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Abstract

With the emergence of numerical sensors in sports, all cyclists can now measure
many parameters during their effort, such as the speed, the slope, the altitude, their
heart rate or their pedaling cadence. The present work studies the effect of these
parameters on the average developed power, which is the best indicator of the cyclist
performance. For this, a cumulative logistic model for ordinal response with func-
tional covariate is proposed. This model is shown to outperform the competitors on
a benchmark study, and its application on cyclist data confirms that the pedaling
cadence is a key performance indicator. But maintaining a high cadence during long
effort is a typical characteristic of high level cyclists, which is something on which
amateur cyclists can work on to increase their performance.
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1 Data and motivation

With the emergence of numerical sensors in sports, there is an increasing need for tools

and methods to analyse the produced data. Cycling is not an exception, with its many

professional but low costly devices available to amateur cyclists Bini et al. (2014). In

cycling, the most frequently produced and used data are the speed, the slope, the altitude,

the heart rate of the cyclist and its pedaling cadence. Left panel of Figure 1 illustrates

such data for a one-hour bike session. At a slightly higher cost, power sensors also make

it possible to measure the instantaneous power developed during the activity (right panel

of Figure 1). Thus, any cyclist can contemplate the data produced following a training

or a competition. But apart from contemplating this data and publishing them on social

media, what else can be done with it? Is it possible to use them to improve performance?

There is a large literature on the subject Grappe (2018); van Dijk et al. (2017), not always

accessible to uninitiated amateur cyclists, who may nevertheless be interested in improving

their performance.

If the reference indicator was the heart rate in the last century, the latter has been

dethroned in recent years by the power developed by the cyclist. Indeed, if the heart rate

can be distorted by external elements such as the weather, the heart rate being positively

correlated with the temperature, this is not the case with the power which is to date

the best indicator of the performance of the cyclist Beattie et al. (2016); Grappe (2012).

Right panel of Figure 1 plots the power developed by the cyclist during the same bike

session as the one corresponding to the left panel. We can notice in this figure that power

data are highly irregular, and cyclists rarely use the precise value of the power developed

during the effort. Cyclists are used to working with power zones, defined as a set range

of watts, calculated on the basis of percentages of the Functional Threshold Power (FTP)
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Borszcz et al. (2018); Grappe (2012). Several definitions of theses ranges exists, and those

automatically calculated by the device used to collect the data are used in this work. The

limits of the 7 power zones for the cyclist whose data are plotted on Figure 1 are represented

by the horizontal lines on the right panel of the figure.

If power is the best cyclist’s performance indicator, it is necessary to seek to optimize

it during the effort. For a cyclist with a fixed and limited capacity, several parameters

could help him to optimize the power during the effort. In particular, the cyclist can easily

act on its pedaling cadence, which is known to be a parameter influencing significantly the

developed power Faria et al. (2005). But here again, knowledge in terms of cadence to be

developed has changed a lot in recent years. You just have to watch videos of climbing a

pass in the 1980s and now to see that the pedaling cadence is absolutely not the same. If

in the 1980s cyclists sought to use the biggest gear, by working essentially on the force that

they were able to develop, the paradigm evolved during the 2000s. Indeed, using a smaller

force ally with a higher pedaling cadence results in a much better final performance. And

the final performance indicator that brought this to light is the developed power Abbiss

et al. (2009). Thus, all professional cyclists now use very high pedaling cadences, especially

during long climbs where it is essential to maintain the highest possible power during the

entire climb Nimmerichter et al. (2011). But what about the amateur cyclists? Is it also

possible for them to reproduce these cadences? Will an higher cadence increase the power

that a cyclist is able to develop, and therefore his performance? And whatever is the effort

length?

