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Summary. With the emergence of digital sensors in sports, all cyclists can now measure
many parameters during their effort, such as speed, slope, altitude, heart rate or pedalling
cadence. The present work studies the effect of these parameters on the average de-
veloped power, which is the best indicator of cyclist performance. For this, a cumulative
logistic model for ordinal response with functional covariate is proposed. This model is
shown to outperform competitors on a benchmark study, and its application on cyclist data
confirms that pedalling cadence is a key performance indicator. However, maintaining a
high cadence during long effort is a typical characteristic of high-level cyclists, which is
something on which amateur cyclists can work to increase their performance.

1. Data and motivation

With the emergence of digital sensors in sports (Halson, 2014), there is an increasing need
for tools and methods to analyse the produced data. Cycling is no exception, with its
many professional but low cost devices available to amateur cyclists (Bini et al., 2014). In
cycling, the most frequently produced and used data are cyclist’s speed, slope, altitude,
heart rate and pedalling cadence. The feft panel of Figure 1 illustrates such data for a
one-hour bike session. At a slightly higher cost, power sensors also make it possible to
measure the instantaneous power developed during the activity (right panel of Figure 1).
The trackeR package (Frick and Kosmidis, 2017) for R proposes interesting visualisation
tools and descriptive statistics for such data. Thus, any cyclist can contemplate the data
produced following a training session or a competition. Assuming that these data are
reliable indicators of the internal and external loads of the cyclist (refer to Cardinale
and Varley (2017) for a discussion on this aspect), is it possible to use them to improve
performance? There is a large volume of literature on the subject (Grappe, 2018; van
Dijk et al., 2017) that is not always accessible to uninitiated amateur cyclists, who may
nevertheless be interested in improving their performance.

If, in the last century, the reference indicator was the cyclist’s heart rate, this has been
dethroned in recent years by the power developed by the cyclist (Passfield et al., 2017).
Indeed, while heart rate can be distorted by external elements such as the weather, heart
rate being positively correlated with the temperature, this is not the case with the power,
which is the best indicator of cyclist performance to date (Beattie et al., 2016; Grappe,
2012; Passfield et al., 2017). In this work, the cyclist performance refer to the final



2 Julien JACQUES et al.

result at a cycling competition. The winner of the competition is the cyclist who has the
highest average speed, but since the speed depends on many external parameter (slope,
altitude, wind direction and power, group aspiration phenomenon, cyclist morphology,
material, etc), we focus on the developed power. Indeed, all external parameters fixed,
the average speed directly depends on the developed power. The right panel of Figure
1 plots the power developed by the cyclist during the same cycling session as the one
corresponding to the left panel. We can observed in this figure that the power data are
highly irregular, and cyclists rarely use the precise value of the power developed during
the effort. Cyclists are used to working with power zones, defined as a set range of watts,
calculated on the basis of percentages of the Functional Threshold Power (FTP) (Borszcz
et al., 2018; Grappe, 2012; Allen and A., 2010; Passfield et al., 2017). Several definitions
of theses ranges exists, and the one used in this study is the Coggan scale (Allen and
A., 2010), integrated in the Garmin device used for collecting the data. The limits of
the 7 power zones for the cyclist whose data are plotted on Figure 1 are represented by
the horizontal lines on the right panel of the figure.

If power is the best indicator of the cyclist’s performance, it is necessary to seek to
optimise it during the effort. For a cyclist with a fixed and limited capacity, several
parameters could help them to optimise the power during the effort. In particular, the
cyclist can easily act on their pedalling cadence, which is known to be a parameter
influencing significantly the developed power (Faria et al., 2005). However, here again,
knowledge in terms of cadence to be developed has changed a lot in recent years. You just
have to watch videos of climbing a pass in the 1980s and now to see that the pedalling
cadence is absolutely not the same. While in the 1980s cyclists sought to use the biggest
gear, by working essentially on the force that they were able to develop, the paradigm
evolved during the 2000s. Indeed, using a smaller force combined with a higher pedalling
cadence results in a much better final performance. In addition, the final performance
indicator that brought this to light is the developed power (Abbiss et al., 2009). Thus,
all professional cyclists now use very high pedalling cadences, especially during long
climbs where it is essential to maintain the highest possible power during the entire
climb (Nimmerichter et al., 2011). However, what about amateur cyclists? Is it also
possible for them to reproduce these cadences? Will a higher cadence increase the power
that a cyclist is able to develop, and therefore their performance? And what is the effort
length?

