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LÉVY AREA WITHOUT APPROXIMATION

ISAO SAUZEDDE

Abstract. We give asymptotic estimations on the area of the sets of points with large Brownian
winding, and study the average winding between a planar Brownian motion and a Poisson point
process of large intensity on the plane. This allows us to give a new de�nition of the Lévy area
which does not rely on approximations of the Brownian path. It also does not depend on the
metric structure on the plane.
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Introduction

For a smooth, simple, closed curve γ on the plane, Stokes' theorem allows one to express the
integral

∫
γ x dy (up to sign) as the area delimited by the curve γ. If we lift the assumption that

Key words and phrases. Stokes's formula; Planar Brownian motion; Lévy's area.
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2 ISAO SAUZEDDE

the curve is simple, we have to take a multiplicity into account. The formula becomes∫
γ
x dy =

∫
R2

θγ(z) dz, (1)

where θγ(z) is the integer winding of γ around the point z (de�ned for z outside the range of γ).
This integral can then be evaluated by a Monte Carlo method. If P is a Poisson point process

with intensity K dz with K large, then the normalized sum

1

K

∑
z∈P

θγ(z) (2)

is approximately equal to the integral
∫
γ x dy.

When one substitutes the smooth curve γ with a Brownian motion, the integral on the right-
hand side of (1) does not make sense anymore. Werner already remarked this fact in [14], where
he de�ned a family of approximations for the right-hand side of (1) and proved a convergence in
probability toward the left-hand side. In this paper, we use a di�erent family of approximations
and prove an almost sure convergence. We also link these approximations with (2).

The study of the winding function for the Brownian motion, started with the celebrated result
of Spitzer about the large time asymptotics around a given point in the plane [12], is a long-
standing subject. Yor gave in [15] an explicit form for the law of the winding of a Brownian loop
around a �xed point (the result can also be found in [10]). In [11], Shi gave a detailed analysis
of the distribution of the winding around a �xed point as a process in time.

Werner studied the behaviour as N tends to in�nity of the area AN of the set of points with
winding N in the L2 sense. In [13], he showed in particular that AN behaves as 1

2πN2 (see
Equation (6) below for a precise statement). He also derived the leading term of the asymptotic
expansion of the area DN of the set of points with winding at least N . We will push the analysis
of DN further, and obtain a bound on the di�erence between DN and the leading term. Besides,
we will show that both the leading term and the bound remain valid in Lp (for any p) and almost
surely. This allows us to prove the following result, which is the main result of this paper. Let
us recall that the Cauchy distribution with position parameter p ∈ R and scale parameter σ > 0
is the distribution with density f given by

f(x) =
σ

π

1

(x− p)2 + σ2
.

Theorem 0.1. Let B = (X,Y ) : [0, 1] → R2 be a Brownian motion on a probability space
(Ω,F ,P), and γ be the concatenation of B with a straight segment from B1 to B0. Let also
P = P(K) be a Poisson process with intensity K dz on a probability space (Ω′,F ′,P′).

Then, P-almost surely, the normalized sum (2) converges in distribution, as K →∞, towards
a Cauchy distribution with position parameter∫ 1

0
X dY − X0 +X1

2
(Y1 − Y0)

where the integral is to be understood in the sense of Ito.

From Spitzer's result, one expects that the random variable given by (2) should converge to
a Cauchy law as K goes to in�nity. We show that this is the case indeed. What might be more
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surprising is that the convergence actually holds almost surely. The fact that the asymptotic
behaviour of DN is deterministic at the leading order can be understood, very roughly, as follows.
The value of the winding, when it is large, depends `mostly' on a small piece of the path. We
can therefore expect to be able to decompose DN into a sum of independent and identically
distributed contributions from di�erent pieces of the path. The random �uctuations of each of
those contributions around their mean cancel out, so that DN should indeed be deterministic
as N is large. The di�culty is to control the `mostly', as well as the speed at which the random
�uctuations cancel out.

We also show a similar theorem for slightly more regular curves.