The goal of the present study is to give some answers to these questions, at least for the

cyclist who produced the analyzed data. In particular, we want to exhibit which levers of

action are available for the cyclist in his practice in order to optimize the average power that

3



0

100

200

300

0 1000 2000 3000
Time (s)

variable
altitude
cadence
hearth rate
slope
speed(kph)

0

200

400

600

0 1000 2000 3000
Time (s)

variable
watts

Figure 1: Raw cycling data (left) and power (right)

he is able to maintain during the activity. And this, for different duration of the activity.

For this, the proposed approach rely on a modeling of the mean power zone according to

the speed, the slope, the altitude, the heart rate, the pedaling cadence and the outdoor

temperature. Different models will be established according to the activity duration, from

very short efforts, involving the cyclists’ lactic capacities, to longer efforts, involving aerobic

channels: 2 minutes, 10 minutes and 30 minutes. For each duration of effort, a variable

selection is carried out in order to select which features are the most discriminant for the

power zone. This would exhibit what are the levers of action on which the cyclist could

act in order to optimize the mean power zone.

From a statistical point of view, the power zones are ordinal data, whereas the other

features (speed, slope, altitude, heart rate, cadence and temperature) are functional data

(quantitative measures evolving over a continuum). The next section presents the existing

models for ordinal and functional data and concludes that none model exists in the literature

for predicting an ordinal variable from functional ones. The Functional Ordinal Logistic
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Regression (FOLR) model is thus proposed in Section 3, as well as its maximum likelihood

inference. Section 4 presents a comparison of FOLR with alternative approaches on the

basis of a real data set from the literature. Cycling data are then analyzed in Section 5.

Some conclusions and perspectives are given in Section 6

2 Related work

Ordinal data is one particular type of categorical data, occurring when the categories are

ordered. Such data are very frequent in practice, as for instance in marketing studies

where people are asked through questionnaires to evaluate some products or services on

an ordinal scale. Nevertheless, this is not seldom that practitioners either consider them

as quantitative integer data, assimilating the indexes of categories to integers, or even as

nominal data, neglecting the order among the categories. In supervised learning, when the

task is to predict an ordinal response variable, historical models are based on the modeling

of cumulative probabilities that the ordinal variable is lower than a given category Agresti

(2010). More recent research on ordinal data are essentially in classification or clustering,

without using covariate. In the classification context, Cardoso and Pinto da Costa (2007)

convert the problem of ordinal prediction into a binary classification problem, whereas Chu

and Keerthi (2007) adapt the support vector machine paradigm to the ordinal case. In the

clustering context, Jacques and Biernacki (2018) propose a mixture model based on a new

distribution for ordinal data, whereas McParland and Gormley (2013) propose a latent

variable approach. But when the goal is to predict an ordinal variable using covariate,

the reference models remain those modeling the cumulative probabilities with a link-linear

model Agresti (2010).
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In these latter, the ordinal response is predicted from the observations of scalar co-

variates. In the present work, we are interested in functional covariates, occurring when

covariates are curves. Functional data Ramsay and Silverman (2005) become ubiquitous

since the modern technologies ease the collection of high frequency data. The cycling sport

devices discussed in the introduction are a good example.

In the literature, regression with functional covariates has been developed for many

types of responses. The most usual is the regression model for continuous scalar response,

which has been proposed either in a parametric Ramsay and Silverman (2005) or non-

parametric way Ferraty and Vieu (2006). Several models have been proposed for categorical

nominal response: Ratcliffe et al. (2002) proposes a binary logistic regression model for

functional covariate, whereas Escabias et al. (2005) propose a model based on functional

principal components. A Partial Least Square approach has also been considered in Preda

et al. (2007). A model for a functional response is also available in Ramsay and Silverman

(2005). However, to the best of our knowledge, none functional regression model has

been developed for ordinal response. In Preda et al. (2007), the PLS model is proposed

to predict the quality of cookies from observation of the resistance of dough during the

kneading process. The quality, Good, Adjustable or Bad, is clearly expressed on an ordinal

scale, but has been considered as a nominal one, more precisely as a binary one removing

the Adjustable category.