The goal of the present study is to give some answers to these questions, at least for
the cyclist who produced the analysed data. In particular, we want to exhibit which
levers of action are available for the cyclist in their practice in order to optimise the
average power that they are able to maintain during the activity. And this, for different
duration of the activity. For this, the proposed approach relies on a modelling of the
mean power zone according to speed, slope, altitude, heart rate, pedalling cadence and
outdoor temperature. Different models will be established according to the activity
duration, from very short efforts, involving the cyclists’ lactic capacities, to longer efforts,
involving aerobic channels: 2 minutes, 10 minutes and 30 minutes. For each duration of
effort, a variable selection is carried out in order to select which features are the most
discriminating for the power zone. This would exhibit which levers of action which the
cyclist could act on in order to optimise the mean power zone.
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Fig. 1. Raw cycling data (left) and power (right)

From a statistical point of view, the power zones are ordinal data, whereas the other
features (speed, slope, altitude, heart rate, cadence and temperature) are functional
data (quantitative measures evolving over a continuum). The next section presents the
existing models for ordinal and functional data and concludes that no model exists in
the literature for predicting an ordinal variable from functional ones. The Functional
Ordinal Logistic Regression (FOLR) model is thus proposed in Section 3, as well as its
maximum likelihood inference. Section 4 presents a comparison of FOLR with alternative
approaches on the basis of a real data set from the literature. Cycling data are then
analysed in Section 5. Some conclusions and perspectives are given in Section 6.

2. Related work

Ordinal data is one particular type of categorical data, occurring when the categories
are ordered. Such data are very frequent in practice, for instance in marketing studies
where people are asked to evaluate some products or services on an ordinal scale using
questionnaires. Nevertheless, it is not seldom that practitioners either consider them
as quantitative integer data, assimilating the indexes of categories to integers, or even
as nominal data, neglecting the order among the categories. In supervised learning,
when the task is to predict an ordinal response variable, historical models are based
on the modelling of cumulative probabilities that the ordinal variable is lower than
a given category (Agresti, 2010). More recent research on ordinal data is essentially
in classification or clustering, without using covariate. In the classification context,
Cardoso and Pinto da Costa (2007) convert the problem of ordinal prediction into a
binary classification problem, whereas Chu and Keerthi (2007) adapt the support vector
machine paradigm to the ordinal case. In the clustering context, Jacques and Biernacki
(2018) propose a mixture model based on a new distribution for ordinal data, whereas
McParland and Gormley (2013) propose a latent variable approach. However, when the
goal is to predict an ordinal variable using covariate, the reference models remain those
modelling the cumulative probabilities with a link-linear model (Agresti, 2010).
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In these latter, the ordinal response is predicted from the observations of scalar
covariates. In the present work, we are interested in functional covariates, occurring when
covariates are curves. Functional data (Ramsay and Silverman, 2005) become ubiquitous
since modern technologies facilitate the collection of high frequency data. The cycling
sport devices discussed in the introduction are a good example. Using the functional data
approach for modeling such high frequency data has several advantages. First, it allows
a parsimonious representation of high-dimensional data, which is essential in a modeling
perspective. Second, it allows to take into account the inherent measurement errors, by
introducing a smoothing step, which can be an answer to the reliability problem of such
data identified by Cardinale and Varley (2017) and Passfield et al. (2017).

In the literature, regression with functional covariates has been developed for many
types of responses. The most common is the regression model for continuous scalar
response, which has been proposed either in a parametric (Ramsay and Silverman, 2005)
or non-parametric way (Ferraty and Vieu, 2006). Several models have been proposed for
categorical nominal response: Ratcliffe et al. (2002) propose a binary logistic regression
model for functional covariate, whereas Escabias et al. (2005) propose a model based on
functional principal components. A partial least square (PLS) approach has also been
considered in Preda et al. (2007). A model for a functional response is also available in
Ramsay and Silverman (2005). However, to the best of our knowledge, no functional
regression model has been developed for ordinal response. In Preda et al. (2007), the
PLS model is proposed to predict the quality of cookies from observation of the resistance
of dough during the kneading process. The quality, good, adjustable or bad, is clearly
expressed on an ordinal scale, but has been considered as a nominal one, more precisely
as a binary one removing the adjustable category.

The present work aims to provide a prediction model for an ordered categorical re-
sponse variable on the basis of functional covariates. The next section presents the
Functional Ordinal Logistic Regression (FOLR) model. Section 3.2 focuses on the speci-
ficity of functional data and their modelling, whereas Section 3.3 proposes an estimation
algorithm for the FOLR model.