Theorem 0.2. Let p, q ≥ 1 be reals such that δ = 1
p + 1

q − 1 > 0. Let γ = (x, y) : [0, 1]→ R2 be

a continuous closed curve such that x has �nite p-variation and y has �nite q-variation. Then,
the range of γ has zero Lebesgue measure and θγ ∈ Lδ

′
(R2,Z) for any δ′ ∈ [1, δ). Besides, the

equality ∫ 1

0
xt dyt −

x0 + x1

2
(y1 − y0) =

∫
R2

θγ(z) dz. (3)

holds if the left-hand side is interpreted as a Young integral.

The paper is organized as follows. The �rst section is a summary of the main results. Sections
2 to 5 are devoted to the proof of Theorem 0.1. Section 2 contains technical bounds that will be
used at di�erent points in the paper. Section 3 extends the estimation of Werner on DN by giving
an L2 bound on DN− 1

2πN . In Section 4, we obtain a maximal inequality that allows us to extract
an almost sure bound from the result of the previous section. We show in Section 5 some general
facts about families of Cauchy-like variables, which allows us to compute the position parameter
that appears in Theorem 0.1. In Section 6, we extend the estimations previously obtained in L2

to Lp. Section 7 consists mostly on the proof of Theorem 7.1. In the last section, we conclude
with a few remarks about the dependence, or not, of the quantity

∫
R2 θγ(z) dz + x0+x1

2 (y1 − y0)
with respect to the ambient Riemannian metric.

1. First definitions and main results

1.1. Average winding of a curve. We denote Borel sets with curly letters (A,D, . . . ) and use
the same straight letters (A,D, . . . ) for their Lebesgue measures. We also denote the Lebesgue
measure by | · |. We write N∗ = N \ {0} and Z∗ = Z \ {0}.

Let s < t and γ : [s, t] → R2 be a continuous planar curve. Let z be a point of R2 that does
not lie on the range of γ nor on the segment joining γt to γs. We denote by θγ(z) the winding
around z of the closed curve obtained by concatenating γ with the segment [γt, γs]. Provided the
range of γ has zero Lebesgue measure, the function θγ is de�ned almost everywhere, measurable,
and takes its values in Z.

We de�ne a �nite measure µγ on Z∗ by setting, for all n ∈ Z∗,

µγ({n}) =
∣∣{z ∈ R2 : θγ(z) = n}

∣∣.
In words, µγ is the restriction to Z∗ of the image by the function θγ of the Lebesgue measure
on R2.
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Provided µγ(Z∗) 6= 0, we also de�ne νγ as the probability law obtained by normalization of µγ :

νγ =
µγ

µγ(Z∗)
.

Provided the tail of the measure µγ decreases fast enough, its �rst moment∑
n∈Z∗

nµγ(n)

is well de�ned, and is the algebraic area enclosed by the curve γ.
For a smooth curve γ, this quantity can also be expressed as an integral. Indeed, denoting,

for all t ∈ [0, 1] by xt and yt the coordinates of γt, it is equal to the integral∫ 1

0
xty
′
t dt− x1 + x0

2
(y1 − y0).

Note that the second term in this expression (with the minus sign) is the integral of x dy along
the segment [γ1, γ0]. The equality of the two quantities is a consequence of Stokes' formula 1. We
are interested in a less regular situation, in which µγ does not necessarily possess a �rst moment,
but can still be assigned a quantity which will play the role of a substitute for the non-existing
�rst moment.

Let us recall that the Cauchy distribution C(p, σ) with position parameter p ∈ R and scale
parameter σ > 0 is the following probability measure on R:

C(p, σ) =
σ dx

π(σ2 + (x− p)2)
.

We also set C(p, 0) = δp. We recall also that, for any p, σ, C(p, σ) is a 1-stable law: if X and Y

are independent random variables distributed according to C(p, σ), then X+Y
2 is also distributed

according to C(p, σ).
A probability measure ν on R is said to lie in the attraction domain of a Cauchy distribution

if there exists sequences (an)n≥1 and (bn)n≥1 of reals such that for an i.i.d. sequence (Zn)n≥0

with common law ν,
Z1 + . . .+ Zn

an
− bn

(d)−→
n→+∞

C(p, σ) (4)

for some p ∈ R, σ > 0. 2

It is known that (4) is equivalent to some condition about the asymptotics of the tail (see
for example [4]). In particular, it is su�cient that the cumulative distribution function Fν of ν
satis�es the two tail conditions

1− Fν(x) ∼
x→+∞

σ

πx
and Fν(x) ∼

x→−∞
− σ

πx
.

