
HAL Id: hal-03107555
https://hal.science/hal-03107555

Submitted on 12 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization for Large-Scale Fuzzy Joins Using Fuzzy
Filters in MapReduce

Thi-To-Quyen Tran, Thuong-Cang Phan, Anne Laurent, Laurent d’Orazio

To cite this version:
Thi-To-Quyen Tran, Thuong-Cang Phan, Anne Laurent, Laurent d’Orazio. Optimization for Large-
Scale Fuzzy Joins Using Fuzzy Filters in MapReduce. FUZZ-IEEE 2020 - International Conference
on Fuzzy Systems, Jul 2020, Glasgow, United Kingdom. pp.1-8, �10.1109/FUZZ48607.2020.9177610�.
�hal-03107555�

https://hal.science/hal-03107555
https://hal.archives-ouvertes.fr

Optimization for Large-Scale Fuzzy Joins
Using Fuzzy Filters in MapReduce

Thi-To-Quyen TRAN
Univ Rennes, CNRS, IRISA

Lannion, France
thi-to-quyen.tran@irisa.fr

Thuong-Cang PHAN
Can Tho University
Can Tho, Vietnam

ptcang@cit.ctu.edu.vn

Anne LAURENT
Univ Montpellier, LIRMM, CNRS

Monpellier, France
Anne.Laurent@lirmm.fr

Laurent D’ORAZIO
Univ Rennes, CNRS, IRISA

Lannion, France
laurent.dorazio@univ-rennes1.fr

Abstract—A fuzzy or similarity join is one of the most useful
data processing and analysis operations for Big Data in a general
context. It combines pairs of tuples for which the distance is
lower than or equal to a given threshold ε. The fuzzy join is
used in many practical applications, but it is extremely costly
in time and space, and may even not be executed on large-scale
datasets. Although there have been some studies to improve its
performance by applying filters, a solution of an effective fuzzy
filter for the join has never been conducted. In this paper, we
thus extend our previous work by proposing a novel fuzzy filter
to optimize fuzzy joins. This filter is a compact, probabilistic
data structure that supports very fast similarity queries by
maintaining a bit matrix, with small false positive rate and zero
false negative rate. We show that our proposal is more efficient
than others because of eliminating redundant data, reducing
computation cost and avoiding duplicate output.

Index Terms—Fuzzy join, Similarity join, MapReduce, Fuzzy
Filter

I. INTRODUCTION

Join is a critical operation within a data management
system, making it possible to enrich data from a source with
external information. That is why literature on join optimiza-
tion is rich, especially in parallel and distributed systems [1]–
[9]. In recent years, researches have focused on the problem of
efficient joins in large-scale parallel environments. First results
on equi-join [10], impose strong constraints on data (one of
the sets having to be small enough to be distributed to all the
machines used for the treatment) or their organization (sorting
according to the join attribute, placement of data on specific
nodes), leading to many data transfers (some unnecessary) and
heavy workload on machines or requiring multiple (expensive)
execution phases. The problem is even more difficult when
the equality constraint is released while this type of query
is often necessary. It is motivated by applications requiring
similar matching. As a query example [11] in mining social
networking sites where user’s preferences are stored as bit
vectors (where a “1” bit means an interest in a certain
domain), applications want to discover the similar interests of
users. A user with preference bit vector “[1,0,0,1,1,0,1,0,0,1]”
possibility has similar interests to a user with preferences
“[1,0,0,0,1,0,1,0,0,1]”. Another example, widely used in image
content-based search engines as Google, Baidu, Bing, discover
images whose features maps into binary code by their simi-
larities are greater than a predefined threshold. This query is

defined as a fuzzy or similarity join and plays an important
role in various applications, including data cleaning [12], data
integration [13], detecting attacks from colluding attackers
[14], mining in social networking sites [15], detecting near-
duplicate web-pages in web crawling [16], plagiarism detec-
tion [17], document clustering [18], master data management
[19], bioinformatics [20].