The present work aims to provide a prediction model for an ordered categorical response

variable on the basis of functional covariates. The next section presents the Functional

Ordinal Logistic Regression (FOLR) model. Section 3.2 focuses on the specificity of func-

tional data and their modeling, whereas Section 3.3 proposes an estimation algorithm for

the FOLR model.
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3 The Functional Ordinal Logistic Regression model

3.1 The model

Let Y be an ordinal categorical variable, with C categories, quoted by 1 to C. Let Xj be a

functional random variable (1 ≤ j ≤ p) with values in L2[0, T ], T > 0, and assume thatXj is

a L2-continuous stochastic process, Xj = {Xj(t), t ∈ [0, T ]}. Let πc(x) = p(Y = c|X = x).

Cumulative logit models aims to model

logit p(Y ≤ c|X = x) = log
p(Y ≤ c|X = x)

p(Y > c|X = x)
=

π1 + . . .+ πc
πc+1 + . . .+ πC

for c = 1, . . . , C− 1, with a linear combination of predictors. For functional predictors, the

Functional Ordinal Logistic Functional Regression (FOLR) model proposed in this paper

can be written:

logit p(Y ≤ c|X = x) = αc −
p∑
j

∫ T

0

βj(t)xj(t)dt, (1)

where βj(t), t ∈ [0, T ], are the functional regression coefficients, α1 ≤ . . . ≤ αC−1 and

1 ≤ c ≤ C − 1. With this model, each cumulative logit (1) has its own intercept, whereas

the effect of the covariates Xj(t) is shared by all of them. The minus sign for the covariates

effect is chosen in order that, for small values of
∑p

j

∫ T

0
βj(t)xj(t)dt the response is likely

to fall in the first category and for large values the response is likely to fall in the last

category. Figure 2 illustrated the corresponding probabilities (for one covariate, p = 1).

In the sequel, only one functional covariate is considered (p = 1) for simplicity, but

extension is straightforward. Cycling data analyzed at the end of the paper are multivariate

(p = 6).

7



⌠
⌡

β(t)xi(t))

p(
Y

≤
c|

x i
(t

))
0

1

c=1

c=2

c=3

Figure 2: Illustration of the FOLR model probabilities

3.2 From discrete observation to functional data

Let consider a data set (yi, xi(t))1≤i≤n of joint observations of the ordinal response Y and the

functional covariateX. In practice, the functional expression of the xi(t) are not known, and

we only have access to their observation at some discrete time points 0 ≤ t1 ≤ . . . ≤ tS ≤ T .

For simplicity of presentation, the same number of time points is considered for every xi(t),

but the contrary case can in practice easily be considered. The first task, when working with

functional data, is therefore to convert these discretely observed values to a function xi(t),

computable for any desired argument value t ∈ [0, T ]. One way to do that is interpolation,

which is used if the observed values are assumed to be errorless. However, if there is some

noise that needs to be removed, a common way to reconstruct the functional form is to

assume that the curves xi(t) can be decomposed into a finite dimensional space, spanned
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by a basis of functions Ramsay and Silverman (2005):

xi(t) =
R∑

r=1

airφr(t) = a′iφ(t) (2)

where φ(t) = (φ1(t), . . . , φR(t))′ is the basis of functions, R the number of basis functions,

and ai = (ai1, . . . , aiR)′ the basis expansion coefficients.

The choice of the basis functions φ(t), has to be made by the user. There is no straight

rules about how to choose the appropriate ones Jacques and Preda (2014). We can never-

theless recommend the use of a Fourier basis in the case of data with a repetitive pattern,

and B-spline functions in most other cases.

The estimation of the coefficients ai is usually done through least square smoothing

(see Ramsay and Silverman (2005)), as a preliminary step of the estimation of Model (1).

If xi = (xi(t1), . . . , xi(ts))
′ is the vector of discrete observations of xi(t), and Φ the S × p

matrix containing the φj(ts), the least square estimation of ai are:

âi = (Φ′Φ)−1Φ′xi.

