairs of440

vertices of B differing exactly at a. Applying this process for every a ∈ A, we end up by441

contracting the whole set B, and we can eventually contract A.442

Thus the admissibility of a contraction sequence should not solely be based on the current443

neighborhoods. The key idea is to keep track of the past errors in the contraction history444

and always require all the vertices to be involved in only a limited number of mistakes. Say445

the errors are carried by the edges, and an erroneous edge is recorded as red. Note that in446

the previous contraction sequence of G, after contracting all pairs of vertices of B differing447

at a, all the edges incident to a are red, and vertex a witnesses the non-admissibility of the448

sequence. Let us now get more formal.449

It appears, from the previous paragraphs, that the appropriate structure to define twin-450

width is a graph in which some edges are colored red. A trigraph is a triple G = (V,E,R)451

where E and R are two disjoint sets of edges on V : the (usual) edges and the red edges.452

An informal interpretation of a red edge uv ∈ R is that some errors have been made while453

handling G and the existence of an edge between u and v, or lack thereof, is uncertain.454

A trigraph (V,E,R) such that (V,R) has maximum degree at most d is a d-trigraph. We455

observe that any graph (V,E) may be interpreted as the trigraph (V,E, ∅).456

Given a trigraph G = (V,E,R) and two vertices u, v in V , we define the trigraph457

G/u, v = (V ′, E′, R′) obtained by contracting5 u, v into a new vertex w as the trigraph on458

vertex-set V ′ = (V \ {u, v}) ∪ {w} such that G − {u, v} = (G/u, v) − {w} and with the459

following edges incident to w:460

wx ∈ E′ if and only if ux ∈ E and vx ∈ E,461

wx /∈ E′ ∪R′ if and only if ux /∈ E ∪R and vx /∈ E ∪R, and462

wx ∈ R′ otherwise.463

In other words, when contracting two vertices u, v, red edges stay red, and red edges are464

created for every vertex x which is not joined to u and v at the same time. We say that465

G/u, v is a contraction of G. If both G and G/u, v are d-trigraphs, G/u, v is a d-contraction.466

We may denote by V (G) the vertex-set, E(G) the set of black edges, and R(G) the set of red467

edges, of the trigraph G.468

A (tri)graph G on n vertices is d-collapsible if there exists a sequence of d-contractions469

which contracts G to a single vertex. More precisely, there is a d-sequence of d-trigraphs470

G = Gn, Gn−1, . . . , G2, G1 such that Gi−1 is a contraction of Gi (hence G1 is the singleton471

graph). See Figure 1 for an example of a sequence of 2-contractions of a 7-vertex graph. The472

minimum d for which G is d-collapsible is the twin-width of G, denoted by tww(G).473

If v is a vertex of Gi and j > i, then v(Gj) denotes the subset of vertices of Gj eventually474

contracted into v in Gi. Two disjoint vertex-subsets A,B of a trigraph are said homogeneous if475

there is no red edge between A and B, and there are not both an edge and a non-edge between476

A and B. In other words, A and B are fully linked by black edges or there is no (black or477

red) edge between them. Observe that in any contraction sequence G = Gn, . . . , Gi, . . . , G1,478

there is a red edge between u and v in Gi if and only if u(G) and v(G) are not homogeneous.479

5 Or identifying. Let us insist that u and v do not have to be adjacent.
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We may sometimes (abusively) identify a vertex v ∈ Gi with the subset of vertices of G480

contracted to form v.481

One can check that cographs have twin-width 0 (the class of graphs with twin-width 0482

actually coincides with cographs), paths of length at least three have twin-width 1, red paths483

have twin-width at most 2, and trees have twin-width 2. Indeed, they are not 1-collapsible, as484

exemplified by the 1-subdivision of K1,3, and they admit the following 2-sequence. Choose an485

arbitrary root and contract two leaves with the same neighbor, or, if not applicable, contract486

the highest leaf with its neighbor. We observe that in this 2-sequence, every Gi only contains487

red edges which are adjacent to leaves. In particular, red edges are either isolated or are488

contained in a path of length two.489

The definition of twin-width readily generalizes to directed graphs, where we create a red490

edge whenever the contracted vertices u, v are not linked to x in the same way. This way we491

may speak of the twin-width of a directed graph or of a partial order. One could also wish492

to define twin-width on graphs “colored” by a constant number of unary relations. To have493

a unifying framework, we will later work with matrices (Section 5). Before that, we present494

in the next section some basic results about twin-width of graphs.495

4 First properties and examples of classes with bounded twin-width496

Let us get familiar with contraction sequences and twin-width through simple operations:497

complementing the graph, taking induced subgraphs, and adding apices.498

4.1 Complementation, induced subgraphs, and adding apices499

The complement of a trigraph G is the trigraph G obtained by keeping all its red edges500

while making edges its non-edges, and non-edges its edges. Thus if G = (V,E,R), then501

G = (V,
(
V
2
)
\ (E ∪ R), R), and it holds that G = G. Twin-width is invariant under502

complementation. One can observe that any sequence of d-contractions for G is also a503

sequence of d-contractions for G. Indeed there is a red edge between two vertices u, v in a504

trigraph obtained along the sequence if and only if u(G) and v(G) are homogeneous if and505

only if u(G) and v(G) are homogeneous.506

We can extend the notion of induced subgraphs to trigraphs in a natural way. A trigraph507

H is an induced subgraph of a trigraph G if V (H) ⊆ V (G), E(H) = E(G) ∩
(
H
2
)
, and508

R(H) = R(G) ∩
(
H
2
)
. The twin-width of an induced subgraph H of a trigraph G is at most509

the twin-width of G. Indeed the sequence of contractions for G can be projected to H by510

just ignoring contractions involving vertices outside V (H). Then the red degree of trigraphs511

in the contraction sequence of H is at most the red degree of the corresponding trigraphs in512

the contraction sequence of G.513

We now show that adding a vertex linked by black edges to an arbitrary subset of the514

vertices essentially at most doubles the twin-width.515

I Theorem 2. Let G′ be a trigraph obtained from a trigraph G by adding one vertex v and516

linking it with black edges to an arbitrary subset X ⊆ V (G). Then tww(G′) 6 2(tww(G) + 1).517

Proof. Let d = tww(G) and let G = Gn, . . . , G1 be a sequence of d-contractions. We want to518

build a good sequence of contractions for G′. The rules are that, while there are more than519

three vertices in the trigraph, we never contract two vertices u and u′ such that u(G) ⊆ X520

and u′(G) ⊆ V (G) \X, neither do we contract v with another vertex. In words, until the521

very end, we do not touch v, and we do only contractions internal to X or to V (G) \X.522
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We start with G′. For i ranging from n down to 2, let us denote by ui, u′i the d-contraction523

performed from Gi to Gi−1. With our imposed rules, instead of having one set ui(G) of524

contracted vertices, we have two: Ui,X := ui(G)∩X and Ui,X := ui(G)\X. Similarly we can525

define the (potentially empty) U ′i,X and U ′
i,X

based on u′i(G). Any of these sets, if non-empty,526

corresponds to a currently contracted vertex, that we denote with the same label. In the527

current trigraph obtained from G′, we contract Ui,X and U ′i,X if they both exist. Next we528

contract Ui,X and U ′
i,X

(again if they both exist). This preserves our announced invariant,529

and terminates with a 3-vertex trigraph made of v, all the vertices of X contracted in a single530

vertex, all the vertices of V (G) \X contracted in a single vertex. Observe that a 3-vertex531

trigraph is 2-collapsible and 2 6 2(tww(G) + 1).532

We shall finally justify that in the sequence of contractions built for G′, all the trigraphs533

have red degree at most 2(tww(G) + 1). Before we simulate the contraction ui, u
′
i, each534

contracted vertex u(G) ∩X (resp. u(G) \X) of G′ has red degree at most 2d+ 1. Indeed535

u(G) ∩X (resp. u(G) \X) can only have red edges to vertices w(G) ∩X and w(G) \X such536

that w is a red neighbor of u, and to u(G) \X (resp. u(G) ∩X). After we contract (if they537

exist) Ui,X and U ′i,X , the newly created vertex, say U , has red degree at most 2d+ 2. The538

+2 accounts for Ui,X and U ′
i,X

. The red degree of Ui,X and U ′
i,X

is at most 2d+ 1, where539

the +1 accounts for U . All the other vertices have their red degree bounded by 2d+ 1. After540

we also contract (if they exist) Ui,X and U ′
i,X

, all the vertices have degree at most 2d+ 1.541

Overall the red degree never exceeds 2d+ 2 = 2(tww(G) + 1). J542

The previous result implies that bounded twin-width is preserved by adding a constant543

number of apices. In Section 6 we will show a far-reaching generalization of this fact:544

H-minor free graphs have bounded twin-width. We will not have to resort to the graph545

structure theorem. Now if we have a second look at the proof of Theorem 2, we showed546

that twin-width does not arbitrarily increase when we add one or a constant number of547

unary relations (in Section 5 we will formally define twin-width for graphs colored by unary548

relations, and even for arbitrary matrices on a constant-size alphabet). Again we will see in549

Section 8 a considerable generalization of that fact and of the conservation of twin-width by550

complementation: bounded twin-width classes are closed by first-order transductions.551

4.2 Bounded rank-width/clique-width, and d-dimensional grids552

We now show that bounded rank-width graphs and d-dimensional grids (with or without diag-553

onals) have bounded twin-width. We transfer the twin-width boundedness of d-dimensional554

grids with diagonals to unit d-dimensional ball graphs with bounded clique number.555

A natural inquiry is to compare twin-width with the width measures designed for dense556

graphs: rank-width rw, clique-width cw, module-width modw, and boolean-width boolw.557

It is known that, for any graph G, boolw(G) 6 modw(G) 6 cw(G) 6 2rw(G)+1 − 1 (see for558

instance Chapter 4 of Vatshelle’s PhD thesis [31]). It is thus sufficient to show that graphs559

with bounded boolean-width have bounded twin-width, to establish that bounded twin-width560

classes capture all these parameters.561

Crucially twin-width does not capture bounded mim-width graphs (the actual definition562

of mim-width is not important here, and thus omitted). This is but a fortunate fact, since563

the main result of the paper is an FPT algorithm for FO model checking on any bounded564

twin-width classes. Indeed, interval graphs have mim-width 1 [1] and do not admit an FPT565

algorithm for FO model checking (see for instance [20]).566

We briefly recall the definition of boolean-width. The boolean-width of a partition (A,B)567

of the vertex-set of a graph is the base-2 logarithm of the number of different neighborhoods568
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in B of subsets of vertices of A (or equivalently, of different neighborhoods in A of subset569

of vertices of B). A decomposition tree of a graph G is a binary tree6 T whose leaves are570

in one-to-one correspondence with V (G). Each edge e of T naturally maps to a partition571

Pe = (Ae, Be) of V (G), where the two connected components of T − e contain the leaves572

labeled by Ae and Be, respectively. The boolean-width of a decomposition tree T is the573

maximum boolean-width of Pe taken among every edge e of T . Finally, the boolean-width of574

a graph G, denoted by boolw(G), is the minimum boolean-width of T taken among every575

decomposition tree T .576

I Theorem 3. Every graph with boolean-width k has twin-width at most 2k+1 − 1.577

Proof. Let G be graph and let T be a decomposition tree of G with boolean-width k :=578

boolw(G). We assume that G has at least 2k + 1 vertices, otherwise the twin-width is579

immediately bounded by 2k. Starting from the root r of T , we find a rooted subtree of T580

with at least 2k + 1 and at most 2k+1 leaves. If the current subtree has more than 2k+1
581

leaves, we move to the child node with the larger subtree. That way we guarantee that the582

new subtree has at least 2k + 1 leaves. We stop when we reach a subtree T ′ with at most583

2k+1 leaves, and let e be the last edge that we followed in the process of finding T ′ (the one584

whose removal disconnects T ′ from the rest of T ).585

By definition, the boolean-width of the partition Pe = (Ae, Be) is at most k, which586

upperbounds the number of different neighborhoods of Ae in Be by 2k. In particular, among587

the 2k+1 leaves of T ′, corresponding to, say, Ae, two vertices u, v have the same neighborhood588

in Be. We contract u and v in G (and obtain the graph G/u, v). The only red edges in589

G/u, v are within Ae, so the red degree is bounded by 2k+1 − 1. We update T by removing590

the leaf labeled by v, and smoothing its parent node which became a degree-2 vertex (to591

keep a binary tree). We denote by T/u, v the obtained binary decomposition tree of G/u, v.592

What we described so far yielded the first contraction. We start over with trigraph593

G/u, v and decomposition tree T/u, v to find the second contraction. We iterate this process594

until the current trigraph is a singleton. We claim that the built sequence of contractions595

only contains trigraphs with red degree at most 2k+1 − 1. The crucial invariant is that our596

contractions never create a red component of size more than 2k+1. Hence the red degree597

remains bounded by 2k+1 − 1. J598

The d-dimensional n-grid is the graph with vertex-set [n]d with an edge between two599

vertices (x1, . . . , xd) and (y1, . . . , yd) if and only if
∑d
i=1 |xi − yi| = 1. Equivalently the600

d-dimensional n-grid is the Cartesian product of d paths on n vertices, hence we write it P dn .601

Thus the 1-dimensional n-grid is the path on n vertices Pn, while the 2-dimensional n-grid is602

the usual (planar) n× n-grid. While all the width parameters presented so far (including603

mim-width) are unbounded on the n × n-grid, twin-width remains constant even on the604

d-dimensional n-grid, for any fixed d.605

I Theorem 4. For every positive integers d and n, the d-dimensional n-grid has twin-width606

at most 3d.607

Proof. Let Rdn the trigraph with vertex-set V (P dn), red edges E(P dn), and no black edge. We608

will prove, by induction on d, that Rdn has twin-width at most 3d. The base case (d = 1)609

holds since, as observed in Section 3, the twin-width of a red path is at most 2. As all610

6 All internal nodes have degree 3, except the root which has degree 2. Equivalently all internal nodes
have exactly two children.
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the edges will be red (no black edge can appear), we allow ourselves the following abuse of611

language. For this proof only, by edge (resp. degree) we mean red edge (resp. red degree). We612

now assume that d > 1.613

We see Rdn as the Cartesian product of Rd−1
n and R1

n = Rn. In other words, V (Rdn)614

can be partitioned into n sets V1, . . . , Vn, where each Vi = {vi1, . . . vind−1} induces a trigraph615

isomorphic to Rd−1
n , and there is an edge between vij and vi+1

j for all i ∈ [n− 1], j ∈ [nd−1].616

By induction hypothesis, there is a sequence of 3(d− 1)-contractions of P d−1
n . The idea is617

to follow this sequence in each Vi “in parallel”, i.e., performing the first contraction in V1,618

then in V2, up to Vn, then the second contraction in V1, then in V2, up to Vn, and so on. By619

doing so, the following invariants are maintained:620

when performing a contraction in V1, the newly created vertex has degree at most 3d− 3621

in V1, and 2 in V2 (and 0 elsewhere), so 3d− 1 in total.622

when performing a contraction in Vi, i ∈ {2, . . . , n− 1}, the created vertex has degree623

at most 3d− 3 in Vi, 1 in Vi−1 (since the same pair has been contracted in Vi−1 at the624

previous step) and 2 in Vi+1 (and 0 elsewhere), so 3d in total.625

when performing a contraction in Vn, the created vertex has degree at most 3d− 3 in Vn,626

and at most one in Vn−1 (and 0 elsewhere), so 3d− 2 in total.627

Furthermore every vertex not involved in the current contraction has degree at most 3d−2:628