Stage-of-the-art. Fuzzy join execution consists of a Carte-
sian product and processing pair distances. Therefore, this
operation is expensive in traditional databases [21], [22].
Moreover, when dealing with large amounts of data, fuzzy join
becomes a challenging problem in a distributed and parallel
environment with expensive costs due to data shuffling, in
addition to space and efficiency constraints. As a result,
data redundancy and duplication are very difficult to accept.
MapReduce [23] is a famous framework proposed by Google
to process large-scale data in parallel. It is widely applied
to modeling, processing and calculating costs in large-scale
fuzzy join studies [24], [25]. Most of the existing solutions
follow a filtering-verification framework in multiple stages
to generate candidates, apply principles (prefix filter, length
filter, segment techniques) to prune out hopeless pairs, based
on similarity functions to determine all pairs within a radius.
Vernica et al. [11] proposed a similarity join method using a 3-
stage MapReduce approach which utilized the prefix filtering
method by inverted index on tokens to support set-based
similarity functions. Metwally et al. [26] proposed a 2-stage
algorithm VSMART join for similarity join on set, multisets
and vector. Deng et al. [27] use signatures to calculate inverted
index and process in 3-stage for set similarity join. [28]
improved [27] by replacing signatures with q-gram technique
in 3-stage. Afrati et al. [29] proposed multiple algorithms to
perform a fuzzy join with Hamming, Edit and Jaccard distance
in a single MapReduce stage without filters. Other algorithms
[30]–[32] use pivots to split data into disjoint partitions by
recursive jobs.

Motivation. One challenge in distributed computing is to
avoid expensive data transmission and large disk I/Os. While
recent studies on the fuzzy join have common limitations such
as input re-reading by multiple phases, wasteful redundancy
and duplication of data, we have introduced filter-based ap-
proaches [8], [10], [33]. Our team was interested in using
Bloom Filters [34], Intersection Filter [8]. The idea is to filter

irrelevant data as soon as possible to reduce data transfers and
workload on different machines. Besides, the computation of
the Hamming distance is shown faster than the computation of
the distance in the input space. Therefore, we take advantage
of its theory to propose a new filter for fuzzy joins.

Contributions. This study focuses on the improvement for
large-scale fuzzy join. The main contributions of our works
are

• a novel fuzzy filter (FF) structure for detecting if an
element is close to any members in a set. Moreover, FF
can determine which records in the set are real similarities
of this element.

• large-scale FF based fuzzy join algorithm to avoid useless
re-computation.

• a theoretical analysis of various similarity join algorithms
in MapReduce and their cost comparison in a map-
reduce-shuffle computation.

The remaining part of this paper is organized as follows.
Section 2 summarizes the research background of the MapRe-
duce framework, the fuzzy join definition, the previous filter
studies, and position of our paper with respect to related work.
In section 3, our approaches for modeling the Fuzzy filter
(FF) and optimizations for large-scale FF based fuzzy join are
presented. Finally, section 4 concludes and discusses future
work.

II. RELATED WORK

A. MapReduce
MapReduce [23] is a parallel and distributed programming

model to process large amounts of data on data centers
consisting of commodity hardware. This model allows users
to focus on designing their applications regardless of the
distributed aspects of the execution. Figure 1 illustrates the
MapReduce execution.

A MapReduce program consists of two distinct phases,
namely, the Map phase and the Reduce phase. Each phase
performs a user function on a key/value pair. The function
Map (M) takes a pair of entries (k1, v1) and emits a list of
intermediate pairs (k2, v2).

(k1, v1)
map−−−→ (k2, v2)

The intermediate values associated with the same key k2 are
grouped together and then transmitted to the Reduce function
which aggregates the values.

(k2, v2)
reduce−−−−→ (k3, v3)

A MapReduce program is executed on multiple nodes.
During the Map phase, each Map task reads a subset (called
split) of an input dataset and applies the Map function for each
key/value pair. The system supports grouping of intermediate
data and sends them to the relevant nodes to apply the Reduce
phase. This communication process is called Shuffle. Each
Reduce task collects the key/value pairs of all the Map tasks,
sorts/merges the data with the same key and calls the Reduce
function to generate the final results.

