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Twin-width II: small classes∗

Édouard Bonnet† Colin Geniet‡ Eun Jung Kim§ Stéphan Thomassé¶

Rémi Watrigant‖

Abstract
The recently introduced twin-width of a graph G is the
minimum integer d such that G has a d-contraction
sequence, that is, a sequence of |V (G)| − 1 iterated
vertex identifications for which the overall maximum
number of red edges incident to a single vertex is at
most d, where a red edge appears between two sets of
identified vertices if they are not homogeneous in G (not
fully adjacent nor fully non-adjacent). We show that if
a graph admits a d-contraction sequence, then it also
has a linear-arity tree of f(d)-contractions, for some
function f . Informally if we accept to worsen the twin-
width bound, we can choose the next contraction from
a set of Θ(|V (G)|) pairwise disjoint pairs of vertices.
This has two main consequences. First it permits to
show that every bounded twin-width class is small,
i.e., has at most n!cn graphs labeled by [n], for some
constant c. This unifies and extends the same result
for bounded treewidth graphs [Beineke and Pippert,
JCT ’69], proper subclasses of permutations graphs
[Marcus and Tardos, JCTA ’04], and proper minor-free
classes [Norine et al., JCTB ’06]. It implies in turn
that bounded-degree graphs, interval graphs, and unit
disk graphs have unbounded twin-width. The second
consequence is an O(logn)-adjacency labeling scheme
for bounded twin-width graphs, confirming several cases
of the implicit graph conjecture.

We then explore the small conjecture that, con-
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versely, every small hereditary class has bounded twin-
width. The conjecture passes many tests. Inspired by
sorting networks of logarithmic depth, we show that
logΘ(log log d) n-subdivisions of Kn (a small class when
d is constant) have twin-width at most d. We obtain a
rather sharp converse with a surprisingly direct proof:
the logd+1 n-subdivision ofKn has twin-width at least d.
Secondly graphs with bounded stack or queue number
(also small classes) have bounded twin-width. These
sparse classes are surprisingly rich since they contain
certain (small) classes of expanders. Thirdly we show
that cubic expanders obtained by iterated random 2-
lifts from K4 [Bilu and Linial, Combinatorica ’06] also
have bounded twin-width. These graphs are related to
so-called separable permutations and also form a small
class. We suggest a promising connection between the
small conjecture and group theory.

Finally we define a robust notion of sparse twin-
width. We show that for a hereditary class C of bounded
twin-width the five following conditions are equivalent:
every graph in C (1) is Kt,t-free for some fixed t, (2)
has an adjacency matrix without a d-by-d division with
a 1 entry in each d2 cells for some fixed d, (3) has
at most linearly many edges, (4) the subgraph closure
of C has bounded twin-width, and (5) C has bounded
expansion. We discuss how sparse classes with similar
behavior with respect to clique subdivisions compare to
bounded sparse twin-width.

1 Introduction
We continue to develop the theory of twin-width, a novel
graph and matrix invariant introduced in the first paper
of the series [7]. We start with a bird’s eye view of
our results. The exact definitions of some objects and
concepts will be deferred to the next section, but this
introduction can be read by taking them as black boxes.
Furthermore Section 2 includes a summary of the first
paper, so that the current paper is self-contained.

A trigraph is a graph with two disjoint edge sets:
black edges (regular edges) and red edges (error edges).
The graph induced by the red edges (resp. black edges)
is called the red graph (resp. black graph). A d-
trigraph has a red graph with maximum degree at



most d. A contraction in a trigraph identifies two (non-
necessarily adjacent) vertices, and puts black edges to-
wards shared neighbors in the black graph, and red
edges towards the other (non-necessarily shared) neigh-
bors (see Fig. 1). A d-contraction sequence, or d-
sequence, of an n-vertex graph G is a sequence of d-
trigraphs G = Gn, Gn−1, . . . , G2, G1 such that Gi is ob-
tained by performing a single contraction in Gi+1. In
particular G1 is the one-vertex graph K1. The twin-
width of G is the minimum d such that it admits a
d-sequence.

A contraction sequence of G may be seen as a path
with at the left end, G, at the right end, K1, and the
current trigraph gets smaller and smaller when we walk
from left to right. We show that this path can be made
a tree of large arity. Now G is at the root of the tree,
all the leaves contain the graph K1, and every child
is obtained by performing a single contraction in the
parent node. A d-contraction tree is such a tree with a
d-trigraph at every node. More precisely, we show that
if a graph G has a d-contraction sequence, then it has
a Dd-contraction tree with linear arity. By linear arity,
we mean that every non-leaf node H has Θ(|V (H)|)
distinct children.

Denoting the class of graphs with twin-width at
most d by Cd, the first consequence is that the number
of graphs in Cd on the vertex set [n] is at most n!f(d)n.
Intuitively the large-arity tree tells us that many n− 1-
vertex graphs of Cd can be obtained from the same n-
vertex graph of Cd. By inverting the process, there are
not so many distinct n-vertex graphs in Cd, obtained
by splitting a vertex in n− 1-vertex graphs of Cd. This
crucial fact makes the inductive proof works. Our re-
sult generalizes several similar theorems in enumerative
combinatorics.

The first one is an over 50-year old result that
bounded treewidth graphs on vertex set [n] have a simi-
lar growth in n!cn [2]. Graph classes with such a growth
are called small. The second one is comparatively much
more recent, it is the celebrated answer to the Stanley-
Wilf conjecture, now the Marcus-Tardos theorem. Mar-
cus and Tardos [20] showed that there are at most cnσ
permutations over [n] avoiding a fixed permutation pat-
tern σ. In other words, every proper subclass of permu-
tations (where a class of permutations is closed under
taking subpermutations) has at most single-exponential
growth, much below n!, the growth of the full class.
Expressed in the language of graph classes, proper sub-
classes of permutation graphs are small. The third one,
due to Norine et al. [24], is that the number of graphs
on vertex set [n] not containing a fixed minor H is at
most n!cnH . Thus proper minor-closed classes are small.

We previously showed [7] that bounded treewidth

(even rank-width) graphs, proper subclasses of permu-
tation graphs, and proper minor-closed classes have
bounded twin-width. Thus the fact that bounded twin-
width classes are small unifies and extends all the above-
mentioned theorems. We then explore the converse
statement. Could it be that every small hereditary class
has bounded twin-width? We do not answer this ques-
tion, dubbed the small conjecture, but instead we give
some evidences it may be true. This comes in the form
of showing that many potential counterexamples, that
is, seemingly complex small hereditary classes, actually
have bounded twin-width. If the conjecture is true, it
gives a universal explanation for the single-exponential
growth (up to isomorphism) of combinatorial classes:
Translate the objects into graphs or matrices, a bound
or lack thereof in the twin-width of the class decides the
existence of such a bound in the growth.

Another by-product of the contraction tree is that
we can always contract in parallel a linear number of
disjoint pairs of vertices. This gives rise to so-called par-
allel d-sequences of logarithmic length. This will be in-
strumental in showing that bounded twin-width classes
admit an O(logn)-adjacency labeling scheme. This ver-
ifies a variety of particular cases of the implicit graph
conjecture which posits that such labeling schemes exist
for every factorial hereditary class, i.e., hereditary class
with growth n!O(1).

Finally we show that five different ways of restrict-
ing twin-width to sparse classes actually lead to the
same notion. For example, bounded sparse twin-width
classes can be equivalently defined as hereditary classes
with bounded twin-width that are Kt,t-free or where
every graph has at most linearly many edges. A first
but challenging step towards the small conjecture is to
show that small sparse classes have bounded (sparse)
twin-width. For instance, do classes with polynomial
expansion have bounded twin-width? We discuss (pos-
sible) containments and strict containments of estab-
lished sparse classes with respect to bounded sparse
twin-width.

2 Preliminaries and outline
In this section we recall the relevant notations and
definitions, summarize the important bits of the first
paper, and outline our new results.

2.1 Notations and definitions. We denote by [i, j]
the set of integers {i, i + 1, . . . , j − 1, j}, and by [i]
the set of integers [1, i]. If X is a set of sets, we
denote by ∪X their union. Unless stated otherwise,
all graphs are assumed undirected and simple, that
is, they do not have parallel edges or self-loops. We
denote by V (G) and E(G), the set of vertices and edges,



respectively, of a graph G. For S ⊆ V (G), we denote
the open neighborhood (or simply neighborhood) of S
by NG(S), i.e., the set of neighbors of S deprived of
S, and the closed neighborhood of S by NG[S], i.e., the
set NG(S) ∪ S. We simplify NG({v}) into NG(v), and
NG[{v}] into NG[v]. We denote by G[S] the subgraph
of G induced by S, and G − S := G[V (G) \ S]. For
two disjoint sets A,B ⊆ V (G), E(A,B) denotes the
set of edges in E(G) with one endpoint in A and the
other one in B. Two distinct vertices u, v such that
N(u) = N(v) are called false twins, and true twins if
N [u] = N [v]. Two vertices are twins if they are false
twins or true twins. For two vertices u, v ∈ V (G), the
distance dG(u, v) is the number of edges in a shortest
path from u to v, and ∞ if u and v are in two distinct
connected components of G. In all the notations with
a graph subscript, we may omit it if the graph is clear
from the context.

A graph class is a family of graphs closed under
isomorphism (i.e., under renaming the vertices). Since
we will be interested in the “size” of a class, we will
further impose that the vertex set of n-vertex graphs
is precisely1 [n]. With that requirement the number
of n-vertex graphs in a class C is a well-defined (finite)
number. Observe that every single n-vertex graph in a
class C implies that at least n! graphs are in C, namely
all its relabelings. A graph class is said hereditary
if it is closed under taking induced subgraphs. It is
said monotone or subgraph-closed if it is even closed
under taking subgraphs.

A graph is H-free if it does not contain H as an
induced subgraph. However we make an exception for
H = Kt,t. A Kt,t-free graph is a graph with no biclique
Kt,t as a subgraph. A class is H-free if all its graphs
are H-free. When t is not yet defined, we may say that
a class C is Kt-free (resp. Kt,t-free) to mean that there
exists a finite integer t such that C is Kt-free (resp. Kt,t-
free).

We denote by ∆(G) the maximum degree of a
vertex in G, and ∆(C) := supG∈C ∆(G). A class C
has bounded degree if ∆(C) < ∞. More generally, for
any graph invariant ι, we say that C has bounded ι if
ι(C) := supG∈C ι(G) < ∞. The strong product G � H
of two graphs G and H has vertex set V (G) × V (H)
and (u, v)(u′, v′) ∈ E(G � H) if and only if [u = u′ or
uu′ ∈ E(G)] and [v = v′ or vv′ ∈ E(H)]. We denote
by G � H the class {G � H | G ∈ G, H ∈ H}, where
G and H are two sets of graphs. Given a class C, we
denote by Sub(C) the class of all subgraphs of members
of C. The class Sub(C) is by definition subgraph-closed,

1If it is sometimes more convenient to use a different vertex set
for the class definition, this will implicitly come with a canonical
mapping from this vertex set to [n].

and is called the subgraph closure of C. Similarly the
hereditary closure of a class C consists of all the induced
subgraphs of members of C, and is hereditary by design.

