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ABSTRACT 

 

 

All apicomplexan parasites have complex life cycles exhibiting division characterized by a 

tightly regulated cell cycle control, resulting in the emergence of daughter parasites in 

possession of a single nucleus and a complete set of organelles. Apicomplexa have evolved 

efficient and distinctive strategies for intracellular replication where the timing of emergence 

of the daughter cells, a process termed “budding”, is a decisive element. However, the 

molecular mechanisms that provide the proper timing of parasite budding remain unknown. 

Using Toxoplasma gondii as a model Apicomplexa, we identified a master regulator that 

controls the timing of the budding process. We show that an ApiAP2 transcription factor, 

TgAP2IX-5, controls cell cycle events downstream of centrosome duplication including 

organelle division and segregation. TgAP2IX-5 binds to the promoter of hundreds of genes and 

controls the activation of the budding-specific cell cycle expression program. We show that 

TgAP2IX-5 regulates the expression of specific transcription factors that are necessary for the 

completion of the budding cycle. TgAP2IX-5 acts as a licensing factor that ensures that asexual 

proliferation continues by promoting the inhibition of the differentiation pathway at each round 

of the cell cycle. Therefore, TgAP2IX-5 is a master regulator that controls both cell cycle and 

developmental pathways. 
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INTRODUCTION  

 

Apicomplexa is a phylum consisting of unicellular, obligate, intracellular protozoan parasites 

of high transmissibility, which includes various human pathogen species such as Plasmodium 

spp. (causative agent of malaria), Toxoplasma spp. (cause of toxoplasmosis) and 

Cryptosporidium spp. (cause of cryptosporidiosis).  

Apicomplexan parasites trigger disease associated with an uncontrollable expansion of parasite 

biomass resulting in inflammation and host cell destruction [1]. Although, apicomplexan 

parasites usually present a sexual cycle within the definitive host, the pathogenesis of these 

parasites results from the ongoing asexual replication cycles within the host’s cells. All 

Apicomplexa have complex life cycles exhibiting a proliferation characterized by a tightly 

regulated cell cycle control and resulting in the emergence of daughter parasites with a single 

nucleus and a complete set of organelles [2]. Apicomplexa have evolved the ability to 

independently divide their nucleus (nuclear cycle) and produce the parasite body through a 

process that is termed budding (budding cycle). This allows flexibility in order to produce a 

suitable number of offspring in a single cell cycle while allowing the parasite to cope with the 

different host-cell environments [3]. Apicomplexa have evolved efficient and distinctive 

strategies for intracellular replication [1]. How the division pattern is chosen to ensure parasite 

expansion during host-cell infection remains unanswered. However, it has been clear that the 

mode of division is dependent on the timing and coordination of the nuclear and budding cycles 

[4,5].  

Plasmodium falciparum and Toxoplasma gondii represent two modern branch points of the 

Apicomplexa phylum, a divergence that occurred several hundred million years ago [6]. This 

divergence has led to changes in the usage of different cell division patterns. For instance, in 

its intermediate host, Plasmodium falciparum replicates through schizogony, a division pattern 
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which produces a multinucleated intermediate (schizont) where the daughter parasites bud from 

the periphery at the closure of the division process to produce infective merozoites. By contrast, 

in its intermediate hosts, Toxoplasma gondii undergoes endodyogeny, a division pattern that 

consists of the formation of two daughter parasites within the mother cell. In this case, the 

formation of new daughter cells occurs within the cytoplasm rather than from the periphery [1] 

and is coordinated to arise simultaneously with nuclear division. In addition to endodyogeny, 

which is the simplest form of internal budding, T. gondii asexually divides within its definitive 

host through a division scheme that closely resembles schizogony. Endopolygeny consists of 

the production of multiple nuclei and a final step of daughter cell formation where parasites 

bud from the cytoplasm [7]. These three distinct replication patterns (endodyogeny, schizogony 

and endopolygeny) rely on the coordination of the timing of the budding and nuclear cycles. 

Apicomplexa, such as T. gondii which exhibit endodyogeny and endopolygeny, are able to 

employ several division patterns depending on the environment and host. Such a flexibility 

suggests overlapping mechanisms in control of the cell cycle independent of the division 

pattern used. 

Apicomplexa show a peculiar cell cycle with a closed mitosis that is divided into three phases 

(G1, S and M) while the G2 phase is apparently absent [8].  Centrosomes play a central role in 

controlling the cell cycle in Apicomplexa. They serve as the microtubule organizing center 

(MTOC) for the mitotic spindle and are key to position the site of daughter cell assembly [5,9]. 

In T. gondii, the bipartite nature of the centrosome allows an independent control of both the 

nuclear and budding cycles [9]. Centrosome division happens between the end of G1 and the 

start of S phase [2] and marks the beginning of the budding cycle. Division and maturation of 

the centrosome controls the progression and the coordination of the nuclear and budding cycle 

[5,9–12]. Evidence suggests that soon after centrosome division, centrosome maturation 
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through kinases is key to the activation of daughter cell formation [9,11,12]. Cell cycle 

dependent expression of these kinases may be important to control their activity [11,12]. 

During the Apicomplexa cell cycle, division and segregation of organelles is a highly ordinated 

process in order to ensure that each daughter parasite acquires the proper complement of 

organelles. During T. gondii endodyogeny, Golgi widening and replication is the first step to 

occur during the G1 phase [13]. This is followed by apicoplast duplication, endoplasmic 

reticulum division and is concluded with the division of the mitochondria [14]. Specialized 

secretory organelles such as the rhoptries and micronemes are generated de-novo in a process 

that begins after nuclear division [14]. This highly controlled process implies a tight regulation 

of the gene expression during the cell cycle. This was illustrated by the transcriptomic analysis 

of synchronous cell cycle populations indicating that T. gondii may have adapted a “just in 

time” mode of expression whereby transcripts and proteins are produced right when their 

function is needed [15]. This suggests that transcriptional regulation of gene expression may 

exert a centralized control on both centrosome activation and the expression of proteins needed 

for daughter cell formation. 

 However, little is known on the potential regulators that may control this transcriptional 

switch. Apicomplexan genomes encode a family of putative transcription factors that are 

characterized by the possession of one or more DNA binding AP2 domains [16]. ApiAP2 

transcription factors were shown to control expression profiles during T. gondii differentiation 

[17–19]. ApiAP2s were also shown to cooperatively control the expression of virulence factors 

[20,21] in T. gondii indicating that this  family of transcription factors may control cell cycle 

dependent expression profiles as also suggested for P. berghei [22]. In this study, we 

functionally characterize a cell cycle dependent ApiAP2 transcription factor, TgAP2IX-5. We 

show that it controls cell cycle events downstream of centrosome duplication including 

organelle division and segregation. TgAP2IX-5 binds to the promoter of hundreds of genes and 
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controls the activation of the S/M-specific cell cycle expression program. Reversible 

destabilization of the TgAP2IX-5 protein showed that its expression is sufficient for activation 

of the budding cycle in multinucleated parasites. Therefore, controlled TgAP2IX-5 expression 

allows for the switching from endodyogeny to endopolygeny division patterns. TgAP2IX-5 

acts as a master regulator controlling the budding cycle and therefore, asexual cell cycle 

division patterns in this parasite.  
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RESULTS 

TgAP2IX-5 is a cell-cycle regulated transcription factor essential for parasite growth 

and proliferation 

To find specific regulators of the cell cycle dependent expression program, we identified 

potential transcriptional regulators whose expression was cell cycle regulated [15]. Among 

these regulators, we focused on the ApiAP2 family of transcription factors and discovered that 

the tgap2ix-5 transcript was dynamically expressed with a peak of expression within the S 

phase (toxodb.org). To confirm that the TgAP2IX-5 protein was also cell cycle regulated, we 

produced a T. gondii strain that had an epitope-tagged version of this gene at its endogenous 

locus. Immuno-fluorescence assays using cell-cycle markers demonstrated that TgAP2IX-5 is 

a nuclear protein mostly expressed during the early S phase (Figure 1A). TgAP2IX-5 

expression was detected at the G1/S transition and early S phase when centrosomes are divided 

but remained in close proximity of each other (as identified by TgCentrin1; a marker of the 

outer core of the centrosome, Figure 1A upper panel, Figure S1A). TgAP2IX-5 was detected 

before centromere division (as identified by TgChromo1; a marker of pericentromeric 

chromatin [23], Figure 1A middle panel, Figure S1B-C) but not after (late S phase), indicating 

that TgAP2IX-5 was only present during the G1/S transition and early S phase.  TgAP2IX-5 

was no longer detected when parasites enter the S/M phase (as indicated by an early budding 

marker TgISP1, (Figure 1A, lower panel). Therefore, TgAP2IX-5 protein expression is tightly 

controlled during the cell cycle.     