B. Fuzzy join

A fuzzy join aims to combine data based on their similarity.
It relies on a distance measure to find all pairs (x, y) in the
input dataset(s) with a distance (d) bellow some pre-defined
threshold ε. Different solutions have been proposed for big
data systems [11], [26], [29], [30], [33], [35]–[37]. The surveys
[24], [25] have been written on MapReduce-based fuzzy join
studying supported data types (fixed-length string, variable-
length string, numeric, vector, set) and distance functions
(Hamming distance, Edit distance, Jaccard similarity, Tani-
moto Coefficient, Cosine Coefficient, Ruzicka similarity, Dice
Similarity, Set Cosine Sim, Vector Cosine Sim). Continuing to
develop our previous studies, thus, throughout this paper, we
focus on fuzzy join algorithms, using Hamming distance [29],
[33] with fixed-length data inputs (b-bit strings), and show it
as the examples. Our proposal can be easily extended to a
general Σq finite set of the alphabet which has q elements
(q ≥ 2).

Hamming distance (HD) between two strings s, t is the
number of positions in which they differ. Given a set, S, of
b-bit strings, a fuzzy join is stated using a Hamming distance
used to define similarity and a threshold ε is

{(s, t)|s, t ∈ S,HD(s, t) ≤ ε}

The Ball of radius r (Br) signifies all close elements of
any given element within a distance r. The Hamming ball of
radius r (Br) can be obtained by flipping the value of at most
r bits of any given b-bit string. Thus, it is computed by the
following formula [29]:

|Br| =
r∑

k=0

(
b

k

)
≈ br/r!

Br(s) consists of all similar elements in the ball of radius
r around of s. In other words,

∀t ∈ Br(s), d(s, t) ≤ r

C. Filters

A Bloom Filter (BF) [34] is a space-efficient randomized
data structure used for testing membership in a set with a
small rate of false positives. Figure 2 presents a Bloom Filter
structure consisting of m = 12 bits, k = 3 independent hash
functions, and a set S of n elements represented by BF (S).
BF never returns false negatives. However, it can return false
positives. A false positive element of BF is an element that
does not belong to a set S while testing it on BF leads to
the opposite result. Indeed, in some cases, a hash function can
return the same value for multiple elements. As a consequence,
an element that does not belong to S can also have a hash
value at its position of 1. BF is a space-efficient structure to
accelerate queries. The size of a filter is fixed, independently of
the number n of elements. However, there is a relation between
the size of the structure m and the false positive probability
[38]

fBF (S) = (1− (1− 1

m
)nk)k

Fig. 1. MapReduce Execution

Fig. 2. A Bloom filter BF (S) with 3 hash functions.

The BF and its variations have proven increasingly importance
for many applications [39].

Intersection Bloom Filter (IBF) [8] is an extension of BF,
represents the intersection of the datasets to be joined. IBF is
used to test an element if it is a disjoint element.

SuRF [40] is a fast and compact filter that provides exact-
match filtering, range filtering, and approximate range counts.
It is a tree-based filter structure. So it does not fit with the
fuzzy join problem because it has to browse through all the
branches to find its real close elements, lead to inefficient and
high costs.

In our study, fuzzy filters have not been proposed yet.

D. Fuzzy Join Algorithms in MapReduce

This paper aims to improve fuzzy joins in a MapReduce
environment, relying on Filters. In order to compare the costs
of different algorithms, it adapts a previous model (M,C,R)
[29], where M , R, C are used to measure the effectiveness of
an algorithm. The notations and parameters are described in
Table I.

TABLE I
SYMBOLS AND DESCRIPTION

Notation Description

M
Total computation (map or preprocessing) cost for all
input records

C

Total communication cost (network resources) to transfer
data from the mappers to the reducers. Other operations
such as copying, comparing, hashing are performed at a
unit cost

R Total computation cost for all reducers
S, |S| Input dataset S and its size
r Pre-specified threshold of distance
s, t, b A string s or t and its length
Br Ball of radius r
k Number of hash functions
m Size of Bloom filter (bit)
D Size of intermediate data for shuffle

Naive Algorithm [29] can be used for any data type and
distance function. It relies on a single MapReduce job. The
main idea is to distribute each input record to a small set of
reducers so that any two records be mapped to at least one
common reducer for computing distance. Each input record
must be compared with all others, leading to data redundancy
and inefficiency.

