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Abstract: Assessment of renal function and structure accurately remains essential in the diagnosis and prognosis of 

Chronic Kidney Disease (CKD). Advanced imaging, including Magnetic Resonance Imaging (MRI), Ultrasound 

Elastography (UE), Computed Tomography (CT) and scintigraphy (PET, SPECT) offers the opportunity to non-

invasively retrieve structural, functional and molecular information that could detect changes in renal tissue 

properties and functionality. Currently, the ability of artificial intelligence to turn conventional medical imaging into a 

full-automated diagnostic tool is widely investigated. In addition to the qualitative analysis performed on renal 

medical imaging, texture analysis was integrated with machine learning techniques as a quantification of renal tissue 

heterogeneity, providing a promising complementary tool in renal function decline prediction. Interestingly, deep 

learning holds the ability to be a novel approach of renal function diagnosis. This paper proposes a survey that 

covers both qualitative and quantitative analysis applied to novel medical imaging techniques to monitor the decline 

of renal function. First, we summarize the use of different medical imaging modalities to monitor CKD and then, we 

show the ability of Artificial Intelligence (AI) to guide renal function evaluation from segmentation to disease 

prediction, discussing how texture analysis and machine learning techniques have emerged in recent clinical 

researches in order to improve renal dysfunction monitoring and prediction. The paper gives a summary about the 

role of AI in renal segmentation. 
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Introduction 

Chronic Kidney Disease (CKD) is today considered one of the major public health challenges by the World Health 

Organization (WHO). In France, it affects nearly 82,000 people and the number of patients affected increases by 2% 

each year (Bayat et al., 2010). CKD remains a widespread and crucial public health problem afflicting more than 12% 

of population worldwide (Jiang and Lerman, 2019). It is characterized by progressive and irreversible deterioration of 

renal function accompanied with a low Glomerular Filtration Rate (GFR) leading to end stage renal disease, when 

kidneys are totally damaged and cannot filter the blood the way they should and either renal dialysis or transplant is 

needed (Jiang and Lerman, 2019).  

Two options are therefore possible when the disease reaches a terminal stage (Chronic Terminal Renal Insufficiency - 

IRCT). The most common is hemodialysis. This blood filtering technique remains restrictive to date, the patient 

having to be dialyzed over a period of 4 hours, 3 times a week. The other solution offered to people with CRTI is 

kidney transplantation. It is widely accepted that the transplant offers a better quality of life compared to dialysis. 

Indeed, the transplant allows finding an almost normal renal activity while maintaining a lifestyle close to “normal”. 

The early detection of CKD offers the ability to guide patient management as well as reduce mortality rate by 
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preventing the progression to the end point, normally associated with many health complications including heart 

and bone disease and high blood pressure (Saha et al., 2019). 

Kidneys filtrate minerals and metabolites from blood as urine (Notohamiprodjo et al., 2010). CKD is accompanied 

with the accumulation of extra cellular matrix (ECM) or fibrosis-related deposits that change the way the tissue is 

handling water, as well as tissue stiffness and macromolecule content (Notohamiprodjo et al., 2010). The loss of 

peritubular capillaries induces a decrease of renal oxygenation and perfusion (Nangaku, 2006). Renal function has 

been commonly evaluated either by the estimation of Glomerular Filtration Rate (eGFR) based on blood serum 

Creatine level (sCr) or by the gold standard biopsy, followed by histopathology analysis. However, these medical acts 

suffer from several drawbacks and limitations. sCr is a late indicator of renal function decline and requires blood 

specimens to be analyzed. Furthermore, GFR estimation equations lack precision and cannot offer a split renal 

function measurement (Notohamiprodjo et al., 2010). Although biopsy stands for the gold standard method to 

assess renal microstructure and quantify the cause of renal dysfunction, it suffers from other drawbacks as well. 

First, the invasive procedure is associated with bleeding and possible pain to the patient, thus limiting follow-up 

evaluation. Secondly, biopsy is subject to sampling bias because it samples less than 1% of one of the kidneys where 

medulla is often not included, as it is limited in terms of spatial resolution (Baues et al., 2017; Leung et al., 2017).   

Radiology can provide structural and functional markers that were reported to help in the prediction as well as the 

follow-up of renal dysfunction. It plays an increasingly more important role in the assessment of renal function. The 

recently used medical imaging modalities are summarized in Table 1. Magnetic Resonance Imaging (MRI) holds the 

potential to assess renal microstructure organization, diffusion, perfusion and oxygenation. Additionally, it provides 

the ability to measure renal hemodynamic, to quantify tissue relaxation time, macromolecule and elasticity and to 

characterize renal tissue metabolites. 

Medical Imaging Modality Description  Biomarker Measured 
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Magnetic 

Resonance 

Imaging 

(MRI) 

Diffusion 

weighted 

imaging  

(DWI) 

Reflects the 

microstructure of the 

tissue by describing the 

water restriction and 

diffusivity within this 

tissue 

Apparent diffusion coefficient ADC, ∆-ADC 

True diffusion D, ∆-D 

Pseudo diffusion D*, ∆-D* 

Flowing fraction f, ∆-f 
 

Interstitial fibrosis,  

changes in renal 

perfusion or water 

handling 

Diffusion 

tensor 

imaging 

(DTI) 

Assessment of 

microstructure 

organization of a spatial 

oriented tissue by 

quantifying the 

diffusivity direction 

Fractional anisotropy FA 

Mean diffusivity MD, ADC 
 

Changes in renal 

microstructure that 

induces change in the 

water diffusion 

direction 

Blood 

oxygenation 

level 

dependent 

(BOLD) 

Assessment of tissue 

oxygenation by using 

the paramagnetic 

property of de-

oxyhemoglobin 

Apparent transverse relaxation time  

T2* or R2* (1/ T2*),  R2* slope 

 

Changes in renal 

oxygenation, 

hydration status, 

sodium balance 

Arterial spin 

labeling 

(ASL) 

Measurement of tissue 

perfusion or blood flow 

using the magnetically 

labeled water within 

blood as a contrast 

agent 

Tissue perfusion f 

Filtration fraction FF 

 

 

Renal perfusion 

alteration 

Dynamic 

contrast 

enhanced 

(DCE) 

Measurement of kidney 

hemodynamic using the 

administration of 

contrast agent in the 

tissue which changes its 

T1 relaxation time 
 

Single kidney GFR  SK-GFR 

Renal plasma flow  RPF 

Tubular transit time  Tubular MTT 

Plasma mean transit time Plasma MTT 

Tubular flow   

Plasma volume   

Split renal function, 

perfusion, filtration 

fraction 

 

 

 

T1 mapping Tissue characterization 

by measuring its spin-

lattice relaxation time  

T1  

Cortex, medulla, cortico-medullary differentiation 

Changes in the 

molecular (lattice) 

environment (e.g. 

water content, 

fibrosis), changes in 

oxygenation level 



T2 mapping Quantification of tissue 

spin-spin relaxation 

time 

T2 

Cortex, medulla, cortico-medullary differentiation 

Changes in the 

molecular 

environment, tissue 

perfusion, tissue 

inflammation 

Magnetization 

transfer  

(MT) 

Tissue macromolecule 

quantification Based on 

the interaction 

between free protons 

and immobile protons 

attached to large 

molecules 

MT ratio MTR 

Pool size ratio PSR 

Magnetization fractional pool  F 

Free and restricted 

magnetization exchange rates 

kf, kr 

 

Macromolecules like 

fibrosis and apoptosis  

Magnetic 

resonance 

elastography 

(MRE) 

Tissue elasticity 

visualization by 

applying an external 

vibratory force to the 

organ where shear 

waves propagate 

reflecting tissue 

stiffness 

Stiffness   

Pressure gradient  

Volumetric deformation  

Shear deformation  
 

Tissue stiffness, 

fibrosis, affected by 

blood flow, hydro-

nephrosis, edema 

changes in 

diamagnetic material 

composition (e.g. 

protein, lipid) 

 

 

 

 

Ultrasound 

Elastography 

(UE) 

Strain 

Elastography 

(SE) 

Measurement of tissue 

displacement caused by 

external compression  

Cortico-medullary strain ratio SR 

Normalized strain  
 

Tissue stiffness, 

fibrosis affected by 

hemodynamic 

Shear Wave 

Elastography 

(SWE)  

or  

(USE) 

assessment of tissue 

stiffness by measuring 

the generated shear 

wave velocity 

Shear wave velocity SWV 

Young’s Modulus YM 

Stiffness   
 

Tissue stiffness, 

fibrosis affected by 

hemodynamic 

Computed tomography 

(CT) 

Anatomic assessment 

of tissue structure with 

or without contrast 

material using x-rays 

and computing 

algorithms 

Split renal volume SRV 

Single kidney GFR SK-GFR 

Relative blood volume rBV 

Arterial diameter   
 

Split renal function, 

tissue fibrosis 

visualization, renal 

capillary rarefaction 

Scintigraphy 

(PET, SPECT) 

 

Assessment of organ 

function and perfusion 

by using radioactive 

tracers 

 

Single kidney GFR  SK-GFR 

Renal plasma flow  RPF 

Mean radioactivity ratio MRAR 

Accumulation index R20/3 

Time of perfusion peak  T1/2, Tmax 

Tracer organ bio-distribution  

Perfusion curve grades  

Split renal function, 

tissue fibrosis, renal 

perfusion 

Table 1 Medical imaging in renal function assessment 

Ultrasound Elastography (UE) allows the identification of structural information regarding tissue mechanical 

properties. Computed Tomography (CT) can provide anatomic and functional information, but it is limited to x-ray 

exposure and contrast material injection. Scintigraphy combines functional and perfusion measurement using 

radioactive tracers. Qualitative analysis of those medical images has shown a promising tool in the evaluation of 

kidney function. 

Interestingly, the quantification of medical images that analyses image pixels, also known as textural analysis, was 

investigated as a practical complementary tool. Obtained from mathematical equations, textural analysis studies 

spatial arrangement of gray-level pixels and shows their relationships that are generally hidden to the human eye. 

Given the renal architecture and the influence of renal disease on the distribution of functional markers, textures 

hold the potential to reflect histopathological heterogeneity (Ding et al., 2019; Shi et al., 2018). Introducing textural 

analysis with conventional machine learning methods extends the medical imaging capability by offering additional 

numerical descriptors that could be useful in the diagnosis and prediction of renal dysfunction. 

Most importantly, deep learning was recently investigated in clinical applications that aim to diagnose renal function 

and CKD patients. It is a branch of machine learning inspired by the biological neurons that are composed of many 

layers of nodes interconnected offering a new robust tool for image feature extraction and patient classification.  



In this survey, we first review the use of medical imaging techniques in the evaluation of renal dysfunction, especially 

CKD. Then, we show the potential of AI to improve the performance of renal dysfunction prediction and diagnosis by 

summarizing the recent application of textures and machine learning techniques including neural networks on 

different medical imaging modalities. The role of AI in renal segmentation is also discussed, since accurately 

identifying kidneys on medical images is an essential step that could save time and turn the renal parenchyma 

delineation to a subject-independent issue as it is required either prior to human-expert or computer-aided 

diagnosis. 

Magnetic Resonance Imaging 

1. Diffusion MRI 

1.1. Diffusion Weighted Imaging 

Renal fibrosis, characterized by the deposition of extra cellular matrix (ECM), plays a key role in the development of 

CKD (Leung et al., 2017; Nangaku, 2006). Water molecule mobility is supposed to be decreased within the tissue due 

to the involvement of tissue cellularity. Thus, water diffusion caption may reflect tissue microstructure. Diffusion 

Weighted Imaging (DWI) is a magnetic resonance modality, which uses the motion of water molecules as a contrast 

providing an in-vivo measurement of water diffusion or Brownian motion. It uses powerful bipolar magnetic 

gradients in order to create a sensitivity of the received signal to the water movement, thus describing the way the 

tissue restricts water (Notohamiprodjo et al., 2010). The Apparent Diffusion Coefficient (ADC) is a DWI biomarker 

corresponding to an overall measure of water diffusion and microcirculation within the tissue (Notohamiprodjo et 

al., 2010). The Intra-Voxel Incoherent Motion (IVIM) model was introduced by Le Bihan et al. in order to separate the 

true diffusion or molecular water diffusion from pseudo diffusion or perfusion induced by blood flow in capillary 

network (Le Bihan et al., 1988). The IVIM derived parameters are the true diffusion (D), associated with extravascular 

water molecule motion or pure diffusion, pseudo diffusion (D*), associated with intravascular water molecule motion 

or perfusion, and flowing fraction (f) (Le Bihan et al., 1988).  