Similarly, the functional regression coefficient β(t) are also assumed to be decomposed

into a finite basis of functions. For simplicity, it is assumed to be the same basis as for X:

β(t) =
R∑

r=1

brφr(t) = b′φ(t) (3)

with b = (b1, . . . , bR)′.
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Under these basis expansion assumptions, the FOLR model is:

logit p(yi ≤ c|X = xi) = αc −
∫ T

0

R∑
r=1

brφr(t)
R∑

r′=1

air′φr′(t)dt

= αc −
R∑

r=1

R∑
r′=1

brair′

∫ T

0

φr(t)φr′(t)dt

= αc − b′Ψai

= [1 −Ψai] ∗

αc

b′


where Ψ is the R×R matrix of inner products between basis functions

∫ T

0
φr(t)φr′(t)dt.

3.3 Model inference

For a data set (yi,ai)1≤i≤n of joint observation of the response and the basis expansion

coefficients, there is a need to estimate FOLR model parameters θ = (α, b) with α =

(α1, . . . , αC−1). This is done by maximizing the following log-likelihood:

`(θ) =
n∑

i=1

(1yi=1 log g(α1 − b′Ψai) + 1yi=C log[1− g(αC−1 − b′Ψai)])

+
n∑

i=1

C−1∑
c=2

1yi=c log[g(αc − b′Ψai)− g(αc−1 − b′Ψai)] (4)

where g(t) = 1/(1 + exp(−t)) is the standard logistic cumulative density function.

In order to compute the maximum likelihood estimator, the derivative according to b

and α are computed. By denoting h(t) = exp(−t)/(1 + exp(−t))2 the derivative of g(t),

we have:
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∂`(θ)

∂b
=

n∑
i=1

(
1yi=1

Ψai
h(α1 − b′Ψai)

g(α1 − b′Ψai)
+ 1yi=C

Ψai
−h(αC−1 − b′Ψai)

1− g(αC−1 − b′Ψai)

)

+
n∑

i=1

C−1∑
c=2

1yi=c
Ψai

h(αc − b′Ψai)− h(αc−1 − b′Ψai)

g(αc − b′Ψai)− g(αc−1 − b′Ψai)
(5)

and

∂`(θ)

∂αc

=
n∑

i=1

(
1yi=1

δc,1h(α1 − b′Ψai)

g(α1 − b′Ψai)
+ 1yi=C

−δc,Ch(αC−1 − b′Ψai)

1− g(αC−1 − b′Ψai)

)

+
n∑

i=1

C−1∑
k=2

1yi=c

δc,kh(αk − b′Ψai)− δc,kh(αk−1 − b′Ψai)

g(αk − b′Ψai)− g(αk−1 − b′Ψai)
(6)

where δc,k is the Kronecker delta, equal to 1 if category c is the same as category k, 0

otherwise.

Since the maximum likelihood equations deriving from these derivatives have no closed

form solutions, an iterative optimization algorithm has to be applied. Here, we have opted

for the Fisher scoring algorithm Osborne (1992). Let V(θ) be the gradient of `(θ), composed

of terms given in equations (5) and (6), and the I(θ) be the Fisher Information matrix.

Starting from a initialization θ(0) of θ, the Fisher scoring algorithm update the parameter

by:

θ(q+1) = θ(q) + I(θ(q))−1V(θ(q))

until convergence of the parameter values, i.e. when |θ(q+1) − θ(q)| < ε.

4 Comparison with competitors

In this section we show that the proposed FOLR model is competitive compared to the

closest competitors, which are the multinomial functional logistic regression and the follow-
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ing non-functional methods: random forest, ordinal logistic regression and support vector

machine. Rather than choosing a subjective simulated data set, we choose to base the

comparison on a real data set from the literature, with an ordinal response to forecast from

functional features.