Ball Hashing Algorithms [29] (BH) rely on the “ball of
radius r” to reduce unnecessary comparisons. This means that
each record is compared to the others within its similarity
radius. To do this, there is one reducer for each of the n
possible strings of length b. The number of reducers is thus
n = 2b. The mappers generate all elements t in the ball of
radius r of each input record s (Bs(r)) as (key, value) pairs
of the form (s,−1) and (t, s) such that t 6= s and send them
to the corresponding reducers. t is a string obtained from s by
changing i ∈ [1, r) bits. An issue with BH is data duplication
due to t - s and s - t similarity. A proposed solution is to
proceed lexicographically [41]. A mapper only emits (t, s) if
t < s. However, redundant data still exist because similar
records in Bs(r) are sent to reducers although they are not
elements in S. BH2 is an extension of BH. The difference
is that during the map phase, BH2 generates balls of radius
r/2. Because of this, every reducer is active and checks for
the similarity between all the possible combinations of two
strings it receives and eliminates the duplicate outputs.

Splitting Algorithm [29] is based on a principle of which
have any of two similarity b-bit strings with a distance less
than r, there exists at least one same substring of length
b/(r + 1). Mappers decompose each input string s into
r+ 1 equal-length substrings s1, s2, ..., sr+1 and emits (si, s).
Reducers test each string to see if it is within distance r of
all other received strings, similar to the Naive algorithm. To
avoid duplicate results, when a reducer in the ith family finds
that s and t are at distance r or less, it checks that there is no
j < i for in which jth substrings are also equal and outputs
s, t if there is no such j. However, the Splitting algorithm
has also the same issue of redundant data as the Ball hashing
algorithm.

Bloom filter based fuzzy joins [33] During the map phase,
BH generates all elements within a distance r from s and sends
them to the reducers for combining with similar input records.

Fig. 3. Join processing stage of BF-BH Algorithm

It is easy to see that not all elements in the Br(s) belong to
S. The Splitting algorithm also generates redundant data by
sending each record to r+1 reducers. In fact, each record just
needs to be sent to some identified reducers if all its actual
similar elements present in S and its substrings are known.
Our approach integrates BF (S) to remove elements in Bs(r)
that do not belong to S before sending it to the reducers in
the BF-BH algorithm. With the BF-Splitting, we propose to
combine Ball Hashing, Splitting and BF. By the membership
test in BF (S), it determines which elements t 6= s in Br(s)
may actually be similar to s. Then each of them is divided in
to r + 1 equal-length substrings si and ti, i = 1..(r + 1). For
each si, if there exists a substring ti of t in the intersection
of S and Br(s) that matches with si , the pair (si, s) will be
output, and then t will never be considered again. This solution
consists of two stages: (1) in pre-processing stage, the filter is
built on a join key-value set of the input dataset S; (2) in join
processing stage, the filter is distributed to all the computing
nodes and used to eliminate non-similar elements of the input
dataset in each ball of radius d during the map phase. After
filtering none relevant data, the join algorithm then proceeds
on real similar elements with a small false positive probability.
An example of the join stage of BF-BH for the fuzzy join with
3-bit string and threshold r = 1 is shown in Figure 3.

Discussion: by the theoretical analysis and cost model in
[33], applying filters will improve processing costs. However,
Ball of radius r computation is sensitive to distance. With the
greater the distance d, the number of elements in Br increases
dramatically. [41] has shown the slowness of the BH algorithm
without filters. On the other hand, for a finite set of alphabets,
the elements in every ball are determined. The ball recalcula-
tion for each record is redundant and unnecessary while the
processing cost of this calculation is worth considering. From
these limitations of the existing solutions, we propose a new
filter type called Fuzzy filter to avoid excess calculations.

III. MODELING FUZZY FILTER

This section shows the approach to build the Fuzzy filter
with the criteria: small size, in-memory, quick response, with-

out false negative probability. As illustrated in Figure 4, with
a query y, a fuzzy filter has to give a quick test:

∃x ∈ S, d(x, y) ≤ r? Which x?
or ∃x ∈ S ∩Br(y)? Which x?

