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Huge efforts are currently underway to address the organization of biological knowledge through
linked open databases. These databases can be automatically queried to reconstruct regulatory
and signaling networks. However, assembling networks implies manual operations due to source-
specific identification of biological entities and relationships, multiple life-science databases with
redundant information, and the difficulty of recovering logical flows in biological pathways. We
propose a framework based on Semantic Web technologies to automate the reconstruction of large-
scale regulatory and signaling networks in the context of tumor cells modeling and drug screening.
The proposed tool is pyBRAvo (python Biological netwoRk Assembly), and here we have applied
it to a dataset of 910 gene expression measurements issued from liver cancer patients. The tool is
publicly available at https://github.com/pyBRAvo/pyBRAvo

Abstract
Huge efforts are currently underway to address the organization of biological knowledge

through linked open databases. These databases can be automatically queried to reconstruct
regulatory and signaling networks. However, assembling networks implies manual operations
due to source-specific identification of biological entities and relationships, multiple life-science
databases with redundant information, and the difficulty of recovering logical flows in biological
pathways. We propose a framework based on Semantic Web technologies to automate the
reconstruction of large-scale regulatory and signaling networks in the context of tumor cells
modeling and drug screening. The proposed tool is pyBRAvo (python Biological netwoRk
Assembly), and here we have applied it to a dataset of 910 gene expression measurements
issued from liver cancer patients. The tool is publicly available at https://github.com/
pyBRAvo/pyBRAvo.

1 Introduction
Systems biology is a research area aimed at obtaining a better understanding of biological interac-
tions at several levels. The associated activities require combining multiple databases to integrate
information, and computational modeling (1) addresses the complexity of this integration process.
Graph-based modeling approaches are particularly suitable for elucidating biological systems be-
cause they structure information in an organized (possibly causal) way to represent the relation
between complex components such as genes, proteins, and protein complexes. For instance, graph
structures represent inhibition of activation in gene regulatory networks (GRNs) or protein stim-
ulation in signaling networks (SNs). These networks can be easily transferred to computational
models, which can perform complex combinatorial analyses or simulations to extract network prop-
erties or predict system states. Several systems biology approaches use computational models built
upon biological networks to understand human diseases. For example, researchers have previously
undertaken the construction and kinetic modeling of a Parkinson’s disease interaction map (2),
while others have combined the cross-talk of multiple T-cell receptors pathways to understand
immune response (3).

To assemble such graphs, multiple data or knowledge bases must be integrated. This inte-
gration effort is currently facilitated through several initiatives aimed at better organization of
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biological knowledge and its open availability, such as Reactome (4), Kyoto Encyclopedia of Genes
and Genomes (KEGG) (5), PathwayCommons (PC) (6), WikiPathways (7), Pathway Interaction
Database-NCI (8), Consensus PathDB (9), OmniPath (10), and hiPathDB (11), among others.
These databases can be automatically queried to reconstruct a large variety of biological networks
such as GRNs or SNs.

Some of these databases, such as KEGG, WikiPathways, PC ChiBE (12), and Reactome, pro-
vide an explicit representation and a user-oriented visualization to better understand biological
phenomena. However, they do not include query mechanisms to automate the reconstruction of
possibly complete (across multiple pathways) upstream subgraphs from a list of genes of interest.
For other databases, specific tools have been developed to automate network reconstruction from
a list of input genes. These tools include CyPath2 (13), PCViz1, PyPath (10), and Reactome-
FIViz (14), all of which produce graphs representing biological networks. However, due to their
modeling choices, derived computational models often fail in representing causal biological flows.
For example, the CyPath2, PCViz, ReactomeFIViz, and PyPath tools represent protein complexes
as a set of interacting entity members (cycles) without including the complex itself as a node in
the graph. In contrast, KEGG, WikiPathways, ChiBE, and Reactome visualization tools keep
protein complexes in the visualization as nodes. The first modeling choice may strongly influence
computational modeling because cycles can generate oscillations in simulations. These artificial
oscillations do not represent a biological reality.

Single-source tools for reconstruction of GRNs and SNs such as ReactomeFIViz and KEG-
Gscape (18) do not enable tackling the challenges arising from the integration of biological data
from multiple sources. PathwayCommons and OmniPath are two large-scale initiatives in that
direction. By integrating several existing data sources — PathwayCommons covers 24 resources,
OmniPath covers 34 resources — these efforts allow combining multiple knowledge bases. However,
scientists face a massive amount of query results when querying resources, and they consequently
need efficient and scalable algorithms to exploit their richness.