An edge contraction of two adjacent vertices u, v
consists of merging u and v into a single vertex adjacent
to N({u, v}) (and deleting u and v). A graph H is
a minor of a graph G if H can be obtained from G
by a sequence of vertex and edge deletions, and edge
contractions. Equivalently a minor H with vertex set
say, {v1, . . . , vV (H)}, of G can be defined as a vertex
partition B1, . . . , B|V (H)| of a subgraph of G, such that
every G[Bi] is connected and EG(Bi, Bj) 6= ∅ whenever
vivj ∈ E(H). Indeed after contracting each Bi into
a single vertex (which is possible since they induce
connected subgraphs), H appears as a subgraph. The
set Bi is called the branch set of vi ∈ V (H). A graph G
is said H-minor free if H is not a minor of G. A class
is said minor-closed if every minor of a member of the
class is in the class, and proper minor-closed if further
the class is not the set of all graphs.

The radius rad(G) of a graph G is defined as
minu∈V (G) maxv∈V (G) dG(u, v). The radius radG(S) of
a subset of vertices S ⊆ V (G) is simply defined as
rad(G[S]). Note that two vertices can be further away
in G[S] than in G. An r-shallow minor H of G is a
minor of G with branch sets B1, . . . , B|V (H)| satisfying
radG(Bi) 6 r for every i ∈ [|V (H)|]. We denote that
by H 4r G. In particular 0-shallow minors correspond
to subgraphs. The theory of graph sparsity pioneered
by Ossona de Mendez and Nešetřil [23] introduces the
following invariants for a graph G and a class C:

∇r(G) := sup
H4rG

|E(H)|
|V (H)| , and ∇r(C) := sup

G∈C
∇r(G).

Note that ∇0(G) is tied to the maximum average degree
of G.

A class C of graphs is said to have bounded expansion
if ∇r(C) < ∞ for every r ∈ N. More generally C
has expansion f if ∇r(C) 6 f(r) for every r ∈ N. A
class has polynomial expansion if it has expansion f for
a polynomial function f . Proper minor-closed classes
even have constant expansion, i.e., expansion f for a
constant function f .

2.2 Summary of the previous paper. In the pre-
vious paper of the series [7], we introduced a new graph
and matrix invariant dubbed twin-width, inspired by
the work of Guillemot and Marx on permutations [17].
We proved that many classes such as, bounded rank-
width graphs, proper minor-free classes, proper sub-
classes of permutation graphs, and posets with an-
tichains of bounded size have bounded twin-width. For
all these classes, we showed how to find in polynomial-
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Figure 1: Contraction of vertices u and v, and how the edges of the trigraph are updated.

time a so-called d-sequence, witnessing that the twin-
width is at most a constant d. Finally given a d-sequence
of a binary structure G on n elements and a first-order
(FO) formula ϕ of quantifier-depth `, we provided an
FO model checking algorithm deciding G |= ϕ in time
f(d, `)n.

We start by recalling the definition of twin-width,
and then we summarize the milestones of [7] that will
also be useful in the current paper.

2.2.1 Trigraphs, contraction sequences, and
twin-width of a graph. A trigraph G has vertex set
V (G), (black) edge set E(G), and red edge set R(G)
(the error edges), with E(G) and R(G) being disjoint.
The set of neighbors NG(v) of a vertex v in a trigraph
G consists of all the vertices adjacent to v by a black
or red edge. A d-trigraph is a trigraph G such that
the red graph (V (G), R(G)) has degree at most d. In
that case, we also say that the trigraph has red degree
at most d. In the context of trigraphs and twin-width,
we will somewhat overload the term “contraction”. A
contraction or identification in a trigraph G consists of
merging two (non-necessarily adjacent) vertices u and v
into a single vertex w, and updating the edges of G in
the following way. Every vertex of the symmetric differ-
ence NG(u)4NG(v) is linked to w by a red edge. Every
vertex x of the intersection NG(u) ∩NG(v) is linked to
w by a black edge if both ux ∈ E(G) and vx ∈ E(G),
and by a red edge otherwise. The rest of the edges (not
incident to u or v) remain unchanged. We insist that
the vertices u and v (together with the edges incident
to these vertices) are removed from the trigraph. See
Fig. 1 for an illustration.

A sequence of d-contractions or d-sequence is a
sequence of d-trigraphs Gn, Gn−1, . . . , G1, where Gn =
G, G1 = K1 is the graph on a single vertex, and Gi−1
is obtained from Gi by performing a single contraction
of two (non-necessarily adjacent) vertices. We observe
that Gi has precisely i vertices, for every i ∈ [n]. The
twin-width of G, denoted by tww(G), is the minimum
integer d such that G admits a d-sequence. Going back
to the overload of the word “contraction”, in case we
actually refer to the classical (edge) contraction, either

we will use the term “edge contraction”, or it will be
clear from the context what is meant.

2.2.2 Partitions, divisions, red number, and
twin-width of a matrix. We now give two equivalent
definitions for the twin-width of a matrix. The first is
based on a contraction sequence where we progressively
reduce the size of the matrix, and introduce error
symbols r. The second (equivalent) definition is based
on a coarsening sequence where we progressively coarsen
a partition of the rows and columns of the matrix.

The red number of a matrix is the maximum
number of r entries (error entry, the r stands for red) in
a single row or column. Given an n×m matrix M and
two columns Ci and Cj (resp. two rows Ri and Rj), the
contraction of Ci and Cj (resp. Ri and Rj) is obtained
by deleting Cj (resp. Rj) and replacing every entrymk,i

of Ci (resp. every entrymi,k ofRi) by r whenevermk,i 6=
mk,j (resp. mi,k 6= mj,k). A d-contraction sequence of
matrixM is sequence of successive contractions starting
atM , ending at some 1×1 matrix, such that all matrices
of the sequence have red number at most d. The twin-
width of a matrix M is the smallest integer d such that
M admits a d-contraction sequence.

We observe that whenM has twin-width at most d,
one can reorder its rows and columns such that every
contraction is on two consecutive rows or two consec-
utive columns. The reordered matrix is then called d-
twin-ordered. The symmetric twin-width of an n × n
matrix M is defined similarly, except that the contrac-
tion of rows i and j (resp. columns i and j) is imme-
diately followed by the contraction of columns i and j
(resp. rows i and j). The symmetric twin-width of the
adjacency matrix of a graph G corresponds to the twin-
width of G.

For the second definition of the twin-width of a
matrix, we need to introduce a bit of vocabulary on
partitions. We say that a partition P of a set S refines
a partition P ′ of S if every part of P is contained in a
part of P ′. Conversely we say that P ′ is a coarsening of
P. We will further assume that a coarsening is proper,
that is, P ′ and P are distinct. Given a partition P and
two distinct parts P, P ′ of P, the elementary coarsening



of P and P ′ yields the coarsening P \{P, P ′}∪{P ∪P ′}.
Informally an elementary coarsening is the merge of two
parts.

Given an n×m matrix M , we call row-partition
(resp. column-partition) a partition of the rows
(resp. columns) of M . A (k, `)-partition, or simply par-
tition, of a matrix M is a pair (R = {R1, . . . , Rk}, C =
{C1, . . . , C`}) where R is a row-partition and C is a
column-partition. In a matrix partition (R, C), each
part R ∈ R is called a row-part, and each part C ∈ C
is called a column-part. An elementary coarsening of
a partition (R, C) of a matrix M is obtained by per-
forming one elementary coarsening in R or in C. We
distinguish two canonical partitions of an n × m ma-
trix M : the finest partition where (R, C) have size n
and m, respectively, and the coarsest partition where
|R| = |C| = 1.

A coarsening sequence of an n ×m matrix M is a
sequence of partitions (R1, C1), . . . , (Rn+m−1, Cn+m−1)
where
• (R1, C1) is the finest partition,
• (Rn+m−1, Cn+m−1) is the coarsest partition, and
• for every i ∈ [n + m − 2], (Ri+1, Ci+1) is an
elementary coarsening of (Ri, Ci).
Given a subset R of rows and a subset C of columns

in a matrix M , the zone R ∩ C denotes the submatrix
of all entries of M at the intersection between a row of
R and a column of C. A zone of a matrix partitioned
by (R, C) = ({R1, . . . , Rk}, {C1, . . . , C`}) is any Ri ∩Cj
for i ∈ [k] and j ∈ [`]. A zone is constant if all its
entries are identical. The error value of a row-part
Ri (resp. a column-part Cj) is the number of non-
constant zones among all zones in {Ri∩C1, . . . , Ri∩C`}
(resp. {R1∩Cj , . . . , Rk∩Cj}). The error value of (R, C)
is the maximum error value of a part, taken over all
parts Ri and Cj . Now the twin-width of a matrixM can
be equivalently defined as the minimum d for which M
admits a coarsening sequence in which all partitions
have error value at most d.

We will work with particular partitions, called divi-
sions, where every part consists of a set of consecutive
rows, or a set of consecutive columns. If the matrix is d-
twin-ordered, there is a coarsening sequence with error
value at most d, in which all the partitions are divisions.
We call division sequence such a coarsening sequence.

2.2.3 Grid minor theorem for twin-width.
A (t, t)-division is a division (R, C) such that |R| =
|C| = t. A t-grid minor is a (t, t)-division whose t2
zones contains a non-zero entry. As for the Permu-
tation Pattern breakthrough algorithm of Guillemot
and Marx [17], a crucial engine of twin-width is the fol-
lowing celebrated theorem by Marcus and Tardos.

Theorem 2.1. ([20]) For every integer t, there is
some ct such that every n × m 0, 1-matrix M with at
least ct max(n,m) entries 1 has a t-grid minor.

Informally, if a matrix has sufficiently many entries 1,
then there is a large grid structure where each cell is
“complicated”. The current best bound for ct, due to
Cibulka and Kynčl [8], is 8/3(t+ 1)224t.

To leverage Marcus-Tardos theorem in the dense
regime, too, we modify the definition of “complicated”
from “containing a 1” to “being mixed”. A zone is hor-
izontal if all its columns are equal (restricted to the
zone), and vertical if all the rows are equal. Equiva-
lently each row (resp. column) within a horizontal zone
(resp. vertical zone) consists of a repeated same entry.
Note that a zone is constant (consists of a same entry
repeated) if it is horizontal and vertical. A zone is mixed
if it is not horizontal nor vertical.

We can now introduce the notions of t-mixed minors
and t-mixed freeness. A t-mixed minor of a matrix M
is a (t, t)-division of M such that every zone is mixed.
A matrix is t-mixed free if it does not admit a t-mixed
minor. We showed that having small twin-width and
admitting no large mixed minors are equivalent in the
following sense.

Theorem 2.2. ([7]) Let α be the alphabet size for the
matrix entries, and ct := 8/3(t+ 1)224t.
• Every t-twin-ordered matrix is 2t+ 2-mixed free.
• Every t-mixed free matrix has twin-width at most

4ctα4ct+2 = 22O(t) .