Fig. 4. Fuzzy filter modeling

For convenience during this paper, we assume that all the
balls of radius r in the finite alphabet set are known, regardless
of the distance function. This calculation will be discussed
later.

A. Fuzzy filter structure

The idea begins with finding the intersection between
dataset and balls. The Fuzzy filter FF (S) combines a Bloom
filter BF (S) to identify elements, and a table to store real
similar elements in the ball of each element. We illustrate this
approach by Figure 5

Fig. 5. FF(S) structure

The m bit Bloom filter BF (S) uses one hash function h to
calculate positions for an element of S and sets the bit at the
resulting positions. The ball list is an array of size m of m
bit Bloom Filters (a matrix of m ×m bits), each one stores
its ball BF (B(si)).

The build operation of the fuzzy filter FF (S) is described
as follows.

• (0) Hash each ball to a bit array of length m. With b-
bit string, it exists 2b balls, each ball has about br/r!
elements. Let us recall the assumption that hash operation
performs in unit time. This step has the cost C(0) ≈
2bbr/r!

• (1) Hash S to bit array of length m. C(1) = |S|
• (2) Ball list compute by the intersection of BF (S) and

BF (B(si)). C(2) = |2b|
• The build cost for FF (S) is

CFF (S)−build ≈
br

r!
2b + |S|+ 2b = (

br

r!
+ 1)2b + |S|

For clarity, we consider an example of the FF build with b =
4, r = 1, S = (0000, 1010, 1110, 1000) illustrated in Figure 6

Fig. 6. Example of FF build with b=4, r=1, S=(0000,1010,1110,1000)

Consider the query examples:

• Y1 = 0000
h(0000)=0−−−−−→ S(0) = 1, B1(0000) = {S0, S8} =

{0000, 1000}
• Y2 = 0111

h(0111)=7−−−−−→ S(7) = 0, B1(0111) = {∅}
• Y3 = 1011

h(1011)=11−−−−−−→ S(11) = 0, B1(1011) = {S10} =
{1010}

By this way, each query has a quick response in O(1)

B. Optimizing large-scale fuzzy joins

With the integration of FF, our proposal ignores the costly
and redundant ball calculation. Specifically, the FF-FJ algo-
rithm consists of two phases:

• Stage 1 (Pre-processing): A filter FF (S) is built on
a join key set of the input dataset S. Each worker
hashes tuples of input splits to find h(si), emits a list
of [h(si)] to one reducer for the FF building. Thus,
the Map cost is M = |S|, the communication cost is
D = #mappers, the computation cost is the FF building
cost CFF (S)−build ≈ bd

d! 2
b + 2b = (bd

d! + 1)2b. If the
ball list is pre-known, the processing cost is only 2b of
AND operations. Figure 7 describes an example of the
pre-processing stage of FF-FJ for the fuzzy join.

• Stage 2 (Join processing): FF (S) is distributed to all the
computing nodes and is used to quickly emit real similar
elements of the input dataset during the map phase. Each
record s is hashed by h(s). BF [h(s)] returns a list of
similar elements. Finally, mappers emit the intermediate
tuple with the key is in form (h(s), h(ti)) if h(s) < h(ti)
and vice versa. The number of reducers is (2b)(2b−1)/2

s
map−−−−→

FF (S){
((h(s), h(ti)), s), ∀ti ∈ Br(s) ∩ S, h(s) < h(ti)

((h(ti), h(s)), s), ∀ti ∈ Br(s) ∩ S, h(ti) < h(s)

The map cost for each record in this phase is only
1, instead of k|Br| in BF-BH algorithm. The number
of intermediate elements for each record is optimized,
instead of |Br| in BH algorithm, and may be approximate
with BF-BH algorithm because of the same filtering
technique.
In the ideal case, regardless of the false positive, our
approach has no redundant intermediate data and no
duplicated results without verification in reducers. An
example of join stage of FF-FJ for the fuzzy join with
4-bit string and threshold r = 1 is shown in Figure 8.