DWI has been reported as a good predictor of renal changes in diabetic kidneys (Deng et al., 2018; Feng et al., 2018), 

and a robust technique to monitor renal function after transplantation (Chen et al., 2018; Fan et al., 2019; Ren et al., 

2016; Xie et al., 2018). Several studies have shown the potential use of DWI as a promising imaging technique for 

renal fibrosis evaluation in animal models (Cai et al., 2016; Hennedige et al., 2015), and CKD human studies (Ding et 

al., 2016; Friedli et al., 2017; Gaggioli et al., 2007; Ichikawa et al., 2013; Q. Li et al., 2014; Mao et al., 2018a, 2018b; 

Xu, 2010). ADC values were correlated with renal function, usually evaluated by creatine level or eGFR (Ding et al., 

2016; Gaggioli et al., 2007; Mao et al., 2018a, 2018b; Xu, 2010), as well as with renal fibrosis and pathology score 

when biopsy is available (Cai et al., 2016; Ebrahimi et al., 2014a; Friedli et al., 2017; Q. Li et al., 2014; Mao et al., 

2018a, 2018b). When associated with kidney function, DWI parameters were found to decrease with severe renal 

damage (reflected by decreased eGFR) and a strong correlation was found between increasing fibrosis and declined 

ADCs. The decreased parameters can be attributed to the reduced perfusion, the presence of interstitial fibrosis 

restricting water as well as the decrease of vascularity (Hennedige et al., 2015). Furthermore, the difference 

between cortical and medullary DWI parameters (∆-ADC, ∆-D) were well negatively correlated to the percentage of 

fibrosis (Friedli et al., 2017). ADCs differed significantly among groups (controls, mildly, moderately and severely 

impaired) classified according to pathology score based on proliferation fraction in the glomerular segment, which is 

not the case when classification is based on pathology type (nephropathy, minimal lesion glomerulonephritis, focal 

segmental proliferative glomerulonephritis, membranous nephropathy, mesangial proliferative Glomerulonephritis, 

glomerulosclerosis and crescentic glomerulonephritis). This can be referred to the fact that different CKD pathology 

type share similar pathogenic features contributing ADCs decrease (Q. Li et al., 2014). However, ADC values failed to 

early detect CKD as no ability to differentiate healthy versus stage I CKD was mentioned, while perfusion-related D* 

did in one study supporting that renal impairment is accompanied with reduced perfusion and that IVIM maps are 

supposed to allow early detection of renal dysfunction more than ADC maps (Ichikawa et al., 2013). On the other 

hand, performance of the detection of renal damage (eGFR <=30 ml/min/1.73 m2 or biopsy-proven) was better when 

using ADCs than IVIM parameters (Ding et al., 2016; Friedli et al., 2017). A significant decline in mean ADC values was 



found among patients with advanced stages of Diabetic Nephropathy (DN), a main cause leading to renal failure, 

compared to diabetic patients with no nephropathy (Jawad, 2019). Recently, DWI was proved to be promising to 

differentiate healthy and CKD children (glomerulonephritis, hemolytic uremic syndrome, lupus nephritis (LN), 

nepheronophthisis and infantile nephrosis were the main causes of CKD) (Emad-Eldin et al., 2020). ADCs were 

negatively correlated to CKD stages (stage I to V) (Emad-Eldin et al., 2020). Cortical as well as medullary ADCS were 

reported to be decreased significantly with the presence of renal allograft dysfunction (mean eGFR of 30 

ml/min/1.73 m2) associated with fibrosis deposition (Bane et al., 2020). 

Studies that incorporated DWI in clinical applications are still limited. Most of these studies evaluated the association 

between ADCs and fibrosis or pathology score. Few studies were focusing on using DWI to discriminate between 

healthy and CKD or DN patients as well as to detect renal allograft dysfunction. Although, unlike biopsy, DWI offers 

the ability to assess whole-kidney perfusion and diffusion, it is still limited to respiratory motion artifacts, protocol 

variability, inter-subject variability (e.g. patient preparation) and the contribution of other factors besides fibrosis to 

water mobility (ex. Urine flow rate, medications, vascular volume), therefore no clear cut-off value of ADC can be 

used (Gaggioli et al., 2007; Notohamiprodjo et al., 2010; Sulkowska et al., 2015). Future studies that address these 

limitations and which further explore the potential of DWI in the evaluation of renal dysfunction in CKD patients as 

well as the comparison of ADCs and IVIM classification performance are clearly needed.  

1.2. Diffusion Tensor Imaging 

Renal fibrosis or matrix deposition was expected to not only decrease water molecules mobility within renal tissue, 

but also to disrupt the parenchymal ordered structures that favor the mobility of water in a specific direction (Leung 

et al., 2017). Diffusion Tensor Imaging (DTI) is an advanced diffusion MR technique that allows the measurement of 

water molecules mobility along different axes, giving the opportunity to assess the renal microarchitecture 

organization and to capture the ordered structures disruption (Leung et al., 2017). DTI features the diffusion 

measurement in at least six directions, from which the Fractional Anisotropy (FA) as well as the mean diffusivity 

(MD) can be derived. FA represents a measure of diffusion anisotropy and  ranges from 0 to 1 as an index of the 

degree of anisotropy or diffusion directionality, whereas MD is equivalent to the ADC derived from DWI technique 

which reflects the diffusion magnitude (Notohamiprodjo et al., 2010). Moreover, 3D reconstruction of diffusion 

direction can be performed using tractography technique that combines the direction and the anisotropy index as 

shown in Fig. 1 (Notohamiprodjo et al., 2010).  

FA of renal pyramids has been reported to be higher than cortical FA suggesting packed fibers and reflecting tubular 

structural arrangement or tubular flow within the medulla which is normally highly structured (Feasibility et al., 

2010; Kataoka et al., 2009; Nicolaescu et al., 2017; Notohamiprodjo et al., 2010; Ries et al., 2001). DTI was used to 

evaluate renal disease in mouse models and was found to be a good identifier of renal pathology and renal fibrosis 

(Hueper et al., 2012; J.-Y. Kaimori et al., 2017; J. Y. Kaimori et al., 2017). In the prediction of DN, a leading cause to 

end stage renal disease, DTI has shown promise in early detection of renal infection even when eGFR remained 

normal (>60 mL/min/1.73 m2). FA was correlated well with eGFR and significantly lower in DN patients (eGFR >or<60 

mL/min/1.73 m2) compared to controls (Lu et al., 2011). Moreover, Medullary FA has been reported as a good 

biomarker of renal function in kidney allograft where it has revealed a good correlation with eGFR as well as the 

amount of renal fibrosis (Hueper et al., 2016; Lanzman et al., 2013; Palmucci et al., 2015). When histology is 

performed, FA was correlated with percent of glomerulosclerosis and the area of interstitial fibrosis as well as the 

degree of renal impairment (stages 1 to 5) (Feng et al., 2015). 



 

Fig. 1  

In CKD, a significant decline in medullary FA was reported in patients with chronic renal impairment (eGFR <60 

mL/min/1.73 m2  (Saini et al., 2018), renal failure caused by: nephroangiosclerosis, renal artery stenosis, medullary 

kidney cystic disease, DN, pyelonephritis, lithiasis, acute glomerulonephritis, analgesic abuse, interstitial nephritis, 

Wegener granulomatosis, LN, diuretic abuse (Gaudiano et al., 2013)) compared to control with normal renal function, 

and strongly correlated to eGFR (Gaudiano et al., 2013; Saini et al., 2018; W. Wang et al., 2014). Tractography has 

also shown a good visual discrimination between the two subjects, where reduced number of tracts which do not 

have preferential orientation was presented with worsening renal function compared to a regular tracts 

arrangement with normal renal function (Gaudiano et al., 2013). Ye et al., DTI has succeeded in early detection of 

CKD progression in diabetes mellitus (DM). Cortical and medullary FA have shown a significant decline in stage 1 CKD 

compared to control group and a good correlation with eGFR, demonstrating the ability of DTI to predict CKD 

progression (Ye et al., 2019). However, DTI was not able to identify the change in medullary diffusion direction in 

early stage of DN (Feng et al., 2019). Medullary FA and mean rack length were reported to be significantly decreased 

in children with  autosomal recessive polycystic kidney disease (ARPKD) compared to healthy controls (Serai et al., 

2019). Recently, DTI parameters, FA and track length were shown to be significantly different between kidneys with 

and without Uretero Pelvic Junction (UPJ) obstruction, supporting that DTI is able to assess parenchymal damage 

(Otero et al., 2020). Moreover, Gadolinium-based DTI was reported to be more accurate in measuring renal 

pathological characteristics, renal fibrosis and renal blood flow in CKD patients stage I and II (60<=eGFR<=90 

mL/min/1.73 m2 ) (Liu et al., 2020). Alterations in diffusion parameters caused by Renal Artery Stenosis (RAS), a renal 

disease promoting fibrosis by collagen deposition, could be detected by DTI were medullary FA was significantly 

reduced in patients with RAS (Gaudiano et al., 2020). In (Mrđanin et al., 2020), medullary FA were found to be lower 

in DM patients and positively correlated with the eGFR. Tractography has shown distributed structure in patients of 

renal impairment. Cortical as well as Medullary FA were correlated to allograft function and were significantly higher 

in transplants with good function (stage I, II) than those with dysfunction (stages III-V) (S. et al., 2020). Medullary and 

Cortico-Medullary Differentiation (CMD) of FA were reported to be well associated with eGFR for healthy and 

transplanted kidneys  (Adams et al., 2020).  

DTI was reported to reflect renal impairment severity. In summary, clinical applications that employed DTI aimed to 

discover the association between DTI parameters and eGFR or fibrosis, evaluate the use of DTI parameters as well as 

tractography to discriminate healthy volunteers from patients with renal impairment (DN, DM, UPJ obstruction, 

RAS), evaluate the potential use of DTI to early detect DN and DM, and test the value of DTI in reflecting renal 

allograft function. Medullary FA was found to be the main DTI marker of renal damage showing a decrease with the 

worsening of renal function. Many factors could be involved during renal impairment that can lead to the fall of FA, 

such as reduced tubular flow rate, tubular damage and vascular abnormalities (Lu et al., 2011). 

2. Blood Oxygenation Level Dependent Imaging 

Renal hypoxia has been recognized to take an important role in the progression of CKD (Nangaku, 2006). Blood 

Oxygenation Level Dependent MR imaging (BOLD) gives the opportunity to measure the tissue oxygenation level 

without using contrast materials. Briefly, BOLD-MRI uses the de-oxyhemoglobin paramagnetic properties in order to 

assess tissue oxygenation: the higher the local de-oxyhemoglobin levels are, the higher the apparent relaxation rate 

R2* (s-1) is and the lower local tissue oxygen content is.  



Several animal studies have shown the linear relationship between R2* values and directly measured renal partial 

blood pressure (pO2) which reflects the amount of oxygen gas dissolved in blood, using oxygen-sensitive electrodes. 

Thus, BOLD accurately measures the tissue pO2  (Pruijm et al., 2018a). Many factors could alter renal oxygenation 

(R2* values), such as hydration status, sodium balance and use of medication that might affect oxygen delivery or 

consumption. Thus, standardization of patient preparation is required, including fasting overnight 4-6h, a constant 

hourly water intake, control of salt intake, monitor of drug intake, record of blood pressure and medication before 

MRI examination (Pruijm et al., 2018a), (Neugarten, 2012). 

In order to analyze BOLD images, four methods are used: Region of Interest (ROI) technique, twelve layer concentric 

object (TLCO) or ‘onion peel’ technique, the fractional tissue hypoxia and the compartmental method as shown in 

Fig. 2. ROI technique, as seen, requires the placement of different small ROIs (20-40 voxels) in the cortex and 

medulla regions to provide separate information. TLCO technique divides the renal parenchyma into 12 layers of 

equal thickness, where the R2* mean value is calculated. From the manually selected kidney parenchyma, the 

fractional tissue hypoxia reports the percentage of R2* values above a certain threshold. The compartmental 

method analyses the distribution of R2* values in renal regions. 

Hypoxia hypothesis assumed that renal tissue hypoxia or the decrease of tissue oxygenation is a final common 

pathway to CKD. At first, studies have failed to find a relationship between R2* values and renal function estimated 

by the eGFR (Michaely et al., 2012; Pruijm et al., 2014). Even more, few studies have reported a decline or no change 

in cortical R2* associated with renal function impairment (Djamali et al., 2007; Khatir et al., 2015; Textor et al., 2008; 

Z. J. Wang et al., 2011). Contrary, recent researchers have shown a good correlation between cortical R2* or R2* 

slope and eGFR, where greater R2* values in patients with renal impairment (glomerulonephritis, hypertensive 

nephropathy, DN, Acute kidney Injury (AKI) and others) were limited to the cortex, supporting the hypoxia 

hypothesis (Inoue et al., 2011; Milani et al., 2017; Prasad et al., 2018; Pruijm et al., 2018b; Xin-Long et al., 2012; Yin 

et al., 2012). This dissimilarity within results can be referred to the lack of and even to the dependence of R2* not 

only on intravascular de-oxyhemoglobin but on other factors such as renal edema and perfusion, changes in vascular 

and tubular volume fraction (Milani et al., 2017; Pruijm et al., 2017).  

 

Fig. 2  

The BOLD images analysis technique can impact results and that was illustrated by Milani et al. where no changes of 

R2* was shown between controls and CKD patients (eGFR<=60 mL/min/1.73 m2 or albuminuria <300 mg/24h for at 

least 3 months) using ROI technique, while there was a significant difference of R2* slope using TLCO technique with 

the same group of patients (Milani et al., 2017). Similarly, regional R2* were strongly correlated between the ROI 

and TLCO techniques (L.-P. Li et al., 2020). However, in terms of discriminating controls from CKD patients, the TLCO 

parameter R2* slope has shown the largest sensitivity. The association between ADCs and R2* demonstrated by 

Prasad et al. as well as the increase of R2* with the increase of fibrosis staging found by Inoue et al. support the 

hypothesis of fibrosis being a way to decrease local oxygen consumption (Inoue et al., 2011; Prasad et al., 2018). The 



evaluation of fibrosis by BOLD imaging was also verified in animal models, where R2* values correlated well with the 

percentage of fibrosis (Woo et al., 2018; Zha et al., 2019). The administration of furosemide inducing increase of R2* 

values has improved the differentiation of healthy and affected kidneys in the study of Pruijm et al. (Pruijm et al., 

2014), but no positive impact was noted later (Milani et al., 2017; Pruijm et al., 2018b). It is worthy of note that the 

cortical R2* values were found to be strongly correlated with fluid fraction (FF) compared to GFR, having that 

FF=GFR/renal plasma flow in healthy volunteers. Thus, making the measurement of FF recommended in future 

studies (Van Der Bel et al., 2016). Reduced oxygenation reflected by increased R2* values were reported to be a 

clinically useful marker of CKD progression (Sugiyama et al., 2018). In their study, controls and DM patients were 

enrolled in a retrospective study over 5 years, where the rate of decline in eGFR was significantly correlated to R2* 

values. Medullary R2* values were shown to be sensitive for the prediction of early DN (Feng et al., 2019). Moreover, 

medullary R2* were reported to distinguish controls from patients with mild renal impairment (CKD stages I, II 

stages) with a high sensitivity and specificity (92.3 and 85.2% respectively) (Li et al., 2019). Incorporating R2* values 

into machine learning algorithms was able to discriminate rejected from non-rejected transplants with a sensitivity 

of 100% (Shehata et al., 2019). Recently, cortical and medullary R2* values were positively correlated to serum 

creatinine level  and negatively correlated to eGFR (Luo et al., 2020). In their study, cortical R2* value was ranked as 

CKD stage IV, V > CKD stage I-III > healthy controls and medullary R2* value was ranked as CKD stage IV, V > CKD 

stage I-III while no significant difference between controls and patients with CKD stage I-III. 