3. The Functional Ordinal Logistic Regression model

3.1. The model
Let Y be an ordinal categorical variable, with C categories, quoted by 1 to C. Let Xj

be a functional random variable (1 ≤ j ≤ p) with values in L2[0, T ], T > 0, and assume
that Xj is a L2-continuous stochastic process, Xj = {Xj(t), t ∈ [0, T ]}. Cumulative
logit models aim to model

logit p(Y ≤ c|X = x) = log
p(Y ≤ c|X = x)

p(Y > c|X = x)

for c = 1, . . . , C − 1, with a linear combination of predictors. For functional predictors,
the Functional Ordinal Logistic Functional Regression (FOLR) model proposed in this
paper can be written:

logit p(Y ≤ c|X = x) = αc −
p∑
j

∫ T

0
βj(t)xj(t)dt, (1)
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where βj(t), t ∈ [0, T ], are the functional regression coefficients, α1 ≤ . . . ≤ αC−1 and
1 ≤ c ≤ C − 1. With this model, each cumulative logit (1) has its own intercept,
whereas the effect of the covariates Xj(t) is shared by all of them. The minus sign for

the covariates effect is chosen in order that, for small values of
∑p

j

∫ T
0 βj(t)xj(t)dt the

response is likely to fall in the first category and for large values the response is likely
to fall in the last category. Figure 2 illustrates the corresponding probabilities (for one
covariate, p = 1).
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Fig. 2. Illustration of the FOLR model probabilities

In the following, only one functional covariate is considered (p = 1) for simplicity,
but extension is straightforward. Cycling data analysed at the end of the paper are
multivariate (p = 6).

3.2. From discrete observation to functional data
Let us consider a data set (yi, xi(t))1≤i≤n of joint observations of the ordinal response
Y and the functional covariate X. In practice, the functional expression of the xi(t) are
not known, and we only have access to their observation at some discrete time points
0 ≤ t1 ≤ . . . ≤ tS ≤ T . For simplicity of presentation, the same number of time points
is considered for every xi(t), but the contrary case can in practice easily be considered.
The first task, when working with functional data, is therefore to convert these discretely
observed values to a function xi(t), computable for any desired argument value t ∈ [0, T ].
One way to do that is interpolation, which is used if the observed values are assumed to
be errorless. However, if there is some noise that needs to be removed, a common way
to reconstruct the functional form is to assume that the curves xi(t) can be decomposed
into a finite dimensional space, spanned by a basis of functions (Ramsay and Silverman,
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2005):

xi(t) =

R∑
r=1

airφr(t) = a′iφ(t) (2)

where φ(t) = (φ1(t), . . . , φR(t))′ is the basis of functions, R the number of basis functions,
and ai = (ai1, . . . , aiR)′ the basis expansion coefficients.

In an unsupervised context, there is no straight rules about the choice of the basis
functions φ(t) (Jacques and Preda, 2014). Generally, this choice is empirically done
by the user, and it is recommended to use a Fourier basis in the case of data with a
repetitive pattern, and B-spline functions in most other cases. In a supervised context,
this choice can be optimised by cross-validation according to predictive objective.

The estimation of the coefficients ai is usually done through least square smoothing
(see Ramsay and Silverman (2005)), as a preliminary step of the estimation of Model
(1). If xi = (xi(t1), . . . , xi(ts))

′ is the vector of discrete observations of xi(t), and Φ the
S ×R matrix containing the φr(ts) (1 ≤ r ≤ R), the least square estimation of ai is:

âi = (Φ′Φ)−1Φ′xi.

Similarly, the functional regression coefficient β(t) is also assumed to be decomposed
into a finite basis of functions. For simplicity, it is assumed to be the same basis as for
X:

β(t) =
R∑

r=1

brφr(t) = b′φ(t) (3)

with b = (b1, . . . , bR)′.
Under these basis expansion assumptions, the FOLR model is:

logit p(yi ≤ c|X = xi) = αc −
∫ T

0

R∑
r=1

brφr(t)
R∑

r′=1

air′φr′(t)dt

= αc −
R∑

r=1

R∑
r′=1

brair′

∫ T

0
φr(t)φr′(t)dt

= αc − b′Ψai

= [1 −Ψai]

[
αc

b′

]
where Ψ is the R×R matrix of inner products between basis functions

∫ T
0 φr(t)φr′(t)dt.

Let remark that if different basis are chosen for β(t) and for xi(t), the only change will
be in the matrix Ψ which would contains the scalar product between the basis functions
of the two bases.