C. FF analysis and optimization

With an overview structure as above, FF can be applied to
some data types (string, vector, set), some distance functions
(Hamming, edit distance) as long as the balls can be calculated.
In the binary space, FF uses m = 2b, the exact probabilities
of filtering are guaranteed 100%, without false probabilities.
However, in practice, for a large finite alphabet set, a large
string length, to optimize memory, the filter size is designed
to be smaller than the actual set size. Hence, it may lead to a
false probability.

Fig. 7. FF-FJ Pre-processing stage

Fig. 8. Join processing stage of FF-FJ Algorithm with b=4, r=1, S=(0000,1010,1110,1000)

In the case of multiple balls that have the same hash index
position, the ball in this position is the union of these collision
balls. The response will include the real similar elements
and also the mistaken records in another collision ball. These
records are mistakenly assumed to be a similar element and
must be calculated the distance in the join step.

The small false positive probability is caused by one of two
cases follows

• (1) for the filter: an element in another collision ball is
returned as an answer.

• (2) for the join step: an irrelevant record of S has the
same hash index with an exact answer.

Conversely, it does not exist a false negative probability. In
other words, no real similar element is not answered in the
response. The false positive probability is shown in Figure 9

The precision of the fuzzy filter depends on the similarity
function complexity, the size of FF (m), the quality of the hash
function. For example, with Hamming distance threshold r, a
dataset S of b bit-strings, for n real elements (|S| = n < 2b),
the false positive of a hash bucket list of size m bits is

fS = 1− (1− 1/m)n

Fig. 9. FF-FJ filtering process

Each hash ball contains about br/r! elements. So its number
of possible collision bits is approximate (br/r!)(1−1/m)b

r/r!.
If a collision occurs, the probability of a bit 1 is out of the
real ball is

br(1− 1/m)b
r/r!

mr!
(1− br(1− 1/m)b

r/r!

mr!
)

However, this false bit becomes a false positive answer only
if its index in hash bucket S is also set.

The building of the matrix that includes all the balls with
a reasonable alphabet, an acceptable length of a string is
feasible. For large-scale datasets, avoiding repeated calcula-
tions for the pre-known balls will reduce a large workload.

In cases where the set of balls cannot be pre-calculated, the
input dataset S can be read one time as a distinct key set to
compute its balls. This cost can be amortized, especially using
streaming or caching techniques (e.g Spark [42]).

Another advantage of FF is the flexibility with distance,
capable of equi-join and fuzzy join. The ball list can be easily
updated quickly as soon as a new record appears. This can be
applied in stream join applications. The solution given is that
the AND operation in step (3) during the building phase is
not performed. The ball list stores all the balls. The answer to
each new query t is the intersection of S and the ball B(t).

IV. CONCLUSION

In this paper, we study theoretical details on large-scale
fuzzy join algorithms in MapReduce. We propose approaches
for building a Fuzzy Filter, a scalable solution with respect
to the distance and the volume of the input datasets. This
filter is a compact, probabilistic data structure that supports
very fast similarity queries by maintaining a bit matrix,
with small false positive rate and zero false negative rate.
We show the relevance of this structure in fuzzy self join.
In addition, our solution for the FF-FJ algorithm is more
efficient than previous solutions without filters or with a Bloom
Filter since it significantly reduces redundant data, costly and
wasteful computations, and thus produces fewer intermediate
data, eliminates duplicated results, and avoids unnecessary
comparisons. Although FF-FJ algorithm has false positives and
an extra cost for the pre-processing step, its efficiency in space-
saving and filtering often outweighs these drawbacks. We use
the MapReduce cost model to prove it.

Future work includes extending Intersection Fuzzy Filter for
fuzzy two-way join, fuzzy multiway join and fuzzy recursive
join. Our optimizations may be extended in the cache or
streaming supported framework to reuse the pre-processing
cost. Perspectives also include validating our solutions, com-
paring them with other approaches and extending the research
for other fuzzy join algorithms. Besides, experimental eval-
uation and a solution for skewness problems will also be
considered.

REFERENCES

[1] M. Bamha and G. Hains, “An efficient equi-semi-join algorithm for
distributed architectures,” in Proceedings of the 5th International Con-
ference on Computational Science - Volume Part II. Springer-Verlag,
2005, p. 755–763.