Its degree within its own Vi is 3d−3 (by induction hypothesis) and it has exactly one neighbor629

in Vi−1 (if this set exists) and exactly one neighbor in Vi+1 (if this set exists). When this630

process terminates, each Vi has been contracted into a single vertex. Hence the current631

trigraph is the red path Rn, which admits a sequence of 2-contractions. J632

As we even showed that the twin-width of the red graph Rdn is at most 3d, it implies that633

the twin-width of any subgraph of the d-dimensional n-grid is bounded by 3d.634

The d-dimensional n-grid with diagonals is the graph on [n]d with an edge between two635

distinct vertices (x1, . . . , xd) and (y1, . . . , yd) if and only if maxdi=1 |xi − yi| 6 1. We denote636

this graph by Kn,d and by, Krn,d the trigraph ([n]d, ∅, E(Kn,d)) with only red edges. By637

the arguments of Theorem 4, one can see that every subgraph of Kn,d (even of Krn,d) has638

twin-width bounded by a function of d (observe that Kr
n,d has red degree at most 3d).639

I Lemma 5. Every subgraph of Krn,d has twin-width at most 2(3d − 1).640

This fact permits to bound the twin-width of unit d-dimensional ball graphs with bounded641

clique number; actually even their subgraphs.642

I Theorem 6. Every subgraph H of a unit d-dimensional ball graph G with clique number k643

has twin-width at most d′ := (3d
√
de)dk. Furthermore if G comes with a geometric repres-644

entation (i.e., coordinates for each vertex of G in a possible model), then a d′-contraction645

sequence of H can be found in polynomial time.646

Proof. The result is immediate for k = 1, so we assume that k > 2. We even show the result647

when all the edges of H are in fact red edges, by exhibiting a sequence of contractions which648

keeps the (red) degree below d′. We draw a geometric regular d-dimensional fine grid on649

top of the geometric representation of G. The spacing of the grid is 2/
√
d so that a largest650

diagonal of each hypercubic cell has length exactly 2. Hence the unit balls centered within a651

given cell form a clique. In particular, each cell contains at most k centers. We also consider652

the coarser tesselation where a supercell is a hypercube made of d
√
ded (smaller) cells. Hence653

a supercell contains at most d
√
dedk centers.654
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We contract the vertices of each supercell into a single vertex. This can be done in any655

order of the supercells, and in any order of the vertices within each supercell. Observe that,656

throughout this process, the (red) degree does not exceed (3d
√
de)dk.657

After these d′-contractions, the graph that we obtain is a subgraph of Krn,d. Hence it658

admits a 2(3d − 1)-sequence by Lemma 5. We conclude since 2(3d − 1) 6 (3d
√
de)dk. J659

Of course the constructive result of Theorem 6 can be proved in greater generality. It would660

work with any collection of objects where the ratio between the smallest (taken over the661

objects) radius of a largest enclosed ball and the largest radius of a smallest enclosing ball662

is bounded, as well as the clique number. In [4] we will see that unit disk graphs (with no663

restriction on the clique number), as well as interval graphs and Kt-free unit segment graphs,664

have unbounded twin-width.665

5 The grid theorem for twin-width666

In this section, we will deal with matrices instead of graphs. Our matrices have their entries667

on a finite alphabet with a special additional value r (for red) representing errors made along668

the computations. This is the analog of the red edges of the previous section.669

5.1 Twin-width of matrices, digraphs, and binary structures670

The red number of a matrix is the maximum number of red entries taken over all rows and671

all columns. Given an n×m matrix M and two columns Ci and Cj , the contraction of672

Ci and Cj is obtained by deleting Cj and replacing every entry mk,i of Ci by r whenever673

mk,i 6= mk,j . The same contraction operation is defined for rows. A matrix M has twin-width674

at most k if one can perform a sequence of contractions starting from M and ending in some675

1× 1 matrix in such a way that all matrices occurring in the process have red number at676

most k. Note that when M has twin-width at most k, one can reorder its rows and columns677

in such a way that every contraction will identify consecutive rows or columns. The reordered678

matrix is then called k-twin-ordered. The symmetric twin-width of an n × n matrix M is679

defined similarly, except that the contraction of rows i and j (resp. columns i and j) is680

immediately followed by the contraction of columns i and j (resp. rows i and j).681

We can now extend the twin-width to digraphs, which in particular capture posets.682

Unsurprisingly the twin-width of a digraph is defined as the symmetric twin-width of its683

adjacency matrix; only we write the adjacency matrix in a specific way. Say, the vertices684

are labeled v1, . . . , vn. If there is an arc vivj (but no arc vjvi), we place a 1 entry in the685

i-th row j-column of the matrix and a -1 entry in the j-th row i-th column. If there are686

two arcs vivj and vjvi, we place a 2 entry in both the i-th row j-column and j-th row i-th687

column. If there is no arc vivj nor vjvi, we place a 0 entry in both the i-th row j-column688

and j-th row i-th column. We then further extend twin-width to a binary structure S with689

binary relations E1, . . . , Eh. When building the adjacency matrix, the entry at vi, vj is now690

(e1, . . . , eh) where ep ∈ {−1, 0, 1, 2} is chosen accordingly to the encoding of the “digraph691

Ep”. Again the twin-width of a binary structure is the symmetric twin-width of the so-built692

adjacency matrix.693

We call augmented binary structure a binary structure augmented by a constant number694

of unary relations. The twin-width is extended to augmented binary structures by seeing695

unary relations as hard constraints. More concretely, contractions between two vertices u696

and v are only allowed if they are in the exact same unary relations. Formally, in a binary697

structure G augmented by unary relations U1, . . . , Uh, the contraction of u and v is only698
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possible when for every j ∈ [h], G |= Uj(u)⇔ G |= Uj(v). When this happens, the contracted699

vertex z inherits the unary relations containing u (or equivalently v).700

Contrary to the contraction sequence of a binary structure (without unary relations),701

we cannot expect the contraction sequence to end on a single vertex. Instead a sequence702

now ends when no pair of vertices are included in the same unary relations. When this703

eventually happens, the number of vertices is nevertheless bounded by the constant 2h. We704

could continue the contraction sequence arbitrarily, but, anticipating our use of augmented705

binary structures in Section 8, it is preferable to stop the sequence there.706

By a straightforward generalization of the proof of Theorem 2, one can see that adding707

h unary relations can at most multiply the twin-width by 2h.708

I Lemma 7. The twin-width of a binary structure G augmented by h unary relations is at709

most 2h · tww(G).710

Given a total order σ on the domain of a binary structure G, we denote by Aσ(G) the711

adjacency matrix encoded accordingly to the previous paragraph and following the order σ.712

Denoting M := Aσ(G) = (mij = (eij1 , . . . , e
ij
h ))i,j , the matrix M satisfies the important713

following property, mixing symmetry and skew-symmetry. If eijp ∈ {0, 2} then eijp = ejip ,714

and if eijp ∈ {−1, 1} then eijp = −ejip . We call this property mixed-symmetry and M is said715

mixed-symmetric. This will be useful to find symmetric sequences of contractions.716

5.2 Partition coarsening, contraction sequence, and error value717

Here we present an equivalent way of seeing the twin-width with a successive coarsening of a718

partition, instead of explicitly performing the contractions with deletion.719

A partition P of a set S refines a partition P ′ of S if every part of P is contained in a part720

of P ′. Conversely we say that P ′ is a coarsening of P , or contains P . When every part of P ′721

contains at most k parts of P , we say that P k-refines P ′. Given a partition P and two distinct722

parts P, P ′ of P, the contraction of P and P ′ yields the partition P \ {P, P ′} ∪ {P ∪ P ′}.723

Given an n×m matrix M , a row-partition (resp. column-partition) is a partition of the724

rows (resp. columns) of M . A (k, `)-partition (or simply partition) of a matrix M is a pair725

(R = {R1, . . . , Rk}, C = {C1, . . . , C`}) where R is a row-partition and C is a column-partition.726

A contraction of a partition (R, C) of a matrix M is obtained by performing one contraction727

in R or in C.728

We distinguish two extreme partitions of an n×m matrix M : the finest partition where729

(R, C) have size n and m, respectively, and the coarsest partition where they both have size730

one. The finest partition is sometimes called the partition of singletons, since all its parts are731

singletons, and the coarsest partition is sometimes called the trivial partition. A contraction732

sequence of an n×m matrix M is a sequence of partitions (R1, C1), . . . , (Rn+m−1, Cn+m−1)733

where734

(R1, C1) is the finest partition,735

(Rn+m−1, Cn+m−1) is the coarsest partition, and736

for every i ∈ [n+m− 2], (Ri+1, Ci+1) is a contraction of (Ri, Ci).737

Given a subset R of rows and a subset C of columns in a matrix M , the zone R ∩ C738

denotes the submatrix of all entries of M at the intersection between a row of R and a739

column of C. A zone of a partition pair (R, C) = ({R1, . . . , Rk}, {C1, . . . , C`}) is any Ri ∩Cj740

for i ∈ [k] and j ∈ [`]. A zone is constant if all its entries are identical. The error value of Ri741

is the number of non constant zones among all zones in {Ri ∩ C1, . . . , Ri ∩ C`}. We adopt a742
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similar definition for the error value of Cj . The error value of (R, C) is the maximum error743

value taken over all Ri and Cj .744

We can now restate the definition of twin-width of a matrix M as the minimum t for745

which there exists a contraction sequence of M consisting of partitions with error value at746

most t. The following easy technical lemma will be used later to upper bound twin-width.747

I Lemma 8. If (R1, C1), . . . , (Rs, Cs) is a sequence of partitions of a matrix M such that:748

(R1, C1) is the finest partition,749

(Rs, Cs) is the coarsest partition,750

Ri r-refines Ri+1 and Ci r-refines Ci+1, and751

all (Ri, Ci) have error value at most t,752

then the twin-width of M is at most rt.753

Proof. We extend the sequence (Ri, Ci) into a contraction sequence by performing in any754

order the contractions to go from every pair (Ri, Ci) to the next pair (Ri+1, Ci+1). A worst-755

case argument gives that the error value cannot exceed rt. Indeed, assume that a partition756

(R, C) contains (Ri, Ci) and refines (Ri+1, Ci+1) and that R is a part of R. Every part of C757

is contained in a part of Ci+1 and every part of Ci+1 contains at most r parts of C. Moreover,758

at most t parts of Ci+1 form non-constant zones with R. Therefore, at most rt parts of C759

form non-constant zones with R. J760

5.3 Matrix division and Marcus-Tardos theorem761

In a contraction sequence of a matrix M , one can always reorder the rows and the columns762

of M in such a way that all parts of all partitions in the contraction sequence consist of763

consecutive rows or consecutive columns. To mark this distinction, a row-division is a764

row-partition where every part consists of consecutive rows; with the analogous definition for765

column-division. A (k, `)-division (or simply division) of a matrix M is a pair (R, C) of a766

row-division and a column-division with respectively k and ` parts. A fusion of a division is767

obtained by contraction of two consecutive parts of R or of C. Fusions are just contractions768

preserving divisions. A division sequence is a contraction sequence in which all partitions are769

divisions.770

We now turn to the fundamental tool which is basically only applied once but is the771

cornerstone of twin-width. Given a 0, 1-matrix M = (mi,j), a t-grid minor in M is a772

(t, t)-division (R, C) of M in which every zone contains a 1 (see left of Figure 4). We say that773

a matrix is t-grid free if it does not have a t-grid minor. A celebrated result by Marcus and774

Tardos [26] (henceforth Marcus-Tardos theorem) asserts that every 0, 1-matrix with large775

enough linear density has a t-grid minor. Precisely:776

I Theorem 9 ([26]). For every integer t, there is some ct such that every n×m 0, 1-matrix777

M with at least ct max(n,m) entries 1 has a t-grid minor.778

Marcus and Tardos established this theorem with ct = 2t4
(
t2

t

)
. Fox [12] subsequently779

improved the bound to 3t28t. He also showed that ct has to be superpolynomial in t (at least780

2Ω(t1/4)). Then Cibulka and Kynčl [6] decreased ct further down to 8/3(t+ 1)224t.781

Matrices with enough 1 entries are complex in the sense that they contain large t-grids782

minors. However here the role of 1 is special compared to 0, and this result is only interesting783

for sparse matrices. We would like to extend this notion of complexity to the dense case, that784

is to say for all matrices. In Marcus-Tardos theorem zones are not simple if they contain a 1,785

that is, if they have rank at least 1. A natural definition would consist of substituting “rank786
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Figure 4 To the left a 4-grid minor: every zone contains at least one 1. To the right a 3-mixed
minor on the same matrix: no zone is horizontal or vertical.

at least 1” by “rank at least 2” in the definition of a t-grid minor. Since we mostly deal with787

0, 1-matrices, and exclusively with discrete objects, we adopt a more combinatorial approach.788

5.4 Mixed minor and the grid theorem for twin-width789

A matrix M = (mi,j) is vertical (resp. horizontal) if mi,j = mi+1,j (resp. mi,j = mi,j+1)790

for all i, j. Observe that a matrix which is both vertical and horizontal is constant. We say791

that M is mixed if it is neither vertical nor horizontal. A t-mixed minor in M is a division792

(R, C) = ({R1, . . . , Rt}, {C1, . . . , Ct}) such that every zone Ri ∩ Cj is mixed (see right of793

Figure 4). A matrix without t-mixed minor is t-mixed free. For instance, the n× n matrix794

with all entries equal to 1 is 1-mixed free but admits an n-grid minor.795

The main result of this section is that t-mixed free matrices are exactly matrices with796

bounded twin-width, modulo reordering the rows and columns. More precisely:797

I Theorem 10 (grid minor theorem for twin-width). Let α be the alphabet size for the matrix798

entries, and ct := 8/3(t+ 1)224t.799

Every t-twin-ordered matrix is 2t+ 2-mixed free.800

Every t-mixed free matrix has twin-width at most 4ctα4ct+2 = 22O(t) .801

A contraction sequence is a fairly complicated object. It can be seen as a sequence of802

coarser and coarser partitions of the vertices, or as a sequence of pairs of vertices. The second803

bullet of Theorem 10 simplifies the task of bounding the twin-width of a graph. One only804

needs to find an ordering of the vertex-set such that the adjacency matrix written down with805

that order has no t-mixed minor. A typical use to bound the twin-width of a class C:806

(1) find a good vertex-ordering process based on properties of C,807

(2) assume that the adjacency matrix in this order has a t-mixed minor,808

(3) use this t-mixed minor to derive a contradiction to the membership to C, and809

(4) conclude with Theorem 10.810

Section 6 presents more and more elaborate instances of this framework and Table 1 reports811

the orders and the bounds for different classes.812

5.5 Corners813

The proof of Theorem 10 will crucially rely on the notion of corner. Given a matrix814

M = (mi,j), a corner is any 2-by-2 mixed submatrix of the form (mi,j ,mi+1,j ,mi,j+1,815

mi+1,j+1). Corners will play the same role as the 1 entries in Marcus-Tardos theorem, as816

they localize the property of being mixed:817

I Lemma 11. A matrix is mixed if and only if it contains a corner.818
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Figure 5 To the left, the mixed value of C2 on {R1, R2, R3, R4} is 3: one mixed zone and two
mixed cuts (all three in red, with a corner in each, highlighted by red dashed squares). To the right,
the mixed value of C2 on {R1, R2 ∪R3, R4} is still 3. In general, the mixed value of a Cj ∈ C cannot
increase after the fusion of Ri, Ri+1 ∈ R since the only way for a new mixed zone to be created is
that a mixed cut disappears, while new mixed cuts cannot be created. On the contrary, the number
of mixed zones in C2 can increase as it went from 1 to 2.