3.3. Model inference
For a data set (yi,ai)1≤i≤n of joint observation of the response and the basis expan-
sion coefficients, there is a need to estimate FOLR model parameters θ = (α, b) with
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α = (α1, . . . , αC−1). Assuming that the observations are independent, this is done by
maximizing the following log-likelihood:

`(θ) =

n∑
i=1

(
1yi=1 log g(α1 − b′Ψai) + 1yi=C log[1− g(αC−1 − b′Ψai)]

)
+

n∑
i=1

C−1∑
c=2

1yi=c log[g(αc − b′Ψai)− g(αc−1 − b′Ψai)] (4)

where g(t) = 1/(1 + exp(−t)) is the standard logistic cumulative density function.
In order to compute the maximum likelihood estimator, the derivative according to

b and α are computed. By denoting h(t) = exp(−t)/(1 + exp(−t))2 the derivative of
g(t), we have:

∂`(θ)

∂b
=

n∑
i=1

(
1yi=1

Ψai
h(α1 − b′Ψai)
g(α1 − b′Ψai)

+ 1yi=C
Ψai

−h(αC−1 − b′Ψai)
1− g(αC−1 − b′Ψai)

)

+

n∑
i=1

C−1∑
c=2

1yi=c
Ψai

h(αc − b′Ψai)− h(αc−1 − b′Ψai)
g(αc − b′Ψai)− g(αc−1 − b′Ψai)

(5)

and

∂`(θ)

∂αc
= −

n∑
i=1

(
1yi=1

δc,1h(α1 − b′Ψai)
g(α1 − b′Ψai)

+ 1yi=C

−δc,C−1h(αC−1 − b′Ψai)
1− g(αC−1 − b′Ψai)

)

−
n∑

i=1

C−1∑
k=2

1yi=c

δc,kh(αk − b′Ψai)− δc,kh(αk−1 − b′Ψai)
g(αk − b′Ψai)− g(αk−1 − b′Ψai)

(6)

where δc,k is the Kronecker delta, equal to 1 if category c is the same as category k, 0
otherwise.

Since the maximum likelihood equations deriving from these derivatives have no
closed form solutions, an iterative optimisation algorithm has to be applied. Here, we
have opted for the Fisher scoring algorithm Osborne (1992). Let V(θ) be the gradient
of `(θ), composed of terms given in equations (5) and (6), and the I(θ) be the Fisher
Information matrix. Starting from an initialisation θ(0) of θ, the Fisher scoring algorithm
updates the parameter by:

θ(q+1) = θ(q) + I(θ(q))−1V(θ(q))

until convergence of the parameter values, i.e. when |θ(q+1) − θ(q)| < ε.
The second derivatives of log-likelihood function required to compute the Fisher In-

formation matrix I(θ) are given in Appendix A.

4. Comparison with competitors

In this section we show that the proposed FOLR model is competitive compared to
the closest competitors, which are the multinomial functional logistic regression and the
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following non-functional methods: random forest, ordinal logistic regression and support
vector machine. Rather than choosing a subjective simulated data set, we choose to base
the comparison on a real data set from the literature, with an ordinal response to forecast
from functional features.

4.1. The Kneading data set
The Kneading data set is a well-known benchmark in functional data analysis, described
in detail in Lévéder et al. (2004). It concerns the quality of cookies and the relationship
with the flour kneading process. There are 115 different flours for which dough resistance
is measured during the kneading process for 480 seconds. One obtains 115 kneading
curves observed at 241 equispaced instants of time in the interval [0, 480]. The 115
flours produce cookies of different quality: 50 of them produced cookies of good quality,
25 produced medium quality and 40 low quality. These data have already been studied
in a supervised classification context (Lévéder et al., 2004; Preda et al., 2007). They
are known to be hard to discriminate, even for supervised classifiers, partly because of
the medium quality category. Taking into account that the resistance of dough is a
smooth curve measured with error and following previous works on this data (Lévéder
et al., 2004; Preda et al., 2007), least squares approximation on a basis of cubic B-spline
functions is used to reconstruct the true functional form of each sample curve. If Lévéder
et al. (2004); Preda et al. (2007) used cubic B-spline with 18 knots (22 basis functions),
we propose to select it according to our prediction purpose using cross-validation. Raw
and smoothed data are plotted on Figure 3.

Fig. 3. Raw and smoothed kneading data

4.2. Models in competition
All the following models are compared on the basis of the correct classification rate
(accuracy ratio) evaluated by 5-fold cross-validation.

Functional Ordinal Logistic Regression (FOLR) As previously mentioned, we have to
select how many cubic B-spline basis functions we have to use. The main idea was to test
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multiple values to determine the optimal number of basis functions. Different number of
B-spline basis functions have been considered in a range of values from 5 (single interior
knot) to 15 (11 interior knots).