Clinical application of the studies employing BOLD MRI imaging were limited to study the association between R2* 

values with eGFR, serum creatinine level, fibrosis and FF, evaluate the potential use of BOLD in discriminating 

controls from patients with renal impairment, evaluate the role of R2* values in detecting DN at early stages and 

discover the value of BOLD in reflecting renal allograft function. Giving that R2* slope derived from TLCO technique 

is somehow related to the R2* distribution within renal parenchyma, the door to further explore spatial 

arrangement within BOLD is opened. The usefulness of R2* in staging CKD or predicting renal function decline as 

well as measuring fibrosis require more validations with follow-up studies. 

3. Arterial Spin Labelling 

Since CKD is associated with impaired perfusion due to renal fibrosis and a decrease of renal blood flow, assessing 

renal perfusion might be a powerful tool in the detection of CKD as well as differentiate several CKD staging (Leung 

et al., 2017; Nangaku, 2006). Arterial Spin Labelling (ASL) in an MRI modality that allows tissue perfusion 

measurement without administration of gadolinium, using the water within blood as a contrast agent. Blood flow is 

labeled to have an opposite magnetization compared to destination tissue. The difference between a labeled and a 

non-labeled image can provide a perfusion-weighted image which signal intensity is proportional to perfusion (Artz 

et al., 2011; Leung et al., 2017; Odudu et al., 2018). Perfusion map can be then generated by entering the signal from 

each voxel into a kinetic model, as shown in Fig. 3. 

Several studies have supported the feasibility of using ASL to evaluate kidney function either in CKD or in kidney 

transplant. Artz et al. have found a good correlation between cortical perfusion and eGFR for native and 

transplanted kidneys (P<0.05) supporting that glomerular filtration rate regulates the renal blood flow. Moreover, 

perfusion was found to be significantly reduced in transplanted kidneys compared to native kidneys when eGFR >60, 

which can be referred to the differential regulation of blood flow in transplanted kidneys and no statistical difference 

of perfusion was found between left and right kidneys (Artz et al., 2011).  

Applied to patients with renal impairment, cortical and whole kidney ASL perfusion were significantly lower in CKD 

patients (staged from I to V according to their eGFR) than healthy subjects, reduced with the increase of renal 

impairment (Brown et al., 2019; Gillis, 2016; Rossi et al., 2012) with and without matching for age and body mass 

index (L. Li et al., 2017). Cortical and whole kidney perfusion were well correlated with eGFR (Gillis, 2016; L. Li et al., 

2017). No association between renal volume or size and perfusion suggesting that the difference in tissue perfusion 

cannot be attributable to tissue atrophy (Gillis, 2016). The filtration fraction determined from ASL perfusion 

(FF=eGFR/ASL) was found to be associated with fibrosis score resulted from biopsy (Brown et al., 2019). Cortical 

perfusion was reported to be strongly correlated with renal function in healthy and CKD patients (15<=eGFR<60 

mL/min/1.73 m2) (Buchanan et al., 2019). Recently, ASL values were found to be significantly different between 



patients with primary glomerular disease (PGD) and healthy volunteers and well correlated to eGFR in PGD patients 

(C. Li et al., 2020). 

ASL has been applied in the study of AKI (Dong et al., 2013), LN (Rapacchi et al., 2015; Skeoch et al., 2017), CKD 

(Breidthardt et al., 2015a; Gillis et al., 2016; L.-P. Li et al., 2017), DN (Mora-Gutiérrez et al., 2017), and renal 

transplant (Heusch et al., 2014; Hueper et al., 2015). From these studies, consistent outcomes are that cortical 

perfusion is reduced with the presence of renal impairment, declines with increasing stage of CKD and correlates to 

eGFR and fibrosis staging. Although its ability to assess renal dysfunction, more validations still warranted to 

evaluate the association between perfusion and histopathology in order to further explore the relation between 

reduced renal perfusion and ECM accumulation. 

 

 

Fig. 3  

4. Dynamic Contrast Enhanced MRI 

Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI), also referred as MR renography, is a MR 

perfusion technique that uses the administration of contrast chemical agent into the patient’s bloodstream to 

perfuse inside ilk, precipitated in recreation of flush, to catalyze a discrepancy image of organ (Derle and Dighe, 

2015). The interaction between gadolinium-based agent and water protons within the target tissue causes T1 

relaxation time to decrease leading to a higher intensity on T1 weighted images (Ebrahimi et al., 2014b). Successive 

images are acquired during transition of the contrast agent in order to track the dynamic enhancement of the target 

tissue. Mathematical models are used to estimate the tracer concentration from the MR signal change, as seen in 

Fig. 4 (Zhang and Lee, 2019), (Octavia et al., 2017). By fitting the model to the concentration vs. time curves of 

kidneys, perfusion and flow parameters can be estimated, including cortical and medullary renal plasma flow, 

plasma volume, mean transit times for each individual compartment and the whole kidney, tubular flow and tubular 

transit time and most importantly the single kidney GFR (SK-GFR) instead of bilateral GFR estimated by the serum 

creatinine blood level (Eikefjord et al., 2015; Jiang et al., 2019b; Octavia et al., 2017). DCE-MRI requires a proper 

segmentation and registration process for kidney motion correction (Derle and Dighe, 2015). 



 

Fig. 4  

Despite its ability of kidney state visualization and functional kidney parameters estimation additionally to its 

potential for prognosis and diagnosis in living kidney donors (Dujardin et al., 2005; Eikefjord et al., 2016, 2015; 

Notohamiprodjo et al., 2011), the application of renal DCE-MRI on CKD patient is limited by the use of contrast agent 

and concerns about patient safety in renal impairment due to the risk of nephrogenic systemic fibrosis even when 

using low doses (Ebrahimi et al., 2014b), (Zhang and Lee, 2019), (Fraum et al., 2017). Thus, assessment of kidney 

perfusion in renal insufficiency was performed using ASL technique (Zhang and Lee, 2019), (Conlin et al., 2017). 

5. T1 and T2 Mapping 

Magnetic resonance relaxometry (MRR) can discriminate tissue composition by measuring the T1 (spin-lattice) and 

T2 (spin-spin) relaxation time via pixel-wise mapping of true T1 and T2 values of the target tissue without the 

administration of contrast agent. It was used in order to characterize renal tissue non-invasively.  

T1 relaxation time was suggested to increase with progressive tissue scarring. It has shown a good correlation with 

cardiac fibrosis measured by biopsy and was significantly higher in patient with severe fibrosis staging (Bull et al., 

2013), thus the potential of T1 maps in identifying fibrosis burden without contrast agent. Moreover, T1 values were 

found to be modulated by the tissue and/or blood oxygenation level in several studies where shown the sensitivity 

of cortical T1 values to oxygenation level changes (the higher the oxygenation level is, the lower the T1 values are) 

(Wolf et al., 2018). Moreover, T1 native mapping has shown a good to strong inter- and intra-examination 

reproducibility in both healthy and patients with diabetic nephropathy (Dekkers et al., 2019). 

Renal T1 mapping was used as a non-invasive tool in the assessment of kidney function. In their study, Lee et al. have 

reported a higher T1 relaxation time in the cortex than the medulla due to the higher water mobility within medulla 

compared to cortex, an increase of cortical T1 with the renal insufficiency which can be referred to increased cortex 

water content resulted from the more longstanding pathologic changes such as extracellular matrix changes and a 

good association was found between cortical T1s, the difference between cortical and medullary T1s and the single 

kidney GFR (SK-GFR) (r=-0.5, P=0.03; r=0.58, P<0.01 respectively) (Lee et al., 2007). Breidthardt et al. have evaluated 

the association between renal dysfunction, perfusion (ASL) and real parenchymal structure (T1 maps) in healthy 

volunteers and patients with heart failure (HF) having a different level of renal impairment according to their eGFR 

(Breidthardt et al., 2015b). Main results have shown a good correlation between T1s and eGFR (r=0.41, P=0.015) and 

a higher cortical T1s in HF patients with kidney dysfunction compared to those without renal impairment. Similar 

results were obtained in the study of Gillis et al. where cortical T1s were found higher in clinically evaluated CKD 

patients compared to normal subjects and correlated to eGFR (r=0.58, P<0.001) (Gillis, 2016). Additionally, the 

potential use of T1 mapping in the assessment of renal fibrosis was shown by Friedli et al. (Friedli et al., 2016) where 

CMD of T1s have positively correlated with eGFR and renal fibrosis staging, while cortical or medullary T1s failed to 

show a correlation which can be explained by the ability of CMD technique to decrease the inter-individual variability 

resulted from ROI selection from cortex and medulla separately. In their multiparametric study that examined renal 

perfusion, diffusion, oxygenation and microstructure in CKD patients using ASL, DWI, T2* and T1 mapping, Cox et al. 

have found the cortical T1s significantly increased contrary with the CMD of T1s which decreased in the presence of 

renal impairment (CDK stages III and IV) (Cox et al., 2017). Furthermore, T1 native mapping was investigated in renal 



transplant studies to evaluate kidney function, where T1s has shown an increase in transplanted compared to native 

kidneys and in impaired compared to well-functioning kidneys and the CMD of T1s was found to be diminished after 

transplantation (Huang et al., 2011; Peperhove et al., 2018). 

Studies on renal T2 measurement are still scarce. Cortical T2s were found to be significantly increased in 

transplanted compared to native kidneys, whereas no correlation was found between T2s and allograft function 

(eGFR) (Mathys et al., 2011). Moreover, T2 mapping was applied to autosomal dominant polycystic kidney disease 

(ADPKD), characterized by a progressive development of cysts and fibrosis composition, where whole kidney T2s 

were found to distinguish between healthy and ADPKD kidneys in animal model (Franke et al., 2017). Recently, T1 

and T2 were reported to have the ability to assess cystic kidney disease progression in kidneys with ARPKD in a 

mouse model, where T1s and T2s were significantly higher in affected compared to healthy kidneys (MacAskill et al., 

2020). Interestingly, T2s were found to be strongly correlated to cystic fraction in patients with ADPKD (Siedek et al., 

2020). 

In summary, T1 maps has shown the ability to assess renal damage either in renal impairment reflected by low eGFR, 

HF associated with renal dysfunction or renal transplant. Consistent findings are T1s were correlated to GFR and 

fibrosis staging, increased when the presence of renal impairment. The CMD of T1s was reported to be decreased 

with renal dysfunction and was found to be more efficient than cortical or medullary T1s alone, which gives the 

opportunity to further study the distribution of the T1s within the complete renal parenchyma. T1 and T2 maps were 

lightly introduced to clinical studies of polycystic kidney diseases (ADPKD and ARPKD), where T1s and T2s were found 

to be increased in affected kidneys and T2s were reported to be well correlated to renal cystic fraction. Additionally, 

T2 maps were not widely explored. Thus, additional studies evaluating their potential in assessment of renal 

dysfunction are required. Finally, further validation of the correlation between relaxation mapping and renal 

function reflected as GFR as well as the sensitivity of mapping to detect fibrosis remain in need. 

6. Magnetization Transfer Magnetic Resonance Imaging 

Magnetization Transfer magnetic resonance imaging (MT) has the potential to assess biological tissue fibrosis. MT is 

sensitive to immobile macromolecule components within the tissue and can evaluate pathological events 

accompanied with macromolecule changes (e.g. fibrosis composition). It is sensitive to the interaction between free 

and immobile protons of large molecules. Using an off-resonance RF pulse, macromolecule protons are saturated 

and transferred to water protons depending on the exchange rate between the two protons population. Two sets of 

images need to be acquired, at baseline without the MT pulse and a MT-weighted image. Hence, the percent 

decrease in water signal following the exchange reflects the MT ratio (MTR) which is an indicative of macromolecule 

content (Henkelman et al., 2001). 

MT has shown its utility in the detection of fibrosis in animal models and humans with renal diseases. In a mouse 

model of RAS, Ebrahimi et al. have shown the ability of the MT to visually differentiate fibrotic from non-fibrotic 

tissue where the MT-derived parameters (the magnetization fractional pool and the free magnetization exchange 

rate) were significantly different between stenotic and the contra-lateral kidney and correlated with fibrosis 

quantified from trichrome tissue staining, thus their potential use as biomarkers of kidney morphological changes 

after fibrosis composition (Ebrahimi et al., 2013). Similarly, MT has succeeded to longitudinally monitor renal fibrosis 

in a mouse model of RAS, where median MTR in cortex and medulla was significantly decreased in RAS kidneys and 

strongly correlated with ex-fibrosis assessed by histology in addition to the good spatial concordance between MTR 

maps and renal fibrosis by trichome and Sirius red staining (Jiang et al., 2017a), (Jiang et al., 2017b). MT was tested 

on a murine model of ADPKD, as it is accompanied with cysts (decrease in MTR) and fibrosis burden (increase in 

MTR). Parameters derived from MTR maps (including mean, median, 25th percentile, skewness and kurtosis, ) were 

closely related to indices of renal pathology and MTR was correlated well with cystic and fibrotic histological index 

with a good concordance between histological stained slice and MTR maps as shown in Fig. 5 (Kline et al., 2016). 