The first item is a relatively simple observation. The
difficulty lies in the second item. In a nutshell, if the
matrix is t-mixed free, we find, using Marcus-Tardos
theorem, a sequence of divisions with small number
of mixed zones per column and per row. From this
favorable sequence of divisions, we are able to extract
an f(t)-contraction sequence.

One simple but important ingredient is a local char-
acterization of mixedness by means of a corner. A cor-
ner in a matrix M = (mi,j)i,j is a mixed zone made by
four contiguous entries mi,j ,mi+1,j ,mi,j+1,mi+1,j+1.
A 0,1-corner is a corner where each entry is in {0, 1}.

Lemma 2.1. ([7]) A matrix is mixed if and only if it
contains a corner.

In Section 3 we will work with specifically divided
0, 1, r-matrices, respecting the following invariants. Ev-
ery zone is filled with r entries, or is non-mixed (that is,
horizontal or vertical) and has only 0 and 1 entries. In
this context, we will redefine the mixed zones as those
filled with r entries. The coarsenings will be followed by
updating the entries of the matrix to keep the invariants.

C



Namely every zone with a 0, 1-corner is filled with r en-
tries. This new viewpoint mixes contraction sequence
and coarsening sequence. It will turn out useful to find,
in a t-mixed free matrix, not just one “good contrac-
tion” (as in Theorem 2.2) but a linear number of disjoint
pairs of “good contractions”. This will have two main
consequences. It will enable us to show that bounded
twin-width classes are small (see Section 2.3 for a formal
definition). This will also be used to find O(logn)-bits
adjacency labeling schemes (see Section 2.4) for n-vertex
graphs in classes of bounded twin-width.

2.2.4 Closure by FO transduction. Bounded
twin-width behaves surprisingly well with respect to
first-order logic. In addition to the fixed-parameter
tractable algorithm running in time f(d, |φ|)n for model
checking a first-order sentence φ on an n-vertex graph
given with a d-contraction sequence, we show that
bounded twin-width is preserved by first-order (FO)
transductions.

Theorem 2.3. ([7]) Every transduction of a bounded
twin-width class has bounded twin-width.

A formal definition of FO transductions can be
found in several papers (see for instance [4, 15]). As
this definition is somewhat technical and we will only
use Theorem 2.3 in a black-box fashion, we refer the
interested reader to these paper. Informally an FO
transduction of a graph G defines several new graphs.
It consists of2 a non-deterministic “coloring” of V (G)
by a constant number of unary relations, followed by a
redefinition of the edges by means of a fixed FO formula
using the former edge predicate as well as these new
unary relations. The unary relations are then discarded,
and we here further allow to take any induced subgraph
of the obtained graph (to preserve the class heredity).
An FO transduction of a class C is simply the union of
the graphs obtained by FO transduction of G, for every
G ∈ C.

2.3 Small classes and the small conjecture. We
recall that a hereditary class is a class closed under
taking induced subgraphs. Formally if G is in a
hereditary class C, then for every induced subgraph H
of G, it also holds that H is in C. The overwhelming
majority of the usually considered classes of graphs are
hereditary.3

2The original definition allows first to duplicate the graph
G into constantly many copies of G. As any disjoint union of
bounded twin-width graphs has bounded twin-width, we omit this
step here.

3Notable exceptions include regular graphs, connected graphs,
and visibility graphs of a point set.

A class of graph C is said small (resp. factorial),
if there exists a constant c, such that the number of
n-vertex graphs of C is at most n!cn (resp. n!c =
2O(n logn)), for every n ∈ N. Recall that our n-vertex
graphs are all assumed to be on the vertex set [n], and
that we count up to equality and not up to isomorphism.
Norine et al. [24] show that the number of Kt-minor
free graphs on [n] is at most n!cn, for some integer c
depending only on t. In other words, proper minor-
closed classes are small. Marcus-Tardos theorem [20],
combined with an argument due to Klazar [19], implies
that the number of n× n 0, 1-matrices avoiding a fixed
permutation submatrix is at most cn, for some constant
c. In particular the number of permutations on n
elements avoiding a fixed permutation grows in 2O(n).
A translation of this result to graphs is that proper
subclasses of permutation graphs are small.

We say that a class C has bounded twin-width
if there exists an integer dC such that every member
of C has twin-width at most dC . Thus tww(C) :=
sup
G∈C

tww(G) <∞.

One of the main contributions of the paper is the
following.

Theorem 2.4. Every class with bounded twin-width is
small.

This generalizes the smallness of proper minor-
closed classes [24], proper subclasses of permutation
graphs [20, 19], and graphs with bounded treewidth
[2], as we previously showed that all these classes have
bounded twin-width [7]. We then explore a possible
converse for Theorem 2.4. Of course it is easy to arti-
ficially build an unbounded twin-width class with only
n! graphs of size n. For example, by taking in the class
a single (up to isomorphism) n-vertex graph among the
n-vertex graphs with maximum twin-width, for every n.
However this is not a satisfactory counterexample. In
combinatorics, classes of objects are often required to
be closed under substructures. For instance, a class of
permutations is by definition closed under taking sub-
permutations. Same goes for graphs: Hereditary classes
have richer properties than non-hereditary ones. Many
interesting questions on hereditary classes have trivial
answers or are not even well-defined on general classes.

We provocatively conjecture the following converse
of Theorem 2.4.

Conjecture 1. (small conjecture) Every small
hereditary class has bounded twin-width.

It may seem ambitious to expect that the converse
of Theorem 2.4 holds for hereditary classes. Why would
the mere limited number of graphs guarantee anything
close to a d-contraction sequence? A typical example of



a class with unbounded twin-width contains an infinite
sequence of graphs G1, G2, . . . where every distinct pair
u, v ∈ V (Gi) satisfies |NGi(u)4NGi(v)| > i. Indeed any
first contraction in Gi creates a vertex with red degree
at least i. A class is said to have unbounded symmetric
difference if it contains such a sequence, and bounded
symmetric difference, otherwise. So for every class C
with bounded symmetric difference, there is an integer d
such that for every graph G ∈ C, there exist two distinct
vertices u, v ∈ V (G) satisfying |N(u)4N(v)| 6 d. For
example, the i×i rook graphs (with vertex set [i]×[i] and
an edge between (a, b) and (c, d) if a = c or b = d), with
i > 3, is a class with unbounded symmetric difference.
However the hereditary closure of this class is not small.

Having bounded symmetric difference is a prereq-
uisite to having bounded twin-width. A first step to-
wards Conjecture 1 would be to show that small hered-
itary classes have bounded symmetric difference. Even
that is unclear. For K2,2-free classes or classes with
girth at least 5, bounded symmetric difference simply
implies bounded minimum degree. Thus a very partic-
ular case of Conjecture 1 is that there every small K2,2-
free hereditary class has bounded minimum degree.

Let us present some elements supporting the con-
jecture. First and foremost, bounded twin-width seems
to “stop at the right place” in the sparse and dense
realms. Unit interval graphs (a small class) have
bounded twin-width while interval graphs (a non-small
class) do not. Similarly among sparse classes, proper
minor-closed classes (small) have bounded twin-width,
whereas subcubic graphs (non-small) have unbounded
twin-width. We will also see that some expander classes
have bounded twin-width (and are small), unlike ran-
dom cubic graphs.

An interesting test is the case of the s-subdivisions
(where each edge of a graph is subdivided s > 1
times). Since the number of subcubic graphs on [n] is
n3n/2+O(n/ logn), the o(logn)-subdivisions of subcubic
graphs is still a non-small class. Thus by Theorem 2.4,
they have unbounded twin-width. We show a more fine-
grained version of that fact by a direct proof. We also
build in polynomial time O(1)-sequences for Ω(logn)-
subdivisions of Kn, which yields the following.

Theorem 2.5. The s-subdivision of Kn has bounded
twin-width if and only if s = Ω(logn). More precisely,
for every integer d, there are `d < ud such that the
bc lognc-subdivision of Kn has twin-width at least d for
every 1 6 c 6 `d, and at most d for every c > ud.

The hereditary closure of Ω(logn)-subdivisions of
Kn is indeed a small class. But Theorem 2.5 in
particular implies that this class does have bounded
twin-width. Dvořák and Norine [14] show that, for any

constants c, ε > 0, classes with expansion r 7→ cr
1/3−ε

are small, while the class of all graphs with expansion
r 7→ 6 · 3

√
r log (r+e) is not small. If the small conjecture

is true, then bounded twin-width contains polynomial
expansion (actually even expansion r 7→ 2r0.33). Thus
another possible first step to Conjecture 1 is to show
that classes with polynomial expansion have bounded
twin-width.

A supplementary motivation for the small conjec-
ture appears if its proof is algorithmic, that is, yields
on any small hereditary class a polytime algorithm
which takes any graph of the class and outputs a (non-
necessarily optimal) O(1)-sequence. In light of Theo-
rem 2.4 and considering that ω(1)-sequences are not as
algorithmically useful, that would be almost as good
as a constant approximation of twin-width in general
graphs.

2.4 Implicit representations. A class C has an
f(n)-bits adjacency labeling scheme (or simply labeling
scheme, for short) if there is a decoding function A :
{0, 1}∗ × {0, 1}∗ → {0, 1} such that for every n-vertex
graph G ∈ C there is a labeling function ` : V (G) →
{0, 1}∗, satisfying |`(u)| 6 f(n) for every u ∈ V (G),
and A(`(u), `(v)) = 1 if and only if uv ∈ E(G). Here
we will further impose that the labeling function ` is
injective. For example trees now have logn+O(1)-bits
adjacency labeling scheme [1], which up to the constant
term, is optimal. It is known that a class C has a
c logn-bits adjacency labeling scheme if and only if, for
every integer n, there is a universal graph graph Un
(not necessarily in C) on at most nc vertices such that
every n-vertex graph of C is an induced subgraph of
Un (see for instance [26]). This becomes apparent when
one considers the possible labels as the vertex set of the
universal graph.

Several classes, such as interval graphs and Kt-
minor free graphs, are known to have O(logn)-bits
labeling schemes. By a direct counting argument,
only factorial classes can expect to admit O(logn)-bits
labeling scheme. Indeed the number of distinct labels
is 2O(logn) = nO(1). Thus the number of n-vertex
graphs that can be induced subgraphs of the universal
graph is only

(
nO(1)

n

)
= nO(n). The implicit graph

conjecture asserts that every factorial hereditary class
has an O(logn)-bits labeling scheme [18]. We show the
conjecture in the particular case of bounded twin-width
classes.

Theorem 2.6. Every bounded twin-width class admits
an O(logn)-bits labeling scheme.

This result is at the same time quite strong and
quite weak. Its strength lies in its broad generality.