To identify the biological role of TgAP2IX-5, an inducible knock down (iKD) mutant of 

TgAP2IX-5 was generated using the AID system which allowed for the conditional depletion 

of the TgAP2IX-5 protein (Figure 1B).  For this purpose, we produced a strain that presented 

an AID-HA insert at the 3’ end of the TgAP2IX-5 gene using a CrispR/Cas9 strategy (Figure 

S2A). The correct locus of integration of this insert was confirmed by PCR (Figure S2B). The 
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AID system allows for the conditional depletion of the target protein after addition of auxin 

(indoleacetic acid) (Figure 1B). A single detectable band at the expected protein size (251 kDa) 

was present in absence of auxin in the iKD TgAP2IX-5 strain as verified by Western-Blot 

(Figure 1C). Rapid depletion of the TgAP2IX-5 protein (as early as 1 hour) was obtained in 

iKD TgAP2IX-5 mutant strain grown in media containing auxin (Figure 1C).  

iKD TgAP2IX-5 mutant displays a defect in daughter parasite formation 

To phenotypically characterize the iKD TgAP2IX-5 mutant, a standard growth assay was 

carried out. The growth capacity of the iKD TgAP2IX-5 mutant in the presence of auxin was 

tested and we observed that the iKD TgAP2IX-5 mutant growth ability was drastically 

decreased in the presence of auxin (Figure 2A). In fact, growth was completely abrogated in 

the iKD TgAP2IX-5 mutant in presence of auxin with a calculated mean of 1 parasite per 

vacuole while the parental strain (in presence and absence of auxin) and the iKD TgAP2IX-5 

mutant in absence of auxin grew at a mean of 2.5 parasites per vacuole. This demonstrated a 

complete blockage of the proliferation capacity of the parasite in the absence of TgAP2IX-5 

(Figure 2A). A plaque assay, that measured the ability of the parasite to grow and invade over 

a period of seven days confirmed the phenotype with the absence of lysis plaques in the iKD 

TgAP2IX-5 strain treated with auxin contrary to the control used (parental strain in presence 

of auxin) where lysis plaques were observed (Figure S3A).  These results suggest that 

TgAP2IX-5 expression is essential for the parasite’s growth and proliferation.  

To better assess the growth phenotype, we examined the parasite by IFA using a nucleus marker 

(TgENO2) and an inner membrane complex (IMC) marker (TgIMC1), a network of flattened 

vesicles lying beneath the plasma membrane (Figure 2B). It was apparent that the parasite 

accumulated nuclei and did not form daughter cells in absence of TgAP2IX-5 while exhibiting 

normal daughter cell formation in presence of the protein. To confirm the inability of the 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.20.095877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.095877
http://creativecommons.org/licenses/by-nc-nd/4.0/


parasite to form daughter cells in presence of auxin, we performed transmission electron 

microscopy and observed that in absence of auxin the iKD TgAP2IX-5 mutant was able to 

produce daughter cells while in presence of auxin the parasite accumulated nuclei associated 

with lack  of apparent daughter cell formation (Figure 2C). To confirm these observations, we 

measured the number of parasites per nuclei (Figure 2D and S3B-C). Depending on the timing 

during the cell cycle, the parasites exhibit either one nucleus (80 % of the total parasite 

population) or two nuclei (20 % of the total parasite population) (before or after cytokinesis) 

for the parental strain (in absence or in presence of auxin) and for the iKD TgAP2IX-5 strain 

in absence of auxin (Figure 2D and S3B-C). By contrast, the percentage of parasite exhibiting 

more than 2 nuclei increased overtime in the iKD TgAP2IX-5 strain in presence of auxin 

(Figure 2D and S3B-C). The observation of multi-nucleated parasites in presence of auxin 

suggests that the iKD TgAP2IX-5 mutant displays a defect in daughter parasite formation but 

not in the ability of the parasite to multiply and segregate its nuclear material. To assess the 

capacity of the iKD TgAP2IX-5 mutant to produce daughter cells, we recorded the number of 

parasite cells that were in the process of producing daughter cells through internal budding 

(Figure 2B and E and Figure S4A-B), therefore measuring the parasite’s ability to produce 

daughter cells at an early stage of internal budding. Using two different markers, we were able 

to show a drastic decrease of the number of parasites undergoing budding in the iKD TgAP2IX-

5 strain after 6h of auxin treatment (Figure 2E and S4A-B). These results indicate that 

TgAP2IX-5 plays an important role during the early stages of internal budding and is necessary 

for daughter cell formation.  

TgAP2IX-5 is required at a precise time point of the cell cycle.   

The T. gondii cell cycle has been described precisely and presents a well-organized time line 

for the division of the subcellular structures of the parasite [14] establishing the following 

sequence of organelle duplication and segregation: first the centrosome is duplicated and 
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divided and then the Golgi complex, the apicoplast, the nucleus, the cytoskeleton (e.g. the 

IMC), the endoplasmic reticulum and eventually the mitochondrion (Figure 3A). To identify 

the exact timepoint at which TgAP2IX-5 affects daughter parasite formation, a study of the 

effect of TgAP2IX-5 on organelle duplication and segregation was carried out. During division, 

the centrosome (outer core) divides first and then the centromere (as well as the inner core 

centrosome) follows. We measured the ability of the centrosome and centromere to divide 

within the iKD TgAP2IX-5 strain using TgCentrin1 and TgChromo1 as a centrosome and 

centromere marker, respectively. For the parental and the iKD TgAP2IX-5 strains, the 

centrosome to nucleus and centromere to nucleus ratio were recorded after 6 hours of auxin 

treatment (Figure S5A-C). The recorded ratios of centrosome to nucleus and centromere to 

nucleus are close to 1 in both the presence and absence of auxin (Figure S5B-C). These results 

suggest that TgAP2IX-5 does not have a drastic effect on the replication of the centrosome. 

Similarly, the centromere division is minimally affected, a result that is in line with the 

multiplication of nuclei observed in the iKD TgAP2IX-5 strain in presence of auxin. However, 

studying other markers of the centrosome such as TgSFA2 demonstrated that maturation of the 

centrosome might not be completed (Figure S6A-B).  

Since centrosome division remained minimally affected by TgAP2IX-5, a study of the 

proceeding organelles to divide in the T. gondii organellar cell cycle division timeline was 

carried out. The Golgi complex was labelled in parasites and the ratio of Golgi to nucleus was 

calculated (Figure 3B). We observed no significant difference between the ratios of Golgi to 

nucleus in the presence or absence of auxin, therefore suggesting that TgAP2IX-5 depletion 

does not impact Golgi division and segregation (Figure 3C). We then observed plastid division 

and segregation (Figure 3B) and measured the plastid to nucleus ratio. This ratio is significantly 

lower in the iKD TgAP2IX-5 strain in presence of auxin (Figure 3D), suggesting that plastid 

division is blocked in the mutant. The plastid division is a multistep process where it first 
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elongates before the completion of scission and segregation [24]. To determine the exact 

timepoint at which plastid division is affected, the number of parasites with an elongated plastid 

was recorded in the presence and absence of TgAP2IX-5. We observed a significantly high 

number of elongated plastid in the absence of TgAP2IX-5 (Figure 3E), suggesting a critical 

role for TgAP2IX-5 after elongation and before plastid division. This short time frame 

corresponds to TgAP2IX-5 protein cell cycle dependent expression. As expected, the 

mitochondria division (the last step during the cell cycle, before cytokinesis) is also affected in 

the iKD TgAP2IX-5 mutant (Figure S6C), confirming that the blockage during the cell cycle 

precedes mitochondria division.  