Recently, MTR has shown to provide structural and metabolic assessment of renal fibrosis in rats with unilateral 

ureteral obstruction (UUO), where MTR was significantly different between healthy and the contralateral kidneys 

with UUO over the obstruction course and well correlated to metabolic markers (A. Li et al., 2020).   



Owing that the MTR is affected by many factors related to sequence details and relaxation parameters, quantitative 

MT (qMT) technique have been developed to provide a more quantitative assessment of macromolecules content 

within the tissue with a higher sensitivity and specificity (F. Wang et al., 2018). In this technique, the ratio of the 

macromolecular proton pool to the free water pool (pool ratio size, PSR) is isolated from relaxation and exchange 

rates and used as a quantitative MT parameter. Using qMT, fibrosis was assessed in murine progressive diabetic 

nephropathy and tubulointerstitial fibrosis and PSR has been shown to be a useful index of fibrosis (F. Wang et al., 

2018), (Wang et al., 2019). 

Moreover, one human study has figured out the role of MT in assessment of renal fibrosis. The MTR of cortex was 

correlated with eGFR and significantly different between subjects with normal renal function compared to patients 

with renal impairment, classified according to their eGFR (Ito et al., 2013). 

Both, MTR and PSR has been shown to be a promise fibrosis biomarker. The ability of MT in the detection of fibrosis, 

a common pathway of CKD, has been demonstrated in animal models, while its clinical application in human studies 

and especially in identifying CKD still limited. 

 

Fig. 5  

7. Magnetic Resonance Elastography 

Organ stiffness has been demonstrated to precede the implications of fibrosis, the extra cellular matrix deposition 

(Georges et al., 2007). Fibrosis decreases tissue elasticity; hence the tissue elasticity measurement could provide a 

good marker of fibrosis (Hewadikaram et al., 2018). Magnetic Resonance Elastography (MRE) can measure this tissue 

mechanical property by applying a mechanical vibration over the target organ and capturing the shear waves 

generated and propagated by motion-synchronized or phase contrast imaging (Muthupillai et al., 1995). More rapid 

waves with longer wavelength are captured from stiffer or fibrotic compared to soft healthy tissues. Stiffness maps 

or elastograms are generated by processing these waves (Fig. 6). 



 

Fig. 6  

MRE was reported as a good liver fibrosis detector in animal and human studies where an increased stiffness was 

captured with the increased severity of fibrosis and a good fibrosis stages prediction power was found. MRE has 

even surpassed ADC maps in the fibrosis staging with a better sensitivity and specificity (Kim et al., 2013; Rouvière et 

al., 2006; Talwalkar et al., 2008; Y. Wang et al., 2011; Yin et al., 2007b, 2007a). 

Similarly, alteration in renal mechanical properties, elasticity, and stiffness, have been detected using MRE and were 

found to be correlated with kidney fibrosis. Shah et al. have shown the ability of MRE to measure cortical renal 

stiffness induced by nephrocalcinosis with mild fibrosis in mouse model (Shah et al., 2004). Medullary stiffness has 

been found to be significantly increased, and strongly correlated with the degree of fibrosis histologically evaluated 

in a swine model of RAS (Korsmo et al., 2013; X. Zhang et al., 2018). Lee et al. have reported a modest increase of 

stiffness in fibrotic kidneys (Lee et al., 2012). Moreover, renal stiffness was correlated with eGFR and significantly 

higher in functioning compared to nonfunctioning transplanted kidneys (Garcia et al., 2016). Whole-kidney stiffness 

was found associated with fibrosis scores and eGFR showing an increase with the eGFR decline in renal allograft 

patients even during a follow up study (Kim et al., 2017; Kirpalani et al., 2017). Similarly, a negative association was 

found between eGFR and MRE stiffness (Zhang and Zhang, 2020). Recently, Hodneland et al. have reported a good 

association between shear waves derived parameters (reflecting the pressure gradients and volumetric and shear 

deformations) and arteriosclerosis grade determined by biopsy (Hodneland et al., 2019). Surprisingly, stiffness has 

shown a decrease in all stages CKD DN patients (stages I to V) compared to controls, which can be explained by the 

fact that MRE is influenced by hemodynamic (blood flow) beside fibrosis deposition (Brown et al., 2019).  

MRE has been reported as a good tool for fibrosis detection and staging allowing its potential as renal function 

predictor. Main results have shown that increased stiffness was associated with increased fibrosis stage. Clinical 

applications on renal transplants have reported a correlation of MRE stiffness with eGFR and an increase of stiffness 

with the presence of renal dysfunction. However, renal stiffness can be influenced by other factors other than 

fibrosis like hydronephrosis, edema formation, renal blood flow, collecting system dilatation, changes in the 

paramagnetic material composition (e.g. lipid, protein) and structural factors such (anisotropic structure) that can 

mask fibrosis during MRE interpretation (Leung et al., 2017), (Lee et al., 2012; Warner et al., 2011), (Gennisson et al., 

2012). Those results require further studies to test its ability to diagnose CKD patients. 

8. Other MRI Techniques 

Susceptibility-Weighted Imaging (SWI) has shown good promises in renal function assessment and fibrosis detection. 

Mie et al. have investigated the feasibility of SWI on human kidneys (Mie et al., 2010). SWI signal was found to be 

affected by perfusion alterations and tissue fibrosis in animal models (Pan et al., 2017; J. G. Zhang et al., 2018). Pan 

et al. have demonstrated the sensitivity of SWI after renal reperfusion where the SWI score has decreased and 

returned to baseline over 48h after reperfusion injury (Pan et al., 2017). Additionally, Zhang et al. have shown a 

decrease of SWI signal ratio and a strong correlation with fibrosis staging (J. G. Zhang et al., 2018). 

Moreover, fat quantification by using Dixon technique also known as fat fraction imaging has been investigated to 

early detect renal lipid deposition in patients with diabetic nephropathy, a decline in fat fraction was noted with the 



presence of disease (Y.-C. Wang et al., 2018). The use of Dixon technique in CKD assessment warrants studies to test 

its ability to detect renal impairment. 

Furthermore, MR Spectroscopic Imaging (MRSI) that describes metabolites characterization within the tissue has 

been investigated in assessing renal diseases. Given that renal failure is associated with a progressive formation of 

inorganic phosphorus and a loss of adenosine triphosphate, 31P MR spectroscopy has been emerged by using the 

phosphomonoesters to inorganic phosphorus ratio as a renal metabolic marker (Ebrahimi et al., 2014b). 

Metabolomic profile has succeed to reflect different renal allograft function as it was well associated with eGFR 

(Bassi et al., 2017). CKD metabolic biomarkers are markers of glomerular filtration, tubular function and 

mitochondrial function, alterations in urea cycle or amino acid that are lost with the increase of impairment severity 

(Hocher and Adamski, 2017). MRSI involves a powerful tool to assess renal metabolic markers giving the opportunity 

to early diagnosis and intervention in CKD (Ye and Mao, 2016). 

Other Imaging Modalities 

1. Ultrasound Elastography 

Ultrasound Elastography (UE) enables the detection of tissue mechanical properties, like MRE. UE techniques are 

based either on the imaging of the generated shear wave propagating within the tissue or on the strain analysis of 

the tissue under external compression (Gennisson et al., 2013). Shear wave elastography (SWE or USE) utilizes sound 

wave to assess tissue elasticity by measuring the Shear Wave Velocity (SWV) reflecting tissue stiffness. Strain 

Elastography (SE) applies an external compression to the kidney and measures the deformation occurred due to this 

stress known as cortical or medullary strain and the cortico-medullary strain ratio. Compared to conventional 

Doppler ultrasound (US) derived parameters, UE-derived parameters have shown a superior potential in the 

assessment of renal fibrosis (Hu et al., 2015; Leong et al., 2019; Marticorena Garcia et al., 2018). 

SE was used to evaluate kidney function after transplantation, as kidneys are close enough to the body surface. 

Cortico-medullary strain ratio has presented a decline with the increase of cortical fibrosis degree and has shown a 

significant difference between groups of different fibrosis scores and inversely correlated to the fibrosis stage (Gao 

et al., 2015, 2013a). When it was normalized, the cortical strain was found to have a good discrimination power 

between mild and moderate fibrosis stages (Gao et al., 2013b). Moreover, the tissue mean elasticity has been shown 

an inverse correlation with fibrosis degree (Orlacchio et al., 2014). SWE was used by Garcia et al. to detect renal 

dysfunction in allograft patients and have reported a higher stiffness in functional compared to non-functional 

kidneys as well as a good prediction performance (sensitivity 90.9%, specificity 85.7%, AUC 0.925 for pyramids 

stiffness), SWV was associated well with renal blood flow and eGFR (Marticorena Garcia et al., 2018). Furthermore, 

several studies have reported a good correlation between SWE stiffness and the fibrotic stage (Arndt et al., 2010; Ma 

et al., 2018; Nakao et al., 2015). In contrast, some studies have reported that SWV or estimated stiffness was not 

correlated renal dysfunction and did not differ in grafts with different stage of fibrosis (Grenier et al., 2012; Lee et 

al., 2015; Syversveen et al., 2012, 2011). 

Applied to CKD patients, SWV was found to be well associated with eGFR, significantly higher in healthy compared to 

each stage of CKD patients (AUC=0.752) but it was not able to differentiate CKD stages (CKD stages based on eGFR) 

(Guo et al., 2013), (L. Wang et al., 2014). A decline of SWV has been reported with the severity of renal impairment 

or fibrosis score assessed by histology (Hu et al., 2015). Compared to conventional ultrasound parameters, including 

renal length, parenchymal thickness, and resistive index, SWV has shown a better differentiation performance (Hu et 

al., 2015). Similarly, Bob et al. have reported a decrease in SWV associated with the decrease of renal function 

qualified by eGFR in patients with diabetic kidney disease (DKD) without other renal disease or DM (Bob et al., 2017). 

SE strain ratio was found to be well correlated with eGFR in patients with DN (Iacob et al., 2019). On the other hand, 

no correlation was found between renal stiffness and fibrosis scores assessed with biopsy (Cardenas et al., 2019), (L. 

Wang et al., 2014) and estimated stiffness was found higher in CKD patients (stages III to V) (Lin et al., 2017; Samir et 

al., 2015). Recently, SWE was found to be able to detect abnormal renal stiffness in patients with early stages of 

glomerulonephritis and preserved renal function (Grossmann et al., 2019). Young’s Modulus (YM) was measured to 

assess renal stiffness and has shown the largest discrimination power between healthy volunteers, type 2 DM 



without DKD and type 2 DM with DKD patients (Shi et al., 2020). YM was negatively correlated to eGFR and higher in 

healthy controls compared to patients. SWE has outperformed conventional US parameters and has shown its ability 

to monitor type 2 DM (Shi et al., 2020). 

UE has not shown an ability to objectify stages of renal damage. In terms of clinical applications, SE was employed in 

renal transplants studies, showing a good correlation between strain ratio or tissue mean elasticity and the fibrosis 

stage. A higher stiffness was reported in functional compared to unfunctional allografts. SWE was incorporated in 

CKD, DKD, glomerulonephritis, DM and DN studies leading to conflicting results about the association between 

estimated stiffness and renal function. Moreover, the shear wave was supposed to be faster propagated in fibrotic 

compared to healthy tissue which cannot be noticed in mentioned studies. The association between SWV and renal 

blood flow, reported previously (Marticorena Garcia et al., 2018), supports the fact that many factors can affect 

tissue stiffness and mask fibrosis which has induced these conflicting results about the potential of UE in fibrosis 

assessment (Leung et al., 2017), (Lee et al., 2012; Warner et al., 2011), (Gennisson et al., 2012). Interestingly, 

spectral parameters derived from ultrasound waves are supposed to reflect the frequency content and then the 

disease severity of CKD (Hewadikaram et al., 2018).  

2. Computed Tomography 

Computed Tomography (CT) is an imaging technique that uses a motorized x-ray source shooting narrow beams of x-

rays and producing tomographic images. CT offers a good temporal and spatial resolution as well as a quantitative 

power for contrast agents (Zhu et al., 2018).  

Split renal length and volume derived from volumetric CT have shown the ability to assess renal function in kidney 

donors by allowing the measurement of SK-GFR (Gaillard et al., 2017; Jiang et al., 2019a; Patankar et al., 2014; 

Yanishi et al., 2015). Split parenchymal volume was found strongly correlated to split renal GFR measured by 

scintigraphy and a better indicator of reduced split renal function when combined with split renal ADC (Li et al., 

2018; Mitsui et al., 2018). Additionally, cortical volume was demonstrated to be a powerful tool of renal function 

estimation and renal outcomes prognosis in kidney donor as well as a good predictor of CKD development after 

nephrectomy (Gardan et al., 2018; You et al., 2018). Most importantly, CT has shown a good promise in decline renal 

function assessment as well as fibrosis detection. Owing that CKD is normally associated with renal microvascular 

rarefaction, Stillfried et al. have shown the potential of  CT angiography derived parameters in the assessment of 

renal function in CKD, where the renal relative Blood Flow (rBF), closely mirrored the renal rarefaction resulted from 

biopsy, as well as the arterial diameter were found to be significantly reduced in CKD patients (eGFR <=32 

mL/min/1.73 m2) (von Stillfried et al., 2016). Furthermore, a new gold nanoparticles conjugated to an anti-collagen-I 

antibody was involved by Zhu et al. as a CT contrast agent and was able to visualize mouse kidney fibrosis either by 

multi detector CT (MDCT) or micro-CT matching the renal histology (Zhu et al., 2018). 

Although it ability to measure SK-GFR as well as the potential of CT angiography in renal function assessment in CKD 

patients, CT is still limited to ionizing radiation and contrast agent injection that can injure the kidney (Lerman et al., 

1996; Maioli et al., 2012). Recently, Contrast-Enhanced CT was reported to increase the risk of End-Stage Renal 

Disease (ESRD) (Lim et al., 2020). However, identification of renal fibrosis or perfusion with non-contrast CT remains 

challenging (Zhu et al., 2018). 