[2] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski, “Improving
distributed join efficiency with extended bloom filter operations,” 05
2007, pp. 187–194.

[3] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian,
“A comparison of join algorithms for log processing in mapreduce.”
Association for Computing Machinery, 2010, p. 975–986.

[4] F. N. Afrati and J. D. Ullman, “Optimizing joins in a map-reduce
environment,” in Proceedings of the 13th International Conference on
Extending Database Technology. Association for Computing Machin-
ery, 2010, p. 99–110.

[5] M. A. H. Hassan and M. Bamha, “Semi-join computation on distributed
file systems using map-reduce-merge model,” in Proceedings of the 2010
ACM Symposium on Applied Computing. Association for Computing
Machinery, 2010, p. 406–413.

[6] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and J. D. Ullman, “Map-
reduce extensions and recursive queries,” in Proceedings of the 14th
International Conference on Extending Database Technology. Associ-
ation for Computing Machinery, 2011, p. 1–8.

[7] T. Lee, K. Kim, and H.-J. Kim, “Join processing using bloom filter
in mapreduce,” in Proceedings of the 2012 ACM Research in Applied
Computation Symposium. Association for Computing Machinery, 2012,
p. 100–105.

[8] T.-C. Phan, L. d’Orazio, and P. Rigaux, “Toward Intersection Filter-
based Optimization for Joins in MapReduce,” in Cloud-I, 2013, pp. 2:1–
2:2.

[9] N. Bruno, Y. Kwon, and M.-C. Wu, “Advanced join strategies
for large-scale distributed computation,” Proc. VLDB Endow.,
vol. 7, no. 13, p. 1484–1495, Aug. 2014. [Online]. Available:
https://doi.org/10.14778/2733004.2733020

[10] T. Phan, L. d’Orazio, and P. Rigaux, “A Theoretical and Experimental
Comparison of Filter-Based Equijoins in MapReduce,” TLDKS, vol. 25,
pp. 33–70, 2016.

[11] R. Vernica, M. J. Carey, and C. Li, “Efficient Parallel Set-similarity Joins
Using MapReduce,” in SIGMOD, 2010, pp. 495–506.

[12] S. Chaudhuri, V. Ganti, and R. Kaushik, “A primitive operator for
similarity joins in data cleaning,” in ICDE, 2006.

[13] A. Doan, A. Halevy, and Z. Ives, Principles of Data Integration, 1st ed.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2012.

[14] A. Metwally, D. Agrawal, and A. El Abbadi, “Detectives: Detecting
Coalition Hit Inflation Attacks in Advertising Networks Streams,” in
WWW, 2007, pp. 241–250.

[15] E. Spertus, M. Sahami, and O. Buyukkokten, “Evaluating similarity
measures: A large-scale study in the Orkut social network,” in SIGKDD,
2005, pp. 678–684.

[16] M. Henzinger, “Finding Near-duplicate Web Pages: A Large-scale
Evaluation of Algorithms,” in SIGIR, 2006, pp. 284–291.

[17] T. C. Hoad and J. Zobel, “Methods for identifying versioned and
plagiarized documents,” JASIST, vol. 54, pp. 203–215, 2003.

[18] A. Z. Broder, S. C. Glassman, M. S. Manasse, and G. Zweig, “Syntactic
Clustering of the Web,” in WWW, 1997, pp. 1157–1166.

[19] M. Sahami and T. D. Heilman, “A Web-based Kernel Function for
Measuring the Similarity of Short Text Snippets,” in WWW, 2006, pp.
377–386.

[20] S. Wandelt, J. Starlinger, M. Bux, and U. Leser, “Rcsi: Scalable
similarity search in thousand(s) of genomes,” Proc. VLDB Endow.,
vol. 6, p. 1534–1545, 2013.

[21] Y. Jiang, G. Li, J. Feng, and W.-S. Li, “String similarity joins: An
experimental evaluation,” Proc. VLDB Endow., vol. 7, p. 625–636, 2014.