In this general situation, the position parameter p of the limiting Cauchy distribution has no
particular meaning, as it can be changed arbitrarily by shifting the sequence (bn)n≥1.

1For a smooth curve with non-vanishing derivative, compactness and the implicit function theorem allow one
to split the interval [0, 1] into �nitely many sub-intervals on each of which one coordinate of the curve is a smooth
function of the other. The formula holds on each sub-interval, hence on [0, 1] by additivity.

2One cannot include the case σ = 0 without imposing some restrictions on the sequence (an)n≥1.
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We will make use of the following less common (and more restrictive) de�nition. We say that
a probability measure ν on R lies in the strong attraction domain (of a Cauchy distribution) with
scale parameter σ ≥ 0 if there exists δ > 0 such that

Fν(x) =
x→−∞

σ

π|x|
+ o

(
1

|x|1+δ

)
1− Fν(x) =

x→+∞

σ

πx
+ o

(
1

x1+δ

)
. (C)

We use here the terminology of [8] (De�nition 5.2). It is shown in [8, Lemma 5.1] that the
condition (C) implies the existence of a Cauchy distribution ν ′, a real δ > 0, and a coupling
(X,Y ) with X distributed according to ν and Y according to ν ′, such that E[|X − Y |1+δ] is
�nite. In particular, not only does ν lie in the attraction domain, but the convergence (4) holds
with the choices an = n, bn = 0 (see Theorem 1.2 in [8]3).

We then denote by pν the position parameter of the limiting Cauchy distribution (for these
choices of an, bn), and by σν its scale parameter. The scale parameter σν is also the value of the σ
that appears on (C). We call pν the position parameter of ν, and σnu its scale parameter. Any
distribution with a �nite moment of order strictly greater than 1 also satis�es (C) with σ = 0,
and in that case pν is equal to the �rst moment of ν. However, the distributions that satis�es
(C) with σ 6= 0 do not even have a moment of order 1. We will show that when ν lies on the
strong attraction domain, pν is given by the explicit formulas

pν =
∑
N≥1

(
ν([N,+∞))− ν((−∞,−N ])

)
=
∑
N≥1

N
(
ν(N)− ν(−N)

)
.

We can extend these de�nitions to �nite measures on R. If µ is a �nite measure with mass
Z, and the probability measure ν = µ

Z satis�es condition (C), then we set pµ = Zpν (resp.
σµ = Zσν) and we call it the position parameter of µ (resp. the scale parameter of µ). We then
say that µ lies on the strong attraction domain (of the Cauchy distribution).

We will prove the following statement, from which we will deduce Theorem 0.1 at the end of
Section 5.

Theorem 1.1. Let B = (X,Y ) : [0, 1] → R2 be a Brownian motion. With probability 1, the
measure µB lies in the strong attraction domain of the Cauchy distribution, and the position
parameter pB = pµB is related to the Lévy area of B by the formula

pB =

∫ 1

0
X dY − X1 +X0

2
(Y1 − Y0). (5)

1.2. Strategy of the proof. We will prove Theorem 1.1 by showing that the measure νB =
µB

µB(Z∗) satis�es almost surely the condition (C) with δ = 1
6 . For this, our main object of interest

will naturally be the tail of νB.
Let us choose, on a probability space (Ω,F , (Pz)z∈R2), a Brownian motion (Bt)t∈[0,1]. It is

understood that under Pz, the Brownian motion is started from z. We will often consider the
Brownian motion started from 0, and we write P = P0.