The global evaluation scheme, used to compare the different models, is a 5-fold cross-
validation. Here, we have implemented nested cross-validation, which consists of two
cross-validations. First of all, we have divided our data set on 5 folds, in a way in
which each of them contains an equal amount of data (20%). Next, at each step, we
have retained one fold for testing that would leave 80% of data for training. In order to
test different number of basis functions, 10-fold cross-validation is implemented on this
training data set. Using this nested cross-validation scheme led to selecting six cubic
B-spline basis functions.

Functional Multinomial Logistic Regression (FMLR) FMLR is the multinomial (non-
ordinal) version of functional logistic regression, introduced in its binary version in Rat-
cliffe et al. (2002). We extended this method to more than two categories and used our
own implementation in R. This implementation is based on the multinom function of
the nnet package. The same nested cross-validation as for FOLR indicated that nine
cubic B-spline basis functions should be selected.

LASSO-Ordinal Logistic Regression (OLR) We also used as a competitor the non func-
tional version of ordinal logistic regression, applied directly on the raw data (241 features
corresponding to the 241 time points). Due to the fact that the number of predictors
was larger than the number of observations, we performed the LASSO penalised version
of the ordinal logistic regression model, with the usage of the ordinalNet R package.
The choice of the penalty parameter λ is done with the same nested cross-validation
scheme as before.

Random Forest (RF) The next competitor is random forest, applied through the caret
R package. The mtry parameter that determines the optimal number of variables that
will be used at each random split of the decision tree, has also been selected by nested
cross-validation.

Support Vector Machine (SVM) Last but not least, support vector machine was also
considered. The cost parameter C is selected by nested cross-validation. The cost
parameter determines the width of the margin of classification. For small values of the
cost parameter C, observations inside the margin are not penalised and we obtain better
fit but larger estimation error. The otherwise is true for larger values of cost parameter,
where the estimation error is minimised, but the model may overfit the data.

4.3. Results
Table 1 summarises the obtained results from the nested cross-validation technique for
all considered models. Standard deviations across folds are in parenthesis. The highest
accuracy ratio is achieved with FOLR model, which can be expected because FMLR is
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Table 1. Cross-validated Accuracy Ratio
(AR) and Root Mean Square Error (RMSE)
for Kneading data set (with standard devia-
tion across folds).

Models AR RMSE
FOLR 0.829 (0.070) 0.49 (0.12)
FMLR 0.770 (0.087) 0.612 (0.075)

RF 0.776 (0.097) 0.578 (0.17)
OLR 0.760 (0.123) 0.617 (0.14)
SVM 0.80 (0.090) 0.537 (0.11)

not able to take into account the ordinal nature of the response, whereas RF, OLR and
SVM do not consider the functional nature of the covariate.

5. Determination of the factors influencing the average power during cycling
session

5.1. The data set
The data set is composed of 216 one-hour bike sessions, during which the speed, slope,
altitude, heart rate of the cyclist, pedalling cadence and outdoor temperature are mea-
sured every second. These data are measured with a Garmin Edge 520. The power is
also recorded every second with a powermeter ROTOR INpower ROAD. These cycling
sessions were carried out during the same year (2019), by the same amateur cyclist, and
combine training and competition sessions. More precisely, this dataset corresponds to
the first hour of all sessions for this cyclist in 2019, after removing some sessions with
missing parameters (due to a battery problem or forgotten equipment). The fact that
only the first hour is considered is provided an homogeneous data set of sessions of the
same duration. Indeed, to treat functional observations of different lengths remains one
of the main open challenges when working with functional data, and the solution used
here is one of the most common (Schmutz et al., 2020).

Data quality In this work, the data are processed as they are produced by the pow-
ermeter. None correction is considered. There is a large literature on the subject of
the quality of such data, and we refer to Cardinale and Varley (2017); Halson (2014);
Passfield et al. (2017); Frick and Kosmidis (2017) for a discussion on it. Note that
the functional data approach which is considered in the present paper allows to remove
measurement error from the data thanks to the smoothing step of the functional data
reconstruction (Section 3.2).