We produce a unified labeling scheme for very different
sparse and dense classes. However there are two caveats,
both linked to its generality. The first one is that we still
do not know if the labeling function can be computed in
polynomial time. Indeed it requires a d-sequence (even
a so-called parallel D-sequence of logarithmic length).
If we know how to compute this sequence in many
bounded twin-width classes, we do not know in the
full generality of all the graphs with twin-width at
most d. In the latter case, we currently need exponential
time to find the sequence, and then to compute the
labeling. The decoding function, that is the adjacency
test, runs in time O(logn) in the RAM model with unit-
cost arithmetic operations over words of logarithmic
length. The second caveat is that when restricted to
particular classes, the multiplicative constant preceding
logn given by our proof is much larger than in the
shortest known labeling schemes. For instance, the
current best labeling scheme for Kt-minor free graphs
requires 2 logn+ o(logn) bits per vertex [16], while our
multiplicative constant is double-exponential in t.

Improving the constant c of existing (c+o(1)) logn-
bits labeling schemes is topical in implicit representa-
tions. Recently planar graphs were shown to admit a
(1 + o(1)) logn-bits adjacency labeling scheme [9]. It
is optimal up to the second-order term. The labeling
scheme is actually more general, and works for all sub-
graphs of strong products H�P where H is a bounded-
treewidth chordal graph (or k-tree, for some fixed k),
and P is a path. A class C is said flat if there is an
integer k such that C ⊆ Sub(H� P) where P is the set
of all paths, and H is a set of graphs with treewidth at
most k. An ongoing program (not specific to adjacency
labeling schemes), dubbed graph product structure theo-
rem, established that many small and sparse classes are
flat. This was initiated by Dujmović et al. [11], build-
ing up on a paper by Pilipczuk and Siebertz [25] which
shows a similar result for planar graphs. This property
was extended to apex-minor free [11], bounded-degree
minor-free [10], and k-planar classes [12]. Hence they all
enjoy a (1 + o(1)) logn-bits adjacency labeling scheme.
Interestingly all these classes have bounded twin-width
(minor-free classes and k-planar graphs have bounded
twin-width [7]). This is no coincidence. We will see that
the strong product of two bounded twin-width graphs,
one of which has bounded degree, has bounded twin-
width.

Theorem 2.7. Let G and H be two graphs.
Then tww(G � H) 6 max{tww(G)(∆(H) + 1) +
2∆(H), tww(H) +∆(H)}.

As cliques have twin-width 0, taking subgraphs does
in general not preserve twin-width at all. Nevertheless

on “sparse” classes, bounded twin-width is subgraph-
closed. We show that if the strong product of a bounded
twin-width class G with a bounded-degree bounded
twin-width class H is Kt,t-free, then the subgraphs of
G �H have bounded twin-width.
Theorem 2.8. (?) Let G and H two classes such
that G � H is Kt,t-free. Then tww(Sub(G � H)) 6
f(tww(G), tww(H), ∆(H), t).

In particular flat classes have bounded twin-width
(since graphs with bounded treewidth have bounded
twin-width, and flat classes are Kt,t-free). By essence,
the “flat class” approach to (1 +o(1)) logn-bits labeling
scheme is limited to classes that are Kt-free. Another
interesting limit case is minor-free classes which are not
apex-minor free, like all the K6-minor free graphs for
example. Dujmović et al. [11] show that these classes
are not flat.

We hope that the versatile tree of contractions
(see Lemma 3.7) or the short parallel contraction se-
quence (see Lemma 4.2) may help for small dense classes
and Kt-minor free graphs. We optimistically conjecture
that our Theorem 2.6 can be improved to an optimal
labeling scheme up to the second-order term.
Conjecture 2. Every bounded twin-width class has a
(1 + o(1)) logn-bits labeling scheme.

2.5 Sparse twin-width. The trace of bounded twin-
width on sparse classes is also an interesting and poten-
tially new class. There are five natural ways of forcing
a bounded twin-width class to be “sparse”: forbidding
Kt,t as a subgraph, forbidding a d-grid minor in its adja-
cency matrix (and not a mere d-mixed minor), requiring
that every graph has bounded average degree, requiring
that the subgraphs also have bounded twin-width, and
requiring that the class has bounded expansion. Let
Aσ(G) denote the adjacency matrix of G when V (G) is
ordered by σ. We say that a class C is d-grid free if for
every G ∈ C there is an ordering σ of V (G) such that
Aσ(G) is d-grid free.

We show that all five definitions are actually equiv-
alent.
Theorem 2.9. (?) If C is a hereditary class of bounded
twin-width, the following are equivalent.
• (i) There is an integer t such that no graph of C
contains Kt,t as a subgraph.
• (ii) There is an integer d such that C is d-grid free.
• (iii) There is an integer g such that every n-vertex
graph G ∈ C has at most gn edges.
• (iv) The subgraph closure Sub(C) has bounded twin-
width.

• (v) There is a function f such that ∇r(C) 6 f(r)
for every r.

C



Ignoring item (iv), a compact version of this theo-
rem reads: For a hereditary class of bounded twin-width
having bounded grid minors, bicliques, average degree,
or expansion are all equivalent.

Thus we say that a hereditary class has bounded
sparse twin-width if it has bounded twin-width and
satisfies any of the five items (that is, satisfies all
five). One may wonder whether bounded sparse twin-
width coincides with some existing sparse class. More
generally it is interesting to see how bounded sparse
twin-width compares to the established sparse classes.
A few candidates come to mind: polynomial expansion,
bounded expansion, bounded queue number, bounded
stack number, bounded nonrepetitive coloring classes.
Although we do not prove it for bounded queue or stack
number, we argue that these classes do not coincide with
bounded sparse twin-width.

As cubic graphs have unbounded twin-width,
bounded expansion is strictly more general than
bounded sparse twin-width. For the same reason,
bounded nonrepetitive coloring does not imply bounded
sparse twin-width. It is possible however that bounded
sparse twin-width classes have bounded nonrepetitive
coloring. The existence of an infinite family of cu-
bic expanders with bounded twin-width implies that
bounded sparse twin-width classes do not necessarily
have polynomial expansion. If the small conjecture is
true, polynomial expansion would be a strict subset of
bounded sparse twin-width. We will show that classes
with bounded queue number or bounded stack number
have bounded (sparse) twin-width. We believe that this
inclusion is strict and that the expanders based on ran-
dom 2-lifts have unbounded queue and stack numbers.

2.6 Organization of the rest of paper. In Sec-
tion 3 we show Theorem 2.4, that every class of bounded
twin-width is small. From this we conclude that non-
small classes such as subcubic graphs, interval graphs,
and triangle-free unit segment graphs have unbounded
twin-width. This can be respectively put in perspec-
tive with the fact that some cubic expanders (as we see
in Section 5), unit interval graphs, and Kt-free unit d-
dimensional ball graphs, have bounded twin-width [7].
In Section 4 we leverage the results from the previ-
ous section to present O(logn)-bits adjacency labeling
schemes on bounded twin-width classes. We then ex-
plore the converse of Theorem 2.4 for hereditary classes.
In Section 5 we show that the small class of cubic ex-
panders obtained by iterated 2-lifts from K4 has indeed
bounded twin-width. In Section 6 we prove that the s-
subdivision of the clique Kn, with s > 0, has bounded
twin-width if and only if s = Ω(logn). In Section 7
we prove Theorem 2.9, the list of characterizations of

bounded sparse twin-width. We then show that flat
classes, and classes with bounded queue or stack number
have bounded (sparse) twin-width. In Section 8 we in-
vestigate the twin-width of the finite induced subgraphs
of a fixed Cayley graph. We show that such classes are
small for every finitely generated group. This is a rare
example of a small class for which we still do not know
if the twin-width is bounded.

The proofs of statements marked with a ? were
removed to fulfill the space constraints and can be found
in the full version of the paper [5].

3 Bounded twin-width classes are small
In this section we show that graphs of bounded twin-
width have bounded versatile twin-width. Informally
it says that whenever we can find a sequence (or
path) of d-contractions, we can even find a tree of
D-contractions with linear arity, for some D bounded
by a function of d. This result is fairly technical but
shares some ideas and arguments with Section 5 of
our previous paper [7]. We made the current section
self-contained. We nevertheless mention some frequent
parallels with [7]. Finally we can follow the end of the
proof of Norine et al. [24] –that proper minor-closed
classes are small– to extend the result to bounded twin-
width.

3.1 The proof for proper minor-closed classes
and how (not) to tune it. Let us first give a brief
sketch of Norine et al.’s proof, which works by induction
on n. They say that a vertex is d-good if it has degree
at most d and either has a twin or has a neighbor with
degree at most d. They show the following technical
lemma: Kt-minor free n-vertex graphs have at least n/d
d-good vertices, for some d function of t only. Let In,t
be the set of Kt-minor free graphs on [n], and Kn,t be
the subset of all those graphs of In,t where vertex n is
d-good. By their lemma n/d · |In,t| 6 n|Kn,t|, hence
|In,t| 6 d|Kn,t|. Furthermore, any graph of Kn,t admits
an index i ∈ [n − 1] such that either i and n are false
twins, or i and n are adjacent and have at most d − 1
other neighbors each. Therefore any G ∈ Kn,t can be
obtained from a G′ ∈ In−1,t and i ∈ [n − 1] by either
introducing a new vertex n false twin of i (one graph),
or by splitting i into i and a new vertex n adjacent
to i, and by distributing in G the at most 2(d − 1)
neighbors of i in G′ into: neighbors of i only, neighbors
of n only, and common neighbors (at most 32(d−1)

graphs). Hence |In,t| 6 d(1 + 32(d−1))(n − 1)|In−1,t| 6
(1 + 32(d−1))(n − 1) · (n − 1)!cn−1 6 n!cn, by taking
c := d(1 + 32(d−1)).

We need to redefine the notion of being d-good for
bounded twin-width classes. A very natural candidate



for that would be to say that a vertex is d-good if it
admits a d-contraction with another vertex. After all,
there is always such a vertex (or such a pair of vertices)
in a d-trigraph. However, we cannot expect d-trigraphs
to have linearly many such vertices. Think for instance
of a path on n vertices. It has twin-width 1, but only
four vertices (the two endpoints and their neighbor) that
can be contracted to yield a 1-sequence. Surely we could
allow mere D-contractions, for some D � d, but then
we would leave the class of d-trigraphs. So it would be
unclear which class we are bounding the size of. It is
indeed noteworthy in the above sketch that by deleting
a vertex or contracting adjacent vertices, one remains
in the class of Kt-minor free graphs.

To overcome that issue, we introduce a more robust
notion of bounded twin-width. A tree of d-contractions
of a d-trigraph G is a rooted tree, whose root is labeled
byG, and whose leaves are all labeled by 1-vertex graphs
K1, and such that one can go from any parent to any
child by a d-contraction. With this new definition, d-
sequences coincide with trees of d-contractions which
are in fact paths. We say that a trigraph G has
versatile twin-width d if there exists some p, function
of d only, such that G admits a tree of d-contractions in
which every internal node has at least |V (·)|/p children
with distinct labels (where |V (·)| denotes the number of
vertices of the corresponding node label). Such a tree is
then called a versatile tree of d-contractions.

Let us say that a contraction is d-correct (or simply
correct when we precise that it is a d-contraction) if the
obtained graph has twin-width at most d. The inductive
nature of versatile twin-width provides us the desired
stability. Not only G admits linearly many correct d-
contractions, but it admits linearly many d-contractions
towards graphs of versatile twin-width d. This is indeed
witnessed by the subtrees rooted at each child of the
root labeled by G. We now focus on proving that every
trigraph with twin-width d has a versatile tree of D-
contractions, for a larger D function of d only. This is
a bit technical, but once it is done, we will be able to
mimic the end of Norine et al.’s proof.