We identified the following issues that need to be addressed to enable better modeling of
biological systems: (i) combining multiple data sources, possibly at multiple scales; (ii) automating
the exhaustive reconstruction of multisource multi-pathway networks; and (iii) leveraging biological
semantic models to represent causal biological flows. In this paper, we propose pyBRAvo as a
computational framework based on semantic web technologies (BioPAX ontology) and multiple
public data source (PathwayCommons) to automate the reconstruction of human multi-source and
multi-pathway GRNs and SNs.

2 Material and methods

2.1 PathwayCommons
PathwayCommons (6) (PC) is a large-scale initiative aimed at integrating biological pathway data
collected and curated from multiple data sources and making the information accessible. At the
time we evaluated our tool, PC version 11 encompassed 22 data sources, 9500 pathways, 3 million
interactions, and 1.5 million entities. In the updated version 12, PC integrates 22 data sources
and provides information on more than 11,500 pathways, 2.4 million interactions, and 1.2 million
entities. Some of the data sources focus on pathway information such as SMPdb, Reactome,
KEGG, or WikiPathways, while other sources focus on biological interactions such as BioGRID
or IntAct. PC relies on Linked Data (15) principles to make this massive pathway knowledge
interpretable from both human and computational points of view. Linked Data provides standards
to represent and link resources as public knowledge graphs on the web, and Resource Description
Framework (RDF) (16) is the W3C standard used to represent these knowledge graphs. It is
particularly suitable for representing biological knowledge because it allows the representation of
directed labeled graphs. In addition, these resources as well as their relations can be strongly typed
with controlled vocabularies or more formal ontologies. In particular, PC leverages the BioPAX
ontology (17) to provide a standard and uniform view of these multiple and diverse databases.
Finally, thanks to the support of semantic web standards and technologies, especially the SPARQL
query language, this massive biological pathway knowledge graph can be queried on live up-to-date
biological data to mine and retrieve specific graph patterns.

1https://www.pathwaycommons.org/pcviz/
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2.2 Gene regulatory and signaling networks reconstruction
2.2.1 Network reconstruction algorithm

With pyBRAvo, we propose a method to automatically assemble GRNs and SNs based on query
rewriting. pyBRAvo leverages publicly available datasets through the PathwayCommons initiative.
Figure 1 presents the network reconstruction algorithm.

pyBRAvo first takes a list of genes or protein names as input. This list is then augmented
with three optional text-based processings (gray boxes) aimed at decomposing protein complexes,
inserting synonyms, and inserting suffixes commonly found in PathwayCommons. These process-
ings are described in section 2.2.2. Then, the query generation step produces two pattern-matching
expressions (see Supplementary Methods A.2) according to the specific kind of network to be recon-
structed (i.e., GRNs or SNs). The generated query is executed on the remote PathwayCommons
data source, and results are recursively explored until no new controllers can be found or the maxi-
mum exploration depth has been reached. Users obtain their results in the form of a formal graph,
which can be either an influence graph or an hyper-graph (see Supplementary Methods A.3).

Figure 1: Exploration of large pathway databases to assemble gene regulatory and signaling net-
works.

2.2.2 Query expansion and network unification

To match the maximum number of entities during the network reconstruction process, we propose
the following optional pre- and post-processings, as shown in Figure 1.

Complex decomposition. Protein complexes can be identified in BioPAX knowledge bases
either through their semantic type (bp:Complex) or by a label concatenating several names, sep-
arated with special characters. For performance concerns, we favored a syntactical approach that
consists of splitting the label into several names and adding these names to the list of biological
entities to be explored in following iterations.

Label expansion. Although BioPAX allows modeling several forms of biological entities, some
databases express specific forms through a prefix or a suffix in entity labels, such as expression of
or mutant form. To maximize entity retrieval, we dynamically expand the regulation and signaling
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queries with a set of predefined prefixes and suffixes when reconstructing the interaction network.
These prefixes and suffixes are removed when entities are added to the regulation or signaling
network.

Synonym expansion. To enhance the matching of genes or protein names we account for com-
mon synonyms as registered in the NCBI Gene Info database (Homo_sapiens.gene_info). For
each biological entity name retrieved through PathwayCommons, we extend the regulation or sig-
naling queries with their synonyms for further exploration.

Network unification. Finally, we reuse the NCBI Gene Info database to merge synonym graph
nodes into nodes identified with their common name. This computation (of merging synonyms)
is done for each analysis. Thus, two graphs are always proposed: one that is unified and another
that is not.

2.3 Experimental datasets
Two datasets are used in this work as the basis of use-cases to illustrate the application of pyBRAvo.
Both datasets pertain to the study of human hepatocellular carcinoma (HCC).

