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A pyBRAvo method description

1 Gene regulatory and signaling networks representation
BioPAX (2) is a community effort aimed at standardizing the representation of biological pathways.
Biological pathways are complex objects involving possibly chained biochemical reactions, with
specific roles. As a formal ontology, BioPAX precisely defines the concepts (ontology classes)
and relations (ontology properties) underlying complex biological pathway objects and allows to
uniformly represent gene regulatory networks and signaling networks.

Figure S1: A typical gene regulatory network represented in BioPAX.

Figure S1 provides an example of a minimal gene regulatory network (GRN). This GRN
shows two biochemical reactions R1 and R2 having a regulatory role. This is stated for R1
with the predicate rdf:type towards bp:TemplateReactionRegulation, meaning that R1 has
a formal type TemplateReactionRegulation as defined in BioPAX. This regulation has a source
(bp:controller), a target (bp:controlled) and a regulatory role (bp:controlType). This GRN
could be interpreted in natural language with the following statement: “NOG is an activator of
LAMA2; AAP/Aluminum is an inhibitor of LAMA2”. Although such GRN representations seem
rather complex in BioPAX, each concept and relation is made explicit and allows for automated
querying and computational navigation. pyBRAvo leverages these terms to automatically assemble
gene regulatory networks as well as signaling networks.

Figure S2 provides a slightly different example where the ELK1 protein catalyses a biochemical
reaction consuming and producing the FOS protein.

2 Pattern matching expressions
2.1 Regulation pattern matching

The principle consists in searching for all control interactions that can be possibly typed as
ACTIVATION or INHIBITION. For each of these interactions we identify who are the controller and
the controlled entities. Controlled entities are represented as TemplateReactionRegulation in
BioPAX which is an abstraction to represent transcription and translation phenomena for instance.
To identify the controlled genes or proteins, we finally search for the participants involved in these
abstract reactions. See Figure S1 for a visualization of the structure of the regulatory information.

This regulation pattern can be formalized as a basic graph pattern reported in Figure S3, in
which the lines represent triplets { source_node ; relation ; target_node }, with variable nodes
prefixed with a question mark (in blue).
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Figure S2: Part of a signaling network, represented in BioPAX.

Regulation graph pattern
?regulation is-a TemplateReactionRegulation .
?regulation controlType ?controlType .
?regulation controlled ?regulation_target .
?regulation controller ?regulation_source .

?regulation_target participant ?regulated_entity .

?regulation_source displayName ?controller_name .
?regulated_entity displayName ?regulated_name .

Figure S3: Basic graph pattern aimed at matching regulation patterns, i.e., biological
entities activating or inhibiting genes.

2.2 Signaling pattern matching

The BioPAX representation of signaling mechanisms differ from regulations since they involve both
biochemical and catalysis reactions. In Figure S2 we illustrate the structure of the signaling infor-
mation. To identify a controlled biological entity, the first step consists in determining all registered
biochemical reactions producing it. This is done by retrieving the reactions described with this
entity as right part of the reaction. Then, once reactions are identified, the second step consists
in retrieving all catalysis reactions controlling these biochemical reactions (bp:controlled predi-
cate). For each of them, we retrieve the biological entity controlling the catalysis (bp:controller
predicate). Finally we retrieve its display name and if it exists (OPTIONAL) the type of control
realized (bp:controlled predicate), for instance activation or inhibition. This process can be
formalized through the basic graph pattern reported in Figure S4.

3 Output influence graph or hypergraph
PyBRAvo will generate two types of structures to represent the regulatory and signaling knowledge
in Pathway Commons (PC): influence graphs and hypergraphs. These structures will help the
further modeling of PC retrieved information, via pyBRAvo, by using different computational
modelling approaches.

Influence graphs. An influence graph G(V,E, σ) is a signed and directed graph, where V rep-
resents the set of nodes, E the set of edges, and σ : E → {+,−, ◦, ∅} a labeling representing the
nature or effect (activation, inhibition, part_of, or unknown) of the edges. If s → t is an edge in
the influence graph, representing the activation of species t triggered by s, this implies that the
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Signaling graph pattern
?reaction bp:right ?right .