Cutting and averaging These sessions were cut into three different lengths: 2 minutes,
10 minutes and 30 minutes. Consequently, we have 6480 sessions of 2 minutes, 1296
sessions of 10 minutes and 432 sessions of 30 minutes. The power is averaged during the
session and ranked into the seven power zones. Table 2 describes the distribution of the
sample over the power zone in function of the session duration. The power zone 1 is the
zone of lowest intensity, in which the cyclist can stay a long time. The power zone 7 is
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Table 2. Distribution over the power zones in function of the
session duration

power zone 1 2 3 4 5 6 7
2’ 1618 1431 927 631 493 785 595
10’ 163 404 246 159 115 175 34
30’ 27 148 117 46 31 59 4

the zone of highest intensity, in which the cyclist can stay for only a few seconds. Figure
4 plots a sample of data, corresponding to a 30-minute session in power zone 1 (lowest
one), 3, 5 and 7 (highest one).
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Fig. 4. Cycling data for 30-minute bike session in power zone 1 (top left), 3, 5 and 7 (bottom
right)

According to Passfield et al. (2017), using the mean power output for summarising
a cycling session is attractive, since analysing a single number is easy, but suffer from
the drawback of providing no information about the evolution of the power during the
session. In order to keep the simplicity of summarising a session with a unique power
mean value and to take into account the variability of the power during the session,
a cutting strategy has been employed in order to create shorter sessions, as described
above. Other refined approaches would certainly have allowed less information to be
lost, and could be the subject of future works. For instance, by working with the time
spent within the different power zones (Passfield et al., 2017). It would requires a
multivariate output regression model, in which the output are linearly dependent, which
is challenging from a statistical modelling point of view, above all when covariates are
functional. Another way to answer to this problem is to consider the functional nature
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of the power as for the other parameters, and to model it with a functional regression
model (Ramsay and Silverman, 2005). But is is possible that the interpretation of the
modeling results would be more difficult due to the complexity of the functional nature
of the output.

Independence assumption In this work, all the sessions, whatever are their length, are
assumed to be independent. This assumption is requested for performing maximum
likelihood estimation (Section 3.3) of the FOLR model. Since the sessions have been
carried out by the same cyclist, and moreover that the 2-minute, 10-minute and 30-
minute sessions are obtained by cutting one hour-session, such assumption should be
discussed. From a cycling point of view, this independence assumption means that the
level of performance is assumed to be constant throughout the year and also throughout
the session. More precisely, this is the link between the mean power and the covariates
(speed, slope, altitude, heart rate of the cyclist, pedalling cadence and outdoor temper-
ature) which are assumed to be constant throughout the session and the year. Even if
the independence assumption throughout the year may seem reasonable since the data
have been provided by the same individual, who has been cycling for a long time, this is
more discutable for the independence throughout a session, especially for short session.
Indeed, a 2-minute session with a mean power in zone 7 should probably have an impact
of the following 2-minute session. Nevertheless, regarding the whole set 6480 2-minute
sessions together make this independence assumption not so strong due to the diversity
of the sessions throughout the year. At any rate, it would be useful to compare the
results of the present paper with those obtained by models taking into account a depen-
dence within data. But such models remain to be developed. Let finally mention that
if these data came from a panel of different cyclists, the individual difference between
cyclists would strongly violate the independence assumption, and the proposed model
should be adapted by introducing a cyclist effect in the model. This extension should not
be too complicated, which is not necessarily the case with a model taking into account
a dependency between the sessions themselves.

Functional data reconstruction Functional data reconstruction is performed with cubic
spline basis with 20 basis functions. This choice was made empirically, so that the main
variations of the curves are taken into account. For simplicity, the same number of
basis functions is used for every session duration, although we could have used a smaller
number for the shorter sessions. Similarly, the same basis is used for all covariates, but
it is possible to choose different bases. It should be noted that for a given model, better
predictive results could probably be obtained by selecting the basis by cross-validation.
However, in the present study, different models using different sets of features will be
compared, and we want all of them to use the same basis for better interpretability.

5.2. Experimental setting
The goal is to model the mean power zone of the bike session according to the six func-
tional covariates: speed, slope, altitude, heart rate of the cyclist, pedalling cadence and
outdoor temperature. Since these covariates are not necessarily relevant for modelling
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Table 3. Cross-validated Root Mean Square Error (RMSE)
on the cycling data set.

Models 2-minute 10-minute 30-minute
FOLR 0.728 (0.024) 0.650 (0.036) 0.630 (0.091)
FMLR 1.470 (0.048) 1.296 (0.084) 1.298 (0.284)

RF 0.752 (0.029) 0.714 (0.033) 0.650 (0.062)
OLR 0.737 (0.040) - -
SVM 0.738 (0.026) 0.691 (0.070) 0.633 (0.108)

the power zone, a variable selection is performed. For this, all the possible subsets of
covariates are considered and evaluated by 10-fold cross-validation. Even if this strategy
is often avoided because of the exponential combinatorics of the number of subgroups of
variables, it is quite feasible here because six variables imply 63 subgroups. Due to the
ordinal nature of the power zone, the models are evaluated by the Root Mean Square Er-
ror (RMSE), as suggested in Gaudette and Japkowicz (2009). This criterion is preferred
to the classification accuracy, which does not take into account the proximity between
two ordinal categories.