Proof. A corner is certainly a witness of being mixed. Conversely let us assume that a matrix819

M has no corner. Either M is constant and we are done: M is not mixed. Or, without loss820

of generality, there are in M two distinct entries mi,j 6= mi+1,j . To avoid a corner, both821

entries mi,j+1 and mi,j−1 are equal to mi,j . Similarly, both entries mi+1,j+1 and mi+1,j−1822

are equal to mi+1,j . Therefore the whole i-th row is constant as well as the i+ 1-st row. This823

forces the rows of index i− 1 and i+ 2 to be constant, and propagates to the whole matrix824

which is then horizontal. Observe that if the two distinct adjacent entries would initially be825

mi,j 6= mi,j+1, then the same arguments would show that the matrix is vertical. J826

5.6 Mixed zones, cuts, and values827

Let R = {R1, . . . , Rk} be a row-division of a matrix M and let C be a set of consecutive828

columns. We call mixed zone of C on R any zone Ri ∩ C which is a mixed matrix. We call829

mixed cut of C on R any index i ∈ [k − 1] for which the 2-by-|C| zone defined by the last830

row of Ri, the first row of Ri+1, and C is a mixed matrix. Now the mixed value of C on R831

is the sum of the number of mixed cuts and the number of mixed zones. See Figure 5 for an832

illustration, and for why we use the mixed value instead of the mere number of mixed zones.833

Analogously we define the mixed value of a set R of consecutive rows on a column-division C.834

I Lemma 12. The contraction of two consecutive parts of R does not increase the mixed835

value of C on R.836

Proof. Assume that R = {R1, . . . , Rk} and R′ is obtained by contraction of Ri and Ri+1.837

We just have to show that if Ri ∩C, Ri+1 ∩C are not mixed zones and i is not a mixed cut,838

then (Ri ∪ Ri+1) ∩ C is not a mixed zone. Indeed, if (Ri ∪ Ri+1) ∩ C is a mixed zone, it839

contains a corner which must be in Ri ∩ C, or in Ri+1 ∩ C, or otherwise sits in the mixed840

cut i. J841

The mixed value of a division (R, C) = ({R1, . . . , Rk}, {C1, . . . , C`}) is the maximum842

mixed value of Ri on C, and of Cj on R, taken over all Ri ∈ R and Cj ∈ C. Observe that843

the finest division has mixed value 0 and the coarsest division has mixed value at most 1.844
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5.7 Finding a division sequence with bounded mixed value845

Leveraging Marcus-Tardos theorem, we are ready to compute, for any t-mixed free matrix,846

a division sequence with bounded mixed value. This division sequence is not necessarily847

yet a contraction sequence with bounded error value (indeed a non-constant horizontal or848

vertical zone counts for 0 in the mixed value but for 1 in the error value). But this division849

sequence will serve as a crucial frame to find the eventual contraction sequence.850

I Lemma 13. Every t-mixed free matrix M has a division sequence in which all divisions851

have mixed value at most 2ct (where ct is the one of Theorem 9).852

Proof. We start with the finest division of M and greedily perform fusions as long as853

we can keep mixed value at most 2ct. Assume that we have reached a division (R, C) =854

({R1, . . . , Rk}, {C1, . . . , C`}), in which, without loss of generality, k > `. Assume also, for855

the sake of contradiction, that each fusion R2i−1, R2i for i = 1, . . . , bk/2c leads to a mixed856

value exceeding 2ct. By Lemma 12, the mixed value of Cj on R does not increase when857

performing a row-fusion. Thus, if the fusion of R2i−1 and R2i is not possible, this is because858

the mixed value of R′i = R2i−1 ∪R2i on C is more than 2ct. Therefore the number of mixed859

cuts or zones of each R′i (for i = 1, . . . , bk/2c) on C is greater than 2ct; hence R′i contains860

more than 2ct corners in mixed zones and mixed cuts. Now we refine C in two possible ways:861

either C′ = {C1 ∪ C2, C3 ∪ C4, . . . } or C′′ = {C1, C2 ∪ C3, C4 ∪ C5, . . . }. Observe that each862

mixed cut of R′i on C′ (resp. C′′) corresponds to a mixed zone of R′i on C′′ (resp. C′). Let863

R′ = {R′1, . . . , R′bk/2c} and consider the two divisions (R′, C′) and (R′, C′′). Thus, in total,864

the zones contained in these two divisions contain at least bk/2c · 2ct corners. So one of these865

subdivisions contains at least bk/2cct zones with a corner, hence bk/2cct mixed zones. By866

applying Marcus-Tardos theorem (Theorem 9) to the smaller auxiliary matrix with a 1 if the867

zone is mixed and a 0 otherwise, one can find a t-mixed minor in M . J868

5.8 Finding a contraction sequence with bounded error value869

We are now equipped to prove the main result of this section, which is the second item of870

Theorem 10. The division sequence with small mixed value, provided by Lemma 13, will871

guide the construction of a contraction sequence (not necessarily a division sequence) of872

bounded error value. This two-layered mechanism is also present in the proof of Guillemot873

and Marx, albeit in a simpler form since they have it tailored for sparse matrices, and874

importantly they start from a permutation matrix.875

Proof of Theorem 10. We first show that every t-twin-ordered matrix M is 2t+ 2-mixed876

free. Let (R, C) = ({R1, . . . , R2t+2}, {C1, . . . , C2t+2}) be a division of an n ×m matrix M877

and assume for contradiction that all its zones are mixed. Since M is t-twin-ordered, there is878

a division sequence (R1, C1), . . . , (Rn+m−1, Cn+m−1) in which all divisions have error value879

at most t. Let us consider the first index s such that some Ri is contained in a part of Rs880

or some Cj is contained in a part of Cs. Assume without loss of generality that R ∈ Rs881

contains Ri. Since a zone Ri ∩ Cj in M is mixed for each Cj in C, it is not vertical, and882

therefore for each j ∈ [2t+ 2] there exists a choice C ′j in Cs which intersects Cj such that883

R ∩ C ′j is not constant. Observe that we cannot have C ′j = C ′j+2 since this would mean that884

C ′j contains Cj+1, a contradiction to the choice of s. In particular the error value of R in Cs885

is at least (2t+ 2)/2 > t, a contradiction.886

We now show that every n×m matrixM which does not contain a t-mixed minor has twin-887

width at most 4ctα4ct+2, where ct is as defined in Theorem 9, and α is the alphabet size for the888

entries ofM . By Lemma 13, there exists a division sequence (R1, C1), . . . , (Rn+m−1, Cn+m−1)889
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with mixed value at most t′ := 2ct. We now refine each division (Rs, Cs) = ({R1, . . . , Ra},890

{C1, . . . , Cb}), into a partition (R′s, C′s) of M (which is not necessarily a division). We891

consider Ri ∈ Rs and we say that a subset J of consecutive indices of {1, . . . , b} is good if892

Ri ∩∪j∈JCj is not mixed. Now, observe that if j ∈ [b− 1] is not a mixed cut, and if Ri ∩Cj893

and Ri ∩ Cj+1 are both non-mixed zones, then Ri ∩ (Cj ∪ Cj+1) is a non-mixed zone. Since894

the mixed value of Ri on Cs is at most t′, one can find at most t′ + 1 good subsets J1, . . . , Jr895

covering all the non-mixed zones of Ri (each good subset spans all indices between two mixed896

zones/cuts). We observe that a zone Zc := Ri ∩ ∪j∈JcCj is either vertical or horizontal.897

When Zc is vertical, all rows of Ri are identical on indices in Jc. When Zc is horizontal,898

there are at most α possible rows of Ri restricted to the indices in Jc where α is the size899

of the alphabet. In particular, there are at most αr 6 αt
′+1 different rows in Ri, when we900

restrict them to {1, . . . , b} \ {j | Ri ∩Cj is mixed}. We then partition Ri into these different901

types of rows and proceed in the same way for all parts in Rs and in Cs to obtain a partition902

(R′s, C′s) of M .903

We show that the error value of (R′s, C′s) does not exceed t′αt′+1. Suppose that a zone904

R ∩ C where R ∈ R′s and C ∈ C′s is not constant. We denote by Ri ∈ Rs and Cj ∈ Cs905

the parts such that R ⊆ Ri and C ⊆ Cj . Note that the zone Ri ∩ Cj must be mixed, since906

otherwise, it has been divided into constant zones in (R′s, C′s). In particular, the total907

number of such Cj is at most t′. Since Cj has been partitioned at most αt′+1 times, the908

total number of zones R ∩ C is at most t′αt′+1.909

Let us show that the partition (R′s, C′s) refines (R′s+1, C′s+1). Take for instance R ∈ R′s910

and denote by Ri ∈ Rs the part such that R ⊆ Ri. Now the rows in R have been selected in911

Ri as they coincide on all zones R ∩ C where C ∈ C′s and Ri ∩ C is not mixed. Since the912

zones of (Rs+1, Cs+1) contain the zones of (Rs, Cs), the selection at stage s+ 1 is based on913

potentially less Cj such that Ri ∪Cj is not mixed (in case of a column fusion) or potentially914

more rows to choose R from (in case of a row fusion with Ri). In both cases, R has to appear915

in some part of R′s+1. We established that (R′s, C′s) refines (R′s+1, C′s+1). Moreover, since916

(R′s, C′s) αt′+1-refines (Rs, Cs) which in turn 2-refines (Rs+1, Cs+1), we have that (R′s, C′s)917

2αt′+1-refines (Rs+1, Cs+1). As (R′s+1, C′s+1) refines (Rs+1, Cs+1), (R′s, C′s) 2αt′+1-refines918

(R′s+1, C′s+1).919

Finally, we apply Lemma 8 to the sequence (R′s, C′s) and conclude that the twin-width920

of M is at most 2αt′+1 · t′αt′+1 = 2t′α2(t′+1) = 4ctα4ct+2. J921

The second item of Theorem 10 has the following consequence, which reduces the task922

of bounding the twin-width of G and finding a contraction sequence to merely exhibiting a923

mixed free order, that is a domain-ordering σ such that the matrix Aσ(G) is t-mixed free for924

a bounded t.925

I Theorem 14. Let G be a (di)graph or even a binary structure. If there is an ordering926

σ : v1, . . . , vn of V (G) such that Aσ(G) is k-mixed free, then tww(G) = 22O(k) .927

Proof. We shall just revisit the proof of Theorem 10 and check that, starting from a mixed-928

symmetric matrix M := Aσ(G), we can design a symmetric contraction sequence. As929

M = (mij)i,j is mixed-symmetric, it holds that mij = mi′j′ ⇔ mji = mj′i′ . In particular the930

symmetric Z ′ about the diagonal of an off-diagonal zone Z is mixed if and only if Z ′ is mixed.931

More precisely, Z ′ is horizontal (resp. vertical) if and only if Z is vertical (resp. horizontal).932

The division sequence with bounded mixed value, greedily built in Lemma 13, can be933

then made symmetric. Say the first fusion merges the i-th and i+ 1-st rows, and let us call934

R this new row-part. We perform the symmetric fusion of the i-th and i + 1-st columns,935

and denote by C the obtained column-part. After that operation, no mixed value among936
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the row-parts has increased. In particular the mixed value of R has not increased, and this937

new mixed value equals the mixed value of C. Therefore the symmetric fusion was indeed938

possible. We iterate this process and follow the rest of the proof of Lemma 13 to obtain a939

symmetric division sequence.940

The refinement of the division sequence into a sequence of partitions of bounded error941

value, in the second step of the proof of Theorem 10, is now symmetric since the division is942

symmetric and M is mixed-symmetric (so two columns are equal on a set of zones if and943

only if the symmetric rows are equal on the symmetric set of zones). Finally the contraction944

sequence is provided by Lemma 8. In this lemma, we observed that the contractions going945

from the (symmetric) (Ri, Ci) to the (symmetric) (Ri+1, Ci+1) can be done in any order. Thus946

we can perform a symmetric sequence of contractions. Overall we constructed a symmetric947

contraction sequence with error value 22O(k) . Hence the twin-width of G is bounded by that948

quantity. This can be interpreted as a contraction sequence of the vertices of G (or domain949

elements) with bounded red degree. J950

We observe that the proof of Theorem 14 is constructive. It yields an algorithm which, given951

a k-mixed free n× n matrix M , outputs a 22O(k)-sequence of M in O(n2)-time.952

6 Classes with bounded twin-width953

In this section we show that some classical classes of graphs and matrices have bounded954

twin-width. Let us start with the origin of twin-width, which is the method proposed by955

Guillemot and Marx [22] to understand permutation matrices avoiding a certain pattern.956

6.1 Pattern-avoiding permutations957

We associate to a permutation σ over [n] the n× n matrix Mσ = (mij)i,j where miσ(i) = 1958

and all the other entries are set to 0. A permutation σ is a pattern of a permutation τ if Mσ959

is a submatrix of Mτ . A central open question was the design of an algorithm deciding if a960

pattern σ appears in a permutation τ in time f(|σ|) · |τ |O(1). The brilliant idea of Guillemot961

and Marx, reminiscent of treewidth and grid minors, is to observe that permutations avoiding962

a pattern σ can be iteratively decomposed (or collapsed), and that the decomposition gives963

rise to a dynamic-programming scheme. This lead them to a linear-time f(|σ|) · |τ | algorithm964

for permutation pattern recognition. In Sections 3 and 5 we generalized their decomposition965

to graphs and arbitrary (dense) matrices, and leveraged Marcus-Tardos theorem, also in the966

dense setting. Section 5 would in principle readily apply here: If a permutation matrix Mτ967

does not contain a fixed pattern of size k, then it is certainly k-mixed free since otherwise the968

k-mixed minor would contain any pattern of size k. Hence by Theorem 10, Mτ has bounded969

twin-width.970

However, to be able to use our framework and derive that FO model checking is FPT in971

the class of permutations avoiding a given pattern, we need to transform Mτ into a different972

matrix. Namely, we consider the directed graph Dτ whose vertex-set is the union of two973

total orders, respectively the natural increasing orders on {1, . . . , n} and on {1′, . . . , n′},974

where we add double arcs between i and τ(i)′. The adjacency matrix A(Dτ ) of Dτ where the975

vertices are ordered 1, . . . , n, 1′, . . . , n′ (recall the encoding mentioned in Section 5.1) consists976

of four blocks. Two of them are Mτ and its transpose, and the two others (encoding the977

total orders) both consist of a lower triangle of 1, including the diagonal, completed by an978

upper triangle of -1. If Mτ is k-mixed free, the matrix A(Dτ ) is 2k-mixed free, and thus has979

bounded twin-width. Note also that every first-order formula expressible in the permutation980
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τ (where we can test equality and 6) is expressible in the structure Dτ . In Section 7 we will981

show that FO model checking is FPT for Dτ , as we can efficiently compute a sequence of982

d-partitions. Therefore FO model checking is also FPT in the class of permutations avoiding983

some fixed pattern σ.984

As an illustrating example, let us consider the following artificial problem. Let ` be a985

positive integer, and σ, σ′ be two fixed permutations. Given an input permutation τ , we ask986

if τ contains the pattern σ′ or every pattern of τ of size ` is contained in σ. There is an987

f(`, |σ|, |σ′|) · |τ |2 algorithm to solve this problem (actually the dependency in |τ | could be988

made linear in this particular case). We first compute an upper bound on the twin-width of989

the matrix Mτ associated to τ (as defined previously). Either Mτ has a |σ′|-mixed minor990

(and we can answer positively: σ′ appears in τ), or Dτ has bounded twin-width. One of991

these two outcomes can be reached in time O(|τ |2) by the previous section (even O(|τ |)). We992

now assume that Dτ has bounded twin-width. Then we observe that the property “every993

pattern of τ of size ` is contained in σ” is expressible by a first-order formula of size g(`, |σ|).994

By Section 7 that property can be tested in time f(`, |σ|, |σ′|) · |τ |.995

Given a permutation τ , we can form the permutation graph Gτ on vertex-set [n] where ij996

is an edge when i < j and τ(i) > τ(j). Note that Gτ can be first-order interpreted from the997

digraph Dτ (defined as above) and the partition of V (Dτ ) into {1, . . . , n} and {1′, . . . , n′}.998

In Section 8 we will show that any FO interpretation of a graph G by a formula φ(x, y) has999

twin-width bounded by a function of φ and tww(G). This implies the following:1000

I Lemma 15. FO model checking is FPT on every proper subclass of permutation graphs1001

(i.e., closed under induced subgraphs and not equal to all permutation graphs).1002

Proof. By assumption, there is a permutation graph Gσ which is not an induced subgraph1003

of any graph Gτ in the class. We thus obtain that Dτ has bounded twin-width, as Mτ does1004

not contain the pattern Mσ. Therefore Gτ itself has bounded twin-width, and a sequence of1005

contractions can be efficiently found (by following the constructive proof of Section 5). We1006

conclude by invoking Section 7. J1007

A similar argument works for partial orders of (Dushnik-Miller) dimension 2, i.e., inter-1008

sections of two total orders defined on the same set. We obtain:1009

I Lemma 16. FO model checking is FPT on every proper subclass of partial orders of1010

dimension 2.1011

6.2 Posets of bounded width1012

The versatility of the grid minor theorem for twin-width is also illustrated with posets. Let1013

P = (X,6) be a poset of width k, that is, its maximum antichain has size k. For xi, xj ∈ X,1014

xi < xj denotes that xi 6 xj and xi 6= xj . We claim that the twin-width of P is bounded1015

by a function of k. By Dilworth’s theorem, P can be partitioned into k total orders (or1016

chains) T1, . . . , Tk. Now one can enumerate the vertices precisely in this order, say σ, that is,1017

increasingly with respect to T1, then increasingly with respect to T2, and so on. We rename1018

the elements of X so that in the order σ, they read x1, x2, . . . , xn, with n := |X|. Let us1019

write the adjacency matrix A = (aij) := Aσ(P ) of P : aij = 1 if xi 6 xj , aij = −1 if xj < xi,1020

and aij = 0 otherwise. Recall that this is consistent with how we defined the adjacency1021

matrix for the more general digraphs in Section 5. We assume for contradiction that A has a1022

3k-mixed minor.1023

By the pigeon-hole principle, there is a submatrix of A indexed by two chains, Ti for1024

the row indices and Tj for the column indices, which has a 3-mixed minor, realized by the1025
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Figure 6 Left: If there is one arc from C2 to R2, then by transitivity there are all arcs from C1

to R3. On the matrix, this translates as: a -1 entry in R2 ∩C2 implies that all the entries of R3 ∩C1

are -1. Right: Similarly, a 1 entry in R2 ∩ C2 implies that all the entries of R1 ∩ C3 are 1. Hence at
least one zone among R3 ∩C1, R2 ∩C2, R1 ∩C3 is constant, a contradiction to the 3k-mixed minor.