?right bp:displayName ?rightName .
?right rdf:type ?rightType .
?reaction bp:left ?left .
?left bp:displayName ?leftName .

?catalysis bp:controlled ?reaction .
?catalysis bp:controller ?controller .
?controller bp:displayName ?controllerName .
?controller rdf:type ?controllerType .
OPTIONAL { ?catalysis bp:controlType ?controlType .}

Figure S4: Basic graph pattern aimed at matching signaling pattern, i.e., biological entities
controlling the production of other entities.

increase of species s induces the increase of species t. PyBRAvo will build influence graphs using
gene regulatory and signaling knowledge. For the gene regulatory knowledge, all edges of the graph
will represent gene transcriptional regulation or protein-complex formation (edges of type ◦). For
the signaling, the influence graph will represent the flow of the reaction controllers (see Figure S5)
or protein-complex formation. Some PC BioPAX files representing gene regulatory and signaling
knowledge, provide a CONTROL_TYPE label with activator or inhibitor information and so we can
infer ’+’ or ’−’ values in the edges. In other cases this information is not present, and thus we
represent it as unknown edges (∅).

Figure S5: Signaling networks retrieved from Pathway Commons information. We il-
lustrate here a simplification of how the signaling knowledge, stored in BioPAX files, is processed
by pyBRAvo to retrieve, according to the user’s need, two different types of structures: influ-
ence graphs and hypergraphs. These structures are extracted as Simple Interaction File (SIF)
format, readable by Cytoscape (4), and they can be straightforwardly visualized by following the
instructions of Section G.

Hypergraphs. PyBRAvo can also generate from PC signaling knowledge an hypergraph struc-
ture. A directed hypergraph H(V,E) consists of two sets V and E. V represents the set of nodes
and E, the set of hyperarcs (signaling reactions or complex-formation relations). Each hyperarc
e〈Vs, t〉 is a pair composed of a non-empty subset Vs of V and a target node t ∈ V . Vs and t
appear respectively in the source and target of the hyperarc. Some hyperarcs r〈Vs, t〉 represent the
reaction controlling the state of node t. The controlling mechanism is represented in the subset Vs
(|Vs| = 2), that is composed of two elements Vs = {c, i} that refer respectively to the controller (c)
of the reaction and the input (i) of the reaction, i.e., the species which state will be transformed
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because of the controller’s effect. This effect is given sometimes with an activation (’+’) or in-
hibition (’−’) sign, and in other cases it is unknown (see Figure S5). Other hyperarcs cplx〈s, t〉
represent a complex-formation relation, and in that case s represents a protein member of complex
t, and this type of relation is labeled as part_of.

B Comparison of PyPath and pyBRAvo

1 Recursive upstream retrieval algorithm using PyPath

Figure S6: Proposed algorithm to use PyPath to reconstruct a signaling network from
the up-stream events of a list of target genes, given as input. This algorithm is imple-
mented in a recursive way. The max_depth corresponds to the maximum number of levels to be
reconstructed.

C Comparison of regulatory and signaling networks extracted
with pyBRAvo using PC11 and PC12

PC was updated on the 24th October 2019 (3) from version 11 to version 12. In Tables S1 and S2
we compare the result of regulation and signaling reconstructions using pyBRAvo on PC11 and
PC12, with a depth of 10 and using the same options as in the Results sections 3.1 and 3.2. The
results show that the regulation and signaling graphs of PC11 and PC12 are very similar. For
regulation, there is a coverage gain of 1.5%, although in one case PC12 removes up to 48 nodes
and 142 edges in number. For signaling, there is the same coverage and a maximum of 10 nodes
and 7 edges in difference, which may explain the computation time difference.