Model estimation is implemented in the R package FRM. This package provides several
models for functional predictors (linear regression, logistic regression FMLR and the
FOLR model), as well as the cycling data set. The FRM package is available from the
authors upon request and will be submitted to CRAN after publication of the present
paper. With this package, one FRM model estimation is about 10 seconds on a 3.5 GHz
Intel Core i7 processor with 16 Go of memory.

5.3. Results
Comparison with competitors Table 3 show the cross-validated RMSE on the cycling

data set of FOLR and its competitors. Let notice that for OLR the heavy computation
time allow to obtain the results only for the 2-minute data set. These results confirm
that the proposed FOLR method over-performs the competitors on this dataset again.
It is not surprising since it is the only method which take into account both the ordinal
nature of the output and the functional nature of the covariate.

Variables selection In the proposed approach, the discriminant variables are selected
through a model selection approach. There is a large volume of literature on model
selection, and a recurring question is whether we should choose the best model or a set
of good models. In order to illustrate this question, Figure 5 plots the cross-validated
RMSE value for the 63 models (ordered by increasing RMSE), for the three bike session
durations (2, 10 and 30 minutes). On this Figure, the lower the RMSE, the better the
model. On the one hand, we can see that there is not one model which is clearly better
than the others. On the other hand, we notice that a group of model stands out slightly
from the others. We arbitrarily select this set of models, denoted in the following as
good models, by stopping at the first break in the RMSE values (red vertical lines). This
leads to the selection of 24 models for 2 and 10-minute bike session, and 26 models for
30-minute length.
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Fig. 5. Cross-validated RMSE values for the 63 models and for the three bike session durations

In order to estimate the importance of each variable in this set of good models,
we give a score to each variable occurring in each model. This score depends on the
ranking of the model. For instance, for 2-minute bike sessions, variables occurring in the
best model obtain a score of 24 (the number of good models), those in the second-best
model a score of 23, and so on. Then, the score of the variables is summed over all the
good models. Figure 6 plots the resulting variables importance, according to the bike
session duration. On this figure, the more outward the indicator, the more important
the variable.

Prediction accuracy Table 4 presents the cross-validated prediction results on whole
data set. These results are obtained by the best model according to CV-RMSE, for each
bike session duration. For 2-minute sessions, the best model uses all variables except
the altitude, and has a cross-validated RMSE of 0.728. For 10-minute sessions, the best
model uses the heart rate, cadence, slope and speed and has a cross-validated RMSE of
0.650. For 30-minute sessions, the best model uses the heart rate, cadence and slope,
and has a cross-validated RMSE of 0.630.

Model coefficients visualization An advantage of the proposed FOLR model, and espe-
cially the fact that it respect the functional nature of the covariates, is the possibility to
visualize the model coefficients. For instance, Figure 7 plots the regression coefficients
for the best model on the 30-minute sessions data set. Even is the coefficients fluctua-
tions are difficult to interpret since the model is learned on a large data sett, containing
heterogeneous bike sessions, we constate that the effect is mainly positive, what means
(according to model coefficients effect explained in Section 3.1) that the higher are these
features (heart rate, cadence and slope), the highest is the mean power zone.
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Table 4. True power zones versus cross-validated pre-
dicted ones by the best model (according to CV-RMSE), for
2-minute (top), 10-minute (middle) and 30-minute (bottom)
bike sessions. In bold are the correct predictions.
HHH

HH
pred

true 1 2 3 4 5 6 7

1 1260 250 19 1 1 0 0
2 324 939 329 40 1 0 0
3 33 207 412 229 38 3 0
4 1 32 129 224 149 32 0
5 0 3 34 94 142 99 4
6 0 0 4 43 161 530 195
7 0 0 0 0 1 121 396

HHH
HH

pred
true 1 2 3 4 5 6 7

1 113 25 1 0 0 0 0
2 50 304 92 6 0 0 0
3 0 68 120 50 1 0 0
4 0 7 31 80 22 3 0
5 0 0 2 21 55 31 0
6 0 0 0 2 37 135 21
7 0 0 0 0 0 6 13

H
HHHH

pred
true 1 2 3 4 5 6 7

1 19 7 0 0 0 0 0
2 8 108 34 3 0 0 0
3 0 27 76 17 0 0 0
4 0 6 7 22 4 1 0
5 0 0 0 3 17 8 0
6 0 0 0 1 10 49 4
7 0 0 0 0 0 1 0
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Fig. 7. Functional coefficients for the best 30-minute sessions model

5.4. Analysis
First of all, we can note that the quality of the prediction is relatively correct, with a
majority of elements on the diagonal of the confusion matrices (bold numbers in Table
4). Even when a power zone is wrongly predicted, the error is small since this is generally
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a contiguous power zone which is being predicted (numbers on the subdiagonal or the
superdiagonal). This means that the studied variables reflect the average developed
power, i.e. the cyclist’s performance. Then, we can notice that the quality of the
prediction increases with the duration of the exercise, as RMSE decreases. It seems easier
to predict the average power of a longer effort, which is subject to fewer irregularities
than the shorter efforts.