TgAP2IX-5 impacts the expression of cell-cycle regulated genes 

Since TgAP2IX-5 is a potential transcription factor, we examined the changes in the 

transcriptome after depletion of the TgAP2IX-5 protein using RNA-seq. Total RNA was 

purified from tachyzoites of the iKD TgAP2IX-5 strain grown with or without auxin for 6 hours 

(three biological triplicates). Data analysis using Deseq2 allowed us to identify significant 

changes in the iKD TgAP2IX-5 transcriptome with an adjusted p-value cutoff of 0.05 and a 

minimum fold change of 2 (Figure 4A). We identified more than 600 transcripts that were 

downregulated and around 300 transcripts (Table S2) that were upregulated in the iKD 

TgAP2IX-5 mutant when treated with auxin (Figure 4A). We examined the cell-cycle 

expression of the downregulated genes and represented their expression using a heat-map 

(Figure 4B). We discovered that most of them showed an expression peak during the late S and 

M phase with a few of them exhibiting a peak during the cytokinesis phase (Figure 4B) while 

the upregulated genes showed mostly an inverse expression profile showing an expression peak 

during the G1 phase (Figure S7A). In the list of downregulated transcripts, we were struck by 

the number of annotated genes corresponding to proteins targeted to the IMC and to the apical 

complex both structures that are the first to appear when the daughters bud within the mother 
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cell. To better assess the potential localization of the proteins that correspond to downregulated 

transcripts, we used a HyperLopit proteomic dataset that predicts with high confidence the 

localization of proteins in the parasite [25].  We showed that a high proportion of the 

downregulated transcripts present in the dataset (331 genes) encode proteins predicted to 

localize to the IMC or to the apical complex (a total of 30% of the downregulated transcripts 

present in the HyperLopit dataset; Figure S7B). Moreover, these two localizations are 

overrepresented (16 and 14 %, respectively) when compared to the whole proteome 

localization (3% for each; 2487 genes, Figure S7C). Based on this dataset, the downregulated 

genes represent 64 % of the IMC proteome (52/81) and more than 70 % (45/63) of the predicted 

apical complex proteome. These results suggest that TgAP2IX-5 may act mainly as an activator 

of genes whose expression shows a cell cycle regulated profile with a peak at the late S and M 

phases. These genes represent a high proportion of the IMC and apical complex proteome.  

By RNA-seq, we were able to identify that TgAP2IX-5 either activates directly or indirectly 

the expression of genes. In order to identify what promoters are directly targeted by TgAP2IX-

5, we carried out a ChIP-seq analysis. Biological duplicates were produced and processed for 

sequencing (Figure S8A). The MACS2 software was used to identify the significant peaks (p-

value < 0.05) that were in intergenic regions close to an annotated gene. This analysis revealed 

that TgAP2IX-5 directly binds to 696 gene promoters among which key genes are involved in 

parasite formation (Figure 4C and S8A-D) such as genes encoding proteins targeted to the IMC 

such as TgIMC1 and TgIMC4 (Figure 4Ci), TgGAPM3 (Figure 4Cii) and TgIMC29 (Figure 

4Ciii). Interestingly, we also identified that TgAP2IX-5 was able to bind to the promoters of 

other ApiAP2 encoding genes (Figure 4Civ and S8C-D). Surprisingly, we found that 

TgAP2IX-5 was enriched at its own promoter (Figure S8D, boxed) suggesting a possible 

negative feedback loop for the control of the TgAP2IX-5 transcript expression. We examined 

the cell cycle expression of the genes whose promoter was targeted by TgAP2IX-5 and found 
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that a majority of these genes were showing an expression peak during the S and M phase, 

although a cluster of genes showed a strong expression during C and early G1 phase (Figure 

S8E). These data confirm the ability of TgAP2IX-5 to act as a bona-fide transcription factor by 

directly binding to promoters of genes encoding essential proteins for the establishment of the 

daughter cells. 

Since RNA-seq does not enable the identification of the genes that are solely directly controlled 

by TgAP2IX-5, we overlapped the RNA-seq and ChIP-seq dataset. For that, we identified 

within the differentially regulated genes list whether they were downregulated or upregulated 

(as initially identified from RNA-seq), and compared this list with the genes identified to be 

targeted by TgAP2IX-5 from ChIP-seq analysis using the MACS software. Overall, 117 genes 

were recorded from the overlap of RNA-seq and ChIP-seq data representing a 17% overlap 

(Figure 4D). A closer study of the overlap between RNA-seq and ChIP-seq genes identified 

that 10% of upregulated genes are directly targeted by TgAP2IX-5 whereas 14% of 

downregulated genes are directly targeted by TgAP2IX-5. We examined the cell cycle 

regulation of the transcripts directly controlled by TgAP2IX-5 and found that these genes 

exhibit a cell-cycle regulated expression peak during the late S and early M phases (Figure 4E). 

These results suggest that TgAP2IX-5 directly controls genes expressed during the S phase and 

beginning of the M phase. Examples of genes that were found to be directly activated by 

TgAP2IX-5 included a number of IMC proteins such as TgIMC1, TgIMC4, TgIMC3, 

TgIMC29 and TgGAPM3 (Table S3). Since TgAP2IX-5 was shown to directly activate genes 

that are mainly involved in daughter parasite formation, TgIMC29 was myc-tagged within the 

iKD TgAP2IX-5 strain and we recorded the percentage of TgIMC29 present at site of daughter 

cell formation. We observed a significant decrease in the TgIMC29 presence at the daughter 

cell budding site in the absence of TgAP2IX-5 (Figure S9A).  
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Considering the difference between the RNA-seq and ChIP-seq dataset, we searched the RNA-

seq dataset for potential regulators that might be directly regulated by TgAP2IX-5 and therefore 

may in turn perturb the expression of genes not directly targeted by TgAP2IX-5. Eight ApiAP2 

transcription factors were downregulated following the depletion of TgAP2IX-5 as measured 

by RNA-seq (Figure S9B) and showed an expression peak during the S and M phase (Figure 

S9B). Among these genes, 4 (TgAP2IV-4, TgAP2III-2, TgAP2XII-9 and TgAP2XII-2) had 

their promoters directly bound by TgAP2IX-5 (Figure S9B, underlined). Interestingly, much 

like other genes directly regulated by TgAP2IX-5 (Figure 4E), these genes showed an 

expression peak during the late S phase (Figure S9B). TgAP2IV-4, a known repressor of 

developmentally regulated genes, is expressed during the S/M phase [18]. These data suggest 

that TgAP2IX-5 directly activates other TF during the S phase that may in turn control the late 

S and M expression program.  

Interestingly enough, TgAP2IX-5 which was found to be upregulated in the presence of auxin 

based on RNA-seq, demonstrated a ChIP-seq peak (Figure S8D) corresponding to its direct 

targeting by TgAP2IX-5 suggesting that TgAP2IX-5 may be under the direct regulation of a 

possible negative feedback loop.  

Complementation demonstrates TgAP2IX-5 is responsible for the phenotypes observed. 

The iKD TgAP2IX-5 mutant was shown to exhibit a multi-nucleated phenotype after depletion 

of the TgAP2IX-5 protein. The reversibility of this phenotype was studied by generating a 

complemented strain (iKDc TgAP2IX-5) by inserting a myc-tagged version of the TgAP2IX-

5 gene (under the control of its own promoter) into an exogenous locus (uprt; Figure S10A). 