(3, 3)-division (R1, R2, R3), (C1, C2, C3). The zone R2 ∩ C2 is mixed, so it contains a -1 or1026

a 1. If it is a -1, then by transitivity the zone R3 ∩ C1 is entirely -1, a contradiction to its1027

being mixed. A similar contradiction holds when there is a 1 entry in R2 ∩C2: zone R1 ∩C31028

is entirely 1. See Figure 6 for an illustration. Hence, by Theorem 10, the twin-width of A1029

(and the twin-width of P seen as a directed graph) is bounded by 4ck · 44ck+2 = 22O(k) .1030

Of course there was a bit of work to establish Theorem 10 inspired by the Guillemot-1031

Marx framework, and supported by Marcus-Tardos theorem. There was even more work to1032

prove that FO model checking is FPT on bounded twin-width (di)graphs. It is nevertheless1033

noteworthy that once that theory is established, the proof that bounded twin-width captures1034

the posets of bounded width is lightning fast. Indeed the known FPT algorithm on posets1035

of bounded width [15] is a strong result, itself generalizing or implying the tractability of1036

FO model checking on several geometric classes [20, 23], as well as algorithms for existential1037

FO model checking on posets of bounded width [5, 17]. We observe that posets of bounded1038

twin-width constitute a strict superset of posets of bounded width. Arcless posets are trivial1039

separating examples, which have unbounded maximum antichain and twin-width 0. A more1040

elaborate example would be posets whose cover digraph is a directed path on
√
n vertices in1041

which all vertices are substituted by an independent set of size
√
n. These posets have width1042 √

n and twin-width 1.1043

The next example does not qualify as a “lightning fast” membership proof to bounded1044

twin-width. It shows however that the good vertex-ordering can be far less straightforward.1045

6.3 Proper minor-closed classes1046

A more intricate example is given by proper minor-closed classes. By definition, a proper1047

minor-closed class does not contain some graph H as a minor. This implies in particular1048

that it does not contain K|V (H)| as a minor. Thus we only need to show that Kt-minor free1049

graphs have bounded twin-width.1050

If the Kt-minor free graph G admits a hamiltonian path, things become considerably sim-1051

pler. We can enumerate the vertices of G according to this path and write the corresponding1052

adjacency matrix A. The crucial observation is that a k-mixed minor yields a Kk/2,k/2-minor,1053

hence a Kk/2-minor. So A cannot have a 2t-mixed minor, and by Theorem 10, the twin-width1054

of G bounded (by 4c2t24c2t+2 = 2tO(t)). Unfortunately, a hamiltonian path is not always1055

granted in G. A depth-first search (DFS for short) tree may emulate the path, but any DFS1056

will not necessarily work. Interestingly the main tool of the following theorem is a carefully1057

chosen Lex-DFS.1058
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Permutations avoiding σ Posets of width w Kt-minor free graphs

ordering imposed chains put one after the other ad-hoc Lex-DFS

bound 2O(|σ|) 22O(w) 222O(t)

Table 1 Choice of the ordering and bound on the twin-width for the classes tackled in Section 6.

I Theorem 17. We set g : t 7→ 2(24t+1+1)2, ck := 8/3(k+1)224k, and f : t 7→ 4cg(t)24cg(t)+2.1059

Every Kt-minor free graph have twin-width at most f(t) = 222O(t)

.1060

Proof. Let G be a Kt-minor free graph, and n := |V (G)|. We wish to upperbound the1061

twin-width of G. We may assume that G is connected since the twin-width of a graph is1062

equal to the maximum twin-width of its connected components.1063

Definition of the appropriate Lex-DFS. Let v1 be an arbitrary vertex of G. We perform1064

a specific depth-first search from v1. A vertex is said discovered when it is visited (for the1065

first time) in the DFS. The current discovery order is a total order v1, . . . , v` among the1066

discovered vertices, where vi was discovered before vj whenever i < j. We may denote that1067

fact by vi ≺ vj , and vi 4 vj if i and j may potentially be equal. The current DFS tree1068

is the tree on the discovered vertices whose edges correspond to the usual parent-to-child1069

exploration. The active vertex is the lastly discovered vertex which still has at least one1070

undiscovered neighbor. Initially the active vertex is v1, and when all vertices have been1071

discovered, there is no longer an active vertex. Before that, since G is connected, the active1072

vertex is always well-defined. The (full) discovery order is the same total order when all the1073

vertices have been discovered.1074

We shall now describe how we break ties among the undiscovered neighbors of the active1075

vertex. Let v1, . . . , v` be the discovered vertices (with ` < n), T` be the current DFS tree,1076

and v be the active vertex. Let C1, . . . , Cs be the vertex-sets of the connected components of1077

G− V (T`) intersecting NG(v). By definition of the active vertex, s > 1. For each i ∈ [s], we1078

interpret NG(Ci)∩V (T`) as a word w`(Ci) of {0, 1}` where, for every j ∈ [l], the j-th letter of1079

w`(Ci) is a 1 if and only if vj ∈ NG(Ci) ∩ V (T`). If w and w′ are two words on the alphabet1080

{0, 1}, we denote by w 6lex w
′ the fact that w is not greater than w′ in the lexicographic1081

order derived from 0 < 1. We can now define the successor of v` in the discovery order. The1082

new vertex v`+1 is chosen as an arbitrary vertex of Ci ∩NG(v) where w`(Cj) 6lex w`(Ci) for1083

every j ∈ [s]. Informally we visit first the component having the neighbors appearing first in1084

the current discovery order.1085

The Lex-DFS discovery to order the adjacency matrix M. Let v1, . . . , vn be the eventual1086

discovery order, and let T be the complete DFS tree. Let M be the {0, 1}n×n matrix1087

obtained by ordering the rows and columns of the adjacency matrix of G accordingly to1088

the discovery order. We set g(t) := 2h(t)2 and h(t) := 24t+1 + 2. We will show that M is1089

g(t)-mixed free, actually even g(t)-grid free. For the sake of contradiction, let us suppose1090

that M has a g(t)-grid minor defined by the consecutive sets of columns C1, C2, . . . , Cg(t)1091

and the consecutive sets of rows R1, R2, . . . , Rg(t).1092

Now our goal is to show that we can contract a non-negligible amount of the Cj and1093

Ri, thereby exhibiting a Kt-minor. Actually the Kt-minors will arise from Ka,b-minors with1094

t 6 min(a, b). We observe that either
⋃
j∈[1,g(t)/2] Cj and

⋃
i∈[g(t)/2+1,g(t)] Ri are disjoint,1095
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or
⋃
j∈[g(t)/2+1,g(t)] Cj and

⋃
i∈[1,g(t)/2] Ri are disjoint. Without loss of generality, let us1096

assume that the former condition holds, and we will now try to find a Kt,t-minor between1097

C1, . . . , Cg(t)/2 and Rg(t)/2+1, . . . , Rg(t). To emphasize the irrelevance of the first sets being1098

columns and the second sets being rows, we rename C1, . . . , Cg(t)/2 by A1, . . . , Ag(t)/2, and1099

Rg(t)/2+1, . . . , Rg(t) by B1, . . . , Bg(t)/2.1100

Note that all the vertices of
⋃
i∈[g(t)/2] Ai are consecutive in the discovery order and1101

appear before the consecutive vertices
⋃
i∈[g(t)/2] Bi. Another important fact is that there1102

is at least one edge between every pair (Ai, Bj) (by definition of a mixed minor, or even1103

grid minor). Thus let ai,j ∈ Ai be an arbitrary vertex with at least one neighbor bi,j in Bj .1104

At this point, if we could contract each Ai and Bj , we would be immediately done. This is1105

possible if all these sets induce a connected subgraph. We will see that this is essentially the1106

case for the sets of {Ai}i∈[g(t)/2], but not necessarily for the {Bj}j∈[g(t)/2].1107

The {Ai}i essentially induce disjoint paths along the same branch. Let A′i be the vertex-1108

set of the minimal subtree of T containing
⋃
j∈[g(t)/2]{ai,j}. The following lemma only uses1109

the definition of a DFS, and not our specific tie-breaking rules.1110

I Lemma 18. All the vertices ai,j, for i, j ∈ [g(t)/2], lie on a single branch of the DFS tree1111

with, in the discovery order, first
⋃
j∈[g(t)/2]{a1,j}, then

⋃
j∈[g(t)/2]{a2,j}, and so on, up to1112 ⋃

j∈[g(t)/2]{ag(t)/2,j}. In particular, the sets A′i induce pairwise-disjoint paths in T along the1113

same branch.1114

Proof. Assume for the sake of contradiction that ai,j and ai′,j′ , with ai,j ≺ ai′,j′ , are not in1115

an ancestor-descendant relationship in T . Let w be the least common ancestor of ai,j and1116

ai′,j′ , and Tw the current DFS tree the moment w is discovered. Hence w ≺ ai,j . We claim1117

that bi,j would be discovered before ai′,j′ , a contradiction. Indeed when ai,j is discovered, it1118

becomes the active vertex (due, for instance, to the mere existence of bi,j). By design of a1119

DFS, ai,j is not in the same connected component of G− Tw as ai′,j′ , but its neighbor bi,j1120

obviously is. So this connected component, and in particular bi,j , is fully discovered before1121

ai′,j′ . This proves that the sets A′i induce paths in T along the same branch.1122

We claim that these paths are pairwise disjoint and in the order (from root to bottom)1123

A′1, A
′
2, . . . , A

′
g(t)/2. This is immediate since, for every i < i′, ai,j ≺ ai′,j′ . Thus ai,j can only1124

be an ancestor of ai′,j′ in T . One can also observe that A′i ⊆ Ai for every i ∈ [g(t)/2]. J1125

Handling the {Bj}j with the enhancements {B∗j }j. Let B∗j be the vertex-set of the1126

minimum subtree of T containing Bj . Since Bj consist of consecutive vertices in the1127

discovery order, B∗j = Bj ] Pj where Pj is a path on a single branch of T . One can see B∗j1128

as an enhancement of Bj .1129

We show that except maybe the last A′i, namely A′g(t)/2, every set enhancement B∗j is1130

disjoint from every A′i.1131

I Lemma 19. For every j ∈ [g(t)/2], for every i ∈ [g(t)/2− 1], B∗j ∩A′i = ∅.1132

Proof. There is an edge between A′g(t)/2 and each Bj . Every Bj succeeds A′g(t)/2 in the1133

discovery order. Therefore all the vertices of
⋃
j∈[g(t)/2] Bj appear in T in the subtree of the1134

firstly discovered vertex, say u, of A′g(t)/2. Hence all the trees B∗j are fully contained in T [u]1135

the subtree of T rooted at u. We can then conclude since, by Lemma 18, all the vertices of1136 ⋃
j∈[g(t)/2−1] A

′
j are ancestors of u. J1137
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An enhancement is connected by design. Furthermore, by Lemma 19 contracting (in the1138

usual minor sense) a B∗j would not affect almost all A′i. The remaining obvious issue that we1139

are facing is that a pair of enhancements B∗j and B∗j′ may very well overlap. Thus we turn1140

our attention to their intersection graph.1141

The intersection graph H of the enhancements. Let H be the intersection graph whose1142

vertices are B∗1 , . . . , B∗g(t)/2 and there is an edge between two vertices whenever the corres-1143

ponding sets intersect. As an intersection graph of subtrees in a tree, H is a chordal graph.1144

In particular H is a perfect graph, thus α(H)ω(H) > |V (H)| = g(t)/2. Therefore either1145

α(H) >
√
g(t)/2 or ω(H) >

√
g(t)/2. Moreover in polynomial-time, we can compute an1146

independent or a clique of size
√
g(t)/2 = h(t) = 24t+1 + 2 > t. If we get a large independent1147

set I in H, we can contract the edges of each B∗j corresponding to a vertex of I. By Lemma 191148

we can also contract any h(t) paths A′i which are not A′g(t)/2, and obtain a Kh(t),h(t) (which1149

contains a Kh(t)-minor, hence a Kt-minor). We thus assume that we get a large clique C1150

in H.1151

H has a clique C of size at least h(t). By the Helly property satisfied by the subtrees of1152

a tree, there is a vertex v of T (or of G) such that every B∗j ∈ C contains v. If we potentially1153

exclude the B∗j of C with smallest and largest index, all the other elements of C are fully1154

contained in T [v] the subtree of T rooted at v. Let C1, . . . , Cs be the connected components1155

of T [v]− {v}, ordered by the Lex-DFS discovery order. Thus v has s children in T .1156

The enhancements of C essentially intersect only at v. We show that each connected1157

component may intersect only a very limited number of B∗j ∈ C.1158

I Lemma 20. For every i ∈ [s], the connected component Ci intersects at most two B∗j ∈ C.1159

Proof. Assume by contradiction that there is a connected component Ci intersecting1160

B∗j1
, B∗j2

, B∗j3
∈ C, with j1 < j2 < j3. Since Bj2 appears after Bj1 and before Bj3 in1161

the discovery order, Bj2 is fully contained in Ci. Hence B∗j2
is also contained in Ci and1162

cannot contain v, a contradiction. J1163

Moreover Lemma 20 shows that only two consecutive B∗j1
, B∗j2

∈ C (by consecutive, we mean1164

that there is no B∗j ∈ C with j1 < j < j2) may intersect the same connected component1165

of T [v]− {v}. Let us relabel D1, . . . , D(h(t)−1)/2, every other elements of C except the last1166

one (keeping the same order). Now no connected component Ci intersects two distinct sets1167

Dj , Dj′ . Each Dj defines an interval Ij := [`(j), r(j)] of the indices i such that Dj intersects1168

Ci. The sets Ij are pairwise-disjoint intervals.1169

Definitions of the pointers z, jb, je to iteratively build S and L. Let z1 ∈ NG(Cr(1)) be1170

such that for every z′ ∈ NG(Cr(1)), z1 4 z′. This vertex exists by our DFS tie-breaking1171

rule and the fact that there is an edge between, say, a2,1 and b2,1 (recall that this edge1172

links A2 and B1). We initialize three pointers z, jb, je and two sets S,L as follows: z := v11173