3. Scintigraphy Imaging 

Positron Emission Tomography (PET) and Single Photon Emission Computed Tomography (SPECT) also known as 

scintigraphy imaging are the most common imaging modalities used by nuclear medicine that uses radioactive 

tracers to assess organ function and perfusion. PET relies on the detection of radiation emitted through the electron-

positron annihilation when positron emitting nuclides are applied while SPECT measures gamma rays emitted from 

tracers (Köhnke et al., 2019).  

Nuclear imaging allows split renal function measurement (SK-GFR) (Patankar et al., 2014; SHIMIZU et al., 2016; 

Yanishi et al., 2015). Moreover, PET and SPECT were proved to be able to detect hepatic, cardiac and pulmonary 

fibrosis (Désogère et al., 2017; Kim et al., 2016; Li et al., 2011). Additionally, scintigraphy has succeeded to early 



predict renal reduced function after transplantation (Yazici et al., 2015, 2013; Yoon et al., 2016), with an 

improvement of prediction power when coupled with CT (Lovinfosse et al., 2016). Recently, nuclear medicine has 

been demonstrated to be a noninvasive tool in the quantitative assessment of glomerular function (Qin et al., 2019). 

PET has shown a potential predictive power for renal recovery in renal transplants undergoing AKI (Pajenda et al., 

2020). Results presented support the need for more investigation of nuclear imaging in renal fibrosis and perfusion 

assessment in CKD, as clinical applications were limited to SK-GFR measurement, fibrosis detection and renal 

transplants function prediction. 

Artificial Intelligence Applied to Medical Imaging  

In addition to the qualitative analysis provided by the mean value of gray level pixels within a region of interest, 

texture analysis derived from mathematical techniques has the potential to give quantitative information that are 

usually imperceptible to the radiologist eye. Texture analysis techniques characterize the heterogeneity of the 

distribution of pixels and their spatial arrangement by describing the pixels inter-relationships and the gray level 

frequencies within an image that cannot sense visually. Several approaches have been involved in order to quantify 

image texture, including histogram analysis, 2-D Fourier transform, statistical methods (features derived from the 

gray level co-occurrence matrix (GLCM), the gray level run-length matrix (GLRLM) and the local binary pattern (LBP)), 

model-based methods (autoregressive and fractal model), and transform-based methods (wavelet transform) 

(Larroza et al., 2016). The process starts with image acquisition, and involves several steps which usually include ROI 

definition and preprocessing, feature extraction, feature selection based on parameter statistical significance for 

discrimination, and classification using simple statistical models or machine learning techniques (Larroza et al., 

2016).  

Machine learning stands for computer algorithms that learn from observations in order to predict future outcomes. 

There is a large variety of classifiers used in the medical imaging domain going from traditional statistical methods to 

more sophisticated algorithms. Classification performance of any model uses many measures such as confusion 

matrix measures (e.g. sensitivity, specificity, precision and accuracy or Area under the receiver operating 

characteristic curve (AUC). In traditional machine learning, training and testing the data are supposed to share the 

same distribution and the real-world input data feature space. The success of prediction depends highly on whether 

it is the case or not (Weiss et al., 2016). Conventional classifiers could be based on instance (K nearest neighbors), 

statistical learning theory (support vector machine), decision tree (random forest), feature combination (linear 

discriminant analysis, linear or polynomial regression) or derived from probability and statistics (Bayes) (Ohata et al., 

2019), while deep learning techniques rely on the biological neuron architecture and are characterized by multiple 

artificial layers composed of nodes related to each other by weights representing the contribution of each node to 

the output. 

1. Texture Analysis and Conventional Machine Learning Techniques 

Texture, extracted from medical images, reflects the micro- and macro-structure of the selected organ (Materka, 

2004). Textural analysis was widely applied to different medical imaging modalities and has shown its ability to be a 

powerful computer-aided diagnostic tool that helps in clinical decision making (e.g., liver lesions differentiation, 

breast tumors classification, prediction of non-response to neo-adjuvant chemotherapy in breast cancer and renal 

tumor classification between simple cysts, kidney stones and the complex renal cell carcinoma on CT and MR 

images) as well as segmentation tasks (e.g., kidney segmentation on CT and Ultrasonography (US) images) (Timothy L 

Kline et al., 2017; Lubner et al., 2016; Mayerhoefer et al., 2010; Michoux et al., 2015; Raman et al., 2015; Sreelatha 

and and Ezhilarasi, 2018; Yu et al., 2017). 

Quantification of tissue fibrosis has recently emerged based on textural analysis. Textural parameters extracted from 

CT and MR images have shown a good correlation between liver fibrosis and increased heterogeneity (Daginawala et 

al., 2016; Yu et al., 2015; Zhang et al., 2015). Owing that fibrosis plays an important factor in the progression of CKD 

and given the heterogeneity of renal parenchyma (cortex and medulla), texture analysis on renal medical images 

may be a good predictor of renal dysfunction. 



Regarding renal function evaluation, texture analysis was applied on MR, US as well as scintigraphy imaging, as 

summarized in Table 2. Integrated with machine learning techniques, textures were proven to be a good 

complementary tool that could serve doctors especially when discovering the CKD progression at early stages of the 

disease. Studies employing textural analysis were focusing on various clinical applications, including the detection of  

renal dysfunction at early stage by discriminating between healthy volunteers and patients with mild or non-severe 

renal impairment, the differentiation between healthy from diseased kidneys (CKD, LN, renal disorder), the 

evaluation of  the association between textures and fibrosis composition as well as eGFR, the discrimination of 

rejected from non-rejected renal allograft, the prediction of the progression to CKD in ADPKD patients and most 

importantly, the prediction of CKD five stages. 

Applied to different functional MR images, textures have succeeded in evaluating renal dysfunction in recent animal 

(Zha et al., 2019) and human studies (Rossi et al., 2012), (Alnazer et al., 2019; Ding et al., 2019; Timothy L Kline et al., 

2017; Kociołek and Strzelecki Michałand Klepaczko, 2019; Shi et al., 2018). Histogram and GLCM based parameters 

were extracted from renal parenchyma on three MRI sequences including DWI, BOLD and SWI (Ding et al., 2019). 

Derived features were well correlated with eGFR. Textures of BOLD and SWI were able to discriminate control and 

non-severe renal dysfunction groups demonstrating the ability of textures to detect renal failure at early stages 

when the disease cannot be detected by eGFR (Ding et al., 2019). In line with these recently published results, our 

preliminary study which have applied textural analysis on DWI MR images, has confirmed that textures were 

affected by CKD (Alnazer et al., 2019). Despite the modest sample size, wavelet-based parameters in addition to 

GLCM- based parameters extracted from renal parenchyma were found to be significantly different between the two 

groups (Controls and CKD patients). In patients with LN a renal scar having CKD as an outcome, GLCM-based 

parameters succeeded detecting changes in the texture characteristics of BOLD MRI with a good prediction rate of 

renal pathology patterns (Shi et al., 2018). Authors have shown that renal histopathology changes resulted from LN 

impairment, led to decreased cortical R2* values as well as affected the normal oxygenation distribution within the 

kidney (Shi et al., 2018). In an animal model of UUO, histogram features extracted from R2* maps were able to 

distinguish the degree of induced fibrosis. In a short-term of evaluation of fibrosis, cortical textures declined 

significantly and correlated closely with the percentage of fibrosis (Zha et al., 2019). Additionally, textural analysis 

performed on T2 weighted MRI (T2W) in order to predict renal dysfunction in a retrospective study of ADPKD 

patients (Timothy L Kline et al., 2017). Incorporating stable texture features, that were strongly correlated with 

changes in eGFR, into a traditional modeling (age, eGFR, total kidney volume (TKV)) has improved the prediction 

power for progression to CKD. Thus, textural analysis provided additional insights to the existing TKV biomarker of 

renal function decline prognosis in ADPKD (Timothy L Kline et al., 2017). Kociolek et al. have shown that texture of 

DCE-MR images extends their possibilities by adding new information about renal functionality (Kociołek and 

Strzelecki Michałand Klepaczko, 2019). Histogram analysis of perfusion maps (ASL) has confirmed the importance of 

regional assessment of renal perfusion (Rossi et al., 2012). Authors have demonstrated that CKD is not only 

associated with changes of perfusion mean values, but also with changes in the distribution of perfusion values 

within the cortex and the renal parenchyma (Rossi et al., 2012). 

Moreover, assessment of fibrosis deposition and renal impairment associated with CKD by textural analysis was 

performed on ultrasonography (US) renal images (Ardakani et al., 2017; Chen et al., 2019; Iqbal et al., 2017; Sharma 

and Virmani, 2017). Textures based on Fourier transform that reflect spatial frequencies, succeeded differentiating 

CKD and healthy kidneys while GLCM-based parameters failed (Iqbal et al., 2017). The use of combination of GLCM 

features vectors was able to distinguish US images of normal and diseased kidneys (Sharma and Virmani, 2017). A 

comprehensive approach to analyze and classify CKD stages based on the texture of US images was provided by 

Chen et al. in (Chen et al., 2019), that has reached a good classification performance. Concerning renal function 

change after transplantation, textures of US images have shown a good association with sCr as well as a significant 

difference between subjects (rejected and non-rejected allografts) with a good classification performance (Ardakani 

et al., 2017). 

Textural analysis was applied on renal scintigraphy images as well.  Ohata et al. have extracted several textures and 

used different machine learning techniques in order to hit the best accuracy in CKD stages classification (stage 1, 2 

versus stage 3-5) (Ohata et al., 2019). Ardakani et al. have used textures to detect renal status after transplantation 

and found that textures improved clinical diagnosis by providing a good classification performance (Ardakani et al., 

2018).  



Study Clinical Application Sample Size 

(n) 

Imaging 

Modality 

Textural 

Parameters  

Classification  Main Results 

Clinical Evaluation 

Quantitative 

Results 

(Ding 

et al., 

2019) 

Discrimination 

between control 

patients (>= 80 

ml/min/1.73 m2), 

patients with non-

severe renal 

impairment (>= 30 

and <80 

ml/min/1.73 m2) and 

severe impairment (< 

30 ml/min/1.73 m2) 

eGFR≥80 

(control, 

n=17), 30-

80 (non-sRI, 

n=24), <30 

(sRI, n=31) 

MRI – 

BOLD, 

DWI, SWI 

Histogram, 

GLCM (d=7, 

O=0°) 

ANOVA  Textures were 

correlated well with 

eGFR, DWI texture 

was able to detect 

renal dysfunction, 

BOLD and SWI texture 

detected renal failure 

at early stage 

(controls Vs. non-sRI) 

AUC=0.84 

(non-sRI Vs 

sRI) 

AUC=0.75 (CG 

Vs non-sRI) 

(Alnaz

er et 

al., 

2019) 

Differentiation 

between normal and 

chronic kidney 

disease (CKD) kidneys 

Healthy 

(n=2), CKD 

(n=2) 

MRI – 

DWI 

GLCM (d=1-8, 

all directions), 

wavelet 

Absent  Textures have shown 

a significance 

difference between 

CKD and healthy 

kidneys 

p-value <0.05 

between 

groups 

(Shi et 

al., 

2018) 

Distinction of patients 

with lupus nephritis 

(LN) staging from 

CKD-I to CKD-III from 

healthy volunteers 

Healthy 

(n=11), LN 

(n=12) 

divided into 

4 subgroups 

of 

pathology, 

having CKD 

stage 1-3 

MRI – 

BOLD 

GLCM (d=1, 

all directions) 

Fisher linear 

discrimination 

Good disease 

prediction power of 

GLCM based 

parameters 

Correct 

prediction 

rate =77.8% 

(Zha 

et al., 

2019) 

Evaluating the change 

of textures values 

over unilateral 

ureteral obstruction 

(UUO) associated 

with fibrosis 

composition 

Rabbit 

study- 

control 

(n=6), UUO 

(n=30) 

MRI – 

BOLD 

Histogram 

 

Absent  Histogram 

parameters of cortical 

R2* decreased and 

showed significant 

differences over the 

course of UUO 

p-value <0.05 

between 

groups 

(Timot

hy L 

Kline 

et al., 

2017) 

Prediction of the 

progression to CKD 

and the reduction of 

eGFR for patient with 

autosomal dominant 

polycystic kidney 

disease (ADPKD) 

3A CKD 

(n=44), 3B 

CKD (n=22), 

30% 

reduction of 

eGFR (n=47) 

MRI – 

T2W 

GLCM Multiple 

linear 

regression 

Textural parameters 

have improved the 

prediction power of 

progression to CKD 

and were well 

correlated to eGFR 

changes 

AUC=0.93, 

0.86 and 0.82, 

progression to 

3A, 3B and 

30% 

reduction in 

eGFR 

respectively 

 

(Rossi 

et al., 

2012) 

Discriminating patient 

with mild renal 

dysfunction staging 

from CKD-I to CKD-III 

and healthy 

volunteers 

Healthy 

(n=8), 

patients 

with mild 

renal 

impairment 

– eGFR>30 

(n=9) 

MRI – ASL Histogram  Absent 

 

histogram-based 

parameters of the 

cortex were 

significantly affected 

by renal dysfunction  

p-value <0.05 

between 

groups 

(Iqbal 

et al., 

2017) 

Discriminating CKD 

patients from healthy 

volunteers 

Healthy 

(n=24), CKD 

(n=8) 

US Fourier-based 

parameter, 

GLCM 

Absent  Fourier-based 

parameters 

succeeded to 

distinguish normal 

and CKD kidneys 

p-value <0.05 

between 

groups 

(Shar

ma 

and 

Virma

ni, 

2017) 

Discriminating 

healthy kidneys from 

kidneys with renal 

disorders (polyuria, 

pyuria, proteinuria 

and hematuria) and 

no hydronephrosis 

Normal 

kidneys 

(n=11), 

diseased 

(n=8) 

US GLCM ratio 

feature 

vector, GLCM 

additive 

feature 

vector, GLCM 

concatenated 

feature vector 

(d=1 to 10) 

SVM Good classification 

performance 

between groups 

indicated for d=1 

accuracy=85.7

% 



(Chen 

et al., 

2019) 

Prediction of CKD 

stage (I to V) for CKD 

patients (non-

diabetics, non-acute 

renal failure, non-

polycystic kidney 

disease, non-

hydronephrosis) 

CKD stage 1 

to 5 (n=205) 

US GLCM-based 

features, 

standard 

deviation, 

coefficient of 

variation, 

texture 

coefficient of 

brightness 

SVM Textural parameters 

of right kidneys 

offered the max stage 

prediction accuracy  

accuracy=70.7

2, 75.95, 

70.05% for 

the left, right 

and combined 

kidney 

datasets 

respectively 

(Ardak

ani et 

al., 

2017) 

Discriminating biopsy-

proven rejected and 

non-rejected renal 

allografts 

Rejected 

allograft 

(n=11),non-

rejected 

(n=50) 

US histogram, 

absolute 

gradient, run-

length, co-

occurrence 

matrix, 

autoregressiv

e model and 

wavelets 

LDA, First 

nearest 

neighbor 

Textures were well 

correlated with sCr 

and distinguishable 

between subjects. A 

good classification 

performance of the 

combined significant 

textures 

AUC=0.975, 

sensitivity=90.