The expression and localization of the exogenous TgAP2IX-5-myc in the complemented strain 

was verified by immunofluorescence and the percentage of positively labelled parasite with 

myc-tag was compared to the expression of the endogeneous HA-tagged copy. A similar 
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number of parasites (30 % of the asynchronous parasite population) were shown to express the 

myc-tagged copy in the complemented strain than the iKD TgAP2IX-5 strain (Figure 5A and 

S10B). In order to determine whether the multi-nucleated phenotype of iKD TgAP2IX-5 is 

reversible, the number of nuclei per parasite was recorded in the iKDc TgAP2IX-5 strain in the 

absence and presence of auxin. We observed that the maximum number of nuclei per parasite 

did not exceed 2 nuclei per parasite (Figure 5B). These results demonstrated that the multi-

nucleated phenotype of iKD TgAP2IX-5 is due to the absence of the TgAP2IX-5 protein. In 

order to study the effect of reversing the phenotype in iKDc TgAP2IX-5 strain on subcellular 

components of the cell, Golgi: nucleus and plastid: nucleus ratios were recorded. Calculated 

ratios of around 1:1 were recorded and we therefore inferred that each parasite contains one 

Golgi as well as one plastid (Figure 5C-D). These results demonstrate that the TgAP2IX-5 

protein was indeed responsible for the phenotypes observed.  

TgAP2IX-5 regulates cell cycle pattern flexibility from endodyogeny to endopolygeny 

The timing of daughter cell formation is key to define the cell division pattern employed by the 

parasite at any given time of its life cycle. Since we established that TgAP2IX-5 is the master 

regulator controlling the production of daughter cells during endodyogeny, we reasoned that 

controlling the expression of TgAP2IX-5 may be sufficient to switch from one division pattern 

to another. T. gondii undergoes endopolygeny, during is asexual reproduction in the definitive 

host, where multiple nuclei are formed before a final phase of internal budding. We created a 

strain of the iKD TgAP2IX-5 mutant expressing a marker of the IMC (TgIMC3-mCherry) to 

be able to follow the daughter cell formation using live imaging. We treated this strain with 

auxin to deplete the TgAP2IX-5 protein and obtain parasites that presented around 4 nuclei per 

parasite (Over-night treatment with auxin). By time-lapse microscopy, we were able to 

visualize the fate of these parasites after washing auxin out from cell culture media and 

inducing the re-expression of the TgAP2IX-5 protein. At T0 we observed enlarged 
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multinucleated parasites. At T1 (43 mins after T0), we started to observe multiple daughter cells 

emerging from within the initial multinucleated mother parasite labeled with TgIMC3. The 

emergence of parasites continued throughout T2 (1.5 hrs after T0) and T3 (1.7 hours after T0). 

At T4 (3.9 hours after T0), we observed individual parasites each separately labelled with 

TgIMC3 mCherry that had completely emerged from the mother parasite (Figure 6A). After 

removing auxin from the media, the multinucleated parasites where daughter cell budding was 

inhibited by the absence of TgAP2IX-5, continued their division in a similar way to 

endopolygeny. Multiple daughter parasites were observed to internally bud within the 

cytoplasm of the mother cell leading to the release of multiple daughters from an initial multi-

nucleated parasite (Video S1). This forced endopolygeny was due to the re-expression of 

TgAP2IX-5 in these parasites. These data indicate that expression of TgAP2IX-5 controls the 

entire budding process and that parasites initially depleted from TgAP2IX-5 were still division 

competent. 

To quantify the ability of the parasite to restart division after an initial depletion of TgAP2IX-

5, we designed a protocol producing parasites with around 4 nuclei and then observed the effect 

of the re-expression of TgAP2IX-5 on the number of nuclei per parasite. For that, we counted 

the number of nuclei per parasite by immunofluorescence at different time points after auxin 

washout. While this number decreased with longer auxin treatment (Figure 6B), we observed 

that the number of nuclei per parasite decreases as the duration of auxin washout increases 

(Figure 6C) indicating that the parasites formed by the “forced” endopolygeny are competent 

for the next cycles of division. However, we noticed a small percentage of parasites with 

multiple nuclei after overnight auxin washout, indicating that some parasites did not recover 

from the original depletion of the TgAP2IX-5 protein. In order to study the effect of auxin 

removal on daughter parasite formation, we recorded the ability of the initial budding capability 

of the parasite by labelling TgISP1 and TgIMC1 during auxin washout and compared it with 
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the parasite’s budding capability when continuing the auxin treatment. We observed a 

significant increase in the daughter parasite’s budding ability when removing auxin that 

increased as the duration of auxin washout increased (Figure 6D-6G and S11).  To assess if the 

parasites were able to divide and segregate the apicoplast after depletion and re-expression of 

TgAP2IX-5, we monitored the fate of the plastid during auxin washout by recording the ratio 

of plastid to nucleus. While we observed a steady decrease of the number of plastid per nucleus 

in presence of continuing auxin treatment (Figure 6H), we recorded an increase in the ratio of 

plastid to nucleus per parasite as the duration of auxin washout increased (Figure 6I) 

demonstrating that the plastid was competent for replication.  These results demonstrate that 

the timing of TgAP2IX-5 expression is the sole determinant of the creation of daughter cells in 

the parasite. It may therefore determine the cell division pattern flexibility from endodyogeny 

to endopolygeny observed in this study.  

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.20.095877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.095877
http://creativecommons.org/licenses/by-nc-nd/4.0/


Discussion 

TgAP2IX-5 depletion was found to completely halt the formation of daughter cells (budding 

cycle) while nuclear division seemed unaffected. When auxin was added at the time of parasite 

invasion, daughter cell budding was stopped in the first cell cycle, indicating a direct 

relationship between budding and the expression of TgAP2IX-5. This led to the accumulation 

of multinucleated parasites without any signs of daughter cell formation. To our knowledge, 

such a stark phenotype was observed before in a collection of temperature sensitive cell cycle 

mutants [10], overexpressing a dominant negative version of TgRAb11b [26] and when 

mutating the specific fibers (SFA2 and 3) that connect the centrosome (outer core) to the 

forming daughter cells [5]. However, this is the first report demonstrating the importance of 

transcriptional control in the timing and assembly of daughter cell formation.  

After TgAP2IX-5 depletion, the cell cycle stops at a specific timepoint after plastid elongation 

and before its segregation. This timepoint corresponds to the onset of daughter cell formation. 

Surprisingly, the nuclear cycle proceeds while the apicoplast remains elongated and is not 

segregated. This underlines the absence of a checkpoint to ensure proper apicoplast segregation 

as was observed for other mutants [27].  

Flexibility between the nuclear and budding cycle is thought to be controlled in this parasite 

by the dual core centrosome with the inner core controlling the nuclear cycle and the outer core 

controlling the budding cycle [9]. A detailed study of the effect of TgAP2IX-5 on the 

subcellular structures of the parasite revealed that nuclear and bi-partite centrosome division 

remain mainly unaffected by TgAP2IX-5 depletion. Given the lack of daughter parasite 

formation observed after TgAP2IX-5 depletion, it is surprising that the outer core centrosome 

(as represented by TgCentrin1) would remain unaffected.  Other components of the outer core, 

such as the SFA fibers that were shown to be involved in the emergence of daughter cells [5], 
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but were present at the centrosome after TgAP2IX-5 depletion. Indeed, SFA fiber expression 

was also unchanged in the mutant as measured by RNA-seq. This indicates that the outer core 

centrosome functionality is probably intact in the mutant but centrosome activation and 

maturation is lacking to proceed with the budding cycle. Therefore, it is most likely that 

depletion of TgAP2IX-5 hinders normal centrosomal activity despite its successful division. 