(the starting vertex in the DFS discovery order), jb := 1, je := (h(t)− 2)/2 = 24t, S := ∅,1174

and L := ∅. Informally the indices jb (begin) and je (end) lowerbound and upperbound,1175

respectively, the indices of the sets {Dj}j we are still working with. Every vertex v ≺ z is1176

simply disregarded.1177

The sets S and L collect vertices (all discovered before B1 in the Lex-DFS order) which1178

can be utilized to form a large biclique minor in two different ways. Vertices stored in S1179
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are not adjacent to too many {Dj}j , thus they can be used to “connect” the components1180

of some Dj − {v} without losing too many other Dj′ . Vertices stored in L are adjacent to1181

very many {Dj}j , so they can directly form a biclique minor with the leftmost connected1182

component of the corresponding {Dj}j .1183

Let j1 ∈ [(h(t)− 2)/2] be the smallest index such that NG(C`(j1)) does not contain z1.1184

We distinguish two cases: j1 6 (h(t)− 2)/4 = 24t−1 and j1 > 24t−1. If j1 6 24t−1, we will1185

use z1 to connect all connected components intersecting D1: that is, C`(1), C`(1)+1, . . . , Cr(1).1186

In that case, we set: jb := j1 and S := S ∪ {z1}.1187

If instead j1 > 24t−1, we will use z1 itself as a possible vertex of a biclique minor. In that1188

case we set: je := j1 − 1 and L := L ∪ {z1}. Observe that in both cases the length |je − jb|1189

is at most halved. Hence we can repeat this process log 24t/2 = 2t times. In both cases we1190

replace the current z by the successor of z1 in the DFS discovery order.1191

At the second step, we let z2 ∈ NG(Cr(jb)) be such that for every z′ ∈ NG(Cr(jb)) with1192

z 4 z′, then z2 ≺ z′. In words, z2 is the first vertex (in the discovery order) appearing after z1193

with a neighbor in the last connected component Ci intersecting the current first Dj , namely1194

Djb
. Again this vertex exists by the DFS tie-breaking rule. We define j2 ∈ [jb, je] as the1195

smallest index such that NG(C`(j2)) does not contain z2. We distinguish two cases: j2 below1196

or above the threshold (jb + je)/2, and so on.1197

Building a large minor when |L| is large. After log ((h(t)− 2)/2)/2 = 2t steps, max(|S|, |L|)1198

> t. Indeed at each step, we increase |S|+ |L| by one unit. Also the length |je − jb| after1199

these steps is still not smaller than 24t/22t = 22t. If |L| > t, then we exhibit a Kt,t-minor in1200

G in the following way. We contract C`(j) to a single vertex, for every j ∈ [jb, je] (recall that1201

|je − jb| > 22t). These vertices form with the vertices of L a K22t,|L|, thus a Kt,t-minor, and1202

a Kt-minor.1203

Building a large minor when |S| is large. If instead |S| > t, then we exhibit the following1204

Kt,t-minor. We use each zi ∈ S, to connect the corresponding sets Dj \ {v}. We contract1205

{zi}∪Dj \{v} to a single vertex. We then contract all the disjoint paths A′i (recall Lemma 18)1206

which are not A′g(t)/2 nor contain a vertex in S. This represents at least g(t)/2− 1− 2t > t1207

vertices. This yields a biclique Kt,t, hence G as a Kt-minor.1208

Concluding on the twin-width of G. The two previous paragraphs reach a contradiction.1209

Hence the adjacency matrix M is g(t)-mixed free, and even g(t)-grid free. By Theorem 101210

this implies that the twin-width of G is at most 4cg(t)24cg(t)+2, where ck := 8/3(k + 1)224k,1211

which was the announced triple-exponential bound. J1212

Applied to planar graphs, which are K5-minor free, the previous theorem gives us a1213

constant bound on the twin-width, but that constant has billions of digits. We believe that1214

the correct bound should have only one digit. It is natural to ask for a more reasonable1215

bound in the case of planar graphs. An attempt could be to show that for a large enough1216

integer d, every planar d-trigraph admits a d-contraction which preserves planarity. However1217

Figure 7 shows that this statement does not hold.1218

7 FO model checking1219

In this section, we show that deciding first-order properties in d-collapsible graphs is fixed-1220

parameter tractable in d and the size of the formula. We let E be a binary relation symbol.1221
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x1

y1

x2

y2

x3

y3

Figure 7 For every integer d (here d = 4), a planar d-trigraph without any d-contraction to a
planar graph. The graph should be thought of as wrapped around a cylinder: there are edges x1x3

and y1y3, and the leftmost and rightmost vertices are actually the same vertex.

A graphG is seen as an {E}-structure with universe V (G) and binary relation E(G) (matching1222

the arity of E). A sentence is a formula without free variables.1223

A formula φ in prenex normal form, or simply prenex formula, is any sentence written as
a sequence of non-negated quantifiers followed by a quantifier-free formula:

φ = Q1x1Q2x2 . . . Q`x`φ
∗

where for each i ∈ [`], the variable xi ranges over V (G), Qi ∈ {∀,∃}, while φ∗ is a Boolean1224

combination in atoms of the form xi = xj and E(xi, xj). Here we call length of φ its number1225

of variables `. Note that this also corresponds to its quantifier depth. Every formula with1226

quantifier depth k can be rewritten as a prenex formula of depth Tower(k + log∗ k + 3) (see1227

Theorem 2.2. and inequalities (32) in [28]).1228

I Theorem 21. Given as input a prenex formula φ of length `, an n-vertex graph G, and a1229

d-sequence of G, one can decide G |= φ in time f(`, d) · n.1230

Our proof of Theorem 21 is not specific to a single formula. Instead we compute a tree1231

of size bounded by a function of `, which is sufficient to check every prenex formula φ of1232

length `.1233

7.1 Morphism trees and shuffles1234

All our trees are rooted and the root is denoted by ε. An internal node is a node with at least1235

one child. Non-internal nodes are called leaves. Given a node xi in a tree T , we call current1236

path of xi the unique path ε, x1, . . . , xi from ε to xi in T . We will see this current path as1237

the tuple (x1, . . . , xi). The current path of ε is the empty tuple, also denoted by ε. The1238

depth of a node x is the number of edges in the current path of x. A node x is a descendant1239

of y if y belongs to the current path of x. Given a tree T , we denote the parent of x by1240

pT (x). Two nodes with the same parent are siblings. We denote by T ∗ the set of nodes of T1241

distinct from its root ε, that is V (T ) \ {ε}.1242

A bijection f between the node-sets of two trees T1, T2 is an isomorphism if it commutes1243

with the parent relation, i.e., pT2(f(x)) = f(pT1(x)) for every node x ∈ T ∗1 . One can observe1244

that f−1 : V (T2) → V (T1) is then also an isomorphism. Two trees are said isomorphic if1245

there is an isomorphism between them. An isomorphism mapping T to itself is called an1246
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automorphism. Given a node x in T , the subtree of x, denoted by BT (x), is the subtree of T1247

rooted at x and containing all descendants of x.1248

An i-tuple is a tuple on exactly i elements, and a 6 i-tuple is a tuple on at most i1249

elements. A subtuple of a tuple a is any tuple obtained by erasing some entries of a. Given a1250

tuple a = (ai) and a set X, the subtuple of a induced by X, denoted by a|X is the subtuple1251

consisting of the entries ai which belongs to X. Given two disjoint sets A and B, and two1252

tuples a ∈ As and b ∈ Bt, a shuffle c of a and b is any tuple of (A ∪B)s+t such that c|A = a1253

and c|B = b. For instance (2, 0, 3, 1, 0) is one of the ten shuffles of (0, 1, 0) and (2, 3). Given a1254

tuple x = (x1, . . . , xk−1, xk), the prefix of x is (x1, . . . , xk−1) if k > 1, and ε if k = 1.1255

Given two trees T1 and T2 whose nodes are supposed disjoint, the shuffle s(T1, T2) of T11256

and T2 is the tree whose nodes are shuffles of all pairs of tuples P1, P2 where P1 is a current1257

path in T1 and P2 is a current path in T2. The parent relation in s(T1, T2) is the prefix1258

relation. The `-shuffle s`(T1, T2) of T1 and T2 is the subtree of s(T1, T2) obtained by keeping1259

only the nodes with depth at most `.1260

The formal definition of shuffle is somewhat cumbersome since the current path of the node1261

(x1, x2, . . . , xi) is the tuple ((x1), (x1, x2), . . . , (x1, x2, . . . , xi)). Given a set V , a morphism-1262

tree in V is a pair (T,m) where T is a tree and m is a mapping from T ∗ to V . Given a set1263

V and an integer `, we define the (complete) `-morphism-tree MT`(V ) = (TV,`,mV,`) as the1264

morphism-tree in V such that for every positive integer i 6 ` and every i-tuple (v1, . . . , vi)1265

of possibly repeated elements of V , there is a unique node xi of TV,` whose current path1266

(x1, . . . , xi) satisfies mV,`(xj) = vj for all j = 1, . . . , i. Informally, MT`(V ) represents all the1267

ways of extending the empty set by iteratively adding one (possibly repeated) element of V1268

up to depth ` in a tree-search fashion. Note that if V has size n, the number of nodes of1269

MT`(V ) is n` + n`−1 + . . .+ 1. The formal way of defining MT`(V ) is to consider that TV,`1270

is the set of all tuples u = (u1, . . . , ui) of elements of V with 0 6 i 6 `, the parent relation is1271

the prefix relation, and the image by mV,` of a tuple (u1, . . . , ui) is ui.1272

Again, the formal definition of MT`(V ) is cumbersome since the current path of the1273

node (u1, u2, . . . , ui) is the tuple ((u1), (u1, u2), . . . , (u1, u2, . . . , ui)). Hence, as an abuse of1274

language, we may identify a node (u1, u2, . . . , ui) to its current path. We can extend the1275

notion of shuffle to morphism-trees by defining (T,m) as the shuffle of (T1,m1) and (T2,m2)1276

where T is the shuffle of T1 and T2 (supposed again on disjoint node-sets) and for every1277

node x = (x1, . . . , xk) of T , we let m(x) = m1(xk) if xk ∈ T ∗1 and m(x) = m2(xk) if xk ∈ T ∗2 .1278

Again, we define the `-shuffle by pruning the nodes with depth more than `.1279

I Lemma 22. Let (V1, V2) be a partition of a set V . The `-shuffle of MT`(V1) and MT`(V2)1280

is MT`(V ).1281

Proof. This follows from the fact that every 6 `-tuple of V is uniquely obtained as the1282

shuffle of some 6 `-tuple of V1 and some 6 `-tuple of V2. J1283

One can extend the definition of shuffle to several trees. Given a sequence of (node1284

disjoint) morphism trees (T1,m1), . . . , (Tk,mk), the nodes of the shuffle (T,m) are all tuples1285

which are shuffles S of current paths P1, . . . , Pk. Precisely, a tuple S is a node of (T,m) if1286

all its entries are non-root nodes of Ti’s, and such that each subtuple Si of S induced by1287

the nodes of Ti is a (possibly empty) current path of Ti. As usual the parent relation is the1288

prefix relation. Finally m(x1, . . . , xi) is equal to mj(xi) where xi ∈ Tj . We speak of `-shuffle1289

when we prune out the nodes with depth more than `. Note that MT`(V ) is the `-shuffle of1290

MT`({v}) for all v ∈ V .1291
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7.2 Morphism trees in graphs and reductions1292

We extend our previous definitions to graphs. The first step is to introduce graphs on tuples.1293

A tuple graph is a pair (x,G) where x is a tuple (x1, . . . , xt) and G is a graph on the vertex-set1294

{x1, . . . , xt} (where repeated vertices are counted only once). Thus there is an edge xixj1295

in (x,G) if xixj is an edge of G. The main difference with graphs is that vertices can be1296

repeated within a tuple. In particular if x1 = x3 and there is an edge x1x2, then the edge1297

x2x3 is also present. Two tuple graphs (x,G) and (y,H) are isomorphic if x = (x1, . . . , xt),1298

y = (y1, . . . , yt) and we have both xi = xj ⇔ yi = yj , and xixj ∈ E(G)⇔ yiyj ∈ E(H), for1299

every i, j ∈ [t].1300

A morphism-tree in G is a morphism-tree (T,m) in V (G), supporting new notions based1301

on the edge-set of G. Given a node xi of T with current path (x1, . . . , xi), the graph G induces1302

a tuple graph on (m(x1), . . . ,m(xi)), namely ((m(x1), . . . ,m(xi)), G[{m(x1), . . . ,m(xi)}]).1303

We call current graph of xi this tuple graph. Given a node xi and one of its children xi+1,1304

observe that the current graph of xi+1 extends the one of xi by one (possibly repeated)1305

vertex. Informally, a morphism-tree in G can be seen as a way of iteratively extending1306

induced subgraphs of G in a tree-search fashion.1307

Two morphism-trees (T,m) in G and (T ′,m′) in G′ are isomorphic if there exists an1308

isomorphism f from T to T ′ such that for every node x ∈ T ∗ and y descendant of x:1309

m(x) = m(y) if and only m′(f(x)) = m′(f(y)).1310

m(x)m(y) is an edge of G if and only m′(f(x))m′(f(y)) is an edge of G′.1311

In particular, the current graph of a node is isomorphic to the current graph of its image.1312

Again an isomorphism f from (T,m) into itself is called an automorphism. Two sibling nodes1313

x, x′ of a morphism-tree (T,m) are equivalent if there exists an automorphism f of (T,m)1314

such that f(x) = x′ and f(x′) = x. Note that if such an automorphism exists, then there1315

is one which is the identity function outside of BT (x) ∪BT (x′). The interpretation of x, x′1316

being equivalent is that the current graph H of their parent can be extended up to depth `1317

in G in exactly the same way starting from x or from x′.1318

The (complete) `-morphism-tree MT`(G) of a graph G is simply7 MT`(V (G)). Observe1319

that while E(G) is irrelevant for the syntactic aspect of MT`(G), the structure of G is1320

nonetheless important for semantic properties of MT`(G). Indeed equivalent nodes are1321

defined in MT`(G) but not in MT`(V (G)). Let us give a couple of examples to clarify that1322

point. When G is a clique, all the sibling nodes are equivalent in MT`(G). When G is a1323

path on the same vertex-set, the depth-1 nodes of MT`(G) mapped to the first and second1324

vertices of the path are in general not equivalent.1325

Given two equivalent (sibling) nodes x, x′ of a morphism-tree (T,m) in G, the x, x′-1326

reduction of (T,m) is the morphism-tree obtained by deleting all descendants of x′ (including1327

itself). A reduction of a morphism-tree is any morphism-tree obtained by iterating a sequence1328

of x, x′-reductions. Finally a reduct of (T,m) is a reduction in which no further reduction1329

can be performed; that is, none of the pairs of siblings are equivalent.1330

I Lemma 23. Any reduct of an `-morphism-tree has size at most h(`) for some function h.1331

Proof. Assume that (T,m) is a reduct of an `-morphism-tree in a graph G. Consider a node1332

x`−1 of depth `− 1 in T . The maximum number of pairwise non-equivalent children x` of1333

x`−1 is at most 2`−1 + `− 1. Indeed there are (at most) 2`−1 non isomorphic extensions of1334

7 Technically, we should denote it by (MT`(V (G)), G) but we will stick to this simpler notation.
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the current graph of x`−1 by adding the new node m(x`), and (at most) `− 1 possible ways1335

for m(x`) to be a repetition of a vertex among m(x1), . . . ,m(x`−1). In particular x`−1 has a1336

bounded number of children in the reduct (T,m), and therefore, there exist only a bounded1337

number of non-equivalent x`−1 which are children of some x`−2. This bottom-up induction1338

bounds the size of (T,m) by a tower function in `. J1339

Since MT`(G) represents all possible ways of iterating at most ` vertex extensions of1340

induced subgraphs of G (starting from the empty set), one can check any prenex formula1341