9%, 

specificity=10

0% 

(Ohat

a et 

al., 

2019) 

Discriminating 

between severe 

(stage I, II) and non-

severe (III to V) CKD 

kidneys 

CKD 1-2 

(n=44), CKD 

3-5 (n=58) 

Scintigrap

hy 

 

GLCM, LBP, 

Hu’s, 

structure co-

occurrence 

matrix, 

Moments and 

Zernike’s 

Moments 

Bayes, MLP, 

KNN, RF, SVM 

MLP and SVM 

classifiers achieved 

the 

best performances 

when combined with 

LBP and with Zernike  

accuracy = 92 

and 93% with 

MLP and SVM 

respectively 

(Ardak

ani et 

al., 

2018) 

Discriminating biopsy-

proven rejected and 

non-rejected renal 

allografts 

Renal 

allograft 

rejected 

(n=39), non-

rejected 

(n=55) 

Scintigrap

hy 

 

histogram, 

absolute 

gradient, run-

length, co-

occurrence 

matrix, 

autoregressiv

e model and 

wavelets 

LDA, First 

nearest 

neighbor 

Good classification 

performance and 

good correlation of 

textures with eGFR 

AUC=0.982, 

sensitivity=91.

89%, 

specificity=96.

49%, 

accuracy=94.6

8% 

 

Table 2 Application of texture analysis and conventional machine learning techniques on medical images to evaluate renal. Linear discriminant 

analysis (LDA), support vector machines (SVM), multi-layer perceptron (MLP), k-nearest neighbors (KNN), random forest (RF). 

Applying texture analysis to clinical practice as well as research studies faces many challenges like the great influence 

of signal intensity and heterogeneity quantification which requires standardization of image acquisition protocols as 

well as prior image normalization and intensity correction when required (Timothy L Kline et al., 2017). It is worthy 

to note that studies evaluating the potential of textural analysis in the assessment of CKD renal impairment (besides 

their association with histology and pathology) are still limited and yet to be explored. Thus, further validations are 

recommended to evaluate its potential as a new dimension in CKD management. Proposed approaches, presented in 

Table 2, do not yet provide complete and robust methods to be used to aid clinical practice. Such approaches have 

to be evaluated in large and multi-center studies that employed standardized imaging protocols for different 

modalities, applied a standardized image intensity normalization schema, respected the patient’s preparation prior 

to image acquisition (e.g. fasting, checking the hydration state) and selected the most reproducible and significant 

textures that show a strong association with renal tissue histology and pathology more than eGFR. Once such 

protocols are evaluated and proven to give an excellent CKD detection and staging performance where no 

misclassification, they will be able to be incorporated to clinical practice in terms of diagnosis and prognosis.    

2. Deep Learning 

2.1. Principle 

Deep learning is a part of machine learning inspired by the way the brain fulfils a learning task, trying to imitate 

biological neural networks (Goodfellow et al., 2016). It employs multilayer artificial neural networks through 

mathematically interconnected nodes (Goodfellow et al., 2016). Weights connecting these nodes are adjusted based 

on an optimization equation in the course of training process until the neural network is well learned. Deep learning 

has changed the traditional pipeline of feature extraction followed by the use of conventional machine learning 

algorithms to a simple input-output procedure with a complex architecture of deep layers that enable internal deep 



features extraction (Kavur et al., 2020). Recent deep Convolutional Neural Networks (ConvNets, CNNs) are 

structured into 10 to 20 layers of linear units, hundreds of millions of weights, and billions of connections between 

units (Lecun et al., 2015). CNNs architecture support the process of multiple array data including 1D signals, 2D 

images, audios and 3D videos (Lecun et al., 2015). The multilayer composition of CNNs enable learning hierarchy of 

features without relying on handcraft features (Sharma et al., 2017a). In terms of image classification, CNNs take the 

image as input and transform raw pixels to a class score by passing them throughout convolutional filters (Sharma et 

al., 2017a). 

Deep learning has been used successfully in organ segmentation (Roth et al., 2015; Zheng et al., 2017), total kidney 

volume determination (Timothy L. Kline et al., 2017; Sharma et al., 2017b), chronic myocardial delineation (Zhang et 

al., 2019), cerebral micro-bleed detection (Y.-D. Zhang et al., 2018) and pulmonary nodules classification (Ciompi et 

al., 2015). 

Deep networks were initially fed by medical clinical data including attributes such as age, blood pressure, blood 

glucose, serum creatinine etc., and have outperformed all conventional machine learning techniques (Kriplani et al., 

2019; Saha et al., 2019; Shankar et al., 2018). Moreover, CNNs were found to be a powerful tool in glomeruli 

localization on biopsy slices (Bukowy et al., 2018; Kannan et al., 2019; Marsh et al., 2018) and has outperformed 

classifiers based on the pathologist-estimated fibrosis score in the prediction of fibrosis staging (Kolachalama et al., 

2018). 

Study Clinical 

Application 

Sample Size 

(n) 

Augmented 

Data 

Imaging 

Modality 

Neural Network Architecture Main Results – 

Classification 

Accuracy 

Data 

Accessibi

lty 

(Kuo et 

al., 

2019) 

Estimation of 

artificial 

intelligence-

based eGFR 

(AI-eGFR) and 

prediction of 

kidney 

function (< or > 

60 

ml/min/1.73 m
2)  

1446 

images of 

1299 

patients 

labeled with 

eGFR 

4505 from 

1446 images 

1285 for 

training 

161 for 

testing 

US - Transfer learning using 

pre-trained CNN 

(ResNet) 

- Integration of 

regression layers  

- Gradient boosting-

model classifier 

Good correlation 

between sCr based 

e-GFR and AI-GFR 

(r=0.741) and a 

better CKD detection 

accuracy compared 

to nephrologist 

(85.6% Vs 60.3-

80.1%) 

Available 

on 

request 

from the 

correspo

nding 

author, 

CCK 

(Zheng 

et al., 

2019) 

Differentiate 

normal kidneys 

from kidneys 

with congenital 

abnormalities 

of the kidney 

and urinary 

tract (CAUT) 

Controls 

(n=50), 

children 

with acute 

kidney 

injury 

(n=50) 

No  US - Transfer learning 

based on a pre-trained 

CNN (AlexNet) 

- SVM classifier 

 

Combined, transfer 

learning and 

conventional images 

features can provide 

the best 

classification 

performance 

(accuracy>80%) 

No 

(Hao et 

al., 

2019) 

Discrimination 

between 

normal 

patients and 

chronic kidney 

disease (CKD) 

patients 

staging from 

CKD-I to CKD-V 

Normal 

(n=46), CKD 

stage I-V 

(n=180) 

864 for 

training 

US - Transfer learning using 

pre-trained CNN 

(ResNet-34) 

- Texture branch as a 

residual structure 

(GLCM, HOG) 

- Features fusion 

- Dense layers for 

classification 

Fusion of deep 

features and 

textures features 

provided an accuracy 

of 95.13% and a 

sensitivity of 99.44% 

outperforming the 

classification based 

only on textural 

features or deep 

features 

No 

(Vasant

hselvak

umar 

et al., 

2020) 

Automatic 

detection and 

classification of 

renal diseases 

including 

kidney stones, 

cysts and 

cancer tumors 

90 images 

of non-

diseased 

and 

diseased 

kidneys 

No US - AdaBoost Classifier for 

the disease detection 

- CNN for the disease 

classification: 

-  5 convolutional 

layers 

-  3 max pools 

-  2 average pooling  

-  One flattened layer 

-  2 dense layers 

 

The proposed CNN 

has outperformed 

conventional 

machine learning 

techniques with an 

accuracy of 86.76% 

and a precision of 

84.3% 

No 

Table 3 Deep learning in renal function evaluation 



In terms of renal function evaluation, CKD prediction and diagnosis, deep learning or more specifically transfer 

learning has shown a good promise either alone or served by a texture branch network, as summarized in Table 3. 

Recent studies were focusing on using deep networks in different clinical applications including distinction of healthy 

kidneys from kidneys with CKD, discriminating normal kidneys from kidneys with congenital abnormalities, 

classification of different renal diseases such as renal stones, cysts and tumors and most interestingly, predicting the 

eGFR. 

2.2. Data Availability 

When training data is limited or hard and expensive to collect, there is a need for neural networks that are able to 

overcome lack of data-induced issues. Data augmentation is a necessary step before training the model. It increases 

the diversity of training samples and prevents trained models from overfitting (Sharma et al., 2017a). To expand the 

limited data, several approaches were adopted. Here, we discuss the use of transfer learning and data augmentation 

either by applying image transformation on the existing ones or by using a high topic of deep learning, the deep 

Generative Adversarial Networks (GAN). 

Transfer learning aims at ameliorating learning performance on a target domain by transferring information from a 

related source domain (Weiss et al., 2016). As an example, a person who has a good musical knowledge through 

playing guitar and want to learn to play the piano would learn in a more efficient way, compared to another person 

who had no musical background, by transferring his knowledge to the task of learning to play the piano (Weiss et al., 

2016). Thus, transfer learning is possible.  

Considering the huge data size required during the training phase of deep networks, data augmentation has been 

extensively used to enrich training dataset. Data augmentation is an artificial expanding of dataset samples by 

applying classical image transformation to the existing samples including random gray-level transformation of pixels 

(<3%), cropping, rotating, zooming and shifting (Hao et al., 2019; Pavinkurve et al., 2019), applying a low frequent 

intensity variation (Sharma et al., 2017a), or much more complex image transformation algorithms like the radial 

transform sampling (H Salehinejad et al., 2018; Hojjat Salehinejad et al., 2018). Data can be augmented as well by 

applying deformable image registration (Yin et al., 2019). 

Transfer learning was used by several studies that carry out the renal status evaluation through imaging. Researchers 

have re-trained CNNs, previously trained on photographic images from the ImageNet challenge, to classify 

ultrasound renal images (Cheng and Malhi, 2017; Hao et al., 2019; Kuo et al., 2019; Zheng et al., 2019). Data 

augmentation was applied as well in order to get the larger sample size required by deep networks. Cheng et al. 

demonstrated the effectiveness of transfer learning in classifying abdominal images with different diseases including 

end-stage renal disease, liver and bladder diseases (Cheng and Malhi, 2017). Neural networks have sometimes 

outperformed radiologists in terms of diseases discrimination performance (Cheng and Malhi, 2017). In their recent 

study, Kuo et al. suggest a deep neural network model in order to estimate artificial intelligence based GFR (AI-GFR) 

and to detect CKD from renal US images (Kuo et al., 2019). Authors have extended their data by augmentation and 

have adopted the transfer learning approach of a  pre-trained CNN model (ResNet) that has exceeded nephrologists 

classification between CKD and non-CKD patients and has achieved good correlation between AI and sCr-based eGFR 

(Kuo et al., 2019).  

GANs are a part of deep generative modeling that take input training samples from some distribution and learn a 

model that represents that distribution. GANs rely on a generator with multiple encoding and decoding layers and a 

discriminator. During GAN training, the generator tries to create imitations of data (synthetic images) while the 

discriminator tries to identify real data from fake data created by the generator. Training continues until the 

discriminator cannot find any difference between fake and real data. GANs have gained a great interest in the field 

of medical imaging and have been used in different applications including image synthesis (Lutnick et al., 2020; 

Sivanesan et al., 2019), image translation (Murali et al., 2020), image super resolution (Mahapatra and Bozorgtabar, 

2019), and image transformation (Chandrashekar et al., 2019). Regarding renal images, GAN were used to generate 

real-like micro-anatomic renal images (Murali et al., 2020). Authors have used a cyclic GAN to create an artificial 

effect of staining without physically tampering the histopathological slide. Their proposed GAN was demonstrated to 

be able to translate different stain styles of renal pathology (e.g. transforming hematoxylin and eosin stain to 

periodic acid-Schiff stain). The same team has used the concept of GAN in order to generate realistic looking 



synthetic images of renal biopsy (Lutnick et al., 2020). Most interestingly, GAN was employed in (Sivanesan et al., 

2019), to create synthetic US images as seen in Fig. 7, therefore expanding their limited dataset.  

 

Fig. 7  

2.3. Discussion on Texture Descriptors 

Interestingly, textures were integrated with typical CNNs. Novel models were developed, combining both deep 

networks and textural features as a residual structure. The models hold a CNN served from a textural branch in order 

to extract both deep and textural features from images and use the fused information for classification.  