EMT signature-based dataset of 910 genes. A gene expression profile based on the differen-
tial expression (DE) of 16,283 genes in human liver cells was obtained from the LIHC-US project2
of the International Cancer Genome Consortium (ICGC) database (18). The RNAseq expression of
these genes was measured across a population of 294 patients with liver cancer. The DE of genes
was obtained by comparing patients with liver cancer at an invasive stage with patients whose
cancer was at an early and non-invasive stage. Similar to a previously used approach (19), this
comparison was based on the detection of epithelial-mesenchymal transition (EMT), the process
by which cells acquire invasive and migratory abilities. The output of this DE analysis is a list
of 910 genes that were notably over-expressed (fold-change > 2) or under-expressed (fold-change
< −0.5) under the constraint P < 10−5. These 910 genes are used as input for our software in
Sections 3.1 and 3.2.

Metabolic model-based dataset of 39 genes. In (20), pyBRAvo was used to feed a probabilistic
model aimed at predicting the impact of drugs on cell growth rate in the context of HCC. More
precisely, in this use-case, we used the iLivercancer1715 model proposed by (21). This metabolic
model consists of 4663 metabolic reactions and 5735 metabolites, together with an objective func-
tion that describes the biomass growth of the HCC tumor cell. Since the model is reconstructed
based on the human metabolic reaction model, deriving the list of 2,881 genes with a direct effect on
the metabolic reactions of HCC is straightforward. Notice that a single reaction deletion analysis
can be used to filter the obtained list to the genes having an effect on the objective function of the
metabolic model, similar to a flux balance analysis. This filtered list, containing 39 genes, serves
as the list of target genes in an upstream gene regulation network reconstruction by pyBRAvo in
Section 3.3.

2.4 Evaluation metric computation: coverage
To illustrate the construction of SNs (see Section 3.2) we compared pyBRAvo (see Section 2.2)
with the algorithm proposed using PyPath functionalities (see Section 3.2). Both tools retrieve
graphs from a list of input genes. The coverage metric used for this study measures the number
of input genes belonging to the output graph. It is computed based on the following formula:

S = |ON | ÷ |IG| × 100

where ON is the set of input genes belonging to the output graph and IG is the set of input
genes, ON ⊆ IG. This metric represents how well the knowledge of the database, extracted with
the specific tool (pyBRAvo or PyPath), covers the initial gene dataset. The coverage was used to
interpret our results when reconstructing SNs and GRNs.

2Liver Hepatocellular Carcinoma – TCGA, US, Release 21. https://dcc.icgc.org/releases/release_21/
Projects/LIHC-US
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3 Results
We applied pyBRAvo to reconstruct two different types of networks using the same gene expression
profile. In the first one (Section 3.1), we built a regulatory network and modeled it using Iggy,
a tool based on Answer Set Programming that performs a sign-consistency analysis comparing
biological networks with experimental observations (22). In the second one (Section 3.2) we used
pyBRAvo to reconstruct an SN and compared the obtained results using PyPath, a Python package
designed to query the OmniPath database (version of October 2019) to work with molecular
network interpretations from this database. Finally, we show in Section 3.3 how pyBRAvo can
be used in a drug-screening application to enrich potential target genes and associated candidate
drugs.

3.1 Gene regulatory network reconstruction
We used pyBRAvo to query the Pathway Commons database (version 11), excluding both miR-
TarBase and MSigDB sub-databases, to generate a regulatory network that explains the upstream
events of the 910 genes selected based on the EMT signature (see Section 2.3). The miRTarBase
database was excluded because it contains negative interactions due to miRNA entities, for which
we had no experimental observations. MSigDB was excluded because of the absence of signs/roles
in the effect of all its interactions; MSigDB interactions are obtained via computational predictions
on the gene binding sites. The reconstruction was limited to a recursion depth of 10 levels. This
graph was obtained using the Python command line script of pyBRAvo3; this call used the search
of synonyms, complex decomposition, and label expansion options explained in Section 2.2.2. The
search took 25 minutes and 11 seconds of computation time4 when the private SPARQL endpoint
was used. Computing the same pyBRAvo call using the Pathway Commons SPARQL endpoint
took 98 minutes and 9 seconds.

We obtained a directed and partially signed graph composed of 1678 nodes and 4425 edges,
among which 3719 are signed (as activation, inhibition) and 599 are labeled by pyBRAvo as
PART_OF to denote the oriented relation between a protein and the protein complex it be-
longs to. Among the 1678 nodes, 330 can be identified as protein complexes, and 27 of them are
protein complexes of small molecules; the other 1321 nodes can be identified as proteins or genes.
The edges of this graph represent transcriptional regulation interactions and complex formation
interactions. From the 910 queried genes, pyBRAvo recovered the upstream events for 691 (76%
of coverage) of them. The reason that not all 910 original genes were found is that not all genes
are documented in the queried resources of Pathway Commons as being regulated by transcription
factors. Independently from this study, we used the same list of 910 genes to query the KEGG
database for upstream (transcriptional) regulators and we obtained only 63 genes (6% coverage)
that were upstream regulated.