φ of depth at most ` on MT`(G). In the language of games, MT`(G) captures all possible1342

games for Player ∃ and Player ∀ to form a joint assignment of the variables x1, . . . , x`. So far1343

this does not constitute an efficient algorithm since the size of MT`(G) is O(n`+1). However1344

reductions –deletions of one of two equivalent alternatives for a player– do not change the1345

score of the game. Thus we want to compute reductions, or even reducts, and decide φ on1346

these smaller trees.1347

I Lemma 24. Given a reduction of MT`(G) of size s and a prenex formula on ` variables,1348

G |= φ can be decided in time O(s), and in time h(`) if the reduction is a reduct.1349

Proof. Let φ = Q1x1Q2x2 . . . Q`x`φ
∗, where φ∗ is quantifier-free. Let T be the tree of the1350

given reduction of MT`(G). We relabel the nodes of T in the following way. At each leaf1351

(v1, . . . , v`) of T , we put a 1 if φ∗(v1, . . . , v`) is true, and a 0 otherwise. For each i ∈ [0, `− 1],1352

at each internal node of depth i, we place a max if Qi+1 = ∃, and a min if Qi+1 = ∀. The1353

computed value at the root of this minimax tree is 1 if G |= φ, and 0 otherwise. Indeed this1354

value does not change while we perform reductions on MT`(G). The overall running time1355

is O(|T |). By Lemma 23, if T is a reduct then the overall running time is h(`) for some tower1356

function h. J1357

Let us now denote byMT ′`(G) any reduct ofMT`(G). It can be shown by local confluence1358

that MT ′`(G) is indeed unique up to isomorphism, but we do not need this fact here. Now1359

our strategy is to compute MT ′`(G) in linear FPT time using bounded twin-width.1360

We base our computation on a sequence of partitions of V (G) achieving twin-width d. Let1361

P = {X1, . . . , Xp} be a partition of V (G). Two distinct parts Xi, Xj of P are homogeneous1362

if there are between Xi and Xj either all the edges or no edges. Let GP be the graph1363

on vertex-set P and edge-set all the pairs XiXj such that Xi, Xj are distinct and not1364

homogeneous. If GP has maximum degree at most d, we say that P is a d-partition of G.1365

Note that an n-vertex graph G has twin-width at most d if it admits a sequence of d-partitions1366

Pn,Pn−1, . . . ,P1 where Pn is the finest partition, and for every i ∈ [n− 1], the partition Pi1367

is obtained by merging two parts of Pi+1.1368

Our central result is:1369

I Theorem 25. A reduct MT ′`(G) can be computed in time f(`, d) · n, given as input1370

a sequence of d-partitions of G.1371

The proof will computeMT ′`(G) iteratively by combining partial morphism-trees obtained1372

alongside the sequence of d-partitions. We start with the finest partition Pn, where each1373

morphism-tree is defined on a single vertex, and we finish with the coarsest partition P11374

which results in the sought MT ′`(G). We will thus need to define a morphism-tree for a1375

partitioned graph. Before coming to these technicalities, let us illustrate how shuffles come1376

into play for computing MT ′`(G). The following two lemmas are not needed for the rest1377

of the proof, but they provide a good warm-up for the more technical arguments involving1378

partitions.1379
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The disjoint union G1 ∪G2 of two graphs G1, G2 with pairwise-disjoint vertex-sets is the1380

graph on V (G1) ∪ V (G2) with no edges between the two graphs G1, G2. In this particular1381

case, reductions commute with shuffle.1382

I Lemma 26. Let (T1,m1) and (T2,m2) be two morphism-trees in G1 and in G2, respectively1383

(on disjoint vertex-sets). Let (T,m) be the shuffle of (T1,m1) and (T2,m2), defined in G1∪G2.1384

Let (T ′1,m′1) be a reduction of (T1,m1). Then the shuffle (T ′,m′) of (T ′1,m′1) and (T2,m2) is1385

a reduction of (T,m).1386

Proof. We just need to show the lemma for single-step reductions. Indeed after we prove1387

that shuffling morphism-trees defined on a disjoint union commutes with a single reduction1388

performed in the first morphism-tree, we can iterate this process to establish that it commutes1389

with reductions in general. Let f be an automorphism of (T1,m1) which swaps the equivalent1390

nodes x, x′ and is the identity outside of the subtrees rooted at x and x′. Let (T ′1,m′1) be the1391

x, x′-reduction of (T1,m1). Consider the mapping g from V (T ) into itself which preserves the1392

root ε and maps every node Z = (z1, . . . , zk) to Z ′ = (f̃(z1), . . . , f̃(zk)) where f̃(zi) = f(zi)1393

if zi ∈ T ∗1 and f̃(zi) = zi if zi ∈ T ∗2 .1394

We claim that g is an automorphism of (T,m). It is bijective since f is bijective. It1395

commutes with the parent relation since pT (g(Z)) = pT (g(z1, . . . , zk−1, zk)) = pT (f̃(z1), . . . ,1396

f̃(zk−1), f̃(zk)) = (f̃(z1), . . . , f̃(zk−1)) = g(pT (Z)). Furthermore g behaves well with1397

the morphism m. Indeed, for every node Z1 = (z1, . . . , zi) of T and descendant Z2 =1398

(z1, . . . , zi, zi+1, . . . , zk), we have:1399

If m(Z1) = m(Z2), we either have zi, zk ∈ T ∗1 and m1(zi) = m1(zk) and thus m1(f(zi)) =1400

m1(f(zk)) which implies m(g(Z1)) = m1(f(zi)) = m1(f(zk)) = m(g(Z2)). Or we have1401

zi, zk ∈ T2 and m2(zi) = m2(zk) which implies m(g(Z1)) = m2(zi) = m2(zk) = m(g(Z2)).1402

If m(Z1)m(Z2) is an edge of G1 ∪ G2 we either have zi, zk ∈ T ∗1 and m1(zi)m1(zk) is1403

an edge of G1, or zi, zk ∈ T2 and m2(zi)m2(zk) is an edge of G2. In the first case,1404

m1(f(zi))m1(f(zk)) is an edge of G1 and we conclude since m1(f(zi))m1(f(zk)) =1405

m(g(Z1))m(g(Z2)). In the second case, m2(zi)m2(zk) = m(g(Z1))m(g(Z2)) is an edge of1406

G2. Thus g maps edges to edges, and therefore non-edges to non-edges.1407

Finally, consider any node Z = (z1, . . . , zk) of (T,m) such that zk = x. By definition1408

of the shuffle and the fact that x, x′ are siblings, there is a node Z ′ = (z1, . . . zk−1, x
′) in1409

(T,m). By construction, we have g(Z) = Z ′ and g(Z ′) = Z and thus Z,Z ′ are equivalent in1410

(T,m). Therefore we can reduce all such pairs Z,Z ′ in (T,m) in order to find a reduction in1411

which we have deleted all nodes of (T,m) containing the entry x′, and therefore also all its1412

descendants in T1. This is exactly the shuffle (T ′,m′) of (T ′1,m′1) and (T2,m2). J1413

The previous lemma similarly holds for `-shuffles. We can now handle the disjoint union of1414

two graphs.1415

I Lemma 27. Given as input MT ′`(G) and MT ′`(H), two reducts of the graphs G and H,1416

one can compute a reduct MT ′`(G ∪H) in time only depending on `.1417

Proof. We just have to compute the `-shuffle (T,m) of MT ′`(G) and MT ′`(H), in time1418

depending on ` only. Indeed, by Lemma 22 the `-shuffle of MT`(G) and MT`(H) is MT`(G∪1419

H). Therefore, by repeated use of Lemma 26 applied to the sequence of reductions from1420

MT`(G) to MT ′`(G) and from MT`(H) to MT ′`(H), the morphism-tree (T,m) is a reduction1421

of MT`(G ∪H). Note that (T,m) is not necessarily a reduct but its size is bounded, and we1422

can therefore reduce it further by a brute-force algorithm to obtain a reductMT ′`(G∪H). J1423
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We now extend our definitions to partitioned graphs. Let G be a graph and P be a1424

partition of V (G). A morphism-tree (T,m) in (G,P) is again a morphism-tree in V (G). The1425

difference with a morphism-tree in G lies in the allowed reductions. Now an automorphism f1426

of (T,m) in (G,P) is an automorphism of (T,m) in G which respects the partition P.1427

Formally, for any node x ∈ T ∗, the vertices m(x) and m(f(x)) belong to the same part of P .1428

Two sibling nodes x, x′ in a morphism-tree (T,m) in (G,P) are equivalent if there is an1429

automorphism of (T,m) in (G,P) which swaps x and x′ (and in particular, m(x) and m(x′)1430

are in the same part of P).1431

As previously, we defineMT`(G,P) for a partitioned graph (G,P) as equal toMT`(V (G)),1432

and we define MT ′`(G,P) as any reduct of MT`(G,P), where reductions are performed in1433

(G,P). Observe that MT ′`(G,P) can be very different from MT ′`(G). For instance if P is1434

the partition into singletons, no reduction is possible and thus MT ′`(G,P) = MT`(G,P). At1435

the other extreme, if P = {V (G)}, then MT ′`(G,P) is a reduct of MT`(G).1436

Our ultimate goal in order to use twin-width is to dynamically compute MT ′`(G,P1)1437

by deriving MT ′`(G,Pi) from MT ′`(G,Pi+1). This strategy cannot directly work since the1438

initialization requires MT ′`(G,Pn) which is equal to MT`(G,Pn) of size O(n`). Instead, we1439

only compute a partial information for each (G,Pi) consisting of all partial morphism-trees1440

MT ′`(G,Pi, X) centered around X, where X is a part of Pi. We will make this formal in1441

the next section. Let us highlight though that for the initialization, the graph GPn consists1442

of isolated vertices, therefore its connected components are singletons. So the initialization1443

step of our dynamic computation only consists of computing MT ′`({v}) for all vertices v1444

in G. Since all such trees consist of a path of length ` whose non-root nodes are mapped1445

to v, the total size of the initialization step is linear. However, observe that the `-shuffle of1446

all these MT ′`({v}) gives MT ′`(G,Pn). The essence of our algorithm can be summarized as:1447

Maintaining a linear amount of information, enough to build8 MT ′`(G,Pi+1), and updating1448

this information at each step in time function of d and ` only.1449

To illustrate how we can make an update, let us assume that we are given a partitioned1450

graph (G,Q1 ∪Q2) which can be obtained from the union of two partitioned graphs (G1,Q1)1451

and (G2,Q2) on disjoint sets of vertices by making every pair X ∈ Q1, Y ∈ Q2 homogeneous.1452

The proof of the next lemma is similar to the proof of Lemma 26.1453

I Lemma 28. The `-shuffle of the reducts MT ′`(G1,Q1) and MT ′`(G2,Q2) is a reduction1454

of MT`(G,Q1 ∪Q2).1455

Lemma 28 indicates how to merge two partial results into a larger one, when the partial1456

computed solutions behave well, i.e., are pairwise homogeneous. But we are now facing1457

the main problem: How to merge two partial solutions in the case of errors (red edges)1458

in GPi? The solution is to compute the morphism-trees of overlapping subsets of parts1459

of Pi. Dropping the disjointness condition comes with a cost since shuffles of morphism-trees1460

defined in overlapping subgraphs can create several nodes which have the same current graph.1461

The difficulty is then to keep at most one copy of these nodes, in order to remain in the set1462

of reductions of MT`(G,P) of bounded size. The solution of pruning multiple copies of the1463

same current graph is slightly technical, but relies on a fundamental way of decomposing a1464

tuple graph induced by a partitioned graph (G,P).1465

8 while not explicitly computing it since it has linear size and would entail a quadratic running time
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Figure 8 Left: Partitioned graph (G,P15) with the edges of GP15 in red. Right: The 5-sequence
graph of S := (v1 ∈ X8, v2 ∈ X3, v3 ∈ X8, v4 ∈ X1, v5 ∈ X9). In blue beside vertex i, the upperbound
on the distance in GP15 for j < i to be linked to i. The graph sg5(S) is connected so v1, v2, v3, v4, v5

have the same local root X8 3 v1 in S. Thus S is a connected tuple rooted at X8.

7.3 Pruned shuffles1466

Let ` > 0 be some fixed integer, G be a graph and P be a partition of V (G). Given, for i 6 `,1467

a tuple S = (v1, . . . , vi) of vertices of G which respectively belong to the (non-necessarily1468

distinct) parts (X1, X2, . . . , Xi) of P , the `-sequence graph sg`(S) on vertex-set [i] is defined1469

as follows: there exists an edge jk, with j < k, if the distance between the part Xj and the1470

part Xk is at most 3`−k in the graph GP (see Figure 8 for an illustration). This is rather1471

technical, but sg`(S) has some nice properties.1472

I Lemma 29. If for a < b < c ∈ [i], ac and bc are edges of sg`(S), then ab is also an edge.1473

Proof. In GP , both the distances between Xa and Xc, and between Xb and Xc, are at most1474

3`−c. So the distance between Xa and Xb is at most 2 · 3`−c which is less than 3`−b. Hence1475

ab is also an edge. J1476

Let j ∈ [i] be the minimum index of an element of the connected component of k ∈ [i] in1477

sg`(S). We call Xj the local root of vk in S.1478

I Lemma 30. Let S = (v1, . . . , vi) and k < i. The local root Xj of vk in S is equal to the1479

local root of vk in the prefix S′ = (v1, . . . , vi−1). Thus by induction the local root of vk in S1480

is the local root of vk in (v1, . . . , vk).1481

Proof. From the definition, sg`(S′) is an induced subgraph of sg`(S). We just have to show1482

that if there exists a path P from j to k in sg`(S), then there exists also a path in sg`(S′).1483

Let P be a shortest path from j to k in sg`(S). If P does not go through i, we are done. If P1484

goes through i, by Lemma 29 the two neighbors of i in P are joined by an edge, contradicting1485

the minimality of P . J1486
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Note that by the definition of sg`, if S′ is a subtuple of S, the graph sg`(S′) is a supergraph1487

of the induced restriction of sg`(S) to the indices of S′. Indeed, an entry vk with index k of1488

the tuple S which appears in S′ has an index k′ 6 k in S′. Hence if j 6 k is connected to k1489

in sg`(S) and vj appears in S′ with index j′, we have the edge j′k′ since 3`−k′ > 3`−k. In1490

particular, if S′ corresponds to a connected component of sg`(S), the sequence graph sg`(S′)1491

is also connected.1492

When the sequence graph sg`(S) is connected, we say that S is a connected tuple rooted1493

at X1 (see Figure 8). Given a part X of P , a morphism-tree in (G,P, X) is a morphism tree1494

(T,m) in (G,P) such that every current path (x1, . . . , xi) satisfies that (m(x1), . . . ,m(xi)) is1495

a connected tuple rooted at X. In particular, all nodes x at depth 1 satisfy m(x) ∈ X. Given1496

a morphism-tree (T,m) in (G,P) and a part X of P, we denote by (T,m)X the subtree of1497

(T,m) which consists of the root ε and all the nodes xi of T whose current path (x1, . . . , xi)1498

satisfies that (m(x1), . . . ,m(xi)) is a connected tuple rooted at X. The fact that this subset1499

of nodes forms indeed a subtree follows from the fact that connected tuples are closed by1500

prefix (by Lemma 30), and hence by the parent relation. We denote by MT`(G,P, X) the1501

subtree MT`(G,P)X . We finally denote by MT ′`(G,P, X) any reduct of MT`(G,P, X). The1502

allowed reductions follow the same rules as in MT`(G,P) since the additional X does not1503

play any role in the automorphisms.1504

I Lemma 31. If (T,m) is a morphism-tree in (G,P) and X is part of P, then for any1505

reduction (T r,mr) of (T,m) in (G,P), we have that (T r,mr)X is a reduction of (T,m)X .1506