3There seems to be a minor mistake in the assumptions of this theorem. The condition �E[Xi] = 0 if α > 1�
should be replaced with the condition �if β > 1, there exists an α-stable random variable Y such that E[Xi−Y ] = 0�
in order to deal correctly with the case α ≤ 1 < β. The last inequality on the proof (p. 841) is true only under
this stronger condition.
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For every integer N ≥ 1, we de�ne

DN = {z ∈ R2 : θB(z) ≥ N} and DN = |DN | = µB
(
[N,+∞)

)
.

It is known from the work of Werner [13] that

N2µB(N)
L2

−→
N→+∞

1

2π
. (6)

Thus, we expect DN to be of the order of 1
2πN .

After the preliminary estimations of Section 2, we will study both the expectation and the
variance of NDN , in Section 3. We will obtain the two following lemmas.

Lemma 1.2. There exists C ≥ 0 such that for all N ≥ 1,

N

∣∣∣∣E[NDN ]− 1

2π

∣∣∣∣ ≤ C.
Lemma 1.3. For all δ ∈

(
0, 1

3

)
, there exists C ≥ 0 such that for all N ≥ 1,

N2δ Var [NDN ] ≤ C.

We will obtain these two estimates by quite di�erent methods. The proof of the �rst one
relies mostly on the study of some explicit, analytical expression, and we consider it as not very
enlightening. On the other hand, the proof of the second estimate is based on making rigorous
the idea that DN can be decomposed into a sum of `local' quantities. We hope that the ideas
used there may be applied to solve di�erent but similar problems. These two lemmas merge into
the following proposition.

Proposition 1.4. For all δ ∈
(
0, 1

3

)
, there exists C ≥ 0 such that for all N ≥ 1,

E

[
N2δ

(
NDN −

1

2π

)2
]
≤ C. (7)

From this result in L2, we will deduce with some extra work that the measure µB satis�es
almost surely the condition (C): this is the subject of Section 4. Informally, the goal is to put a
maximum under the expectation in (7). We do this at the cost of lowering the upper bound on
δ from 1

3 to 1
6 . This also gives a probabilistic control on the remainder of (C).

At this point, the �rst assertion of Theorem 1.1 will be proven, and there will remain to study
the position parameter of the limiting Cauchy distribution. We will do this on Section 5, using
a few general results on `Cauchy-like' distributions. We will in particular make a repeated use of
the gap between the dominant term in |x|−1 and the �rst correction in |x|−1−δ imposed on the
de�nition of the strong Cauchy domains.

Theorem 1.1 will then be proved. Section 6 presents the extensions of some of the result
in L2 into results in Lp, for arbitrary large p. We expect to use these additional estimations
on a forthcoming work, in which the approach given here is the cornerstone to study others
stochastic integrals, including some non-trivial ones. The main conclusion of this section will be
the following.
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Theorem 1.5. For all p ∈ [2,∞) and all δ < 2
3 , there exists a constant C such that for all

N ∈ N∗,
E
[
N δ
∣∣NDN − 1

2π

∣∣p] ≤ C. (8)

2. Preliminary lemmas

We will split the Brownian trajectory into many small pieces, and study the winding of the
whole trajectory as resulting from the individual contributions of each of these pieces. For this,
we will need to understand something of the joint distribution of the winding of two of these small
pieces. Up to scaling, this amounts to studying the joint winding of two Brownian trajectories
started at di�erent points.

Let us assume that our probability space carries a second process (B′t)t∈[0,1] with values in R2

and a family (Pz,z′)z,z′∈R2 of probability measures such that under Pz,z′ , the processes B and B′

are independent Brownian motions, respectively started from z and z′.
We de�ne, for all N ≥ 0,

D(2)
N = {z ∈ R2 : |θB(z)| ≥ N and |θB′(z)| ≥ N}.

Note the absolute values in this de�nition. As usual, we denote by D
(2)
N the Lebesgue measure

of D(2)
N .

We will state several results which say in various ways that D
(2)
N is small.

2.1. Statements of the lemma. The �rst lemma deals with the expectation of D
(2)
N in several

situations regarding the relative positions of the starting points of the Brownian motions.

Lemma 2.1. For all ε > 0, there exists C ≥ 0 such that for all N ≥ 1,

sup
z,z′∈R2

Ez,z′
[
D

(2)
N

]
≤ CN−2+ε.