3.2 Neatly divided symmetric 0, 1, r-matrices.
Recall that r (for red) is the error symbol. It will now
be convenient to tune some of the notions developed in
our previous paper specifically for 0, 1, r-matrices with
particular divisions. The notions introduced without a
definition are all formalized in Section 2 of the present
paper, as well as in [7, Section 5]. Reading first [7,
Section 5] does not harm, but it is not necessary to
understand the current section.

We will manipulate divisions of 0, 1, r-matrices such
that every zone either contains only r entries or contains

no r entry and is horizontal or vertical (or both). Let
us call neat such a division. Zones filled with r entries
are now called mixed. A neatly divided matrix is a pair
(M, (R, C)) where M is a 0, 1, r-matrix and (R, C) is
a neat division of M . A t-mixed minor in a neatly
divided matrix is a (t, t)-division which coarsens the
neat subdivision, and contains in each of its t2 zones
at least one mixed zone (filled with r entries) or a 0,1-
corner. See Fig. 2 for an illustration. A neatly divided
matrix is said t-mixed free if it does not admit a t-mixed
minor.

A mixed cut of a row-part R ∈ R of a neat division
(R, C = {C1, C2, . . .}) is an index i such that both R∩Ci
and R∩Ci+1 are non-mixed, and there is a 0, 1-corner in
the 2-by-|R| zone defined by the last column of Ci, the
first column of Ci+1, and R. Importantly, a mixed cut
cannot border a mixed zone. (This is a difference with
the definition of [7, Section 5].) The mixed value of a
row-part R ∈ R of a neat division (R, C = {C1, C2, . . .})
is the number of mixed zones R ∩ Cj plus the number
of mixed cuts between two (adjacent non-mixed) zones
R∩Cj and R∩Cj+1. Note that a mixed cut counts for
one unit in the mixed value, regardless of the number
of corners overlapping the two adjacent zones. We
similarly define the mixed value of a column-part C ∈ C.
The mixed value of a neat division of a 0, 1, r-matrix is
the maximum of the mixed values taken over every part.
The part size of a division (resp. partition) (R, C) is
defined as max(maxR∈R |R|,maxC∈C |C|). A division is
symmetric if the largest row index of each row-part and
the largest column index of each column-part define the
same set of integers, that is informally, if the horizontal
separations are symmetric of the vertical separations
about the main diagonal. For instance the division
depicted on Fig. 2 is symmetric since both the largest
row indices of the row-parts and the largest column
indices of the column-parts define the set {2, 3, 4, 6}.
We call symmetric fusion of a symmetric division the
fusion of two consecutive parts in C and of the two
corresponding parts in R. A symmetric fusion on a
symmetric division yields another symmetric division.
A matrix A := (ai,j)i,j is said symmetric in the usual
sense, namely, for every entry ai,j of A, ai,j = aj,i.

The following definition is crucial. It lists the
invariants that we want to keep in our neatly divided
matrices in order to build a versatile tree of contractions.

Definition 1. Let Mn,d be the class of the neatly
divided n × n symmetric 0, 1, r-matrices (M, (R, C)),
such that (R, C) is symmetric and has:

• mixed value at most 4cd,

• part size at most 24cd+2, and

C



1
1
r

r
0
0
1
1

0
0
r

r
0
1
1
1

1
1
0
0
0
1
1
0

1
1
1
0
0
0
1
1

r

r
1
1
0
0
1
0

r

r
0
0
0
1
1
0

0
0
1
1
1
0
r

r

1
1
0
0
1
1
r

r

1
1
r

r
0
0
1
1

0
0
r

r
0
1
1
1

1
1
0
0
0
1
1
0

1
1
1
0
0
0
1
1

r

r
1
1
0
0
1
0

r

r
0
0
0
1
1
0

0
0
1
1
1
0
r

r

1
1
0
0
1
1
r

r

Figure 2: To the left, a neat division: each zone is
horizontal, or vertical, or full with r entries (mixed
zone). Note that the division is symmetric but not the
matrix. To the right, in bold, a 3-mixed minor of the
neat division. Observe that it coarsens the neat division
and contains in each of its 9 zones either a 0,1-corner or
a mixed zone (framed by red dashed boxes).

• no d-mixed minor.

In the previous definition, cd := 8/3(d + 1)224d as
defined in the improvement of Marcus-Tardos bound [8].
The conditions of the first and second bullets are enough
to bound the red number of a neatly divided matrix of
Mn,d.

Lemma 3.1. Let (M, (R, C)) be in Mn,d. The red
number of M is at most 4cd · 24cd+2.

Proof. Any row or column intersects at most 4cd mixed
zones (filled with r entries). Each mixed zone has width
and length bounded by the part size 24cd+2. Hence the
maximum total number of r entries on a single row or
column is at most 4cd · 24cd+2.

3.3 Finding invariant-preserving coarsenings.
A coarsening of a neatly divided matrix (M, (R, C)) is
a neatly divided matrix (M ′, (R′, C′)) such that (R′, C′)
is a coarsening of (R, C), andM ′ is obtained fromM by
setting to r all entries that lie, inM divided by (R′, C′),
in a zone with at least one r entry or a 0,1-corner.
We also refer to the process of going from (M, (R, C))
to (M ′, (R′, C′)) as coarsening operation (or simply
coarsening). A coarsening operation from (M, (R, C)) ∈
Mn,d to (M ′, (R′, C′)) is said invariant-preserving if
(M ′, (R′, C′)) ∈ Mn,d, and elementary if it consists of
a single symmetric fusion. The following lemma shows
that not having a t-mixed minor is preserved for free in
coarsenings of neatly divided matrices.

Lemma 3.2. Every coarsening (M ′, (R′, C′)) of a t-
mixed neatly divided free matrix (M, (R, C)) is t-mixed
free itself.

Proof. Assume there is a t-mixed minor (R∗, C∗)
of (M ′, (R′, C′)). Let us consider the (t, t)-division
(R∗, C∗) in (M, (R, C)). By transitivity, (R∗, C∗)
coarsens (R, C).

There are two possibilities for a zone Z of (R∗, C∗)
in (M ′, (R′, C′)). Either it contains a 0, 1-corner, but
then, Z contains the same 0, 1-corner in (M, (R, C)).
This is because the coarsening operation of a neatly
divided matrix never replaces entries by 0 or 1 entries
(we may only add r entries). Or Z contains an r entry,
or more precisely a zone Z ′ ⊆ Z of (M ′, (R′, C′)) filled
with r entries. Either one of these r entries was already
present in (M, (R, C)), or the r entries of Z ′ appear
after the fusion of a zone Z1 ⊆ Z ′ adjacent to a zone
Z2 ⊆ Z ′ such that Z1 ∪ Z2 contained a 0, 1-corner (and
Z1 ∪ Z2 ⊆ Z ′ ⊆ Z).

Therefore, in any case, Z in (M, (R, C)) contains an
0, 1-corner or an r entry. We conclude that (R∗, C∗) is
a t-mixed minor of (M, (R, C)).

The previous lemma will in particular give us some
control on the average mixed value among the parts of
a coarsening of a neatly divided matrix in Mn,d. This
turns out crucial to find a coarsening which preserves
the imposed upper bound on the overall mixed value.

Lemma 3.3. (?) Let (M, (R, C)) be in Mn,d, and
(M ′, (R, C′)) be a coarsening of (M, (R, C)) with |C′| >
d|C|/2e. Then the average mixed value among all the
parts of C′ on (M ′, (R, C′)) is at most 2cd.

Finally we check again, with our slightly different
definition of mixed value (compared to that of [7,
Section 5]), that the column-part fusions can only
decrease the mixed value of row-parts (and vice versa).

Lemma 3.4. (?) Let (M ′, (R, C′)) be the coarsening of
a neatly divided matrix (M, (R, C)) resulting from the
fusion of a single pair of consecutive parts C,C ′ ∈ C,
with C ∪ C ′ = C∗. Then for every part R ∈ R, the
mixed value of R on (M ′, (R, C′)) is at most the mixed
value of R on (M, (R, C)).

We are now equipped to find invariant-preserving
coarsenings.

Lemma 3.5. (?) We set ` := 24cd+1 and s := 8`.
Every neatly divided matrix (M, (R, C)) ∈Mn,d has an
invariant-preserving coarsening (M ′, (R′, C′)) ∈ Mn,d

with at least bn/sc disjoint pairs of identical columns.

Now it will become apparent why we are filling the
mixed zones with r entries. This allows to simulate
a contraction as a simple deletion of an equal row
(and a symmetric equal column). The following lemma
is straightforward and states that this operation is
invariant-preserving inM·,d.



Lemma 3.6. Let (M, (R, C)) ∈Mn,d be a neatly divided
matrix with two equal rows ρ, ρ′ in a part R ∈ R, hence
symmetrically two equal columns γ, γ′ in a part C ∈ C.
Then removing row ρ′ and the symmetric column γ′

yields a neatly divided matrix ofMn−1,d.

Proof. By design the new matrix and division are
symmetric. The new neatly divided matrix remains d-
mixed free. The part size can only decrease, as well as
the mixed value.

3.4 Bounded twin-width classes have bounded
versatile twin-width. We can now use Lemma 3.5
to find linearly many pairs of vertices that can be
contracted, and Lemma 3.6 to recurse. This will be
our scheme to find a versatile tree of contractions.

Lemma 3.7. (?) Every trigraph of twin-width d has
versatile twin-width at most 4c2d+224c2d+2+2.

3.5 Finishing the proof. Lemma 3.7 is all we need
to mimic Norine et al.’s proof for Kt-minor free graphs
[24], as described in Section 3.1.

Theorem 3.1. (?) There is a triple-exponential func-
tion f : N → N such that the number of n-vertex tri-
graphs with twin-width at most d is at most n!f(d)n.

3.6 Showing that a class has unbounded twin-
width by counting. We have shown that bounded
twin-width classes are small. This may be used to estab-
lish that the twin-width of some graphs is unbounded,
namely if these graphs do not form a small class. It is
not so easy to show that cubic graphs have unbounded
twin-width by direct arguments. Theorem 3.1 implies
this fact by a simple counting argument. A bipartite
cubic graph is the disjoint union of three perfect match-
ings. Each matching can be defined in (n/2)! differ-
ent ways, leading to at least (n/2)!3/33n/2 = n3n/2+o(n)

graphs on vertex set [n], well above n!cn = nn+o(n).
Similarly, two arbitrary total orders on [n] can be de-
fined in (n!)2 ways, hence cannot have bounded twin-
width.