Proof. It suffices to consider the case of (T r,mr) being an x, x′-reduction. Let f be an1507

automorphism of (T,m) which swaps the equivalent nodes x, x′ and is the identity outside of1508

their descendants. Since f preserves P , it maps the set of nodes corresponding to connected1509

tuple rooted at X to itself. Hence the restriction of f to (T,m)X is an automorphism and1510

thus (T r,mr)X is the x, x′-reduction of (T,m)X if x, x′ ∈ (T,m)X , and is equal to (T,m)X1511

if x, x′ /∈ (T,m)X . J1512

Let X1, . . . , Xp be a set of distinct parts of P, and (T1,m1), . . . , (Tp,mp) be a set of1513

morphism-trees, each (Ti,mi) being in (G,P, Xi), respectively. We define the pruned shuffle1514

of the (Ti,mi)’s as their usual shuffle (T,m) in which some nodes are deleted or pruned. To1515

decide if a node (x1, . . . , xi) of T is pruned, we consider its current graph, that is the tuple1516

graph induced by G on the tuple of vertices (v1, . . . , vi), where each vj is m(x1, x2, . . . , xj)1517

for j ∈ [i]. For every j, let k be the (unique) index such that xj ∈ V (Tk). If the local root1518

of vj in (v1, . . . , vi) is different from Xk we say that xj is irrelevant. By extension, a node1519

(x1, . . . , xi) which has an irrelevant entry xj is also irrelevant. We prune off all the irrelevant1520

nodes of (T,m) to form the pruned shuffle. The pruned `-shuffle is defined analogously from1521

the `-shuffle.1522

A node x of Tk has local root Xk since its current path is a connected tuple rooted in Xk.1523

Informally speaking, we insist that every node (x1, . . . , xi) of the pruned shuffle with xi = x1524

still has local root Xk. Crucially the pruned shuffle commutes with reductions, and the next1525

lemma is the cornerstone of the whole section.1526

I Lemma 32. With the previous notations, if (T r1 ,mr
1) is a reduction in (G,P) of (T1,m1),1527

then the pruned shuffle (T r,mr) of (T r1 ,mr
1), (T2,m2), . . . , (Tp,mp) is a reduction of the1528

pruned shuffle (T,m) of (T1,m1), . . . , (Tp,mp).1529

Proof. It suffices to consider the case of (T r1 ,mr
1) being an x, x′-reduction of (T1,m1). Let f1530

be an automorphism of (T1,m1) which swaps the equivalent nodes x, x′ and is the identity1531

outside of their descendants.1532
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Consider the mapping g from V (T ) into itself which preserves the root ε and maps1533

every node Z = (z1, . . . , zk) to Z ′ = (f̃(z1), . . . , f̃(zk)) where f̃(zi) = f(zi) if zi ∈ T ∗1 and1534

f̃(zi) = zi if zi /∈ T ∗1 . We also define m̃(zi) = mj(zi) if zi ∈ T ∗j . Note that the current graph1535

of Z is the tuple graph induced by G on the tuple of vertices (m̃(z1), . . . , m̃(zk)).1536

As we have seen in the proof of Lemma 26, g is an automorphism of the tree T . Moreover1537

m(Z) = m̃(zk) and m(g(Z)) = m̃(f̃(zk)) belong to the same part of P since f respects the1538

partition P. However, g does not necessarily respect m. For instance we could have zk = x1539

and z1 ∈ T ∗2 , with m1(x)m2(z1) ∈ E(G) while m1(x′)m2(z1) /∈ E(G). This can happen since1540

X1 and X2 need not be homogeneous. However observe that in this case, X1X2 is an edge in1541

GP , and therefore the local root of m̃(zk) would be the same as the one of m̃(z1). But if Z is1542

not a pruned node, the local root of m̃(zk) must be X1, and the one of m̃(z1) is X2. So this1543

potential problematic node Z in fact disappears thanks to the pruning. We now formally1544

prove it.1545

Note that if a node Z = (z1, . . . , zi) is pruned, it has an entry zj ∈ T ∗k such that the local1546

root X of m̃(zj) in the tuple (m̃(z1), . . . , m̃(zi)) is not Xk. By construction f̃(zj) ∈ T ∗k , and1547

the local root of m(f̃(zj)) in the tuple (m̃(f̃(z1)), . . . , m̃(f̃(zi))) is also X. Thus the pruned1548

nodes of T are mapped by g to pruned nodes of T , so g is bijective on the pruned shuffle1549

tree (T,m). Consequently, to show that g is an automorphism of the pruned shuffle (T,m),1550

we just have to show that it respects edges and equalities.1551

Consider a node Z1 = (z1, . . . , zi) of T and a descendant Z2 = (z1, . . . , zi, zi+1, . . . , zk) of1552

Z1, we have:1553

If m(Z1) = m(Z2), we have four cases:1554

If zi, zk ∈ T ∗1 , we have m1(zi) = m1(zk) and thus m1(f(zi)) = m1(f(zk)) which implies1555

m(g(Z1)) = m1(f(zi)) = m1(f(zk)) = m(g(Z2)).1556

If zi, zk ∈ T ∗j with j > 1, we have mj(zi) = mj(zk) which implies m(g(Z1)) = mj(zi) =1557

mj(zk) = m(g(Z2)).1558

If zi ∈ T1 and zk ∈ Tj with j > 1, we have m(g(Z2)) = m(Z2) = mj(zk) which belongs1559

to some part X of P. Moreover, both m(g(Z1)) and m(Z1) belong to the part Y1560

containing m1(zi) (and also m1(f(zi))). In particular, since m(Z1) = m(Z2), we have1561

X = Y . Therefore, in the `-sequence graph of (m̃(z1), . . . , m̃(zk)) we have an edge ik1562

since m̃(zi) = m(Z1) = m(Z2) = m̃(zk), and thus the local root of m̃(zi) and m̃(zk)1563

are the same. But this is a contradiction since by the fact that Z2 is not pruned, the1564

local root of m̃(zk) is Xj and the local root of m̃(zi) is X1.1565

The last case zj ∈ T1 and zi ∈ Tj is equivalent to the third.1566

When m(Z1)m(Z2) is an edge of G, we have four cases:1567

If zi, zk ∈ T1, since f respects edges, m1(f(zi))m1(f(zk)) = m(g(Z1))m(g(Z2)) is an1568

edge of G.1569

If zi, zk /∈ T1, by definition of g, we have m(g(Z1)) = m(Z1) and m(g(Z2)) = m(Z2),1570

and thus m(g(Z1))m(g(Z2)) is an edge of G.1571

If zi ∈ T1 and zk ∈ Tj with j > 1, we have m(g(Z2)) = m(Z2) = mj(zk) which belongs1572

to the part X of P, and both m(g(Z1)) and m(Z1) belong to the part Y containing1573

m1(zi). The crucial fact is that the local root of m̃(zk) in (m̃(z1), . . . , m̃(zk)) is Xj1574

(since Z2 is not pruned and zk ∈ Tj) and the local root of m̃(z1) is X1. Thus X,Y is1575

a homogeneous pair since otherwise ik would be an edge of the `-sequence graph of1576

(m̃(z1), . . . , m̃(zk)), and therefore m̃(zk) and m̃(z1) would have the same local root.1577

Therefore by homogeneity and the fact that m(Z1)m(Z2) is an edge, we have all edges1578

between X and Y , and in particular m(g(Z1))m(g(Z2)) is an edge of G.1579
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The last case zj ∈ T1 and zi ∈ Tj is equivalent to the third.1580

Note that m(g(Z1)) = m(g(Z2)) ⇒ m(Z1) = m(Z2) since g is an automorphism and1581

therefore by iterating g, we can map g(Z1), g(Z2) to Z1, Z2. The same argument shows1582

that if m(g(Z1))m(g(Z2)) is an edge, then m(Z1)m(Z2) is also an edge.1583

Finally, consider any node Z = (z1, . . . , zk) of (T,m) such that zk = x. By definition1584

of the shuffle and the fact that x, x′ are siblings, there is a node Z ′ = (z1, . . . zk−1, x
′) in1585

(T,m). By construction, we have g(Z) = Z ′ and g(Z ′) = Z and thus Z,Z ′ are equivalent in1586

(T,m). Therefore we can reduce all such pairs Z,Z ′ in (T,m) in order to find a reduction in1587

which all elements of the subtree of x′ in T1 are deleted. This is exactly the pruned shuffle1588

(T r,mr). J1589

Again the previous lemma readily works with pruned `-shuffles. The pruned shuffle1590

operation is the crux of the construction of MT`(G,P) using only local information.1591

I Lemma 33. Let (G,P) be a partitioned graph. Then the pruned `-shuffle (T,m) of all1592

MT`(G,P, X) where X ranges over the parts of P is exactly MT`(G,P).1593

Proof. We just have to prove that every tuple S = (v1, . . . , vi) of nodes of G appears exactly1594

once as a node of T . Consider a subtuple S′ of S corresponding to a component of sg`(S).1595

Recall that sg`(S′) is connected. Moreover, if we denote by XS′ the part of P which contains1596

the first entry of S′, we have that S′ is a connected tuple rooted at XS′ . Thus S′ is a node of1597

MT`(G,P, XS′) and thus S appears in the pruned shuffle as the shuffle of all its components.1598

Moreover S appears exactly once in the shuffle since any entry vj in the subtuple S′ must1599

come from MT`(G,P, XS′), otherwise the pruning would have deleted it. J1600

We now state the central result of this section, directly following from Lemmas 32 and 33.1601

I Lemma 34. Let (G,P) be a partitioned graph. Then the pruned `-shuffle of the reducts1602

MT ′`(G,P, X), where X ranges over the parts of P, is a reduction of MT`(G,P).1603

We can now finish the proof by showing how our dynamic programming works.1604

I Theorem 35. Let Pi+1 and Pi be two d-partitions of a graph G where Pi is obtained by1605

merging the parts X1, X2 of Pi+1. Given a family of reducts MT ′`(G,Pi+1, X) for all parts1606

X in Pi+1, we can compute a family of reducts MT ′`(G,Pi, Y ) for all parts Y in Pi in time1607

only depending on ` and d.1608

Proof. The first observation is that we only need to update a bounded number of reducts.1609

Indeed for every part X which is at distance more than 3` from X1 ∪X2 in the graph GPi
,1610

we just set MT ′`(G,Pi, X) = MT ′`(G,Pi+1, X) since connected tuples of vertices rooted at X1611

do not involve parts with distance more than 3` from X. Since GPi
has degree at most d,1612

the number of parts at distance at most 3` is at most d3`+1.1613

Let us start with a time-inefficient method to compute MT ′`(G,Pi, X) for all X ∈ Pi.1614

We form the pruned `-shuffle (T,m) of all MT ′`(G,Pi+1, X) where X ranges over the parts1615

of Pi+1. By Lemma 34, (T,m) is a reduction of MT`(G,Pi+1), hence it is also a reduction1616

of MT`(G,Pi) since Pi is coarser. Now for every part X in Pi, by Lemma 31, we have1617

that (T,m)X is a reduction of MT`(G,Pi, X). Note that (T,m)X has size bounded by a1618

function of ` and d since its nodes are `-shuffles of nodes of the set of at most d3`+1 trees1619

MT ′`(G,Pi+1, Y ), where the distance of Y to X in GPi is at most 3`. So we can construct1620

MT ′`(G,Pi, X) by reducing further (T,m)X by any method.1621
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Figure 9 Dynamic programming update (with the not-so-interesting ` = 1 so that the important
threshold 3` is manageably small). Right after the contraction of X8 and X12 into X16 in (G,P15), we
want to maintain the newMT ′

`(G,P14, X) for all X ∈ P14. The parts Xi which are not X16 (red) nor
blue are far enough from X16 (distance in GP14 > 3`), so that MT ′

`(G,P14, Xi) := MT`(G,P15, Xi)
does not need an update. For the red and blue parts Xi, we compute (T,m) the pruned shuffle of
MT ′(G,P15, Y ) where Y runs through {blue and green parts} ∪ {X8, X12} (distance to X16 in
GP14 6 2 · 3`). We then set MT ′

`(G,P14, Xi) := reduct((T,m)Xi ).

The above method is inefficient in that it involves the computation of (T,m), but this is1622

easily turned into an efficient method as we only need to compute the pruned `-shuffle (T ′,m′)1623

of all MT ′`(G,Pi+1, Y ) where Y ranges over X1, X2, and any part which is at distance at1624

most 2 ·3` from X1∪X2 in GPi . Indeed, any part X of Pi which is at distance at most 3` from1625

X1 ∪X2 satisfies that (T ′,m′)X = (T,m)X and we can therefore compute MT ′`(G,Pi, X)1626

for these parts X in time only depending on ` and d. See Figure 9 for an illustration. J1627

Finally we can prove Theorem 25.1628

Proof. We are given a sequence of d-partitions Pn, . . . ,P1 where Pn is the finest partition, P11629

is the coarsest partition, and every Pi is obtained by a single contraction of Pi+1. We compute1630

MT ′`(G,Pi, X) for all i and for all parts X of Pi. We initializeMT ′`(G,Pn, {v}) := MT`({v})1631

for all v in V (G). By Theorem 35, we can apply dynamic programming and compute in1632

linear FPT time MT ′`(G,P1, V (G)) which is exactly MT ′`(G), on which any depth-` prenex1633

formula can be checked in time h(`), by Lemma 24. J1634

As a direct corollary, we get the following.1635

I Corollary 36. Max Independent Set, Max Clique, Min Vertex Cover, Min1636

Dominating Set, Subgraph Isomorphism are solvable in time f(k, d) · n, where k is the1637

solution size, on d-collapsible n-vertex graphs provided the d-sequence is given.1638

This result also has interesting consequences for polynomial-time solvable problems, such1639

as Constant Diameter. The fact that a graph G has diameter k can be written as a1640

first-order formula of size function of k. Besides, in graphs with only n logO(1) n edges,1641
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truly subquadratic algorithms deciding whether the diameter is 2 or 3 would contradict the1642

Exponential-Time Hypothesis [29]. One can obtain a significant improvement on graphs1643

of bounded twin-width, provided the contraction sequence is either given or can be itself1644

computed in linear time.1645

I Corollary 37. Deciding if the diameter of an n-vertex graph is k can be done in time1646

f(k, d) · n, on d-collapsible graphs provided the d-sequence is given.1647

We finally observe that our FO model checking readily works for (general) binary structures1648

of bounded twin-width. The only notion that should be revised is the homogeneity. For a1649

binary structure with binary relations E1, . . . Eh, we now say that X and Y are homogeneous1650

if for all i ∈ [h], the existence of a pair u, v ∈ X × Y such that (u, v) ∈ Ei implies that for1651

every x, y ∈ X × Y , (x, y) ∈ Ei. In particular this handles the case of bounded twin-width1652

digraphs (and posets encoded as digraphs).1653

8 Stability under FO interpretations and transductions1654

The question we address here is how twin-width can increase when we construct a graph H1655

from a graph G. For instance, it is clear that twin-width is invariant when taking complement1656

(exchanging edges and non-edges). But for other types of constructions, such as taking the1657

square (joining two vertices if their distance is at most two) the answer is far less clear.1658

A typical question in this context consists of asking if the square of a planar graph has1659

bounded twin-width. To put this in a general framework, we consider interpretations of1660

graphs via first-order formulas. Our central result is that bounded twin-width is invariant1661

under first-order interpretations.1662

The results in this section could as well be expressed in the language of directed graphs,
or matrices, but for the sake of simplicity, we will stick to undirected graphs. Let φ(x, y) be
a prenex first-order graph formula of depth ` with two free variables x, y. More explicitly,

φ(x, y) = Q1x1Q2x2 . . . Q`x`φ
∗

where for each i ∈ [`], the variable xi ranges over V (G), Qi ∈ {∀,∃}, while φ∗ is a Boolean1663

combination in atoms of the form u = v and E(u, v) where u, v are chosen in {x1, . . . , x`, x, y}.1664

Given a graph G, the graph φ(G) has vertex-set V (G) and edge-set all the pairs uv for1665

which G |= φ(u, v) ∧ φ(v, u). It is called the interpretation of G by φ. We choose here to1666

make a symmetric version of the interpretation, but we can also define the directed version.1667

Adding the directed edge uv when G |= φ(u, v). This will not play an important role in our1668

argument.1669

By extension, given a graph class G (i.e., closed under induced subgraphs), φ(G) is the1670

class of all induced subgraphs of some φ(G), for G ∈ G. Let us illustrate this notion with a1671

striking conjecture of Gajarský et al. [16]. A class G is universal if there exists some formula1672