4.1 The Kneading data set

The Kneading data set is a well-known benchmark in functional data analysis, described in

details in Lévéder et al. (2004). It concerns the quality of cookies and the relationship with

the flour kneading process. There are 115 different flours for which the dough resistance is

measured during the kneading process for 480 seconds. One obtains 115 kneading curves

observed at 241 equispaced instants of time in the interval [0, 480]. The 115 flours produce

cookies of different quality: 50 of them have produced cookies of good quality, 25 produced

medium quality and 40 low quality. This data, have been already studied in a supervised

classification context Lévéder et al. (2004); Preda et al. (2007). They are known to be hard

to discriminate, even for supervised classifiers, partly because of the medium quality class.

Taking into account that the resistance of dough is a smooth curve measured with error,

and following previous works on this data Lévéder et al. (2004); Preda et al. (2007), least

squares approximation on a basis of cubic B-spline functions is used to reconstruct the true

functional form of each sample curve. If Lévéder et al. (2004); Preda et al. (2007) used

cubic B-spline with 18 knots (22 basis functions), we propose to select it according to our

prediction purpose using cross validation. Raw and smoothed data are plotted on Figure

3.
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Figure 3: Raw and smoothed kneading data

4.2 Models in competition

All the following models are compared on the basis of the correct classification rate (accu-

racy ratio) evaluated by 5-folds cross validation.

Functional Ordinal Logistic Regression (FOLR) As previously mentioned, we have

to select how many cubic B-spline basis functions we have to use. The main idea was to

test multiple values to determine the optimal number of basis functions. Different number

of B-spline basis functions have been considered in a range of values from 5 (single interior

knot) to 15 (11 interior knots).

The global evaluation scheme, used to compare the different models, is 5-folds cross

validation. Here, we have implemented nested cross-validation, which consists of two cross-

validations. First of all, we have divided our data set on 5 folds, in a manner that each of

them contains equal amount of data (20%). Next, at each step, we have retained one fold

for testing which would leave 80% of data for training. In order to test different number

of basis functions, 10-folds cross validation is implemented on this training data set. Using
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this nested cross-validation scheme lead to select 6 cubic B-spline basis functions.

Functional Multinomial Logistic Regression (FMLR) FMLR is the multinomial

(non ordinal) version of functional logistic regression, introduced in its binary version in

Ratcliffe et al. (2002). We extended this method to more than two categories and used

our own implementation in R. This implementation is based on the multinom function of

the nnet package. The same nested cross-validation as for FOLR indicated that 9 cubic

B-spline basis functions should be selected.

LASSO-Ordinal Logistic Regression (OLR) We also used as a competitor the non

functional version of ordinal logistic regression, applied directly on the raw data (241 fea-

tures corresponding to the 241 time points). Due to the fact that the number of predictors

was larger than the number of observations, we performed the LASSO penalized version

of the ordinal logistic regression model, with the usage of the ordinalNet R package. The

choice of the penalty parameter λ is done with the same nested cross-validation scheme as

before.

Random Forest (RF) The next competitor is Random Forest, applied through the

caret R package. The mtry parameter which determines the optimal number of variables

that will be used at each random split of the decision tree, has also been selected by nested

cross-validation.

Support Vector Machine (SVM) Last but not least, support vector machine was

also considered. The cost parameter C is selected by nested cross-validation. The cost

parameter determines the width of the margin of classification. For small values of the cost
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parameter C, observations inside the margin are not penalized and we obtain better fit but

larger estimation error. The otherwise is true for larger values of cost parameter, where

the estimation error is minimized but the model may overfit the data.

4.3 Results

Table 1 summarize the obtained results from the nested cross-validation technique for

all considered models. Standard deviations across folds are in parenthesis. The highest

accuracy ratio is achieved with FOLR model, which can be expected because FMLR is not

able to take into account the ordinal nature of the response, whereas RF, OLR and SVM

do not consider the functional nature of the covariate.