We now initiate here an attempt to analyze the results, based on the postulate that
the variables present in the best models are those on which it is necessary to act in order
to optimize the power. Sport science specialists could probably carry out a more detailed
analysis of these results, in particular by interpreting the values of the functional coeffi-
cients (as those plotted on Figure 7). Regarding the importance of the variables, Figure
6 shows that all variables are important. The most important variable, regardless of the
duration of the exercise, is the cyclist’s heart rate: it is selected in all the good models.
This is not surprising, because developing significant power requires significant physical
effort. And this confirms that the heart rate, when power was not easily measurable dur-
ing an exercise, was a good indicator of performance, or at least of the developed power.
Then comes the slope, with no significant difference of importance in function of the
session duration. The third variable in order of importance is pedalling cadence. This
variable is of particular interest because it is the one on which the cyclist can act, unlike
the slope, the temperature and the altitude which are external parameter on which the
cyclist cannot act. It is very interesting to note that the pedalling cadence is the variable
for which the difference in importance according to the length of the effort is the most
obvious. Moreover, the importance of the pedalling cadence decreases significantly with
the length of the effort. One possible interpretation can be as follows: if the amateur
cyclist studied is able to hold high cadences to maintain high power during short efforts,
it becomes much more complicated during longer efforts. Maintaining high power using
high cadence over a long period of time is the prerogative of high-level cyclists, such as
the professional cyclists mentioned in the introduction. Finally, the least important vari-
able is speed. Even if this might seem surprising at first glance, it is because it is closely
linked to the nature of the terrain: we will develop significant powers to climb steep
climbs, without going very fast; and on the contrary, we will go very quickly downhill at
very low or even null power when the cyclist is not pedalling.

6. Conclusion

This work proposes a study of the data that are commonly produced by cyclists during
the practice of their sport. In particular, this study is interested in the factors that
makes it possible to discriminate the average power developed during the effort. One of
the most interesting conclusions from a sports practice point of view is that the pedalling
cadence is indeed a lever for optimising the developed power. Nevertheless, this study
shows that for the amateur cyclist who provided these data, maintaining a high cadence
over a long time is difficult. This maintenance of a high cadence over a long time is one
of the typical characteristics of high-level cyclists and is a factor on which the amateur
cyclist can work to increase their performance. From a statistical modelling point of
view, this study has needed the development of an ordinal logistic regression model
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with functional predictors (FOLR). Experimental study on a benchmark has shown the
efficiency of this model in comparison to competitors, which either omit the ordinal
nature of the response or the functional nature of the covariate.

The perspectives from a cycling data point of view are numerous, and some of them
are described in the sequel. The first one would be to complete the data set with data
from other cyclists, of various profiles and levels, in order to build a more heterogeneous
database and thus to be able to draw more general conclusions. However, that will
require adapting the FOLR model to take into account an individual effect, or at least
to incorporate the effect of the age, the weight, etc. This requires developing a new
cumulative logit model with functional and non functional covariate. Similarly, it would
also be interesting to be able to take into account the period of the year at which the
data is measured. Cyclists have a level that evolves throughout the year and it would
be nice to be able to take that into account. However, that would again require the
development of a new model. Even more finely, it could be interesting to model the
dependence between sessions that are close in time, whether it is between two sessions
spaced a day apart or even between different times of the same session. Another aspect
concerns the bike session durations, which have been homogenized in cutting them after
one hour. This necessarily generates a loss of information and a bias in the analysis. A
challenging perspective would be to be able to take into account functional observations
of different lengths, but it currently remains an open question. Analogously, averaging
the power during a bike session, lead to loose information about the variation of the
power during this session. Modelling the power as a functional data using a functional
regression model (Ramsay and Silverman, 2005), or modelling the time spent within the
different power zones, could provide a complementary analysis of the present work.
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A. Fisher Information Matrix

Let remind that g(t) = 1/(1+exp(−t)), h(t) = exp(−t)/(1+exp(−t))2 the first derivative

of g(t) and let introduce k(t) = − exp(−t)
(1+exp(−t))2 is the second derivative of g(t).
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