D Iggy predictions analysis
In Table S3 we enumerate the predictions produced by Iggy in Section 3.1 of the main article. In
Table S4 we compare Iggy’s predictions matching the experimental data for the cases the graph
was built with 2 and 10 exploration levels.

5



pyBRAvo shortname Metrics PC11 PC12
Synonyms+complex+label Time 98min 80min*

Unified nodes 1678 1630
Unified edges 4425 4283
Coverage (%) 75.9 77.4

Fast+synonyms+complex+label Time 30min 17min*

Unified nodes 1619 1617
Unified edges 4196 4209
Coverage (%) 75.7 77.4

Table S1: Comparison of PC11 and PC12 regulatory network characteristics retrieved
using pyBRAvo, for a depth of 10. Note: *These computations were performed on another computer
with an Intel Core i7-8565U CPU of 8×1.80GHz, 8Go memory and running Ubuntu 18.04, which
may partly explain the difference in the reconstruction time.

pyBRAvo shortname Metrics PC11 PC12
Fast Time 40s 41s

Unified nodes 1086 1087
Unified edges 1786 1787
Coverage (%) 5.05 5.05

Synonyms Time 1m49s 1m53s
Unified nodes 1167 1168
Unified edges 1862 1862
Coverage (%) 7.25 7.25

Synonyms+complex Time 11m35s 16m49s
Unified nodes 2436 2446
Unified edges 4818 4825
Coverage (%) 9.12 9.12

Table S2: Comparison of PC11 and PC12 signaling network characteristics retrieved
using pyBRAvo, for a depth of 10.
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Matching with the experimental data:
Positive predictions: TNF CLMP HACD1 SPECC1 GALNT14 CTSK PRKAA2

GUCY1A1 ALKAL2 KAZN MMP23B TENM4 P3H2 LPAR1 P3H3
BICDL2 NFE2L2 ANXA8L1 MEDAG ESR1 TRIM33

Negative predictions: PTEN SPEN MUC1 RPL10 FOXM1 FOXA2 EGR1 DPEP1
Not matching with the experimental data:

Positive predictions: IFNG RALA SRPRA ADRA2A AGXT DNMT3B DAP KLF5
GLMN STK4 ERAL1 PLPPR1 NAT1 FMO4

Negative predictions: TP53BP1 NCOA2 ACKR1 HES1 ARHGEF25 PIK3CA PLPP4
GUCY1B1 APP PNMA8A RFLNA ANOS1 HDGFL3 GALNT16
MBOAT2 GALNT17 SHISAL1 KIRREL1 ESR2 CXCR4
Not found in experimental data:

Positive predictions: Thiosemicarbazones_Copper Disulfiram_Copper Vital-
lium_analog_titanium_dioxide ormosil_Polyethylene_Glycols
NOG TAp63g_tetramer GALNT13 INS dNp63a_tetramer IL4
Estradiol_ESR2

Negative predictions: IFNA1 NSC_689534_Copper IFNA1 pirinixic_acid_PPARA
APP_Aluminum ciglitazone_PPARG Polyethyleneimine_Gold

Table S3: Iggy predictions analysis. List of the nodes that are predicted using Iggy, classified
by their match with the experimental data and their predicted sign (positive or negative).

endpoint Private Private Private Private
maximum depth (md) 2 2 10 10
actual stop 2 2 5 5

unification no yes no yes
Time 17min 28s 25min 11s
Nodes 1550 1474 1792 1678
complexes 243 243 330 330
with small molecules 21 21 27 27

Coverage /910 690 690 691 691
Edges 3405 3380 4455 4425
signed 2833 2808 3749 3719
unsinged 74 74 107 107
PART_OF 449 449 599 599

Predictions 105 56 128 82
+ 53 29 70 46
− 47 26 53 33
matching 42 26 54 29
not matching 40 29 52 34

MCOS 149 149 148 148

Table S4: Gene regulatory network extraction using pyBRAvo and its computational
model. Graph characteristics, computation time, and computational predictions using Iggy for
the regulatory networks obtained with pyBRAvo exploring 2 and 10 depth levels. Unified graphs
are obtained after merging entity-symbols, therefore they are smaller in number of nodes. MCOS
stands for the number of inconsistencies found between graph and dataset. The grey column
denotes the results explained in detail in Section 3.1 of the main article.