We will now define a simple class of graphs captur-
ing two arbitrary orders. Then we will show that these
graphs are representable by intervals and by unit disks,
and conclude that interval graphs and unit disk graphs
have unbounded twin-width. Of course we did not ex-
pect these classes to have bounded twin-width4, since
FO model checking is W[1]-hard on interval graphs [22],

4In [7] we show that FO model checking is FPT on bounded
twin-width graphs given with a d-sequence.

while the mere Maximum Independent Set is W[1]-
hard on unit disk graphs [21]. We give a more sat-
isfactory proof of that fact, not using the complexity-
theoretic assumption FPT 6= W[1].

We define the (non-hereditary) class B by its slices
Bn of graphs on vertex set [3n]. Each graph of Bn has
its vertex set partitioned into three cliques of size n, say,
(A,B,C). There is no edge between A and C. There
are two arbitrary half-graphs between A and B, and
between B and C. To build a half-graph between A
and B, we first choose an order for the vertices of A,
say, a1, a2, . . . , an, and an order for B, b1, b2, . . . , bn.
Then we put an edge between ai and bj if and only
if i < j. The half-graph between B and C is built
similarly. We choose another order for the vertices of
B, say, b′1, b′2, . . . , b′n, and an order for C, c1, c2, . . . , cn.
Then we put an edge between b′i and cj if and only if
i < j. It is important that the choice of the orders
b1, . . . , bn and b′1, . . . , b′n are independent.

Let us estimate the number of graphs in Bn, ig-
noring the single-exponential factors such as the one
required to fix the partition (A,B,C). The half-graph
between A and B is defined by choosing a total order
for A and a total order for B. There are n!2 such pairs
of orders. Defining the half-graph between B and C re-
quires an additional total order for B (recall that this
second ordering of B is independent of its order for the
half-graph on A∪B) and a total order for C. Again this
amounts to n!2. Overall there are more than n!4 graphs
in Bn. Thus |Bn| grows like n4n+o(n), while the number
of bounded twin-width graphs with vertices labeled by
[3n] is only at most (3n)!c3n = n3n+o(n).

One can describe an unlabeled graph of Bn with a
single permutation σ over [n] such that b′σ(i) = bi. Fig. 3
shows how to realize a graph of Bn as the intersection
graph of intervals or as the intersection graph of unit
disks, for any given permutation σ.

Unit d-dimensional ball intersection graphs with
bounded clique number have bounded twin-width [7].
One could wonder ifKt-free string graphs have bounded
twin-width. Fig. 4 shows that even triangle-free unit
segment graphs have unbounded twin-width. Indeed
it shows how to represent any graph of B′n with axis-
parallel triangle-free unit segments, where B′n is defined
analogously to Bn but the sets A,B,C induce now
independent sets, and not cliques. The same argument
establishes that the growth of B′n is not the one of a
small class.

Let us say that a class C is t-bounded if there is
a function fC such that every Kt-free graph G of C
have twin-width at most fC(t). The previous remark
shows that there are classes that are χ-bounded but not
t-bounded, since unit segment graphs are χ-bounded



A B C

A

B

C

Figure 3: To the left, a representation of a graph of B5 by intervals. All intervals are obviously stacked up on
a single real line, by projection on the x-axis. To the right, the same graph represented with unit disks. The
permutation σ associated to the graph is 41532. In both representations, one can read out the permutation
matrix of 41532, where the first row is the bottom one, not the top one. For the intervals, this permutation
matrix appears in the small gaps between the intervals of B and C, while for the unit disks the matrix appears
in the centers of the disks of B.

[27]. In a subsequent paper [6], we show that classes
of bounded twin-width are χ-bounded. This implies
in particular that every t-bounded class is χ-bounded,
hence the set of t-bounded classes is a proper subset of
the set of χ-bounded classes.

A

B

C

Figure 4: A representation of the graph of Fig. 3,
where the cliques induced by A,B,C are replaced by
independent sets, with axis-parallel triangle-free unit
segments. The upside-down permutation matrix of
σ = 41532 is still visible as the right endpoints of the
red segments.

4 Short parallel d-sequences and adjacency
labeling schemes

Every d-contraction sequence of an n-vertex graph has
length exactly n − 1, since each of its steps contracts
exactly one pair of vertices. What if we allow parallel
contractions where disjoint pairs of vertices may be
contracted in a single step? In this section we adapt
the results of Section 3 on versatile twin-width to
prove the existence of parallel contraction sequences of
logarithmic length. We then use them to provide an
f(d) logn-adjacency labeling scheme for graphs of twin-
width at most d.

A parallel contraction in a trigraph G consists of
the successive contractions of any number of pairs of
vertices {a1, b1}, . . . , {a`, b`}, where a1, . . . , a`, b1, . . . , b`
are all distinct. One can check that the resulting
trigraph does not depend on the order in which the
pairs are contracted. Thus instead of the contraction
of a sequence of pairs, we may as well speak of the
parallel contraction of a set of disjoint pairs. A sequence
of parallel d-contractions, or parallel d-sequence of a
trigraph G is a sequence of d-trigraphs Gk, . . . , G1
where Gk = G, G1 = K1 is the one-vertex (tri)graph,
and Gi−1 is obtained from Gi by a parallel contraction
(of disjoint pairs of vertices). It is noteworthy that the
existence of a parallel contraction sequence is equivalent
to the existence of a (regular) contraction sequence, up
to a multiplicative factor in the red degree.

Lemma 4.1. (?) Let G be a trigraph, and d ∈ N.
• If G admits a d-sequence, then G also admits a
parallel d-sequence.

• If G admits a parallel d-sequence, then G also
admits a (2d+ 1)-sequence.

Our main result on parallel contraction sequences
is that one can always find a parallel sequence of
logarithmic length, at the cost of an increase in the red
degree. This is a variant of the versatile twin-width
theorem presented in Section 3 (Lemma 3.7).

Lemma 4.2. (?) Any n-vertex graph G with twin-width
at most d admits a parallel D-sequence of length O(s ·
logn) where s,D are double exponential functions of d.

From Lemmas 4.1 and 4.2, we immediately conclude
the following.

C



Theorem 4.1. The class of graphs with twin-width
at most d admits a g(d) logn-bits adjacency labeling
scheme, where n is the number of vertices and g is a
double-exponential function.

The labeling scheme can in particular be used to
encode an n-vertex graph of twin-width at most d on
22γ(d+1)

n logn bits, for some constant γ. This offers
a significant compression over adjacency lists, since
cliques for instance have twin-width 0. Now if the
aim is only to globally compress the whole graph, and
not to balance the lengths of the vertex labels, there
is a simpler encoding with a better dependency in d.
It basically consists of “reading” the d-sequence G =
Gn, . . . , G1 = K1 backwards. The encoding of K1 is
an identifier on dlogne bits. Then to go from Gi to
Gi+1, we write 3dlogne + 2 bits corresponding to the
“split vertex” w, in which two vertices u, v vertex w is
split, and whether there is a non-edge, a black edge, or
a red edge between u and v, followed by d(dlogne + 4)
bits corresponding to the edges between u, v and the at
most d vertices adjacent to w in the red graph of Gi.
The latter part is carried by writing down the identifier
of each red neighbor z of w followed by two pairs of
bits encoding if there is a non-edge, a black edge, or
a red edge between u and z, and between v and z.
This permits to reconstruct G, and store it on only
(d+ 3)ndlogne+ (4d+ 2)n bits.

5 Expanders with bounded twin-width
A 2-lift of a graph G is a graph G′ on twice as many
vertices, built by duplicating every vertex v ∈ V (G)
into two copies, say, v1 and v2, and for every edge
vw ∈ E(G), adding to E(G′) either the edges v1w1 and
v2w2 (parallel) or the edges v1w2 and v2w1 (crossing).
The choice, for each edge of G, of having two parallel
edges or two crossing edges is called the signing of the
edges. See Fig. 5 for an example of a 2-lift. Observe
that G has 2|E(G)| possible 2-lifts or signings. For
instance, the all-parallel signing gives two disjoint copies
of G, while the all-crossing signing gives the bipartite
adjacency graph of G.

Figure 5: An example of a 2-lift of K4.

For n a power of 2, performing a sequence of
logn − 2 randomly-signed 2-lifts starting on K4 yields

an n-vertex expander almost surely [3]. Observe that
the obtained graph is necessary cubic since the 2-lift
operation preserves the degree. Bilu and Linial [3] even
exhibit a deterministic polytime procedure to actually
find the signings leading from K4 to a cubic expander.
The next result shows that cubic expanders can have
bounded twin-width.

Lemma 5.1. Every graph obtained from K4 by perform-
ing a sequence of 2-lifts has twin-width at most 6.

Proof. We show that if G is a cubic graph and G′ is a 2-
lift of G, then G can be obtained from G′ by a sequence
of contractions in which the maximum degree never goes
above 6. It is enough to conclude since K4 is obviously
6-collapsible, and we can assume that the cubic trigraph
we start from has all its edges red.

Let v1, v2, . . . , vn be the vertices of G, and vi1, vi2 be
the duplicates of vi in G′. For each i running from 1
to n, we contract vi1 and vi2. By definition of a 2-lift,
after these n contractions, the graph obtained is G. We
contracted disjoint pairs of vertices of degree 3, so we
could not create vertices of degree more than 6.

6 Subdivisions of cliques
For any non-negative integer k, the k-subdivision of a
graph G, denoted by G(k), is the graph obtained by
subdividing every edge of G exactly k times. For any
f : N→ N, let Gf be the class formed by the f(|V (G)|)-
subdivision of every graph G.

Theorem 6.1. For every positive and non-decreasing
f , Gf has bounded twin-width if and only if f(n) =
Ω(logn).

Let us first observe that for any integer k > 0 and
n-vertex graph G, G(k) is an induced subgraph of K(k)

n .
Thus the class Gf is contained in the hereditary closure
of the graphs K(f(n))

n for n > 0. Since twin-width never
increases when taking induced subgraphs, it suffices to
consider graphs of the form K

(f(n))
n . As hinted at in

Section 2.3, the forward implication of Theorem 6.1
could be derived from Theorem 3.1 and the fact that
o(logn)-subdivisions does not form a small class. We
give a direct proof of a stronger statement.

Proposition 6.1. For d > 0 and k > 0 integers, if
K

(k)
n has twin-width at most d, then k > logd+1(n −

1)− 1.

Proof. Let G be K
(k)
n , for some positive integer k.

Assuming that G has twin-width at most d, we show
that k > logd+1(n − 1) − 1. Note that the assumption
k > 0 is required because K(0)

n = Kn has twin-width 0.



In a d-contraction sequence of G, let us consider the
first step in which two vertices x, y of the original Kn

are contracted. Let P the partition of V (G) at this step,
and P0 ∈ P the part containing x and y. In G, consider
the n− 1 paths, on k+ 1 edges each, resulting from the
subdivided edges starting at x. We partition the vertices
of these paths as V1, . . . , Vk+1, where Vi contains all the
vertices at distance i of x. Then Vk+1 contains all the
vertices of the original Kn except x. In particular, no
two vertices of Vk+1 are in the same part of P.