3.1.1 Provenance

In this case study we were interested in understanding how different databases provide information
that enables the construction of a graph explaining the EMT signature genes. In Figure 2 we
show a graph that was retrieved; its edges are colored according to the source database. The
Cytoscape session of this figure is available online5. In Table 1 we show the number of different
edges retrieved per database. Since Pathways Commons information remains highly heterogeneous,
each database uses its own vocabulary to represent the knowledge. Therefore, the options of
complex decomposition, synonym expansion, and label expansion provided by pyBRAvo are useful
to obtain a more complete and less disconnected graph. Indeed, without these options, the graph
has only 172 nodes and is made of five disconnected cliques.

3.1.2 Feeding computational modeling tools for Systems Biology users

What we understand as a computational model is a mathematical framework that uses either
a computational simulator or a solver to discover underlying properties of a (biological) graph,

3Command: python pyBRAvo.py -reg -md 10 -sy -su -co -f input.csv -excl mirtarbase msigdb
4On a standard laptop computer with an Intel Core i7-6600U CPU of 4×2.60GHz, 16Gb memory and running

Ubuntu 18.04.
5https://github.com/pyBRAvo/pyBRAvo/blob/master/cytoscape-vis/regulation_paper_sept.cys
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Figure 2: Gene regulatory network returned by pyBRAvo. The color code of the edges gives
their provenance: orange for CTD, purple for Panther, green for PID, red for Reactome, and gray
for the expansion of protein complexes. The edge tips depend on the interactions type: triangle for
an activation, bar for an inhibition, arrow with bar for an unknown interaction type, and diamond
for a complex composition. This graphical export was made with Cytoscape 3.7.0 (13), following
the instructions of Supplementary Methods G.

such as a computational prediction of unobserved species behavior. In a computational modeling
tool, mathematical equations, logical rules, or constraints are involved. One of the motivations in
conceiving pyBRAvo was to ease the automatic transfer from knowledge databases towards such
computational models.

To illustrate this transfer, we built a discrete mathematical model integrating the pyBRAvo reg-
ulatory network without the 106 unsigned edges, obtained from Pathways Commons, and the up-
and down-regulation DE measurements of the 910 genes obtained from ICGC. This mathematical
model follows the sign-consistency approach implemented in the Iggy framework (23), which uses
clasp, a conflict-driven Answer Set solver used in the study of NP-hard search problems (24). Iggy
tests the consistency between the network logic (signs and directionality) and the DE information
of the genes (up/down shifts of regulation). Interactions labeled as activations and inhibitions were
modeled by Iggy using plus and minus signs, respectively. Interactions labeled as PART_OF were
modeled by Iggy using a plus sign, and we considered protein complex formations as positive influ-
ences. The model had to be minimally corrected in 148 interactions before being consistent with
the experimental observed up/down shifts. Afterwards, we obtained 82 predictions in unmeasured
network components (see Supplementary Table S3). We validated these model predictions by com-
paring them with the original DE data of the genes that were not used for the graph reconstruction
or as experimental observations. Here, we consider that a gene with positively (resp. negatively)
differentially expression should be predicted positively (resp. negatively). Among the 82 predicted

6



Database name Edges Signed edges
CTD 3136 3052
PID 646 646

Panther 42 19
Reactome 2 2

pyBRAvo (PART_OF) 599

Table 1: Distribution of the provenance of the 4425 transcriptional regulation edges
returned by pyBRAvo. The first column gives the name of each database that returned edges,
where PART_OF stands for pyBRAvo’s specific result: edges representing the association of pro-
teins with the protein complexes they belong to. The second column gives the total number of
edges found in the database, which can be of signed type (activation or inhibition) or unsigned
type. The third column gives the number of signed edges among them.

genes, 63 were found in the 15,373 genes from the experimental DE data. Of these 63 genes, 29
had a prediction matching the experimental data and 34 had a converse prediction. It is beyond
the scope of this paper to analyze these computational prediction results. However, we deemed it
important to present a concrete example of how pyBRAvo processing of information can provide a
bridge from the Pathway Commons regulatory knowledge to concrete modeling frameworks such
as Iggy. In Supplementary Table S4, we give details for this case study concerning the evolution
of the graph retrieved using the same pyBRAvo options for 2 and 10 levels of depth.

3.2 Signaling network reconstruction
In this section we illustrate how signaling networks, in the forms of influence graphs, are obtained
with pyBRAvo (see Section 2.2) using the 910 genes selected on the basis of EMT signatures
(see Section 2.3). The specificity of this signaling network reconstruction process is demonstrated
through a comparison of pyBRAvo with a similar state-of-the-art tool, PyPath (10). We focus on
global characteristics of the reconstruction process, such as the size of the retrieved graphs and
the computational time. We also deepen this analysis by using classical graph metrics, such as the
number of cliques and the nature of the motifs in the retrieved graphs.