The experiments inducing re-expression of TgAP2IX-5 after its depletion further illustrate the 

undamaged function of the centrosome in absence of the TF, since daughter cell formation re-

started after several cycles of unproductive budding. TgAP2IX-5 is therefore the determinant 

factor for centrosome activation and the control of the budding cycle.  

The phenotype observed after TgAP2IX-5 depletion illustrates the independence of the nuclear 

and budding cycles in this parasite. Using inducible degradation of the TgAP2IX-5 protein, we 

have established that the tachyzoites are able to divide by endopolygeny in vitro. These 

experiments also underline the ability of the centrosome to duplicate and maintain its 

functionality in absence of daughter cell formation. This is a key aspect of the parasite 

centrosome biology that allows to accumulate nuclei and then activate the budding cycle as 

seen for division patterns such as endopolygeny or schizogony. Although tachyzoites divide 

by endodyogeny, they retained this ability. This simple mechanism of control which allows 

multiple nuclear cycles to happen before cytokinesis is also dependent on a single protein, 

TgAP2IX-5. The presence of TgAP2IX-5 during asexual division in the intermediate host 

(endodyogeny) or asexual division in the definitive host [28] (endopolygeny) may indicate that 

the same mechanisms are shared for both division patterns, although global expression profiles 

are profoundly different. Regulation of the timing of expression of TgAP2IX-5 may be 

sufficient to switch from one division pattern to another. The molecular mechanisms that count 

the rounds of DNA synthesis and provide the proper timing for parasite budding may be linked 

to the proteins that activate the expression of TgAP2IX-5. 
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We have established that TgAP2IX-5 controls the timing of activation of the centrosome and 

therefore creation of daughter cells. However, the molecular mechanisms leading to 

centrosome activation remain unknown. This key event permits the production of daughter 

cells at the right timing irrespective of the division pattern used. We reasoned that TgAP2IX-

5 may directly control the expression of the proteins in charge of centrosome activation.  

Although expression of the SFA fibers or other known centrosome markers were unaffected in 

the mutant, we noticed that the expression of a key centrosomal protein, TgCep530, was 

directly under the control of TgAP2IX-5 (downregulated in RNA-seq and its promoter bound 

in ChIP-seq). This protein was shown to be targeted to a centrosomal region situated between 

the inner and outer core [29]. It is essential for the coordination of the nuclear and budding 

cycle although budding seemed to occur [29]. However, its depletion leads to the accumulation 

of outer core centrosome [29], a phenotype that is not observed with TgAP2IX-5 expression. 

This protein may therefore have other functions in the maturation or activation of the outer core 

centrosome that were not identified previously. Another possibility leading to lack of 

centrosome activation is a plausible downstream effect of non-transcriptional origin, targeting 

either a kinase or phosphatase with an important role in the centrosome activation cascade. Key 

serine/threonine kinases such as MAPK-like protein kinases have been identified within T. 

gondii and have been shown to ensure proper formation of new daughter parasites [9–11]. We 

found that expression of kinases and phosphatases were downregulated after TgAP2IX-5 

depletion, but in our ChIP-seq analysis, TgAP2IX-5 was not found to bind their promoters. 

One obvious candidate, that is directly regulated by TgAP2IX-5, was the TgCDC48AP protein 

but it was shown to be involved in apicoplast protein import [30]. TgAP2IX-5 directly activates 

the expression of several proteins of unidentified function in T. gondii; these hypothetical 

proteins may serve as direct centrosome activators. 
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We have also established that TgAP2IX-5 directly activates key components of the daughter 

cell scaffold. In particular, it regulates the expression of components to be targeted early to the 

forming daughter buds, such as TgISP1 [31], TgIMC1, TgIMC3, TgIMC4 and TgIMC10 [32]. 

Apical cap component, such as TgAC2 and TgAC7 may also be loaded early on the forming 

buds. Similarly, TgGAPM3 expression is directly dependent on TgAP2IX-5 and its 

invalidation provokes IMC collapse [33]. Another example is the TgIMC29 protein that has 

been shown to have an important role in the formation of daughter cells (Bradley P., personal 

communication). However, TgIMC15, a protein known to be loaded early on the centrosome 

before reaching the forming buds is not affected by TgAP2IX-5 depletion. TgIMC15 may have 

a limited role in daughter cell formation or centrosome activation as suggested by the mild 

phenotype exerted by its mutant [34]. This suggests that TgAP2IX-5 may activate the 

centrosome but also directly regulates the expression of key components of the daughter cell 

scaffold that will be needed in a short time frame to proceed with daughter cell formation 

(Figure 7).  

We observed that RNA-seq and ChIP-seq datasets only partially overlapped. We reasoned that 

indirect effects on gene expression may be identified using RNA-seq even at a short timing 

after TgAP2IX-5 depletion (6 hours). The cell-cycle expression profile of the genes that are 

directly controlled by this TF showed that regulated transcripts are expressed during the S 

phase before the budding occurs. Among these genes, we identified 4 other ApiAP2 

transcription factors (TgAP2III-2, TgAP2IV-4, TgAP2XII-2 and TgAP2XII-9) that were 

directly controlled by TgAP2IX-5. These TF may be responsible for the expression of the 

transcripts that were identified as downregulated in RNA-seq and that peak during the late S 

and M phase. Although no data is available for TgAP2III-2, TgAP2XII-2 and TgAP2XII-9, 

TgAP2IV-4 was shown to be a repressor of the bradyzoite differentiation expression program 

[18]. The control of the expression of a repressor of differentiation by a TF that also controls 
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the continuation of cell cycle may provide the missing link between cell cycle and 

differentiation. It has been shown that the cell cycle is linked to bradyzoite differentiation [35]. 

In particular, the developmental switch toward the latent bradyzoite is made during S phase 

and/or mitosis [35]. It seems convenient for the parasite to link the choice of continuing the 

tachyzoite cell cycle (by starting the budding cycle) with the expression of a repressor of 

differentiation. Therefore, expression of TgAP2IX-5 may serve as a molecular check point for 

the choice between proliferation or differentiation. TgAP2IX-5 may act as a licensing factor 

for this developmental choice at each round of the cell cycle (Figure 7). 

We also observed that TgAP2IX-5 may act as a repressor since it was found at the promoter of 

genes whose transcript was up-regulated after depletion of this protein. Although, the repressor 

role is limited to a small number of genes, it was striking to see that the TgAP2IX-5 transcript 

was overexpressed after TgAP2IX-5 depletion. We also found that TgAP2IX-5 was bound to 

its own promoter indicating that a direct negative feedback loop may be present to limit the 

expression of TgAP2IX-5. This might explain the short timeframe when TgAP2IX-5 is 

expressed during the cell cycle since its expression might be self-limiting. In other eukaryotes, 

TF associate in complex to either activate or repress gene expression [36]. ApiAP2s are known 

to associate with each other [21] and differential association may impact their activity.   

TgAP2IX-5 is therefore an essential regulator during the T. gondii tachyzoite cell cycle. 

TgAP2IX-5 controls the activation of the outer core centrosome to induce the budding cycle. 

It also controls the expression of key proteins for formation of the daughter cell scaffold, 

ensuring that the proper continuation of the cell cycle is achieved. TgAP2IX-5 is also a master 

regulator that controls the expression of the TF that will be further needed for the completion 

of the budding cycle. It also acts as a licensing factor that ensures that asexual proliferation 

continues by promoting the inhibition of the differentiation pathway at each round of the cell 
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cycle. TgAP2IX-5 is therefore a master regulator that controls cell cycle and developmental 

pathways. 