[22] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S. Muthukrishnan,
and D. Srivastava, “Approximate string joins in a database (almost) for
free,” in Proceedings of the 27th International Conference on Very Large
Data Bases. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2001, p. 491–500.

[23] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on
Large Clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, 2008.

[24] F. Fier, N. Augsten, P. Bouros, U. Leser, and J.-C. Freytag, “Set
similarity joins on mapreduce: An experimental survey,” Proc. VLDB
Endow., vol. 11, p. 1110–1122, 2018.

[25] Y. N. Silva, J. Reed, K. Brown, A. Wadsworth, and C. Rong, “An Ex-
perimental Survey of MapReduce-Based Similarity Joins,” in Similarity
Search and Applications, 2016, pp. 181–195.

[26] A. Metwally and C. Faloutsos, “V-SMART-Join: A Scalable
MapReduce Framework for All-Pair Similarity Joins of Multisets
and Vectors,” CoRR, vol. abs/1204.6077, 2012. [Online]. Available:
http://arxiv.org/abs/1204.6077

[27] D. Deng, G. Li, S. Hao, J. Wang, and J. Feng, “Massjoin: A mapreduce-
based method for scalable string similarity joins,” in 2014 IEEE 30th
International Conference on Data Engineering, 2014, pp. 340–351.

[28] X. Wang and D. Sun, “Qjoin: A q-sample-based method for large-
scale string similarity joins,” in 2018 11th International Symposium on
Computational Intelligence and Design (ISCID), 2018, pp. 45–48.

[29] F. N. Afrati, A. D. Sarma, D. Menestrina, A. Parameswaran, and J. D.
Ullman, “Fuzzy Joins Using MapReduce,” in ICDE, 2012, pp. 498–509.

[30] Y. N. Silva and J. M. Reed, “Exploiting MapReduce-based Similarity
Joins,” in SIGMOD. ACM, 2012, pp. 693–696.

[31] A. Das Sarma, Y. He, and S. Chaudhuri, “Clusterjoin: A similarity
joins framework using map-reduce,” Proc. VLDB Endow., p. 1059–1070,
2014.

[32] L. Chen, Y. Gao, B. Zheng, C. S. Jensen, H. Yang, and K. Yang, “Pivot-
based metric indexing,” Proc. VLDB Endow., p. 1058–1069, 2017.

[33] T.-T.-Q. Tran, T.-C. Phan, A. Laurent, and L. d’Orazio, “Improving
hamming distance-based fuzzy join in mapreduce using bloom filters,”
in 2018 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE),
2018, pp. 1–7.

[34] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[35] Y. N. Silva, J. M. Reed, and L. M. Tsosie, “MapReduce-based Similarity
Join for Metric Spaces,” in Cloud-I, 2012, pp. 3:1–3:8.

[36] A. Okcan and M. Riedewald, “Processing Theta-joins Using MapRe-
duce,” in SIGMOD, 2011, pp. 949–960.

[37] C. Xiao, W. Wang, X. Lin, J. X. Yu, and G. Wang, “Efficient Similarity
Joins for Near-duplicate Detection,” ACM TODS, vol. 36, no. 3, pp.
15:1–15:41, 2011.

[38] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network Applications
of Dynamic Bloom Filters,” in INFOCOM, 2006, pp. 1–12.

[39] A. Broder, M. Mitzenmacher, and A. B. I. M. Mitzenmacher, “Network
applications of bloom filters: A survey,” in Internet Mathematics, 2002,
pp. 636–646.

[40] H. Zhang, H. Lim, V. Leis, D. G. Andersen, M. Kaminsky, K. Keeton,
and A. Pavlo, “Surf: Practical range query filtering with fast succinct
tries,” in Proceedings of the 2018 International Conference on Man-
agement of Data. Association for Computing Machinery, 2018, p.
323–336.

[41] B. Kimmett, V. Srinivasan, and A. Thomo, “Fuzzy Joins in MapReduce:
An Experimental Study,” PVLDB, vol. 8, no. 12, pp. 1514–1517, 2015.

[42] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the
2nd USENIX Conference on Hot Topics in Cloud Computing. USENIX
Association, 2010, p. 10.