All the vertices of V1 are neighbors of x but not of y,
thus for any part P ∈ P \{P0} intersecting V1, PP0 is a
red edge in GP . Thus at most d+ 1 parts of P intersect
V1, and there exists P1 ∈ P such that |P1 ∩ V1| > n−1

d+1 .
Observe that P1 may well be equal to P0. Similarly the
vertices in P1∩V1 have pairwise-disjoint neighborhoods
in V2, hence V2∩NG(P1∩V1), of size at least n−1

d+1 , is split
in at most d+1 parts in P. Thus there is a part P2 ∈ P
(that may be P0 or P1) which contains at least n−1

(d+1)2

vertices of V2. It follows by induction that for every
i ∈ [k + 1], there exists a part of P containing at least
n−1

(d+1)i vertices of Vi. However no part of P contains
more than one vertex of Vk+1. Hence n−1

(d+1)k+1 6 1, and
k > logd+1(n− 1)− 1.

The converses relies on some results on decomposi-
tions of permutations. We now encode a permutation
σ in the usual way, as the sparse matrix with entry 1
at position (i, σ(i)), and 0 elsewhere. (This is unlike
the more cumbersome but technically-motivated dense
encodings used in Section 3.6 and [7, Section 6.1].)

A permutation σ is a t-merge if its domain can
be partitioned into t possibly-empty discrete intervals
I1, . . . , It such that the restriction of σ to Ii is increas-
ing. Merging t sorted lists can be expressed as the appli-
cation of some well chosen t-merge to the concatenation
of the lists. A permutation σ is a parallel t-merge if its
domain can be partitioned into an arbitrary number of
intervals J1, . . . , Jr such that σ operates independently
on each Ji (i.e., σ(Ji) = Ji), and the restriction σ|Ji is a
t-merge. See Fig. 6 for an example of a parallel 2-merge.

Lemma 6.1. For any t, ` ∈ N, any permutation on t`

elements can be decomposed as a product of at most `
parallel t-merges.

Proof. The case t = 2 corresponds to a merge sort. In
the recursion tree of a merge sort, each level of inductive
calls can be expressed as a single parallel 2-merge. To
sort up to 2` elements, a merge sort with recursion depth
limited to ` suffices, and this can be expressed as the
composition of ` parallel 2-merges. This generalizes
easily to t-merges, and composing ` parallel t-merges
allows to sort up to t` elements.

0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

1
0 1
1 0

Figure 6: A parallel 2-merge matrix, corresponding to
the permutation 23514687. Note that the first row is at
the bottom, as is common with permutation matrices.
It is composed of three blocks, each of which can be
partitioned in two increasing subsequences, indicated by
the dashes. Empty areas are filled with 0.

The previous lemma is reminiscent of the theory of
sorting networks, in that we decompose arbitrary per-
mutations as a product of few base permutations—in
our case parallel t-merges. However, sorting networks
consider more restricted base permutations (e.g., sepa-
rable permutations), whereas we merely need the base
permutations to have bounded twin-width.

Lemma 6.2. Matrices of parallel t-merges are (t + 1)-
grid free.

Proof. Let σ a parallel t-merge, with its domain par-
titioned into intervals J1, . . . , Jr such that σ(Ji) = Ji,
and every σ|Ji is a t-merge. Assume for a contradic-
tion that σ contains a (t + 1)-grid. Then it contains a
decreasing subsequence of length t+ 1.

For any i < j, x ∈ Ji and y ∈ Jj , one has x < y
and σ(x) < σ(y) because Ji, Jj are disjoint intervals,
with σ(Ji) = Ji and σ(Jj) = Jj . It follows that any
decreasing subsequence is contained entirely in one of
the Jk. Thus, there exist a t-merge σ|Jk which contains
a decreasing subsequence of length t+ 1.

Since σ|Jk is a t-merge, Jk is itself partitioned
into intervals I1, . . . , It such that σ is increasing on Ii.
Hence each Ii can contain at most one element of a
decreasing subsequence, and σ|Jk contains no decreasing
subsequence of length more than t, a contradiction.

Proposition 6.2. For any c > 0, the class of cliques
Kn subdivided at least logn

c times has twin-width at
most f(c) for some triple-exponential function f .

Proof. Let k > logn
c , and let G be K(k)

n . We want to
order V (G) such that the adjacency matrix of G in that
order is r-grid free, for some r depending only on c. This
implies the desired twin-width bound by Theorem 2.2.



0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

1 0 0 0

0 1 0 0
0 0 1 0

0 0 0 1

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

Figure 7: Left: the permutation τ to sort. Center: the 2-merge permutation σ to use on τ . Right: the composition
σ−1 ◦ τ , one may inductively sort the two blocks by applying further parallel 2-merges.

Choose an arbitrary orientation of the edges of Kn.
In G, the edges of Kn become directed paths on k + 1
edges. Then, for 0 6 i 6 k, let Vi ⊂ V (G) contain every
i-th vertex along these directed paths. In particular,
V0 corresponds to the vertices of Kn, while V1, . . . , Vk
are all the vertices created by the subdivision. Thus,
V0, . . . , Vk is a partition of V (G).

Let us now define an order within each Vi. Choose
x1, . . . , xn an arbitrary order on V0. The extremal set
V1 is ordered according to the neighbors in V0, i.e.,
with first the neighbors of x1 in any order, then the
neighbors of x2, etc. We proceed similarly for Vk. The
disjoint paths in G − V0 define a bijection between V1
and Vk, which can be interpreted as a permutation σ

on n(n−1)
2 elements according to the previous orderings.

Then, choosing orderings for V2, . . . , Vk−1 is equivalent
to decomposing σ as a product σ1 ◦ · · · ◦ σk−1. By
Lemma 6.1, we may choose σ1, . . . , σk−1 to be parallel
t-merges for any t such that tlog(n)/c > n(n−1)

2 . This is
satisfied by t = d22ce, which crucially is independent
of n. With this choice of decomposition for σ, we
have ordered V2, . . . , Vk−1. Finally, V (G) is ordered as
V0 < · · · < Vk, where Vi is ordered as previously defined.

Let M be the adjacency matrix of G respecting
this ordering. Let R0, . . . , Rk (resp. C0, . . . , Ck) the
partition of the rows (resp. columns) of M induced
by the partition V0, . . . , Vk of V (G). Then (R, C) =
({R0, . . . , Rk}, {C0, . . . , Ck}) is a division of M . For
i, j ∈ [0, k], let Mi,j be the zone Ri ∩ Cj , which
corresponds to the adjacency matrix between Vi and
Vj . The zone Mi,j is non-zero if and only if i = j ± 1
modulo k + 1. Thus, there are 2k + 2 non-zero zones,
forming a double diagonal with corners (see Fig. 8).

Claim 1. Every zone of the division (R, C) of M is
(t+ 1)-grid free.

Proof of the Claim: For 1 6 i < k, the zonesMi,i+1
and Mi+1,i are parallel t-merges or transposes thereof,
hence are t+1-grid free by Lemma 6.2. The zonesM0,1,

M1,0

M0,1

Mk,0

M0,k

M1,2

M2,1 M2,3

M3,2 . . .

. . . Mk−1,k

Mk,k−1

C0

R0

C1

R1

C2

R2

C3

R3

· · ·

...

Ck

Rk

Figure 8: The adjacency matrix M of G, with the
appropriate ordering of the vertices.

M1,0,M0,k, andMk,0 are composed of a single monotone
sequence, hence are 2-grid free. ♦

Let us now consider an `-grid minor (R′, C′) =
({R′1, . . . , R′`}, {C ′1, . . . , C ′`}) of M , i.e., every zone R′i ∩
C ′j contains at least one entry 1.

Claim 2. There is a set A ⊂ C of at most 5 column-
parts such that every C ′ ∈ C′ satisfies C ′ ∩

⋃
A 6= ∅.

Proof of the Claim: Let i be minimal such that
R′1 ⊆ R0 ∪ · · · ∪ Ri. Then for i + 1 < j < k,
one may verify from the structure of M that R′1 ∩ Cj
is full 0. Thus any C ′ ∈ C′ must intersect one of
C0, . . . , Ci+1 or Ck. Symmetrically, let i′ be maximal
such that R′` ⊆ Ri′ ∪ · · · ∪ Rk. Then any C ′ ∈ C′
must intersect one of C0 or Ci′−1, . . . , Ck. Define A :=
{Ci′−1, . . . , Ci+1} ∪ {C0, Ck}. The above implies that
any C ′ ∈ C′ must intersect some C ∈ A. Finally we
have i 6 i′, which implies |A| 6 5. ♦



Claim 3. There exists C ∈ C such that at least `−10
5

parts of C′ are subsets of C.

Proof of the Claim: Consider an arbitrary C ′ ∈ C′.
By Claim 2, there is some C ∈ A such that C ′ ∩C 6= ∅.
We consider two cases, depending on whether or not
C ′ ⊆ C:

• If C ′ 6⊆ C, it means that C ′ contains one of the two
boundaries of C. For a given C ∈ A, there can only
be two C ′ ∈ C′ for which it is the case. Thus this
case applies to at most 2 |A| 6 10 elements of C′.

• Otherwise—and this applies to at least ` − 10
elements of C′—we have C ′ ⊆ C for some C ∈ A.
Since |A| 6 5, by pigeonhole principle, there exist
C ∈ A such that at least `−10

5 elements of C′ are
subsets of C.

♦

Of course, Claims 2 and 3 still hold when inverting
the roles of rows and columns. Thus, there are R ∈
R, C ∈ C such that R (resp. C) contains at least `−10

5
parts of R′ (resp C′) as subsets. Hence the zone R ∩ C
contains an `−10

5 -grid induced by the corresponding
parts of R′ and C′. By Claim 1, it follows that `−10

5 6 t,
or ` 6 5t + 10. Recall that t was chosen as t = d22ce.
Hence we have proved that M is g(c)-grid free for
g(c) = 5d22ce+ 11.

A fortioriM is g(c)-mixed free, and by Theorem 2.2
the twin-width ofG is at most f(c) for some f(c) double-
exponential in g(c), hence triple-exponential in c.

In the next section, we will show that graphs
with queue number t have twin-width 22O(t) (see Theo-
rem 7.4). This can be used to get an alternative proof
to Proposition 6.2, albeit not self-contained. Indeed it
was shown that the 2dlogd bn/2ce+ 1-subdivision of Kn

(see [13, Theorem 4]) has queue number at most d.

7 Sparse twin-width
We start this section by showing the list of equivalences
of Theorem 2.9.

7.1 Characterizations. We recall that Aσ(G) is the
adjacency matrix of G when V (G) is ordered by σ, and
that a class C is said d-grid free if for every G ∈ C there
is an ordering σ of V (G) such that Aσ(G) is d-grid free.

Theorem 7.1. (?) If C is a hereditary class of bounded
twin-width, the following are equivalent.
• (i) There is an integer t such that no graph of C
contains Kt,t as a subgraph.
• (ii) There is an integer d such that C is d-grid free.

• (iii) There is an integer g such that every n-vertex
graph G ∈ C has at most gn edges.
• (iv) The subgraph closure Sub(C) has bounded twin-
width.

• (v) There is a function f such that ∇r(C) 6 f(r)
for every r.