E PyBRAvo and PyPath execution time comparison
On Figure S7 we show the comparison of the execution time for signaling network reconstruction
between PyPath and pyBRAvo for the different exploration levels and different pyBRAvo options
described on Section 3.2.1 of the main paper. This comparison allows us to understand different
choices/costs of the implementation in the pyBRAvo tool with respect to PyPath; they are ex-
plained in detail below and concern: the cost of update, of modeling assumptions, and of data
homogenization.
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Figure S7: Evolution of the real CPU time for the reconstruction of a signaling network
with regard to the different settings of pyBRAvo and PyPath. The horizontal axis
represents the level of reconstruction depth of the signaling network. The vertical axis represents
the execution time in seconds. Dotted lines refer to pyBRAvo computations that used a private
SPARQL endpoint and to PyPath computations without loading the OmniPath database.

Cost of update This cost is represented in Figure S7 by the gap between the full and the dashed
lines for each analysis. The black line considers the additional cost of loading the last version of the
Omnipath database, while the dashed black line considers only the network reconstruction. For
the version of October 2019, storing the full Omnipath database required 692MB of storage. With
pyBRAvo, we consider two different experimental setups. While plain lines represent access to the
public PathwayCommons SPARQL endpoint over the internet, dashed lines represent access to a
private SPARQL endpoint deployed locally and populated with a dump of the PathwayCommons
database. Compared to PyPath with full database loading, pyBRAvo calls have less computation
cost, except for the most complex call, which includes the option of handling synonyms, labels
expansion, dissociation of protein-complexes. With respect to PyPath without database loading,
the pyBRAvo calls that are faster are pyBRAvo - synonyms and pyBRAvo - fast (see Table 2).
We observe that the call pyBRAvo - synonyms+complex (private endpoint) takes slightly more
computation time than PyPath (without full database loading) that goes in a range from 1 to 2.6
minutes.

Cost of modeling choice This cost is seen in the red vs. orange curve comparison of Figure S7.
In fact, the networks retrieved with the PyPath tool contain only protein nodes, while those re-
trieved with pyBRAvo contain also protein-complexes. This different representation is related to
the choice of pyBRAvo to model the protein-complexes differently than other tools, such as Py-
Path, PCViz, or ReactomeFIViz. From our point of view, pyBRAvo graphs’ causality is more in
agreement with mechanistic modeling approaches in which a protein-complex member is a cause
of the formation of the protein-complex, which itself is the cause of triggering other events. A
protein-complex member, in its turn, can also be activated by different signaling pathways. Py-
BRAvo represents such interactions using the label PART_OF. The PyPath tool will also generate a
relation between the protein-complex members following Pathway Commons SIF (Simple Interac-
tion Format) conversion rules (1), however these relations only link the protein-complex members
and there is no node created to represent the protein-complex entity. This modeling choice may
generate artificial oscillations between the protein-complex members.

Cost of identifiers homogenization This cost can be seen in the orange vs. yellow and
blue vs. red curves comparison in Figure S7. This cost is needed to handle the different enti-
ties’ symbols unification in Pathway Commons. The PyBRAvo - synonyms (see Table 2) gen-
erate more up-stream explorations than the PyBRAvo - fast call. This is the same for the
pyBRAvo - synonyms+complex+label with respect to the pyBRAvo - synonyms+complex call.
Therefore the resulting graphs have an increased size in terms of nodes and edges. This homog-
enization step is not needed for the PyPath tool since the OmniPath database is better curated
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than Pathway Commons in this respect.