Recursive upstream retrieval algorithm using PyPath PyPath is a Python module con-
ceived to query and manipulate the OmniPath database. PyPath provides various functionalities
such as the search for protein identifiers and their up- or downstream elements documented in the
OmniPath database. PyPath allows searching for direct predecessors from a list of target nodes;
however, the complete reconstruction of a signaling network related to the upstream events from
a list of target nodes is not available. Therefore, we implemented an algorithm using the PyPath
functions as described in Supplementary Figure S6. This algorithm does not require specific ID
management (aliases, synonyms) because OmniPath already provides pre-processed IDs. Indeed,
in OmniPath, all identifiers from the original databases (Gene Symbol, Entez Gene ID, Ensembl
Gene or Protein, HGNC name, etc.) have been converted to SwissProt. Our tests using this tool
were conducted during October 2019.

3.2.1 Experimental setup

To give an overview of the performance of pyBRAvo and PyPath, we evaluated each tool with
various settings as shown in Table 2. The evaluation of both tools was based on the following
metrics: (1) the reconstruction execution time, (2) the number of nodes and edges of the output
graph, and (3) the coverage of the input gene list (see Section 2.4). For both reconstructions, we
chose to recover only signed interactions10.

6Option -fa
7Option -sy
8Option -sy -co
9Option -sy -co -su

10pyBRAvo option -unk
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Tool shortname Synonyms Complex Label Excluded
expansion decomposition expansion database

pyBRAvo - fast6 no no no Reach
pyBRAvo - synonyms7 yes no no Reach
pyBRAvo - synonyms+complex8 yes yes no Reach
pyBRAvo - synonyms+complex+label9 yes yes yes Reach
PyPath without loading NA no NA -
PyPath with loading NA no NA -

Table 2: pyBRAvo allows multiple configurations for the upstream exploration calls as described
in Section 2.2. The fast option only explores BioPAX display names (bp:displayNames); the
synonyms option explores synonyms that have been retrieved from the NCBI Gene database; the
complex option splits a protein complex into its protein components, and these proteins are inte-
grated into the following upstream search; and finally, the label expansion option allows including
several forms (added suffixes, prefixes) of an entity in the upstream search. The PyPath loading
option accounts for the time it takes to load the database before the algorithm is executed.

3.2.2 Execution time

We compared the execution time11 needed by pyBRAvo and PyPath to separately reconstruct a
signed signaling network from the same dataset, by varying the reconstruction depth from 2 to
10 levels with a step of 2 (see Supplementary Figure S7). This comparison was done using the
settings shown in Table 2. We briefly review these results in the following paragraphs, and more
details can be found in Supplementary Methods E.

Cost of update pyBRAvo queries of the private server are faster, although the data may be
outdated in the long term. Depending on the call, the private SPARQL endpoint allows pyBRAvo
to obtain a reduction of the computation time in a range of 31% to 49% of the time obtained when
querying the Pathway Commons endpoint. While pyBRAvo allows reconstructing biological net-
works on “fresh” publicly available data, we note that client-server communication overheads must
be considered with respect to computation time. In the context of large-scale biological network
reconstructions, we thus recommend deploying a private SPARQL server. This will enhance com-
putation time, as well as limit overloading public resources. A detailed comparison with PyPath
computational time for similar queries is shown in Supplementary Methods E.

Cost of modeling choice The pyBRAvo option complex decomposition greatly increases com-
putational time for graph reconstruction (see Supplementary Figure S7). This increase occurs
because pyBRAvo includes the protein complexes as nodes in the graph and links them to their
protein members. Although PyPath also includes the members of protein complexes, it does not
represent a node protein complex in the graph (see Supplementary Methods E). A PyPath model-
ing choice may generate artificial oscillations between members of a protein complex. In particular,
for the reconstruction of 10 levels of depth, the PyPath graph had 6814 interactions; 31.5% of them
belonged to a cycle of size 2 (i.e., a motif A→ B, B → A). For the pyBRAvo graph, only 5.6% of
5252 interactions were in a cycle of size 2. Moreover, when computing the number of cliques (see
Supplementary Figure S8), we observe that the pyBRAvo graph contains at most two cliques of
size 5, while PyPath has 1392 of size 5 and its largest clique is of size 10.

Cost of identifiers homogenization An explicit representation of the Pathway Commons
BioPAX information, using the entity symbols, generates graphs with components that refer to the
same entity being artificially disconnected. pyBRAvo proposes to homogenize protein identifiers
in two ways (see Section 2.2.2): (1) by performing a post-treatment that removes suffixes and
prefixes, also called unification; and (2) by performing an upstream exploration of their symbol
synonyms and/or performing a label expansion. Therefore, the respective calls (option synonyms)
are more expensive.