The equivalences (i) ⇔ (ii) ⇔ (iv) ⇔ (v) hold
for every (possibly non-hereditary) class of bounded
twin-width. Bounded sparse twin-width classes remain
surprisingly diverse. They for instance contain Kt-
minor free graphs and bounded-degree bounded twin-
width graphs, which in turn contain some expander
classes. In particular bounded sparse twin-width graphs
do not have polynomial expansion.

7.2 Flat classes. For any graph invariant ι, we say
that a class C is ι flat if it is included in Sub(G � H)
with G and H two classes of bounded ι, and H also has
bounded degree. Recalling the definition in Section 2,
a class is flat if it is treewidth flat. We will see that
twin-width flat classes have bounded twin-width. It will
imply that (treewidth) flat classes are other examples of
bounded sparse twin-width classes.

We say that G is a trigraph over a graph H if
(V (G), E(G) ∪ R(G)) is isomorphic to H. Thus G
is obtained from the graph H by coloring red some
of its edges. More generally G is a trigraph over
a trigraph H if there is a graph isomorphism from
(V (G), E(G)∪R(G)) to (V (H), E(H)∪R(H)) such that
every black edge of G is mapped to a black edge of H.
Again G is obtained from the trigraphH by coloring red
some of its black edges. We start by bounding the twin-
width of trigraphs over graphs with bounded degree and
bounded twin-width.

Lemma 7.1. Every trigraph over a graph H has twin-
width at most tww(H) +∆(H).

Proof. Consider a tww(H)-sequence of H. A simple
but important observation is that the black degree
of a vertex never increases in a contraction sequence.
Thus each trigraph of the sequence has total degree
at most ∆(H) + tww(H). Therefore, when the same
sequence is applied to any trigraph over H, the overall
maximum (red) degree is also bounded by ∆(H) +
tww(H).

We can now show the following.

Theorem 7.2. Let G and H be two graphs.
Then tww(G � H) 6 max{tww(G)(∆(H) + 1) +
2∆(H), tww(H) +∆(H)}.

Proof. We set dG := tww(G), dH := tww(H), and
∆ := ∆(H), i.e., the maximum degree of H. Let



G = Gn, . . . , G1 = K1 be a sequence of dG-contraction,
and let [h] be the vertex set of H, hence h = |V (H)|.
We set d := max{(dG + 2)∆, dH +∆}, and present a d-
sequence for G�H. For a fixed j ∈ [h], we call j-th copy
of G, the vertices (v, j) of G�H for every v ∈ V (G).

First we contract G�H to a trigraph over H by a
sequence containing as intermediate steps trigraphs over
Gn�H,Gn−1�H, · · · , G1�H. Say Gi is obtained from
Gi+1 by contracting u, v ∈ V (Gi+1), into vertex w, then
the part of the d-sequence from a trigraph over Gi+1�H
to one over Gi�H consists of contracting, in any order,
the vertices (u, j) and (v, j), into vertex (w, j), for every
j ∈ [h]. As the red degree of w ∈ V (Gi) is at most dG,
vertex (w, j) has red degree at most dG(∆ + 1) + 2∆.
This is because the j-th copy of G is linked to the j′-th
copy only if j′ ∈ NH [j]. This explains the dG(∆ + 1)
term. The additional 2∆ accounts for possible red edges
between (w, j) and (?, j′), where ? ∈ {u, v, w} and
j′ 6= j.

We can now finish the d-sequence from the obtained
trigraph over K1 �H, which is isomorphic to H, using
the dH -sequence of H. Indeed by Lemma 7.1 this
trigraph admits a dH +∆-sequence.

Theorem 7.3. (?) Let G and H two classes such
that G � H is Kt,t-free. Then tww(Sub(G � H)) 6
f(tww(G), tww(H), ∆(H), t).

Lemma 7.2. (?) If G is Kt,t-free, then G�H is Ks,s-
free where s = 2t(∆(H) + 1).

Theorem 2.8 and Lemma 7.2 imply that flat classes
have bounded twin-width, since bounded treewidth
classes have sparse bounded twin-width (they are Kt,t-
free and have bounded twin-width). In particular,
it provides an alternative proof that planar graphs
have bounded twin-width (see [7, Section 6]). The
obtained bound remains bad since we still need to use
Theorem 2.2 to justify that the subgraph closure of a
Kt,t-free bounded twin-width class has bounded twin-
width.

7.3 Classes with bounded queue or stack num-
ber. A pair of edges uv and xy is said independent if
u, v, x, y are four distinct vertices. An independent pair
of edges uv and xy is nested with respect to a linear
ordering σ of the vertex set, if u 4σ x 4σ y 4σ v, and
overlaps if u 4σ x 4σ v 4σ y. A queue (resp. stack)
layout of a graph G is a linear ordering σ of V (G)
and a partition of E(G) into t parts, called queues
(resp. stacks), such that no independent pair of edges
within the same part is nested (resp. overlaps) with re-
spect to σ. The queue number (resp. stack number) is
defined as the minimum integer t such that such a queue
layout (resp. stack layout) exists.

Lemma 7.3. Let σ be a linear ordering on the vertex
set of a graph G. If G admits an edge partition into t
parts such that each part forms a queue (resp. a stack)
with respect to σ, then the adjacency matrix Aσ(G) is
2(t+ 1)-grid free.

Proof. Assume, for the sake of contradiction, that
Aσ(G) has a 2(t + 1)-grid minor (R, C) :=
({R1, . . . , R2t+2}, {C1, . . . , C2t+2}), i.e., each zone Ri ∩
Cj contains an entry 1. Let us consider the 2× 2 coars-
ening of (R, C) where each part contains the first/last
t + 1 row/column parts of (R, C). At least one of the
two off-diagonal zones of this coarsening does not cross
the main diagonal of Aσ(G). Without loss of generality,
let us assume that all the vertices of R1, . . . , Rt+1 pre-
cedes all the vertices of Ct+2, . . . , C2t+2 in the order σ.
Now for each i ∈ [t+ 1], choose one edge uivi from the
zone Rt+2−i ∩ Ct+1+i. From the previous observation,
we know that ui 4σ vi for each i. With respect to σ, the
vertices ui (for i going from 1 to t+1) form a decreasing
sequence in σ while the vertices vi form an increasing
sequence. Therefore the chosen t+ 1 edges are pairwise
nested, contradicting that G admits an edge partition
into t queues with respect to σ.

For the stack number, we choose t + 1 edges uivi
from the zones Ri∩Ct+1+i for i ∈ [t+1]. They pairwise
overlap, and thus contradict that there is a partition
into t stacks with that vertex ordering.

The following is a direct consequence of Theo-
rem 2.2 and Lemma 7.3.

Theorem 7.4. Classes with queue or stack number t
have twin-width bounded by 22O(t) .

8 Twin-width of finitely generated groups
We investigate here an algebraic approach to construct-
ing small graph classes. Let Γ be a (multiplicative)
countable group where the identity is denoted by ε. We
assume that Γ is generated by a finite set S. We form
the Cayley graph Cay(Γ, S) which has vertex set Γ and
edge set all pairs {x, x · s} where x ∈ Γ and s ∈ S.

For example when Γ is the free group generated
by S = {a, b}, the graph Cay(Γ, S) is the infinite tree
where all the vertices have degree 4. Furthermore, if
we quotient Γ by the relation aba−1b−1 = ε, we obtain
the infinite two-dimensional grid. Both trees and grids
are examples of classes with bounded twin-width. Thus
a natural question is whether this could hold for all
finitely generated groups. Let us denote by F (Γ, S) the
set of all finite induced subgraphs of Cay(Γ, S). Our
main question in this section is the following.

Conjecture 3. For every group Γ generated by a
finite set S, the class F (Γ, S) has bounded twin-width.



This is a far-reaching generalization of the case of
trees and grids. It could provide some insights on both
the structure of finite induced subgraphs of Cay(Γ, S),
but also in the global (infinite) structure of Cay(Γ, S)
as illustrated by the following result.

Proposition 8.1. If all the finite induced subgraphs of
an infinite (possibly uncountable) graph G have twin-
width at most t, then there is a linear order L on V (G)
such that the adjacency matrix of G, ordered by L, has
no f(t)-mixed minor.

Proof. Let F (G) the class of finite non-empty induced
subgraphs of G. We assume that graphs in F (G) have
twin-width at most t, hence there exists an integer f(t)
such that anyH ∈ F (G) has a linear order LH such that
the adjacency matrix ofH has no f(t)-mixed minor. Let
MH be the logical structure formed byH equipped with
the order LH . The proof proceeds in two parts. First,
we will build an ultraproduct of (MH)H∈F (G), following
a standard construction used, for example, to prove the
compactness theorem. We will then show that G is an
induced subgraph of this ultraproduct. The order L on
V (G) is then obtained by restriction of the order on the
ultraproduct.

For H ∈ F (G), let ↑H = {H ′ ∈ F (G) | V (H) ⊆
V (H ′)} be its upward closure in F (G). The fam-
ily of all ↑ H generates a proper filter on F (G),
which is contained in some ultrafilter U . Let M′ =∏
H∈F (G)MH/U be the corresponding ultraproduct.

By Łoś’s theorem, any first-order formula satisfied by
everyMH is also satisfied byM′. Being a linear order,
and being f(t)-mixed free with respect to that order
can both be expressed in first-order logic, hence M′ is
an infinite graph equipped with a linear order for which
it is f(t)-mixed free.

Let us show that G is an induced subgraph ofM′.
For v ∈ V (G), choose v̄ ∈

∏
H∈F (G)MH to be a tuple

“equal to v when possible”, that is v̄(H) = v when
V (H) 3 v (and unconstrained if V (H) 63 v). We
then map v to the equivalence class of v̄, which is a
vertex in M′. This mapping is injective: If u 6= v,
then ū(H) 6= v̄(H) for any H such that u, v ∈ V (H),
i.e., whenever H ∈↑ G[{u, v}]. Since ↑ G[{u, v}] is an
element of U , by Łoś’s theorem, ū and v̄ are not equated
in M′. The same arguments show that this mapping
preserves edges and non-edges. Hence G is an induced
subgraph ofM′, and it follows that G is f(t)-mixed free
for the linear order onM′ restricted to G.

We suspect that bounded-degree Cayley graphs
have bounded twin-width since they form a small class.

Lemma 8.1. (?) The class F (Γ, S) is small.

Should the small conjecture be true, F (Γ, S) would
have bounded twin-width. We finally observe that
having bounded twin-width is a group invariant, i.e.,
does not depend on the choice of the finite generating
set S.

Lemma 8.2. (?) If S and S′ are two finite generating
sets of the group Γ , then F (Γ, S) has bounded twin-
width if and only if F (Γ, S′) has bounded twin-width.

Therefore, if the small conjecture does not hold, the
class of finitely generated groups splits into bounded
twin-width groups and unbounded twin-width groups.
This could reflect a known dichotomy for groups. A
natural candidate for a finitely generated group of
unbounded twin-width, would be a group with no finite
presentation. For instance the lamplighter group is an
interesting test case, but its associated class of graphs
has indeed bounded twin-width. A first step towards
Conjecture 3 is to show that finitely presented groups
have bounded twin-width.
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