Functional models AR Non-functional models AR

FOLR 0.829 (0.070) RF 0.776 (0.097)

FMLR 0.770 (0.087) OLR 0.760 (0.123)

SVM 0.80 (0.090)

Table 1: Cross-validated Accuracy Ratio (AR) for Kneadning data set (with standard

deviation across folds).
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5 Determination of the factors influencing the average

power during cycling session

5.1 The data set

The data set is composed of 216 one hour bike sessions, during which are measured every

second: the speed, the slope, the altitude, the heart rate of the cyclist, the pedaling cadence

and the outdoor temperature. These data are measured with a Garmin Edge 520. The

power is also recorded every second with a powermeter ROTOR INpower ROAD. These

cycling sessions were carried out during the same year (2019), by the same amateur cyclist,

and combine training and competition sessions. These sessions were cut into 3 different

lengths: 2 minutes, 10 minutes and 30 minutes. Consequently, we have 6480 sessions of 2

minutes, 1296 sessions of 10 minutes and 432 sessions of 30 minutes. If these data came

from a panel of different cyclists, the independence assumption requested for performing

maximum likelihood estimation (Section 3.3) of the FOLR model would not hold. But in

the present data set, all the data have been provided by the same individual, who have been

cycling for a long time and whose level of performance is assumed to be broadly constant

throughout the year. Consequently, each session of this cyclist can be reasonably assumed

to be independent from each other.

The power is averaged during the session and ranked into the 7 power zone. Table

2 describes the distribution of the sample over the power zone in function of the session

duration.

Figure 4 plots a sample of data, corresponding to 30 minutes session in power zone 1

(lowest one), 3, 5 and 7 (highest one).

Functional data reconstruction is performed with cubic spline basis with 20 basis func-
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power zone 1 2 3 4 5 6 7

2’ 1618 1431 927 631 493 785 595

10’ 163 404 246 159 115 175 34

30’ 27 148 117 46 31 59 4

Table 2: Distribution over the power zones in function of the session duration

0

50

100

150

200

0 500 1000 1500
Time (s)

variable
altitude
cadence
hearth rate
slope
speed(kph)
temperature

WATT zone  1

0

100

200

0 500 1000 1500
Time (s)

variable
altitude
cadence
hearth rate
slope
speed(kph)
temperature

WATT zone  3

0

50

100

150

200

0 500 1000 1500
Time (s)

variable
altitude
cadence
hearth rate
slope
speed(kph)
temperature

WATT zone  5

0

50

100

150

200

0 500 1000 1500
Time (s)

variable
altitude
cadence
hearth rate
slope
speed(kph)
temperature

WATT zone  7

Figure 4: Cycling data for 30 minutes bike session in power zone 1 (top left), 3, 5 and 7

(bottom right)

tions. This choice was made empirically, so that the main variations of the curves are taken

into account. For simplicity, the same number of basis functions is used for every session

duration, although we could have used a smaller number for the shorter sessions.
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5.2 Experimental setting

The goal is to model the mean power zone of the bike session according to the six functional

covariates: the speed, the slope, the altitude, the heart rate of the cyclist, the pedaling

cadence and the outdoor temperature. Since these covariates are not necessary relevant for

modeling the power zone, a variable selection is performed. For this, all the possible subsets

of covariates are considered and evaluated by 10-fold cross-validation. Even if this strategy

is often avoided because of the exponential combinatorics of the number of subgroups of

variables, it is quite feasible here because 6 variables imply 63 subgroups. Due to the

ordinal nature of the power zone, the models are evaluated by the Root Mean Square Error

(RMSE), as suggested in Gaudette and Japkowicz (2009). This criterion is preferred to the

classification accuracy which does not take into account the proximity between two ordinal

categories.