Zheng et al. have mixed transfer learning and conventional imaging features, including geometrical and histogram of 

oriented gradient (HOG) features (Zheng et al., 2019). Their proposed model has succeeded to accurately 

discriminate between normal and kidneys with urinary track (Zheng et al., 2019). Similarly, in the aim of improving 

decision making and classification performance, HAO et al. suggested adding textural features to the CNNs (ResNet), 

a way to provide additional descriptors (Hao et al., 2019). Authors have used data augmentation prior to transfer 

learning approach and residual textural branch in order to get a model of multi-level descriptors that mixed deep 

features with domain texture features (Hao et al., 2019). Their developed model has outperformed the use of 

textural features or CNNs features alone with a high accuracy and an excellent sensitivity, and shown its ability as a 

computer aided for CKD screening (Hao et al., 2019). 

Artificial intelligence that applies machine learning and deep learning algorithms into clinical research was found to 

be a useful noninvasive assessment tool that succeeded to transform renal imaging into a real time screening tool 

and renal function estimator by the investigation of AI-GFR. The combination of transfer learning with conventional 

images features was reported to provide a robust classifier with a high performance. Further studies investigating 

the deep learning in other imaging modalities is required and additional validation to test its usefulness to not only 

detect CKD but to also predict its stages still warranted. 

3. Artificial Intelligence in Renal Segmentation 

3.1. Automatic Renal Segmentation  

Automatic renal segmentation is a crucial task since the manual delineation of renal tissue is time consuming and 

subject-dependent. Segmentation is a key step in the analysis of abdominal images with different applications 

including surgery planning, computer-aided monitoring, extraction of qualitative or quantitative features, image-

guided interventions (Conze et al., 2020). The segmentation of the kidney could serve the radiologist prior to his 

qualitative assessment and it is needed before feature extracting from the input image in order to get to a fully 

automated software tool of kidney detection and status evaluation. Different segmentation approaches were 

adopted in clinical researches aiming to avoid manual renal delineation and observer intervention efforts.  



Kidney identification is generally performed semi-automatically or automatically. Semi-automatic segmentation is 

usually used due to the similar gray level intensities and the high variation of organ shapes and positions in the 

abdominal images. It requires various intervention mechanisms, such as identification of initial seeds, localization of 

samples within the kidney tissue and the background, pre-segmentation of the kidney with a circular contour, 

defining a parameter range (Hammon et al., 2016; Hu et al., 2012; Mortensen and Barrett, 1998; Sandmair et al., 

2016; Torres et al., 2018). However, these interventions are operator-dependent and additional analysis is required 

to test the segmentation repeatability and to reveal a significant inter and intra-observer agreement and reliability. A 

limited number of experts is usually presented to perform such analysis, which prevent the generalization over 

consistency and repeatability (Kavur et al., 2020). Furthermore, the user interaction requires time, which may be 

tedious in challenging tasks (Kavur et al., 2020). Consequently, many studies aim to convert the user intervention to 

automatic interactions by applying image processing and conventional machine learning algorithms that require 

extraction of handcraft features (Vasanthselvakumar et al., 2020), (Gao and Boliang, 2010), (Akbari and Fei, 2013). 

Refer to (Torres et al., 2018) for more details about renal semi-automatic segmentation strategies applied on MRI, 

US and CT imaging. 

3.2. Traditional Approaches for Automatic Renal Segmentation 

In terms of developing a fully automated renal delineation framework, several traditional segmentation approaches 

were proposed during the last decade. Concerning kidney segmentation on MRI images, thresholding and shape 

detection, probabilistic shape model, Bayesian probability maps, unsupervised classification and deformable models 

were used. In (Will et al., 2014), authors have proposed the use of thresholding followed by shape detection 

techniques to segment renal cortex on T1 and T2 MR images efficiently and simply. However, this method is limited 

to the dependence on MR images quality and visibility. (Shehata et al., 2018) employed the use of a 3D probabilistic 

shape model on DWI images in order to evolve a 3D geometric deformable model reaching a high similarity 

coefficient with manual segmentation (DICE score or DSC). Despite their promising results, the developed model is 

limited to the lack of reliability and the high running-time. A DSC of 0.90/0.89 for right and left kidney parenchyma 

on DCE images was achieved by (Gloger et al., 2012). Authors have used refined probability maps and incorporation 

of external cortex edge alignment to develop a 3D segmentation framework for fully automatic renal parenchyma 

volumetry that exclude parenchymal cysts and could be used in clinical applications and epidemiological studies. 

However, the proposed approach was specifically designed for epidemiological studies, that require adaptation of 

data and domain knowledge in the training phase prior to extending the framework to perform kidney volumetry. 

Additionally, clustering methods were used on DCE images in order to identify multiple renal structures (e.g. cortex, 

medulla and pelvis) (Chevaillier et al., 2011; Li et al., 2012; Yang et al., 2016, 2015; Zöllner et al., 2011). Actually, 

differentiating renal structures could be served from the knowledge the temporal behavior oh the contrast agent 

and the information on the change pixels intensity over time. In their approaches, pixels were classified according to 

their intensity evolution by clusters, including K-means (Chevaillier et al., 2011; Yang et al., 2016, 2015; Zöllner et al., 

2011), growing neural gas (Chevaillier et al., 2011), wavelet-based (Li et al., 2012; Zöllner et al., 2011) and  Gaussian 

mixture clusters (Zöllner et al., 2011). However, clustering is based on the pixel behavior under the contrast agent, 

which is not necessarily used in other imaging sequences or modalities. Furthermore, active contour (AC) or 

deformable models that use energy constraints and forces in the image for separation of regions of interest were 

employed (Al-Shamasneh et al., 2020; L. Li et al., 2014). AC models are based on partial differential equations and 

variational models.  The main idea behind AC in image segmentation is to start with an arbitrary boundary (closed 

curve), the curve is then updated iteratively by shrink and moved by image-driven forces to accurately detect the 

objects boundaries within the image (Hoang Ngan Le et al., 2020). Li et al. have succeeded to segment the complex 

renal contour on DCE MRI images by using a geometric active contours served from multi-scale edge detection 

algorithm that segment inhomogeneous regions (L. Li et al., 2014). Recently, a new active contour model was 

proposed by Al-Shamasneh et al. to segment kidneys on low-contrast MR images (Al-Shamasneh et al., 2020). Their 

model, which used a novel fractional function (Mittag–Leffler’s function) for energy minimization, has outperformed 

other approaches such as the Chan-Vese active contour model (C-V model), the model proposed by Ibrahim et al.  

that uses the wright fractional function and the segmentation by deep serial networks (Chan and Vese, 2001; 

Ibrahim et al., 2018). Their results have shown a high segmentation accuracy and DSC (98.95% and 0.93 

respectively).  



 

Fig. 8  

Moreover, renal segmentation on CT images was performed based on supervised and unsupervised conventional 

classification, multi-Atlas registration and C-V active contour models. In (Khalifa et al., 2017), authors proposed the 

extraction of appearance-based, voxel-appearance and higher order spatial features from CT scans followed by a 

Random Forest (RF) classifier schema resulting in a mean segmentation accuracy of 97.27%. Atlas-based method was 

proposed in (Yang et al., 2018) for renal segmentation. Their approach was based on multi-Atlas registration in a 

coarse-to-fine methodology. Song et al. have used a Fuzzy logic C-means clustering served from spatial information 

which was refined by an improved grow-cut technique and have achieved a high segmentation sensitivity and 

specificity (95.46 and 99.82% respectively)  (Song et al., 2015). In (Huang et al., 2009), authors introduced a dynamic 

shape model and a connected component analysis  as a multi-level set for multi objects segmentation into their C-V 

model resulting in a better segmentation performance compared to using a simple C-V active contour model.  

Furthermore, shape detection techniques and deformable models were adopted in order to perform renal 

segmentation on US images. In (Marsousi et al., 2017), kidneys were detected by fitting a 3D shape kidney model on 

3D US volumes. Then, the fitted model was used to evolve a level set function in order to delineate kidney 

boundaries. Authors approach have shown an accuracy of 97.48% and a DSC of 0.81 outperforming other methods 

(Ardon et al., 2015; Marsousi et al., 2014). This approach failed to detect the kidney volume in low-quality US 

images. A distance regularized level set deformable model followed by a prior shape for smooth boundary detection 

was applied by (Yang et al., 2012). Their model has shown a sensitivity of 95% and a specificity of 95%. In (Huang et 

al., 2013), a new active contour framework was proposed where a fast segmentation with an error of 0.028 was 

achieved by performing a convex relaxation of the energy function. While supervised classification was shown to be 

a successful segmentation method, it is still limited to their need for handcraft features extraction. Although 

deformable models can be considered as one of the most widely used approaches in medical image segmentation in 

last few decades, they impose several limitations. AC needs no learning properties from the training images. 

Therefore, it has a difficulty to deal with occlusions and noise. Moreover, it represents an unsupervised framework 

that lack a way to work with labeled images in a supervised approach. Thus, it gives unpredictable segmentation 

results. Lastly, deformable models are strongly depend on several parameters which are selected by experimental 

results (Hoang Ngan Le et al., 2020). 

Study Sample 

Size (n) 

Augmented Data Imaging 

Modality 

Neural Network Architecture Segmentation Evaluation 



(Conze et 

al., 2020) 

40 normal 

patients 

Yes (scaling, 

rotation, shifting), 

100 augmented 

images for each 

slice 

MRI – T1-DUAL 

MRI – T2-SPIR 

 

- CED with the following 

architecture were tested: 

• UNet 

• Pre-tarined UNet 

• Deep UNet (UNet 

extended with VGG) 

• Pre-trained deep UNet 

- Cascaded CEDs 

- cGAN with CED as generator 

- Cascaded generators 

- No robustness when 

using CEDs alone 

- Improvement of 

performance when 

using pre-trained 

CEDs 

- Cascaded fashion of 

CEDs improved the 

performance 

- Cascaded pre-

trained cGAN gave 

the higher dice score 

for the right kidney ( 

0.9, 0.93 on T1, T2) 

and a good score for 

the left kidney (0.93, 

0.92 on T1, T2) 

 

(Yin et al., 

2019) 

Controls 

(n=50), 

CAKUT 

(n=50), 

185 

images 

Yes (deformable 

image registration), 

no details about the 

final data size 

US - Feature extraction by VGG-16, 

pre-trained on ImageNet 

- Kidney distance map generation 

by a boundary regression network 

(convolutional and 

deconvolutional layers) 

- Pixel wise segmentation based on 

the distance using a network that 

has the same architecture of the 

previous network with some 

modification 

 

- Accuracy of 98% and 

a dice score of 0.94  

- The proposed model 

outperformed the 

state of the art 

models: FCN and 

Deeplab 

(Bevilacqua 

et al., 2018) 

ADPKD 

(n=32), 57 

images 

Yes ( horizontal flip 

and shift, scaling), 

no details about the 

final data size 

MRI – T2 1st approach 

- 2 architectures were tested 

• SegNet (a CED having 

VGG16 as encoder) 

(Badrinarayanan et al., 

2017) 

• Fully convolutional 

network (Long et al., 

2015) 

- ADAM optimizer 

2sd approach 

- Fast R-CNN to detect region that 

contains parts of the kidney 

- Re-use the pre-trained networks 

of the first approach 

- R-CNN: recall of 

90%, precision of 

60% 

- Accuracy of 86% for 

the first approach 

- Accuracy of 84% for 

the second approach 

- the highest 

performance was 

reached using FCN 

(Sharma et 

al., 2017a) 

ADPKD 

(n=125) 

Yes (image shift and 

application of 

intensity variation), 

48000 from 16000 

images 

CT - CED network with VGG-16 as 

encoder 

- AdaGrad as optimizer 

- Xavier initialization to initialize 

weights 

DICE score of 0.86 

(Thong et 

al., 2016) 

Anonymiz

ed data 

from 79 

patients 

No  Contrast-

enhanced CT 

- A proposed CNN architecture 

learned patch-wise (2 

convolutional layers followed by 

maxpooling layer and 2 fully 

connected layers)  

- CNN architecture modified after 

training (transforming fully 

connected layers into 

convolutional operations and 

fragmenting the maxpooling 

layers while keeping the same 

learned weights. 

DICE score over than 0.94 

and 0.92 for left and right 

kidneys respectively 

Table 4 Deep learning in automatic renal segmentation 

3.3. Deep Networks for Automatic Renal Segmentation 

On the other hand, recent researches are exposing deep networks that offer the construction of systems able to turn 

the segmentation to a fully automatic procedure with a high accuracy and repeatability where neither interventions 

nor handcraft features are required. In addition to the success of CNNs in renal failure detection and patient 



classification, the entire kidney segmentation presents an essential issue that was recently addressed, as shown in 

Table 4. Most of recent approaches were based on semantic segmentation that employs a fully convolutional 

network (FCN) or a Convolutional Encoder-Decoder network (CED). The encoding and decoding parts of a CED allows 

discriminating image pixels as it belongs or not to a specified region of interest (pixel wise segmentation). An 

example of a CED architecture is given in Fig. 8 (left panel).  

Kidney segmentation using deep learning was tested on MR, US and CT images. An overall segmentation accuracy of 

86% on MR images of kidneys with ADPKD was reached by Bevilacqua et al. in their study (Bevilacqua et al., 2018). 

Authors have tested different CNNs-based segmentation approaches on their augmented dataset. The full-image 

segmentation based on an FCN has exceeded the CED (SegNet with VGG-16 as encoder) segmentation and the 

introduction of a region-based CNN (R-CNN) prior to the semantic segmentation did not enhance the delineation 

performance. Moreover, a novel boundary distance deep network served by transfer learning was developed by Yin 

et al. in order to segment US kidney images of children with congenital abnormalities of the kidney and urinary tract 

(CAKUT) and controls, achieving an accuracy of 98.9% (Yin et al., 2019). A CNN (VGG-16), pre-trained on ImageNet, 

was employed to extract deep features that are used to learn boundary maps by a boundary distance regression 

network. A pixel classification network was then used to classify predicted maps as kidney pixels or not. 