11pyBRAvo and PyPath calls where executed from a standard laptop machine equipped with IntelR© XeonR© CPU
E5-2620 0 @ 2.00GHz x 18 and 32Gb of RAM memory
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3.2.3 Graph

The results with respect to graph content are summarized in Figure 3. We do not consider outdated
vs. updated calls of either PyPath or pyBRAvo because the results were identical. We observe that
each additional pyBRAvo option, presented above, improves the quantity of nodes and edges of
the retrieved graph. This increase in the number of nodes and edges grows rapidly until reaching
a plateau at the fourth level of recursion depth. This stabilization likely occurs because further
explorations point to components that have already been found. The large gap that opens when
using the pyBRAvo - complex call appears because of the new entities created and explored.

Figure 3: Comparative analyses of the networks obtained with pyBRAvo and PyPath.
The horizontal axis represents the level of reconstruction depth of the signaling network. Bars plot
show measures of the number of nodes; Lines show the number of edges, the y-axis (left) is shown
in a logarithmic scale.

We focus now on the signed signaling networks obtained for the 10-level upstream exploration
query with PyPath and pyBRAvo (call pyBRAvo - synonyms+complex+label in Table 2). The
PyPath graph is composed of 6814 signed edges, labeled as stimulation, inhibition, and stimulation
and inhibition (291 edges), while the pyBRAvo graph has 5252 edges labeled as activation, inhi-
bition, and part_of. The PyPath graph contains only protein nodes (2049), while the pyBRAvo
graph is composed of 2642 nodes of two different kinds, proteins (1571) and complexes (1071). Most
of these complexes are protein complexes (1067), while the rest are small molecule complexes. This
different nature of the entities may create the observed difference in node and edge size shown in
Figure 3.

We measured a coverage of 16.48% of the 910 input genes for the PyPath graph and of 10.9%
for the pyBRAvo graph. These results indicate that in both databases (OmniPath and Pathway-
Commons), the tools recovered upstream signaling events for only a small fraction of the 910 genes.
PyPath information, however, had a better coverage for this dataset. We can see in Table 3 that
PyPath and pyBRAvo query different types of resources.

In Table 4 we show the different topological properties of both graphs. We can observe, for ex-
ample, that the PyPath graph has more connected components than the pyBRAvo graph (37 vs. 18),
suggesting that the information in PathwayCommons, as interpreted by pyBRAvo, appears easier
to assemble with respect to signed controlled signaling reactions. The pyBRAvo graph presents
signed self-loops, which are real biological mechanisms useful in dynamic modeling. The PyPath
graph shows 15.7% of multiple edges as related to the same pair of nodes, while the proportion is
3.7% in the pyBRAvo graph. This outcome shows that an interaction can be retrieved multiple
times by different data sources contained in either Omnipath or Pathway Commons, and repeated
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Database Data sources (number of signed interactions)
OmniPath Adhesome (1347), ARN (707), CA1 (2205), CellPhoneDB (108),

Guide2Pharma (88), HPMR (791), Macrophage (1237), NRF2ome
(576), PDZBase (156), Ramilowski2015 (575), SignaLink3 (5138),
Signor (6466), SPIKE (4947), TRIP (497)

PathwayCommons CTD (245), PANTHER (39), PID (2037), Reactome (570)

Table 3: Sources used to build the graphs using either PyPath (querying OmniPath) or pyBRAvo
(querying PathwayCommons)

retrieval happens more often in Omnipath than in Pathway Commons. From the number of cliques
computed, we observe that the PyPath graph has a larger proportion of cliques than the pyBRAvo
graph (see Supplementary Figure S8). In (25) it was observed that cliques in interaction graphs
(protein-protein networks) can be associated with protein complex entities. Since the PyPath graph
does not contain entities related to protein complexes, this information may need to be retrieved
from an enumeration of cliques; whereas, in the pyBRAvo graph, this enumeration of cliques is not
necessary because the graph is composed of protein complex nodes. Signaling networks are known
to present a structure in which chains of cascades are combined. From the diameter and charac-
teristic path length information, we observe that the pyBRAvo graph is composed of longer (27 vs.
14 in diameter) chains (directed paths) than PyPath. We interpret these longer chains of entities
as being a result of the complex formation in pyBRAvo’s representation. In Supplementary Figure
S9 we observe that this distribution of shortest length paths is more dispersed in the pyBRAvo
graph compared with the PyPath graph. These chains are an essential way of representing the
signaling knowledge; a computational model that includes them enables a better representation of
biological reality.