MATERIALS AND METHODS 

Parasite tissue culture and manipulation 

Toxoplasma gondii tachyzoites were propagated in vitro in human foreskin fibroblasts (HFF) 

using Dulbeccos’s modified Eagles medium supplemented with 10% fetal calf serum (FCS), 

2mM glutamine, and 1% penicillin-streptomycin. Tachyzoites were grown in ventilated tissue 

culture flasks at 37°C and 5% CO2. Transgenes were introduced by electroporation into 

tachyzoites of T. gondii strains and stable transformants were selected by culture in the 

presence of either 25 µg/ml mycophenolic acid (MPA) and 50 µg/ml xanthine, pyrimethamine 

(2 µM) or FUDR (5 µg/ml). Clonal lines were obtained by limiting dilution. Prior to total RNA, 

genomic DNA or protein purification, intracellular parasites were purified by sequential 

syringe passage with 17-gauge and 26-gauge needles and filtration through a 3-µm 

polycarbonate membrane filter. 

Generation of transgenic T. gondii strains 

The iKD TgAP2IX-5 line was generated using RH ∆ku80 Tir1 strain  as described previously 

[37]. To produced Myc-tagged TgSFA2 (TGME49_205670) or TgIMC29 (TGME49_243200) 

parasite lines, a DNA fragment representing the tag and the selection cassette was amplified 

using the pLIC-Myc-DHFR plasmid as a template. The PCR product (10µg) and a 

pSAG1::Cas9-U6 targeting the 3’ UTR of the respective genes were transfected in the iKD 

TgAP2IX-5 strain. The sequences of all primers used in this study are listed in Supplementary 

Table 1. In order to generate the iKD complementation line, 60 µg of a plasmid containing 3-

kb upstream the predicted ATG of the TgAP2IX-5 gene and the full-length c-myc tagged 

TgAP2IX-5 gene flanked by 2 kb homology fragments for the uprt gene was co-transfected 
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with the pSAG1::Cas9-U6::sgUPRT plasmid in the iKD TgAP2IX-5 strain to ensure insertion 

into the UPRT locus. The parasites were then selected using 5 µM 5-fluoro-2’-deoxyruridine 

(FUDR). To obtain the iKD TgAP2IX-5 strain expressing TgIMC3-mcherry, the iKD 

TgAP2IX-5 strain was transfected by a plasmid expressing TgIMC3-mcherry under the tubulin 

promoter and selected using pyrimethamine. 

Growth Assays 

For the growth assay, 8 x 10 4 of parental and iKD TgAP2IX-5 parasites per well of a 24 well-

plate were inoculated on HFF cells grown on coverslips for 24 hours in normal media or media 

treated with 0.5 mM of auxin (IAA/indoleacetic acid). The coverslips were then fixated using 

4% paraformaldehyde (PFA). The parasite nuclei were stained with anti-TgEno2 and anti-

TgIMC1 antibodies and the number of parasites per vacuole was counted. Three independent 

experiments were performed. For the plaque assay, two hundred of parental and iKD 

TgAP2IX-5 parasites were inoculated on HFF cells grown in a 6-well plate for seven days in 

normal media and media treated with 0.5mM of auxin (IAA/indoleacetic acid). Parasites were 

fixated and then stained using Crystal Violet.  

Organelle Labelling 

Parental and iKD TgAP2IX-5 strains were inoculated on HFF cells grown on coverslips in a 

24 well-plate for 24 hours. This was then followed by the addition of auxin for 3 hours, 6 hours 

and 12 hours prior to fixation with 4% PFA. The nucleus was labelled with anti-TgEno2 and 

the number of nuclei per parasite was counted. For Inner Membrane Complex labelling, 

parental and iKD TgAP2IX-5 strains were left to grow for 24 hours on HFF grown on 

coverslips for 24 hours. This was then followed by the addition of auxin for 6 hours. 

Intracellular parasites were labelled using anti-TgISP1 and anti-TgIMC1. Components of the 

centrosome were labelled after leaving parental and iKD TgAP2IX-5 strains to grow overnight 
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followed by auxin treatment for 6 hours and TgCentrin1 and TgChromo1 labelling. Golgi, 

plastid and mitochondrion were labelled after leaving parental and iKD TgAP2IX-5 strains to 

grow overnight in auxin with anti-TgCT Sort, anti-TgPlastid and anti-TgTom40, respectively.  

Immunofluorescence assays 

All immunofluorescence assays were carried out using the similar following protocol. 

Intracellular parasites were fixated using 4% PFA for 30 minutes. The coverslips were 

incubated with primary antibodies and then secondary antibodies coupled to Alexa Fluor-488 

or to Alexa-Fluor-594. Primary antibodies used for IFAs include: anti-TgEno2, anti-TgISP1 

[31], anti-TgIMC1 (a gift from Pr. Ward, U. Vermont), anti-TgCentrin1 (a gift from Pr. 

Gubbels, Boston College), anti-TgChromo1 [23], anti-TgSortilin (Golgi), anti-TgACP 

(Plastid), anti-TgTom40 [38] (mitochondrion), anti-HA (Eurogentech) and anti-myc (abcam) 

antibodies were used at the following dilutions: 1:1000, 1:500, 1:500, 1:500, 1:500, 1:500, 

1:500, 1:500,  1:200, respectively. Confocal imaging was performed with a ZEISS LSM880 

Confocal Microscope or Apotome Microscope at 63 magnification. All images were processed 

using Carl Zeiss ZEN software. 

Electron Microscopy 

HFF monolayer was inoculated with iKD TgAP2IX-5 strain. iKD strain was grown in either 

normal media or media treated with auxin for 24 hours. Transmission electron microscopy 

samples were fixed with 1 % glutaraldehyde in 0.1 M sodium cacodylate pH 6.8 buffer, at 4°C 

overnight. They were post-fixed with 1 % osmium tetroxide and 1.5 % potassium ferricyanide 

then with 1 % uranyl acetate, both in distilled water at room temperature in the dark, for 1 hour. 

After washing, samples were dehydrated with increasing ethanol-concentration solutions. 

Samples were finally infiltrated with epoxy resin and cured at 60°C for 24 hours. Sections of 

70-80 nm thickness deposited on formvar-coated grids were observed at 80 kV with a Hitachi 
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H7500 TEM (Milexia, France), and images were acquired with a 1 Mpixel digital camera from 

AMT (Milexia, France). 

Western Blotting  

Total protein extracts of 2 x 106 of parental and iKD TgAP2IX-5 parasites grown for 24 hours 

in either normal media or media treated with auxin were resuspended in 1X SDS buffer The 

protein samples were then fractionated on a 6% SDS-polyacrylamide electrophoresis gel and 

then transferred onto a nitrocellulose membrane. Chemiluminescent detection of bands was 

carried out by using Super Signal West Femto Maximum Sensitivity Substrate. 

Live imaging 

The transgenic parasite line iKD TgAP2IX-5 expressing TgIMC3- mCherry was directly 

inoculated on HFF monolayers grown in an 8 well-chamber.  The parasites were left to grow 

for 7 hours before adding 0.5mM Auxin for 16 hours. Auxin was washed out from the medium 

by changing normal cell culture media three times. Fluorescent signals were collected 

sequentially every 13 mins, with an average of 4 lines, a zoom factor (varying between 2 and 

4) and resulting in images that were 512x512 pixels in size, and 8 bits in resolution (256 gray 

levels). The images were treated with ImageJ (NIH). Z-stack acquisitions enabled to visualize 

the 3D localization of fluorescent signals. Movies were created at a rate of 2 frames per second. 

TgAP2IX-5 re-expression experiments 

Parasites of the iKD TgAP2IX-5 strain were inoculated on HFF cells grown on coverslips in a 

24-well plate for 16 hours in the presence of auxin. Auxin was washed out and parasites were 

left to grow in auxin-free medium for different durations of time for 3 hours, 6 hours, and 12 

hours before fixation with 4% PFA. Parasite nuclei were labelled with TgEno2 and the number 

of nuclei per parasite were counted. In similar experiments, the parasite’s inner membrane 

complex (IMC) was labelled with TgISP1 and TgIMC1 and the percentage of daughter parasite 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.20.095877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.095877
http://creativecommons.org/licenses/by-nc-nd/4.0/


formation was measured. In a third comparable experiment, plastid was labelled using anti-

TgACP and the ratio of plastid to nuclei was measured. Three independent experiments were 

performed for each experiment.  