Model estimation is implemented in the R package FRM. This package provide several

models for functional predictors (linear regression, logistic regression FMLR and the FOLR

model) as well as the cycling data set. The FRM package is available from the authors upon

request, and will be submitted to CRAN after publication of the present paper. With

this package, one FRM model estimation is about 10 seconds on a 3,5 GHz Intel Core i7

processor with 16 Go of memory.

5.3 Results

Variables selection In the proposed approach, the discriminant variables are selected

through a model selection approach. There is a large literature on model selection, and a

recurring question is whether we should choose the best model or a set of good models.
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In order to illustrate this question, Figure 5 plots the cross-validated RMSE value for the

63 models (ordered by increasing RMSE), for the 3 bike session duration (2, 10 and 30

minutes). On this Figure, the lowest is the RMSE, the better is the model. On the one

hand, we can see that there is not one model which is clearly better than the others. On

the other hand, we notice that a group of model stands out slightly from the others. We

arbitrarily select this set of models, denoted in the sequel as good models, by stopping at

the first break in the RMSE values (red vertical lines). This leads to the selection of 24

models for 2 and 10 minutes bike session, and 26 models for 30 minutes length.
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Figure 5: Cross-validated RMSE values for the 63 models and for the 3 bike session

duration

In order to estimate the importance of each variable in this set of good models, we give

a score to each variable occurring in each model. This score depends on the ranking of

the model. For instance, for 2 minutes bike sessions, variables occurring in the best model

obtain a score of 24 (the number of good models), those in the second best model a score

of 23, and so on. Then, the score of the variables are summed over all the good models.
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Figure 6 plots the resulting variables importance, according to the bike session duration.

On this figure, the more outward the indicator, the more important the variable.

altitude

cadence

heart.rate

speed

slope

temperature

2 minutes
10 minutes
30 minutes

Figure 6: Variable importance according to the bike session duration

Prediction accuracy Table 3 presents the cross-validated prediction results on whole

data set. These results are obtained by the best model according to CV-RMSE, for each

bike session duration. For 2 minutes sessions, the best model uses all variables except the

altitude, and has a cross-validated RMSE of 0.728. For 10 minutes sessions, the best model

uses the heart rate, the cadence, the slope and the speed, and has a cross-validated RMSE

of 0.650. For 30 minutes sessions, the best model uses the heart rate, the cadence and the
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slope, and has a cross-validated RMSE of 0.630.

5.4 Analysis

First of all, we can note that the quality of the prediction is relatively correct, with a

majority of elements on the diagonal of the confusion matrices (bold numbers in Table 3).

Even when a power zone is wrongly predicted, the error is small since this is generally

a contiguous power zone which is being predicted (numbers on the subdiagonal or the

superdiagonal). This means that the studied variables reflect the average developed power,

i.e. the cyclist’s performance. Then, we can notice that the quality of the prediction

increases with the duration of the exercise, as RMSE decreases.. It seems easier to predict

the average power of a longer effort, which is subject to less irregularities, than the shorter

efforts.

Regarding the importance of the variables, Figure 6 shows that all variables are im-

portant. The most important variable, regardless of the duration of the exercise, is the

cyclist’s heart rate: it is selected in all the good models. This is not surprising, because

developing significant power requires significant physical effort. And this confirms that the

heart rate, when power was not easily measurable during an exercise, was a good indicator

of performance, or at least of the developed power. Then comes the slope, which is slightly

more important when the duration of the exercise is short. This is certainly due to the

fact that amateur cyclists naturally develop high powers to climb steep slopes with short

efforts, but it becomes more complicated when the effort is prolonged. The third variable in

order of importance is the pedaling cadence. This variable is of particular interest because

it is the one on which the cyclist can act. Indeed, the slope that we have just discussed, is

an external parameter, like the temperature and the altitude, on which the cyclist cannot
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act. Let us note that the temperature and the altitude are also important, and that their

importance decrease when the effort is prolonged. Let’s come back to the cadence: it is

very interesting to notice that this is the variable for which the difference in importance