φ such that φ(G) is the class of all graphs.1673

B Conjecture 38 ([16]). FO model checking is FPT on the class G if and only if G is not1674

universal.1675

In their paper, Gajarský et al. only state the backward implication. The forward1676

implication holds, provided FPT 6= AW[∗].1677

A simple example of a graph class wherein FO model checking is W [1]-hard is provided by1678

interval graphs. This illustrates the previous conjecture since one can obtain every graph as1679

first-order interpretation of interval graphs. To draw a comparison with another complexity1680
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measure, note that interval graphs have Vapnik-Chervonenkis dimension at most two (i.e.,1681

the neighborhood hypergraph has VC-dimension at most two). This shows in particular that1682

bounded VC-dimension is not stable under first-order interpretations. The main result of1683

this section, supporting that twin-width is a natural and robust notion of complexity is the1684

following.1685

I Theorem 39. Any (φ, γ, h)-transduction of a graph with twin-width at most d has twin-1686

width bounded by a function of |φ|, γ, h, and d.1687

As a direct consequence, map graphs have bounded twin-width since they can be obtained1688

by FO transductions of planar graphs (which have bounded twin-width). One can also1689

use Theorem 39 to show that k-planar graphs and bounded-degree string graphs have bounded1690

twin-width. We first handle the expansion and the copy operations of the transduction.1691

We recall that augmented binary structures are binary structures augmented by a constant1692

number of unary relations. The definition of twin-width for augmented binary relations is1693

presented in Section 5.1. We remind the reader that contraction sequences for augmented1694

binary structures forbid to contract two vertices not contained in the same unary relations.1695

I Lemma 40. For every binary structure G of twin-width at most d, and non-negative1696

integers γ and h, every augmented binary structure of γop ◦ hop(G) has twin-width at most1697

2γ+h(d+ 2γ), where hop is the h-expansion, and γop is the γ-copy operation.1698

Proof. We first argue that the introduction of the binary relation ∼ of γop preserves bounded1699

twin-width. Let G = Gn, . . . , G1 = K1 be a d-sequence S of G, where Gi is obtained from1700

Gi+1 by contracting ui and vi into a new vertex zi. Let {(v, j) | v ∈ V (G)} be the vertex-set1701

of the j-th copy Gj of G. Let G′ be the binary relation obtained from γop(G) by discarding1702

its unary relations. We suggest the following contraction sequence for G′. First we contract1703

(un−1, j) and (vn−1, j) for j going from 1 to γ. Basically we perform the first contaction1704

of S in every copy of G′. Then we contract (un−2, j) and (vn−2, j) for j going from 1 to γ1705

(second contraction of S). We continue similarly up to the contractions (u1, j) and (v1, j)1706

for j going from 1 to γ. At this point the resulting graph of G′ has only γ vertices, and we1707

finish the contraction sequence arbitrarily. We note that, throughout this process, the red1708

degree is bounded by d+ 2γ.1709

Now every graph H ∈ γop ◦ hop(G) can be obtained by adding γ + h unary relations to1710

the binary structure G′. By Lemma 7 (whose proof follows Theorem 2 without the apex), the1711

augmented binary structure H has a contraction sequence (respecting the unary relations)1712

with red degree at most 2γ+htww(G′) 6 2γ+h(d+2γ). Let us recall that this sequence mostly1713

follows what we described in the previous paragraph but skips the contraction of two vertices1714

not satisfying the same subset of unary relations. As a contraction sequence of an augmented1715

binary structure, it ends with at most 2γ+h vertices (since the number of unary relations is1716

γ + h). J1717

To show Theorem 39 we shall now only prove that FO interpretations preserve bounded1718

twin-width.1719

I Theorem 41. For every prenex first-order formula with two free variables φ(x, y) and1720

every bounded-twin-width class G of augmented binary structures, φ(G) also has bounded1721

twin-width.1722

The idea of the proof is simply that if G has twin-width d, then the sequence of d-partitions1723

achieving the bound can be refined in a bounded way to form an f(d)-sequence for φ(G).1724

Let us first make the following observation, similar to Lemma 24.1725
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I Lemma 42. Let u, v, v′ be vertices of an augmented binary structure G. If (u, v) and1726

(u, v′) are equivalent nodes in MT`+2(G), then for every prenex formula φ(x, y) of depth `1727

we have G |= φ(u, v) if and only if G |= φ(u, v′).1728

A consequence of Lemma 42 is that if (u, v) and (u, v′) are equivalent nodes in a reduction1729

(T,m) of MT`+2(G), then the same conclusion holds. And, if G has a partition P, by the1730

fact that reductions in (G,P) are reductions in G, we also have that if (u, v) and (u, v′)1731

are equivalent nodes in a reduction (T,m) of MT`+2(G,P), then G |= φ(u, v) if and only if1732

G |= φ(u, v′).1733

The central definition here is that given a partition P of G, two vertices u, u′ of G are1734

said `+ 2-indistinguishable if the nodes (u) and (u′) are equivalent siblings (of ε) in some1735

reduction (T,m) of MT`+2(G,P). In particular, since an automorphism of (T,m) swap1736

them, they belong to the same part of P . We then form the graph E`+2(G,P) on vertex-set1737

V (G) whose edges are all the pairs uu′ of `+ 2-indistinguishable vertices. It can be proved1738

that E`+2(G,P) is an equivalent relation (i.e., a disjoint union of cliques), but we will not1739

need this fact. Instead we consider the partition I`+2(G,P) whose parts are the connected1740

components of E`+2(G,P). Note that I`+2(G,P) refines P , and that if P ′ is a coarsening of1741

P then I`+2(G,P ′) is also a coarsening of I`+2(G,P) since every edge of E`+2(G,P) is an1742

edge of E`+2(G,P ′). Crucially, I`+2(G,P) does not refine the d-partition P too much.1743

I Lemma 43. When P is a d-partition and X is a part of P, the number of components of1744

E`+2(G,P) inside X is at most a function of d and `.1745

Proof. Let us consider any reduct (T,m) of MT`+2(G,P, X). Observe first that every1746

current graph of (T,m) consists of vertices which belong to parts Y such that the distance in1747

GP from X to Y is at most 3`+2. We denote this set of parts Y by P ′. In particular (T,m)1748

is a morphism-tree in (G′,P ′), where G′ is the induced restriction of G to the vertices of P ′.1749

Note that the number of parts of P ′ is bounded in terms of d and `, hence (G′,P ′) is a graph1750

which is partitioned into a bounded number of parts. Therefore the analogue of Lemma 231751

for partitioned graphs implies that (T,m) has size bounded in d and `.1752

Now consider the graph H on X whose edges are all pairs v, v′ such that a (v), (v′)-1753

reduction is performed while reducingMT`+2(G,P, X) into (T,m). The number of connected1754

components of H is exactly the number of nodes of depth 1 in (T,m) (and furthermore every1755

component of H is a tree, but we do not use this).1756

Now we just have to show that every edge of H is also an edge in E`+2(G,P). This follows1757

from the fact that the pruned shuffle (T ′,m′) of (T,m) and allMT`+2(G,P, Y ) where Y 6= X1758

is a reduction of MT`+2(G,P), since reduction commutes with pruned shuffle (Lemma 32).1759

In particular, for every edge vv′ of H, there exists a (v), (v′)-reduction among the reductions1760

performed to reduce MT`+2(G,P) to (T ′,m′). Thus vv′ is an edge of E`+2(G,P). Therefore1761

the number of components of E`+2(G,P) in X is at most the number of components of H. J1762

I Lemma 44. Let φ(x, y) be a prenex formula of depth `. Let P be a d-partition of an1763

augmented binary structure G and X,Y be two parts of P with pairwise distance at least 3`1764

in GP . Let X ′, Y ′ be two parts of I`+2(G,P) respectively in X and Y . Then if u ∈ X ′ and1765

v, v′ ∈ Y ′, we have G |= φ(u, v) if and only if G |= φ(u, v′).1766

Proof. We just have to prove it when vv′ is an edge of E`+2(G,P) since the property will1767

propagate to the whole component. We can therefore assume that there is a reduction (T,m)1768

of MT`+2(G,P) in which (v) and (v′) are equivalent nodes. By Lemma 31, (v) and (v′) are1769

equivalent nodes in (T,m)Y , which is a reduction ofMT`+2(G,P, Y ) since reductions preserve1770

connected tuples rooted at Y . Now consider the pruned (`+ 2)-shuffle (T ′,m′) of (T,m)Y1771
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and all MT`+2(G,P, Z) with Z 6= Y . Note that (T ′,m′) is a reduction of MT`+2(G,P).1772

Moreover it contains the two nodes (u, v) and (u, v′) which are equivalent by the fact that1773

(v), (v′) are equivalent in (T,m)Y . Indeed, as usual, we just consider the automorphism f1774

of (T,m)Y which swaps (v), (v′), and extend it by identity to an automorphism g of the1775

pruned shuffle. Finally, (u, v) and (u, v′) are equivalent in a reduction of MT`+2(G,P), so1776

G |= φ(u, v) if and only if G |= φ(u, v′). J1777

Note that by symmetry, the previous result implies that for every u, u′ ∈ X ′ and v, v′ ∈ Y ′,1778

we have G |= φ(u, v) if and only if G |= φ(u′, v′). In particular, X ′, Y ′ is homogeneous in1779

φ(G). We can now prove Theorem 41.1780

Proof. We need to show that given G with twin-width d and a formula φ(x, y), the twin-1781

width of φ(G) is at most a function of d and `, the depth of φ. To show this, we consider a1782

sequence of d-partitions (Pi)i∈[n] of G. We now refine it further by considering the sequence1783

of partitions Ii := I`+2(G,Pi), for all i ∈ [n]. As we have seen, Ii is coarser than Ii+1, and1784

furthermore each part of Ii contains a bounded (in d, and `) number of parts of Ii+1. Indeed1785

a part of Ii is contained in a part of Pi which contains at most two parts of Pi+1, each1786

containing a bounded number (in d and `) of parts of Ii+1 by Lemma 43.1787

At last, by Lemma 44, if two parts of Ii belong respectively to two parts of Pi which are1788

further than 3`+2 in GPi
, then they are homogeneous in φ(G). Hence (Ii)i∈[n] is a nested1789

sequence of h(d, `)-partitions of G where each Ii is a bounded refinement of Ii+1, so we can1790

extend (Ii)i∈[n] to a h′(d, `)-sequence of φ(G), by Lemma 8. J1791

9 Conclusion1792

We have introduced the notion of twin-width. We have shown how to compute contraction1793

sequences on several classes with bounded twin-width, and how to then decide first-order1794

formulas on these classes in linear FPT time.1795

Computing twin-width. The most natural open question concerns the complexity of1796

computing the twin-width and contraction sequences on general graphs. We do not expect1797

that computing exactly the twin-width is tractable. However any approximation with a ratio1798

only function of twin-width would be good enough. Formally, is there a polynomial-time1799

algorithm that outputs an f(d)-contraction sequence or correctly reports that the twin-width1800

is at least d? This raises the perhaps more general question of a weak dual for twin-width.1801

For treewidth, brambles provide an exact dual. How to certify that the twin-width is at least1802

d? The best we can say so far is that if for all the vertex-orderings the adjacency matrix1803

admits a (2d + 2)-mixed minor, then the twin-width exceeds d. A satisfactory certificate1804

would get rid of the universal quantification over the orderings of the vertex-set.1805

Full characterization of “tractable” classes. We have made some progress on getting1806

the full picture of which classes admit an FPT algorithm for FO model checking. Let us1807

call them here tractable classes. Resolving Gajarský et al.’s conjecture (see Conjecture 38)1808

will most likely require in particular to tackle the task of the previous paragraph. Bounded1809

twin-width classes are not universal, which supports a bit more the truth of the conjecture.1810

Currently almost all the knowledge on tractable classes is subsumed by two algorithms:1811

Grohe et al.’s algorithm on nowhere dense graphs [21] and our algorithm on bounded twin-1812

width classes. As formulated in the introduction, these results, as well as their (possible)1813

extension to FO interpretations and transductions, are incomparable. Is there a “natural”1814

class which sits above nowhere dense and bounded twin-width classes, and would unify and1815

generalize these algorithms by being itself tractable? Is there an algorithmically-workable1816
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characterization of tractable or non-universal classes? Even a tractable generalization of1817

bounded degree and bounded twin-width is unclear. For instance, making the union of the1818

edge-sets of a bounded-degree graph with a bounded twin-width graph on the same vertex-set1819

does not yield a tractable class. Indeed, the bounded twin-width graph can be a disjoint1820

union of stars, the bounded-degree graph can be a perfect matching over the set of leaves,1821

and the union can then be the 2-subdivision of any graph.1822

As a complexity measure, twin-width can be investigated in various directions. We list a1823

brief collection of potentially fruitful lines of research.1824

Structured matrices. The definition of a k-mixed minor in a matrix M is a division of1825

rows and columns where every zone is mixed. If we use a 1,2-matrix instead of a 0,1-matrix1826

to code the adjacency matrix of a graph, the property of being mixed is equivalent to having1827

rank strictly greater than 1. Let us say that a matrix M has r-twin-width at most d, if1828

there is an ordering of its rows and columns such that every (d, d)-division has at least one1829

zone with rank at most r. By Marcus-Tardos theorem a matrix with bounded 0-twin-width1830

has only linearly many non zero entries. For adjacency matrices coded by 1 (edge) and 21831

(non-edge), bounded 1-twin-width is exactly bounded twin-width of the corresponding graph.1832

Can we say something about matrices with bounded 2-twin-width?1833

Expanders. Surprisingly, bounded-degree expanders can have bounded twin-width, hence1834

cubic graphs with bounded twin-width do not necessarily have sublinear balanced separators.1835

We will show that there are cubic expanders with twin-width 6 [4]. However, random cubic1836

graphs have unbounded twin-width. Does the dichotomy of having bounded or unbounded1837

twin-width tell us something meaningful on expander classes?1838

Small classes. In an upcoming work [4], we show that the class of graphs with twin-width1839

at most d is a small class, that is, the number of such graphs on the vertex-set [n] is bounded1840

by n!f(d)n for some function f . Is the converse true? That is, for every (hereditary) small1841

class of graphs is there a constant bound on the twin-width of its members? The same1842

question can be asked for monotone classes only.1843

Polynomial expansion. Do polynomial expansion classes have bounded twin-width? If1844

yes, can we efficiently compute contraction sequences on these classes? We will show that1845

t-subdivisions of n-cliques have bounded twin-width if and only if t = Ω(logn) [4]. This is a1846

first step in answering the initial question.1847

Bounded twin-width of finitely generated groups. Given a (countably infinite) group1848

Γ generated by a finite set S, we can associate its Cayley graph G, whose vertices are1849

the elements of Γ and edges are all pairs {x, x · s} where s ∈ S. For instance, infinite1850

d-dimensional grids are such Cayley graphs. As a far-reaching generalization of the case1851

of grids, we conjecture that the class of all finite induced subgraphs of G has bounded1852

twin-width. We observe that this does not depend on the generating set S since all choices1853

of S are equivalent modulo first-order interpretation. Hence bounded twin-width is indeed1854

a group invariant. One evidence supporting that finitely generated groups have bounded1855

twin-width is based on the notion of small classes and will be further developed in [4].1856

Additive combinatorics. To any finite subset S of non-negative integers, we can associate1857

a Cayley graph G by picking some (prime) number p (much) larger than the maximum of S,1858

and having edges xy if x− y or y − x is in S modulo p. Is the twin-width of G a relevant1859

complexity measure for S?1860

Approximation algorithms. Last but not least, we should ask more algorithmic applic-1861

ations from twin-width. It is noteworthy that, in all the particular classes of bounded1862

twin-width presented in the paper, most optimization problems admit good approxima-1863

tion ratios, or even exact polytime algorithms. What is the approximability status of, say,1864
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Maximum Independent Set on graphs of twin-width at most d?1865
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