RNA sample preparation and extraction  

RNA samples were prepared by infecting T175 flasks containing HFF cells monolayer with 

iKD TgAP2IX-5 parasite for 24 hours in either normal media or media containing auxin. T175 

flasks containing intracellular parasite grown in normal media were treated with auxin for 6 

hours before sample collection and addition of Trizol (Invitrogen). RNA was extracted as per 

manufacturer instruction. This was then followed by genomic DNA removal and cleaning using 

the RNase-free DNase I Amplification Grade Kit (Sigma). All RNA samples were assessed for 

quality using an Agilent 2100 Bioanalyzer. RNA samples with an integrity score greater than 

or equal to 8 were included in the RNA library preparation. Triplicate (biological replicate) 

were produced for each conditions.  

RNA library preparation  

The TruSeq Stranded mRNA Sample Preparation kit (Illumina) was used to prepare the RNA 

libraries according to the manufacturer’s protocol. Library validation was carried out by using 

DNA high-sensitivity chips passed on an Agilent 2100 Bioanalyzer. Library quantification was 

carried out by quantitative PCR (12K QuantStudio).  

Chromatin Immunoprecipitation and library preparation. 

ChIP was performed using a protocol previously described [21]. Briefly, intracellular parasites 

were grown 40h and fixed for 10 min at room temperature using 1% formaldehyde. DNA was 

processed by sonication using the Bioruptor device for 10min at 4°C with a 30sec on/off cycle. 

Protein-DNA complexes were then diluted in IP Dilution Buffer (16.7mM Tris-HCl pH8, 

167mM NaCl, 1.2mM EDTA, 0.01% SDS, 1.1% Triton and 0.5mM PMSF) and incubated ON 
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with IgG Agarose beads (Amersham Biosciences). The next day, beads were washed five times 

with ChIP wash buffer (50mM Tris-HCl pH8, 250mM NaCl, 1% NP-40, 1% desoxycholic acid 

and 0.5mM PMSF) and eluted twice in 75µL of ChIP elution buffer (50mM NaHCO3 and 1% 

SDS). Duplicate immunoprecipitation and input samples (biological replicate) were produced. 

Purified DNA (1 ng) was used as a template for library preparation using the Nugen Ovation® 

Ultralow System V2 kit according to the manufacturer’s instructions. Libraries were validated 

using a Fragment Analyzer and quantified by qPCR (ROCHE LightCycler 480). 

Sequencing, pre-processing and dataset cleaning. 

Clusters were generated on a flow cell with within a cBot using the Cluster Generation Kit 

(Illumina). Libraries were sequenced as 50 bp-reads on a HiSeq 2500 using the sequence by 

synthesis technique (Illumina). HiSeq control software and real-time analysis component were 

used for image analysis. Illumina’s conversion software (bcl2fastq 2.17) was used for 

demultiplexing. Raw sequencing datasets for RNA-seq (110M total reads) and ChIP-seq (28M 

total reads) were quality-checked with FastQC v0.11.8-0. Sequencing adapters were trimmed 

with Cutadapt v1.18 [39]. Finally, low-quality bases (LEADING:20, TRAILING:20, 

SLIDINGWINDOW:4:25) were trimmed and reads shorter than 30bp were filtered out using 

Trimmomatic v0.38.1 [40]. FastQC was used to quality-check each intermediary dataset and 

the final cleaned datasets (105M cleaned RNA-seq reads, 23M cleaned ChIP-seq reads). 

RNA-seq analysis 

Cleaned datasets (2 conditions * 3 biological replicates * 2 technical replicates = 12 datasets) 

were aligned with HiSAT2 v2.1.0 [41] against the T. gondii ME49 genome from ToxoDB-39 

[42] (93M aligned reads), and expression for annotated genes was quantified using htseq-count 

(union mode) from the HTSeq suite v0.9.1. Raw counts from technical replicates were added 

before performing differential expression analysis between iKD TgAP2IX-5 samples treated 
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with or without auxin for 6 hours with DESeq2 v1.22.1 using the SARTools framework v1.6.6 

[43]. Differentially expressed genes with adjusted p-value below 0.05 and log2 fold-change 

above 2 were kept. The dataset is deposited in the GEO database under the accession number 

GSE150406. 

ChIP-seq analysis 

Cleaned datasets (Input & IP * 2 biological replicates * 2 technical replicates = 8 datasets) were 

aligned with Bowtie2 v2.3.4 against the T. gondii ME49 genome from ToxoDB-39 [42] (14M 

aligned reads). Alignments from biological and technical replicates were merged using 

SAMtools v1.9 and duplicates were identified with Picard MarkDuplicates v2.18.20. ChIP 

quality and dataset consistency were checked using the deepTools suite v3.1.3 [44]. Fragment 

size was estimated and peaks were called with MACS2 v2.1.2 [45]. Additional bigwig tracks 

comparing ChIP with IP were generated with MACS2 bdgcmp. The dataset is deposited in the 

GEO database under the accession number GSE150406. 

Statistical analysis 

All data were analyzed with Graph Pad Prism software (San Diego, California, USA). 

Differences in the means were assessed by Student's t-test. In all cases, P < 0.05 was considered 

as significant. 
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Figure Legends 

Figure 1. TgAP2IX-5 is a cell-cycle regulated protein. (A) Confocal imaging demonstrating 

the expression of the TgAP2IX-5 protein using anti-HA antibody during the tachyzoite cell 

cycle. Anti-TgCentrin1, anti-TgChromo1 and anti-TgISP1 were used as cell cycle markers. 

The schematic cell cycle phase is indicated on the right side of the figure and the scale bar is 

indicated on the lower right side of each confocal image. (B) Schematic representation of the 

AID system used to degrade the TgAP2IX-5 protein. This system consists of introducing a 

recognition sequence into the gene of interest, which expresses a protein fused to the 

recognition sequence and in the presence of Auxin, will be recognized by the TIR1 protein and 

degraded by the proteasome. This system was used to produce an inducible knock down 

parasite in which the expression of TgAP2IX-5 can be controlled. (C) Western blot of total 

protein extract from the parental and iKD TgAP2IX-5 strains treated with Auxin for different 

durations of time validating the AID system. Western blots were probed with anti-HA to detect 

the presence of TgAP2IX-5 protein (upper panel), anti-TgActin was used as a control for 

normalization (lower panel). 

Figure 2. Characterization of TgAP2IX-5 iKD parasite. (A) Growth assay for parental and iKD 

TgAP2IX-5 strains in the absence and presence of auxin treatment for 24 hours. The number 

of parasites per vacuole was measured and the average number of parasites is represented 

within the graph. A Student’s t-test was performed, ***P< 0.001; mean ± s.d. (n=3). (B) 

Confocal imaging of iKD TgAP2IX-5 labelled with TgEno2 (red) and TgIMC1(green) in the 

presence and absence of auxin treatment. DAPI was used to stain the nucleus. Scale bar is 

indicated at the lower right side of each image. (C) Electron microscopy scans demonstrating 

the structural morphology of the nucleus in iKD TgAP2IX-5 parasite in the absence and 

presence of auxin. (N) represents the nucleus. Two daughter parasites are formed within each 

mother parasite in absence of auxin. Multi-nucleated parasites are visible in presence of auxin. 
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(D) Bar graphs representing nucleus per parasite counts for parental and iKD TgAP2IX-5 

strains in the absence and presence of auxin (12h treatment). A Student’s t-test was performed 

comparing mean percentage of multinucleated parasite between the control (Parental in 

absence of auxin) and iKD TgAP2IX-5 in the presence of auxin, ***P<0.001; mean ± s.d. 

(n=3) (E) Bar graph representing the percentage of daughter parasite formation in the absence 

and presence of 6 hours of auxin treatment using TgIMC1 labelling, A Student’s t-test was 

performed, ***P < 0.001, **P < 0.01; mean ± s.d. (n=3).  