Property PyPath PyPathL pyBRAvo pyBRAvoL

N. Nodes 2049 1955 2642 2587
N. Edges 6814 6469 5252 5206
Clustering coefficient 0.066 0.066 0.063 0.026
Connected components 37 1 18 1
Network diameter 14 14 27 27
Percentage of shortest paths 33% 35% 30% 31%
Characteristic path length 4.8 4.9 8.5 8.5
Avg. number of neighbors 5.6 5.5 3.8 3.8
Self loops 0 0 16 16
Multi-edge node pairs 1076 1000 196 191
Maximal clique size 10 10 5 5
Cliques of size 3 2581 2581 604 604

Table 4: Network analysis of the PyPath and pyBRAvo signed and directed graphs. The upper ’L’
refers to the largest connected component found in each respective graph. Both graphs represent
signaling knowledge as stored in Omnipath and Pathway Commons, respectively, on October 2019.

We also compared the largest connected component of both tools in terms of the betweenness
centrality score with respect to the number of neighbors, and plotted the names of the 10 top-
ranked species having the highest betweenness centrality score (see Figure 4). We observe that 2
of the 10 top-ranked species are shared in both graphs; whereas, the other species are specific to
each approach. A last analysis of these graphs was for detecting the types of motifs within them.
To this end, we used the MotifNet web service (26). We observe that several of the 3-size motifs
were shared (four out of five for pyBRAvo, and four out of six for PyPath) between both graphs.
However pyBRAvo has fewer motifs including cycles than PyPath (see Supplementary Figure S10).
For the case of 4-size motifs (data not shown), the difference is more marked: the PyPath graph
contains 69 significant motifs, while the pyBRAvo graph has only 42. The main difference between
the types of motifs is the absence of 4-size motifs containing three to six cycles in pyBRAvo. These
motif analysis results point to the strong inter-connectivity within the PyPath graph. All in all,
these results illustrate how signaling knowledge is currently represented by the different knowledge
sources.
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The Cytoscape session containing the 10-level signaling network extracted using pyBRAvo is
available online12. In Supplementary Figure S11 we visualize two small subgraphs of the pre-
decessors of matrix metallopeptidase 2 (MMP2) protein as generated by pyBRAvo using the in-
fluence graph and hypergraph/reaction options (see Supplementary Methods A.4). This hyper-
graph/reaction option is specific to pyBRAvo and is not available in PyPath.

Figure 4: Betweenness centrality vs. number of neighbor nodes for the largest component
graph obtained with PyPath and pyBRAvo, respectively, when querying signaling knowledge in
Omnipath and Pathway Commons. The names of the 10 species having the highest betweenness
centrality score are shown, and blue names and blue stars correspond to species top-ranked in both
graphs.

3.3 Gene regulatory networks for drug screening applications
In this section, we use the 39 genes selected on the basis of the metabolic model (see Section 2.3)
and show how pyBRAvo enables increasing the number of candidate drugs based on a list of target
genes through inclusion of genes with a putative non-direct effect on metabolism.

Retrieving potential drugs. Based on a list of 40 input genes identified with their gene symbol,
we leverage the DrugBank (27) dataset publicly available as linked data through the Bio2RDF (28)
SPARQL endpoint13. For each of the candidate gene targets, the principle consists of generating a
graph pattern that links drugs to gene names through the DrugBank target and gene-name edges.
These patterns are implemented in a SPARQL query that is executed online through the Bio2RDF
endpoint. In this query we filter only drugs with an “approved” status. These 39 gene targets lead
to one approved drug.

Augmenting drug targets. pyBRAvo is then launched to assemble a GRN with all query
expansion features (suffixes, synonyms, complex decomposition) with a single recursion depth
and excluding the PathwayCommons miRTarBase and MSigDB data sources. From the resulting
regulation graph, we retrieve all associated activators or inhibitors, which leads to 38 additional
candidate target genes.

Retrieving potential new drugs. We next launch the DrugBank exploration process again,
as described in the previous paragraph, focusing on this new gene list. As the result, we obtain a
list of 46 candidate drugs targeting the regulators of the initial gene list. Table 5 summarizes the
proposed drug-screening process.

We also ran this experiment on the complete list of 2881 genes involved in the direct regulation
of metabolic reactions described in the iLivercancer1715 model. This led to 525 approved drugs,
a result that is clearly humanly impossible to assess and possibly irrelevant. This result mainly
arose from not focusing on the targeted metabolic objective of the network (biomass production).
On the other hand, if we restricted the study to the filtered list of 39 genes, we obtained only one
drug, which would clearly be unusable in the context of a drug-screening application.