Furthermore, Sharma et al. have employed a CNN that follows the VGG-16 architecture to generate score maps (see 

Fig. 8) based on pixel wise classification and achieved a DICE score of 0.86 between proposed and manual 

delineation of ADPKD kidneys on CT images (Sharma et al., 2017a). Similarly, Thong et al. proposed a fully automatic 

framework for kidney segmentation on contrast-enhanced CT scans based on CNN trained patch-wise. The proposed 

model achieved a similarity score between manually and automatically renal delineation, over than 0.9 for both left 

and right kidneys (Thong et al., 2016). 

Most interestingly, the Combined Healthy Abdominal Organ Segmentation (CHAOS) benchmark aims to develop 

deep networks that are able to segment multiple abdominal organ including kidneys, liver and spleen on CT and MRI 

images (T1-DUAL and T2-SPIR sequences) of a public dataset, provided with a groundtruth organ delineation (Conze 

et al., n.d.). Different tasks were involved under the CHAOS challenge, going from liver segmentation on only CT or 

MRI modality to the most complicated task that tackles abdominal organ segmentation on both CT and MRI 

modalities using a single network architecture (pre-trained or not) (Conze et al., 2020). All participating teams, 

except for one, have used an extension of the U-Net deep network and all have achieved a high segmentation 

process. A recent cross-modality multi-organ segmentation study employed for CHAOS has shown a good 

performance for multi-organ segmentation task and received the first rank for three competition categories: liver 

MR, liver CT and multi-organ MR segmentation (see Fig. 9) (Conze et al., 2020). Authors have tested different 

pipelines based on different pre-trained networks. The highest right and left kidney segmentation score was 

achieved when a cascaded pre-trained U-Net associated with a conditional Generative Adversarial Network (cGAN) 

was used. The proposed architecture has led to strengthen the ability of the network to segment multiple organs 

with a good generalization capability. Briefly, in a conditional GAN, the generator learns to create synthetic images 

with some specific conditions. In terms of segmentation task, the generator, as its name shows, will generate masks 

through its layers of encoding and decoding while the discriminator assesses either the generated mask is realistic or 

not. Therefore, the adversarial network will be able to differentiate realistic and synthetic delineations and enforce 

the generator to create masks as real as possible. Cascaded CEDs was used in order to exploit multi-level contextual 

information (Conze et al., 2020). 



 

Fig. 9  

Performing automatic renal segmentation based on deep networks was reported to be promising. Deep networks 

take the advantage of being supervised methods that do not require handcraft features. Interventions are limited to 

set the network hyper parameters (batch size, number of iterations) that could affect the model convergence. Most 

interestingly, such networks could offer an adequate solution for cross-modality problem. In another way, a single 

model could be trained to segment MRI as well as CT images. 

Adopting deep learning for renal segmentation imposes several limitations to be mentioned. Deep networks are 

supervised methods that require a hug amount of training ground-truth data, which can be surpassed by using 

various data augmentation schemas as well as GANs for synthetic data generation. Additionally, transfer learning 

offers a way to accelerate the model convergence during the training phase (Conze et al., 2020). Moreover, it is well 

known that determining an adequate architecture for a specific semantic segmentation problem is hard. Thus, 

testing several network architectures and comparing the segmentation results is the best way to precise which 

model could offer the highest segmentation performance. One should be taken into account is the need of deep 

networks to large memories and powerful graphics card, as well as the need of experience in order to find optimal 

parameters for convergence (Kavur et al., 2020).  

Although many kidney segmentation methods and deep models have been developed, studies in this field are still 

limited and more models have to be introduced in future works. Deep segmentation frameworks such as DeepMedic 

(Kamnitsas et al., 2017) and NiftyNet (Gibson et al., 2018)must be explored. Networks such as VNet (Milletari et al., 

2016), ScaleNet (Fidon et al., 2017) and HighRes3dNet (W. Li et al., 2017) have to be evaluated on renal 

segmentation. Interestingly, incorporating active contour models in deep network framework takes the advantage of 

inheriting the merits of both. Several approaches have been proposed, (i) AC can be used as post-processing tool 

after deep network, (ii) within the deep network, it can replace the fully connected layer for segmentation, (iii) the 

energy minimization of AC can be used as the network loss function, (vi) deep network can learn parameters from 

AC. Such approaches are yet to be explored in the field of kidney segmentation (Hoang Ngan Le et al., 2020). Most 

importantly, deep networks could work in parallel if necessary computational power is available. Therefore, their 

results can be combined to obtain superior performance through an ensemble system (Kavur et al., 2020). The 

Ensembles of Multiple Models and Architectures (EMMA) model is a great example of such fusion systems 

(Kamnitsas et al., 2018). Applying such promising approach on renal segmentation is yet to be introduced. Lastly, 

performing segmentation of renal structures (e.g. medulla, cortex, pelvis) based on deep learning is yet to be 

explored. 

Conclusion 

Renal disease is characterized by alteration in renal macrostructure including kidney volume and CMD, and 

microstructure including fibrosis composition and lipid fraction. Developing methodologies to diagnose and predict 

CKD at early stage still a challenging issue that can reduce the cost of disease treatment and slow the kidney damage 

progression.  



MRI was demonstrated to be a powerful tool to evaluate renal tissue by assessing both renal function and structure 

for both kidneys. MRI embeds several sequences reflecting different renal properties and function including 

diffusion, perfusion, oxygenation, tissue elastography, hemodynamics and others. Although MRI sequences offer the 

opportunity to estimate microvascular and microstructural integrity of both kidneys but are still limited to the fact 

that other factors could contribute to the marker measured (e.g. urine flow rate, edema and medications for DWI, 

intravascular volume and tubular dysfunction for BOLD, intravascular volume and medications for ASL etc.). Further, 

human studies evaluating the effectiveness of MT and T1 as well T2 mapping is required.  Multi-parametric MRI 

studies would give a better reflection of the association between all renal functionality measurements and could 

select the most effective MRI sequences to detect renal failure. Taking the advantage of its low cost and availability, 

UE also has offered promising results to monitor CKD through measuring the renal stiffness as MRE does, but the 

conflicting results obtained from UE studies make the MRE more suitable for renal stiffness assessment. Despite 

their effectiveness in renal dysfunction detection, CT and scintigraphy are still limited to the radiation exposure and 

contrast agent injection. 

In terms of routine check-up for renal function in order to prevent kidneys from being affected, US as well as UE and 

CT present suitable imaging techniques that could replace biopsy and GFR test. Those modalities offer a low cost, 

non-invasive, clinically available and short time examination techniques. Those imaging techniques could provide a 

rapid assessment tool when strong CKD suspicions appear. One should be aware of is the radiation exposure caused 

by CT. Given that renal tissue changes occur at the microscopic level that often need a biopsy for assessment, 

nephrology should take the advantage from functional MRI for risky patients. MRI could predict renal failure that is 

associated with function disturbance as it is able to give functional and structural parameters safely. For CKD 

patients or risky patients, contrast-enhanced and radiation exposure imaging should be eliminated due to their side 

effects especially when kidneys are already affected. 

Texture analysis takes the advantage of reducing inter-observer variability since the analysis covers the whole renal 

parenchyma as it is a spatially heterogeneous tissue due to its internal structure. Textures were able to extend the 

possibility of medical imaging and could function as a complementary evidence to conventional qualitative markers. 

Artificial intelligence detects earlier the renal deformation. It carries out the use of machine learning techniques and 

deep neural networks that has performed well in earlier CKD detection and GFR estimation through AI-GFR. Artificial 

intelligence has demonstrated its power to turn conventional medical imaging into a real-time screening tool that 

could help doctors in clinical decision-making. The ResNet network served from a textural branch has outperformed 

other networks and shown to be a promising architecture that has to be tested on other imaging modalities. 

Although the ability of deep networks to hold a fully automated strategy of renal segmentation and disease 

classification associated with a high performance, CNNs lack the huge amount of data for training that should be 

overcome by using the transfer learning approach and data augmentation, and require a high computational power 

for their implementation (e.g. larger memory, powerful graphical cards). Furthermore, deep networks need a strong 

experience in order to pick the optimal parameters for the convergence and to set the parameters of optimization. 

Even their promising results in CKD early detection and GFR estimation, proposed models based on textural analysis 

and deep networks are still not enough to be incorporated to clinical practice until an excellent detection and 

estimation performance is achieved. Having an accuracy <99% means that misclassification of some cases still exists. 

Future research work should investigate the successful litterature models in a large follow-up and multi-center 

studies that uses standardized imaging protocols and homogeneous patient preparation scene (e.g. fasting, 

standardized hydration status, verification of salt and medication intake prior to imaging) with a balanced 

distribution of positive and negative samples. The selection of the most reproducible and discriminative features is 

needed. The association between textures as well as deep features must be evaluated to profoundly understand 

their role in renal impairment detection and staging. 

An effort must be made by the researchers to apply automatic kidney segmentation prior to the disease diagnosis 

using different imaging modality in order to rich a fully automated renal dysfunction detection network with a high 

accuracy and efficiency. The VGG-16 as well as the cGAN/U-Net, pre-trained on ImageNet challenge, have shown 

promise in the segmentation task. Achieving a multi-modality segmentation and CKD evaluation using a single 

framework must be addressed since cross-modality training still more challenging than individual learning. Future 

work must include evaluation of different deep networks in cross-modality renal segmentation (DeepMedic, 



ScaleNet, VNet and HighRes3dNet). Additionally, the use of deep networks incorporated with active contour in the 

field of renal segmentation have to be investigated. Furthermore, the efficacy of ensemble fusion system in this 

context has to be tested. Incorporating kidney segmentation deep models in clinical applications has to have an 

excellent delineation performance (e.g. DICE score, accuracy, sensitivity). 

CKD staging challenge must be further evaluated with deep neural networks. Incorporating textures from other 

imaging modalities into these networks needs further validation to test its effectiveness in clinical decision-making 

and outcome prediction. 

Lastly, in terms of clinical workflow, the gap between research and real-life tools needs to be filled. The successful 

segmentation as well as renal disease evaluation solutions proposed by researchers have to be implemented in real-

world applications. Such framework should be accessible to clinicians during their daily clinical routine. 
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Collected Figure Captions 

For all figures: Color online 

Fig. 1 Fractional anisotropy (FA) map and tractography of healthy kidney. FA map shows a higher diffusion anisotropy 

of the medulla (empty arrow) compared to the cortex (full arrow). Direction coded tractography reveals a radial 

oriented diffusion in the medulla (Notohamiprodjo et al., 2010). 

Fig. 2 Examples of different ways to analyze the images obtained with BOLD-MRI. (A) Small ROI technique. (B) TLCO 

technique. (C) R2* profile: the curve links the mean R2* value of each of 12 layers shown under B, and the red line 

depicts its steepness. (D) Fractional tissue hypoxia. (E) Compartmental method (Pruijm et al., 2018a). 



Fig. 3 Perfusion map generation. Tag (A), control (B) and difference (C) images acquired in a sagittal plane for a 

healthy transplant kidney subject with negligible motion (eGFR=74 ml/min per 1.73 m2) along with the resulting 

perfusion map (D) shown in units of ml/min per 100 g (Artz et al., 2011). 

Fig. 4 Right: cortex and medulla segmentation of the right kidney. Left: Fitted cortex and medulla concentration 

curves, with arterial input function (AIF) (Octavia et al., 2017). 

Fig. 5 (a) Magnetic transfer ration (MTR) map, (b) cystic probability map derived from MTR map based on Gaussian 

mixture model (GMM), (c) fibrotic probability, (d) MTR histogram with GMM classification overlaid, cystic tissue is 

conveyed by the green component, parenchyma by the red and fibrotic tissue by the blue, (e) corresponding 

histological slice stained with hematoxylin and eosin, (f) picrosirius red staining (Kline et al., 2016). 

Fig. 6 (A) vibrational wave applied to the kidney. MR scanner acquires images at the same vibrational frequency to 

detect small displacements in the vibrating organ and calculate renal stiffness, Sample pseudo-colorized 

displacement images are shown to the left and right of the magnetic resonance scanner in (A), with blue and red 

depicting alternating phases of the displacement waves. Below each displacement image is the corresponding 

pseudo-colorized elastogram. (B) In these representative images of healthy (left panels) and fibrotic (right panels) 

transplant kidneys, standard transverse relaxation time (T2)-weighted images are shown in the top row. In the 

bottom row, pseudo-colorized elastogram stiffness maps are shown of the same two kidneys, with red color 

reflecting stiffer tissue. The color bar is scaled from 0 kPa (blue) to red (8 kPa) (Leung et al., 2017). 

Fig. 7 Ultrasound images synthetization using deep networks. Real (left side) and generated (right side) Ultrasound 

Images (Sivanesan et al., 2019). 

Fig. 8 Right panel: CNN predictions of ADPKD Kidneys. Segmentations (red contour) of ADPKD kidneys from CT 

acquisitions are shown. The corresponding CNN-generated probability maps are shown in pseudo colors. Left panel: 

fully convolutional neural network architecture (CNN). Convolutional and pooling layers were used for feature 

extraction. Deconvolutional and unpooling layers were used for upsampling feature maps in order to achieve 

pixelwise segmentation (Sharma et al., 2017a). 

Fig. 9 Abdominal multi-organ segmentation on magnetic resonance images (MRI). Segmentation on T1-DUAL in and 

T2-SPIR sequences using several deep networks; DeepMedic, denseVNet, UNet, v19pUNet, v19pUNet+, v19pUNet 1-

1 and cGv19pUNet 1-1. Groundtruth delineation of liver, right kidney, left kidney and spleen are superimposed in 

red, green, blue and yellow respectively (Conze et al., 2020). 
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