Figure 3. Organelle replication in iKD TgAP2IX-5 throughout the tachyzoite asexual cell 

cycle. (A) Schematic representation of the chronological order of organellar division 

throughout a normal Toxoplasma gondii cell cycle. Nuclear cycle is indicated in green and 

budding cycle is indicated in blue. Time-frame of each organelle division is represented by 

length of representative organelle. (B) Confocal microscopy of iKD TgAP2IX-5 parasite with 

labelled plastid (red) and Golgi (green) in the presence and absence of overnight auxin 

treatment. DAPI was used to stain the nucleus. Scale bar is indicated at the lower right side of 

each image. (C) Bar graph representing the ratio of Golgi: nucleus using the parental and iKD 

TgAP2IX-5 strains in the absence and presence of overnight auxin treatment. A Student’s t-

test was performed, ns: P > 0.05; mean ± s.d. (n=3). (D) Bar graph representing the ratio of 

plastid to nucleus using the parental and iKD TgAP2IX-5 strains in the absence and presence 

of overnight auxin treatment. A Student’s t-test was performed, ****P < 0.0001; mean ± s.d. 

(n=3). (E) Bar graph representing the percentage of parental and iKD TgAP2IX-5 parasites 

with an elongated plastid in the absence and presence of overnight auxin treatment. A Student’s 

t-test was performed, ****P < 0.0001; mean ± s.d. (n=3).  

Figure 4: TgAP2IX-5 controls the expression of key genes involved in daughter parasite 

formation. (A) Volcano plot of differentially expressed genes analyzed from RNA-sequencing 

of TgAP2IX-5 parasites treated with auxin for 6 hours. Downregulated genes are represented 
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in blue, upregulated genes are represented in red. Statistically non-significant genes are 

represented in gray. The differential expression analysis (DE) was based on n=3 independent 

biological experiments. (B) Heat map showing the cell cycle expression of all individual 

transcripts that are downregulated in the iKD AP2IX-5 strain in the presence of 6 hours of 

auxin treatment. The cell cycle phases are represented at the bottom as well as the timing when 

budding occurs. (C) ChIP-seq data representing the direct targeting of TgAP2IX-5 to the 

promoters of TgIMC4 (i), TgIMC1 (i), TgGAPM3 (ii), TgIMC29 (iii) and TgAP2XII-2 (iv) 

genes. MACS2 generated tracks are represented together with the annotated genes (top) 

(D)Venn diagram of overlapping downregulated genes, upregulated genes from RNA-seq and 

identified promoters of genes directly interacting with TgAP2IX-5. DEseq2 and MACS2 

software were used to analyze RNA-seq and ChIP-seq data respectively. (E) Heat map of the 

cell cycle expression profile for the 89 downregulated genes directly activated by TgAP2IX-5. 

The cell cycle phases are represented at the bottom. 

Figure 5: iKD TgAP2IX-5 complementation. (A) Bar graph representing the expression of 

complemented TgAP2IX-5 using anti-myc antibody and the expression of endogenous 

TgAP2IX-5 using the anti-HA antibody. (B) Bar graph representing nucleus per parasite counts 

of the iKDc TgAP2IX-5 strain in the presence and absence of overnight auxin treatment. A 

Student’s t-test was performed to compare mean percentage of multinucleated parasite in the 

iKDc TgAP2IX-5 strain (-auxin) and iKDcTgAP2IX-5 strain (+ auxin), ns: P > 0.05; mean ± 

s.d. (n=3) (C) Bar graph representing Golgi: nucleus ratio in the iKDc AP2IX-5 strain in the 

presence and absence of overnight auxin treatment. A Student’s t-test was performed, ns: P > 

0.05; mean ±s.d. (n=3). (D) Bar graph representing the ratio of plastid/nucleus in the iKDc 

AP2IX-5 strain in the presence and absence of overnight auxin treatment. A Student’s t-test 

was performed; ns: P > 0.05; mean ± s.d. (n=3). 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 20, 2020. ; https://doi.org/10.1101/2020.05.20.095877doi: bioRxiv preprint 

https://doi.org/10.1101/2020.05.20.095877
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 6: iKD TgAP2IX-5 parasites treated with auxin resume cell division and daughter 

parasite formation mimicking endopolyogeny which normally occurs in the felid definitive 

host after auxin washout (re-expression of TgAP2IX-5). (A) Video-microscopy images of iKD 

TgAP2IX-5 parasites treated with auxin overnight at different time points after auxin washout. 

T0 = base line for washout, T1 = 43 mins after auxin washout, T2=1.5 hrs after auxin washout, 

T3= 1.73 hrs after auxin washout, T4 = 3.9 hrs after auxin washout. Emergence of parasites is 

indicated in red arrows throughout the different timepoints. The inner membrane complex of 

the parasite is labelled with IMC3-mCherry. The budding vacuole is indicated with a red arrow 

(B) Bar graph representing iKD TgAP2IX-5 mutant nucleus per parasite counts treated with 

auxin for different durations. Timepoint T0 = 0 min is equal to start of auxin wash. A Student’s 

t-test was performed to compare between the mean percentage of multinucleated parasite 

between the control (Parental -auxin) and iKD TgAP2IX-5 in the presence of auxin,          **P 

< 0.01; mean ±s.d. (n=3).  (C) Bar graph representing iKD TgAP2IX-5 nucleus per parasite 

counts during different timepoints of auxin washout treatments; 3 hours, 6 hours and overnight 

(O/N) washout. A Student’s t-test was performed to compare between the mean percentage of 

multinucleated parasite between the control (Parental Tir1-auxin) and iKD TgAP2IX-5 in the 

presence of auxin, ***P < 0.001; mean ±s.d. (n=3). (D) Bar graph representing parasite budding 

in the iKD TgAP2IX-5 strain during overnight auxin treatment using ISP1 labelling. A 

Student’s t-test was performed, *P < 0.05; **P < 0.01; mean ±s.d. (n=3).  (E) Bar graph 

representing parasite budding in the iKD TgAP2IX-5 strain using TgISP1 labelling during 

different timepoints of auxin washout treatments; 3 hours, 6 hours and overnight (O/N) 

washout. A Student’s t-test was performed, ****P <0.0001; mean ±s.d. (n=3). (F) Bar graph 

representing parasite budding in the iKD TgAP2IX-5 strain using TgIMC1 labelling during 

overnight auxin treatment. A Student’s t-test was performed, ns: P > 0.05; mean ±s.d. (n=3).   

(G) Bar graph representing parasite budding in the iKD TgAP2IX-5 strain using TgIMC1 
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labelling during different time points of auxin washout treatments; 3 hours, 6 hours and 

overnight (O/N) washout. A Student’s t-test was performed, ****P <0.0001; mean ± s.d. (n=3).  

(H) Bar graph representing the ratio of plastid to nucleus in the iKD TgAP2IX-5 strain during 

overnight auxin treatment. A Student’s t-test was performed, **P <0.01; mean ± s.d. (n=3).  (I) 

Bar graph representing the ratio of plastid to nucleus in the iKD TgAP2IX-5 strain during 

different timepoints of auxin washout treatments; 3 hours, 6 hours and overnight (O/N) 

washout. A Student’s t-test was performed, **P <0.01; *P < 0.05; mean ± s.d. (n=3). 

Figure 7. Schematic representation of the effect of TgAP2IX-5 depletion on daughter cell 

formation according to the different phases of the cell cycle. Absence of TgAP2IX-5 leads to 

the blockage of the cell cycle within the G1/S phase. This is associated with the direct targeting 

and downregulation of key inner membrane complex proteins such as TgISP1, TgIMC1, 

TgIMC29, TgIMC3, and TgIMC4 as well as other key TFs (TgAP2XII-2, TgAP2XII-9, 

TgAP2III-2, and TgAP2IV-4). TgAP2IV-4 is a known repressor of differentiation. 
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