12https://github.com/pyBRAvo/pyBRAvo/blob/master/cytoscape-vis/signaling_10levels_withoutUNK.cys
13https://bio2rdf.org/sparql
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Initial target genes Candidate drugs New target genes New candidate drugs
39 1 38 46

Table 5: In the context of in silico drug screening, pyBRAvo allowsallows augmenting the list of
candidate drugs based on reconstructed gene regulation networks

In this experiment, we showed that running pyBRAvo provides a list of candidate drugs with
an indirect effect on the biomass production. Although an evaluation of the biological or clinical
relevance of the retrieved potential drugs was beyond the scope of this work, we provide the
indication of each of the candidate drugs in the Jupyter notebook available online14. We believe
that GRNs and associated metrics such as centrality could provide interesting perspectives when
prioritizing drugs in in silico screening applications. This experiment can be reproduced based on
the online Jupyter notebook.

3.4 System implementation
pyBRAvo was designed as a Python module to be used through an application programming
interface (API) in any Python script or directly in Command Line Interfaces. The proposed use
cases were aimed at facilitating integration and fine tuning of pyBRAvo in bioinformatics tools and
workflows. pyBRAvo is also provided with several Jupyter notebooks to reproduce the experiments
presented here as well as for training purposes. pyBRAvo source code and notebooks are available
at https://github.com/pyBRAvo/pyBRAvo.

4 Discussion and conclusion
The pyBRAvo framework allows the automatic reconstruction of GRNs and SNs. The recon-
struction is based on semantic web querying techniques of semantically integrated data sources. A
primary novelty relies on the global nature of the obtained networks, and it is based on the iterative
reconstruction process that queries knowledge bases combining interactions across all documented
pathways.

In pyBRAvo, we choose to use entity names (gene name, protein names, and so forth) to query
the data sources for upstream interactions. Another possibility would be to use gene or protein
IDs. Our choice was motivated by the multi-scale nature of the regulation and signaling processes.
For instance, the transcription of a gene to mRNA and the translation of mRNA to a protein are
implicit interactions that are usually not represented in the data sources. It is thus relevant to
link a gene with its mRNA and the associated protein to obtain a complete reconstruction when
querying the data sources. Furthermore, the reconstruction benefits from several improvements,
namely, complex decomposition, label expansions, synonym expansions, and network unification,
that allow a deeper exploration of the knowledge base. It proves that the use of entity names
together with these improvements enables going far beyond the simple use of gene or protein
identifiers as shown in Figure 3.

In principle, pyBRAvo shares some characteristics with pyPath, a method that relies on the
OmniPath database to reconstruct signaling networks on a large scale. In a comparison at a coarse-
grained scale, the two sets of results appear comparable with respect to the size and the number
of edges. Nevertheless, a deeper inspection of the results shows that several artifacts appear in the
pyPath reconstruction, such as the large number of cycles, cliques, and 4- and 3-size motifs, possibly
resulting from protein complexes management in Omnipath (see Table 4). It is highly necessary
to reduce such artefact edges when the obtained networks are used as input to build predictive
models in both logical or probabilistic frameworks. We observe that PyPath extracted graphs tend
to increase the graph connectivity. This signaling flow, carefully detailed in the BioPAX content,
is kept when using pyBRAvo to extract the graph.

In addition, these predictive models have to be considered very carefully. Indeed, most of the
knowledge aggregated in the databases results from independent experiments. It is crucial to in-
troduce a validation step by testing the model with experimental data, for instance, before using it

14https://github.com/pyBRAvo/pyBRAvo/blob/master/drugbank-usecase/Notebook/drugbank-metabolism.
ipynb

12

https://github.com/pyBRAvo/pyBRAvo
https://github.com/pyBRAvo/pyBRAvo/blob/master/drugbank-usecase/Notebook/drugbank-metabolism.ipynb
https://github.com/pyBRAvo/pyBRAvo/blob/master/drugbank-usecase/Notebook/drugbank-metabolism.ipynb


in predictive approaches. Nevertheless, we strongly believe that adding such an automatic recon-
struction step prior to the prediction step will permit more rapid design of large-scale predictive
models while limiting errors due to manual data curation tasks.

By leveraging semantic web technologies and the BioPAX ontology, pyBRAvo is able to mine
any biological network knowledge expressed with commonly accepted pathway terms, concepts, and
relations. It could additionally be enriched using other external RDF datasets, such as DrugBank
or DisGenet (29), with an adapted querying process. This can largely enrich the construction
of systems biology models based on disease descriptions for instance. In addition, semantic web
technologies enable performing complex queries on multiple data sources without the need to locally
host possibly massive datasets.

Assembling the vast amount of knowledge that is now publicly available is challenging. py-
BRAvo has been designed with a particular focus on data and knowledge reuse. Through this work
we wish to encourage the Systems Biology community to combine their efforts towards developing
machine actionable and causality-oriented biological resources, leveraging community standards,
and ensuring rich and shared semantics.
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