Figure S8: Distribution of the number of cliques found in the PyPath and pyBRAvo
graphs of Section 3.2 in the main article. The x-axis (in logarithmic scale) represents the clique
size, the y-axis the number of cliques found for each size. In the pyBRAvo graph there were 2
cliques of size 5 and 0 of size 6. In the PyPath graph there was 1 clique of size 10.

Figure S9: Distribution of the shortest path length in the PyPath and pyBRAvo graphs
of Section 3.2 in the main article. The x-axis represents the shortest path size between any two
elements, the y-axis the number of shortest paths of this size.

F Biochemical reactions in Pathway Commons
In Table S5 we show the number of biochemical reactions present in Pathway Commons, distributed
across the different resources present in this database. To obtain these results we queried the RDF
endpoint of Pathway Commons on October 2019.

G Converting the output of pyBRAvo in a Cytoscape graph
Running pyBRAvo typically generates two SIF (Simple Interaction Format) files named by default:
(1) out-unified.sif and (2) out.sif. These files correspond to the unified and non-unified
versions of the graph as explained in Section 2.2.2 of the main article (Network unification). A
user can import one of these SIF files into Cytoscape with the menu: File / Import / Network
from File. This allows the user to visualize the structure of the graph contained in the SIF file.

Information can also be attached to the nodes and edges of a Cytoscape graph. For in-
stance, along with the generated SIF files, pyBRAvo also outputs two files named by default:
(1) out-unified-provenance.csv and (2) out-provenance.csv that correspond to the database
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Source Number of biochemical reactions
Reach 1025511
Reactome 13834
PhosphoSite 12079
DrugBank 4773
Recon X 4266
PANTHER 3868
CTD 3225
pid 2864
KEGG 2826
NetPath 2014
HumanCyc 1786
INOH 1586
WikiPathways 15

Table S5: Sources with biochemical reactions present in Pathway Commons by October
2019.

provenance of the edges contained in the unified and non-unified SIF files. Thus, after importing
one of the two SIF files, a user can also import the corresponding provenance file by using menu
entry: File / Import / Table from File and choosing Edge Table Columns in the dialog win-
dow. After that, each edge will have its provenance information attached, which can be viewed in
the Edges tab of the bottom Table Panel in Cytoscape. The same procedure also allows to import
information on nodes by selecting a relevant file and choosing Node Table Columns in the dialog
window. This can be useful for differential expression data (icgc.syn.csv) or Iggy computation
results (nodes-iggy.csv); note that the field separator is the tabulation for these files, which must
be specified accordingly in the dialog window.

Finally, different styles (edge tips, color, label...) can be applied to edges and nodes depending
on the information attached (type of regulation, provenance, over/under-expression of genes...).
This can be done manually by using the Style tab of the left Control Panel. A pre-made style is
also available in the sources as file bravo-style.xml in order to obtain the same result as the graph
figures in this Supplementary Material or as in Figure 2 of the main article. It can be imported
with File / Import / Style from File and selected under the Style tab by choosing the style
BRAvo.
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Figure S10: Motifs of size 3 for PyPath and pyBRAvo graphs. We list the more significant
motifs obtained in both graphs as well as their type. Red boxes refer to unmatched information,
and green, to shared motifs. The motif images and significance were obtained using the web-service
MotifNet (5). Our analyses were ran using 1000 random networks for the Z-score computation and
fixing as maximal P-value 0.005. Green boxes refer to common motifs (between pyBRAvo and
PyPath) while red, to not found motifs.
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Figure S11: Subgraphs of the 10-level signaling network extracted with pyBRAvo up-
stream MMP2. The color code of the edges gives their provenance: orange for CTD, green for
PID, blue for Reactome, and gray for the expansion of protein-complexes. The edge tips depend
on the interactions type: triangle for an activation, bar for an inhibition, and diamond for a
protein-complex association. (A) shows the influence graph; (B), the reaction graph. Reactions
are represented by diamond nodes and the left and right sides of the reaction are represented by
dashed lines. This graphical export was made with Cytoscape 3.7.0 (4) according to the instructions
of Section G.
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