according to the length of the effort is the most obvious. Moreover, the importance of the

pedaling cadence decreases significantly with the length of the effort. The interpretation

is as follows: if the studied amateur cyclist is able to hold high cadences to maintain high

power during short efforts, it becomes much more complicated during longer efforts. Main-

taining high power using high cadence over a long period of time is the prerogative of high

level cyclists, such as the professional cyclists mentioned in the introduction. Finally, the

least important variable is the speed. Even if this might seem surprising at first glance, it

is because it is totally linked to the nature of the terrain: we will develop significant powers

to climb steep climbs, without going very fast; and on the contrary, we will go very quickly

downhill at very low or even null power when the cyclist is not pedaling.

6 Conclusion

This work proposes a study of the data that are commonly produced by cyclists during

the practice of their sport. In particular, this study is interested in the factors allowing to

discriminate the average power developed during the effort. One of the most interesting

conclusions from a sports practice’s point of view is that the pedaling cadence is indeed

a lever for optimizing the developed power. Nevertheless, this study shows that for the

amateur cyclist who provided these data, maintaining a high cadence over a long time

is difficult. This maintenance of a high cadence over a long time is one of the typical

characteristics of high level cyclists, and is a factor on which the amateur cyclist can work
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on to increase his performance. From a statistical modeling point of view, this study has

needed the development of an ordinal logistic regression model with functional predictors

(FOLR). Experimental study on a benchmark has shown the efficiency of this model in

comparison to the competitors which either omit the ordinal nature of the response or the

functional nature of the covariate.

The perspectives from a cycling data point of view would be to complete the data

set with data from other cyclists, of various profiles and levels, in order to build a more

heterogeneous database and thus to be able to draw more general conclusions. But that

will require adapting the FOLR model to take into account an individual effect, or at

least to incorporate the effect of the age, the weight, etc. This requires to develop a new

cumulative logit model with functional and non functional covariate. Similarly, it would

also be interesting to be able to take into account the period of the year at which the data

is measured. Cyclists have a level that evolves throughout the year and it would be nice

to be able to take that into account. But again, that would require the development of a

new model.

SUPPLEMENTARY MATERIAL

R-package for FOLR routine: R-package FRM containing code to perform FOLR in-

ference and prediction described in the article. The package also contains the cycling

data set, which are currently under copyright and could be shared after publication

of the present paper. (GNU zipped tar file)

Cycling analysis: R-code Cycling-Analysis containing code to perform analyses described

in Section 5. (Cycling-Analysis.Rmd)
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resultXminute: Cross-validation results of the cycling data analysis used for model se-

lection. (resultXminute.Rdata)
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H
HHH

HH
pred true 1 2 3 4 5 6 7

1 1260 250 19 1 1 0 0

2 324 939 329 40 1 0 0

3 33 207 412 229 38 3 0

4 1 32 129 224 149 32 0

5 0 3 34 94 142 99 4

6 0 0 4 43 161 530 195

7 0 0 0 0 1 121 396
H
HHH

HH
pred true 1 2 3 4 5 6 7

1 113 25 1 0 0 0 0

2 50 304 92 6 0 0 0

3 0 68 120 50 1 0 0

4 0 7 31 80 22 3 0

5 0 0 2 21 55 31 0

6 0 0 0 2 37 135 21

7 0 0 0 0 0 6 13
HH

HHHH
pred true 1 2 3 4 5 6 7

1 19 7 0 0 0 0 0

2 8 108 34 3 0 0 0

3 0 27 76 17 0 0 0

4 0 6 7 22 4 1 0

5 0 0 0 3 17 8 0

6 0 0 0 1 10 49 4

7 0 0 0 0 0 1 0

Table 3: True power zones versus cross-validated predicted ones by the best model (ac-

cording to CV-RMSE), for 2 minutes (top), 10 minutes (middle) and 30 minutes (bottom)

bike session. In bold are the true predictions.
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