Besides, for all δ > 0, there exists C ≥ 0 such that for all N ≥ 1,

sup
‖z−z′‖≥Nδ

Ez,z′
[
D

(2)
N

]
≤ Ce−

1
17
N2δ

.

Finally, for all ε > 0, there exists C ≥ 0 such that for all N ≥ 1, for all σ ≥ 0,

Ez,N (z,σ2)

[
D

(2)
N

]
≤ CN

−2+ε

1 + σ2
.

To be clear, we used the notation Ez,N (z,σ2) in the following sense:

Ez,N (z,σ2)[ · ] =

∫
R2

e−
‖z′−z‖2

2σ2 Ez,z′ [ · ]
dz′

2πσ2
.

In the proof of this lemma, we will need the following estimate of the probability that the
Brownian motion started at 0 winds at least N times around a point z.
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Sublemma 2.2. For all z ∈ R2, de�ne

fN (z) = P0 (|θB(z)| ≥ N) .

For every δ, β > 0, there exists a constant C > 0 such that for all N ≥ 1, for all z ∈ R2,

fN (z) ≤


1 if z ∈ B(0, N−β)

C log(N)N−1 if z ∈ B(0, N
δ

2 ) \B(0, N−β)

Ce−
1
4
‖z‖2 if z ∈ C \B(0, N

δ

2 ).

(9)

The second lemma is the analogue of Lemma 2.1 for the second moment of D
(2)
N .

Lemma 2.3. For all ε > 0, there exists C ≥ 0 such that for all N ≥ 1,

sup
z,z′∈R2

Ez,z′
[(
D

(2)
N

)2] ≤ CN−4+ε.

Besides, for all δ > 0, there exists C ≥ 0 such that for all N ≥ 1,

sup
‖z−z′‖≥Nδ

Ez,z′
[(
D

(2)
N

)2] ≤ Ce−N2δ

17 .

Finally, for all ε > 0, there exists C ≥ 0 such that for all N ≥ 1, for all σ ≥ 0,

Ez,N (z,σ2)

[(
D

(2)
N

)2] ≤ CN−4+ε

1 + σ2
.

We will also need a preparatory result in the vein of Lemma 2.2.

Sublemma 2.4. For all z1, z2 ∈ R2, de�ne

f
(2)
N (z1, z2) = P0 (|θB(z1)| ≥ N and |θB(z2)| ≥ N) .

For every δ, β > 0 de�ne

Tβ,δ = {(z1, z2) ∈ B(0, N δ)2 : min(‖z1‖, ‖z2‖, ‖z1 − z2‖) ≤ N−β}.

There exists a constant C > 0 such that for all N ≥ 1, for all z1, z2 ∈ R2,

f
(2)
N (z1, z2) ≤


1 if (z1, z2) ∈ Tβ,δ
C log(N)2N−2 if (z1, z2) ∈ B(0, N δ/2)2 \ Tβ,δ
Ce−

1
4

max(‖z1‖,‖z2‖)2 if (z1, z2) ∈
(
R2 × R2

)
\B(0, N δ/2)2.

(10)

2.2. Proofs. We now begin the proofs of these four lemma. We will denote by C,C ′, C(1), C(2), . . .
for di�erent constants that appear during the proofs. We sometime use additional subscripts to
emphasize their dependency on some parameter.

Proof of Sublemma 2.2. : The �rst case is a triviality.
For the third case, set B∗ = supt∈[0,1] ‖Bt‖. Since θB is zero outside the ball of radius B∗,

fN (z) ≤ P(B∗ ≥ ‖z‖) ≤ 8Φ(‖z‖/
√

2)

where Φ(x) = 1√
2π

∫∞
x e−

t2

2 dt. The fact that Φ(x) ≤ e−
x2

2 for x ≥ 1 allows us to conclude this
case.
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The second case is a direct application of an inequality which can be found page 117 in Shi's
article [11].

The inequality states that for t and x positive reals such that t log(x) is large enough,

P0

(
sup

0≤u≤t
θB|[0,u](1, 0) ≥ x

)
≤ 8

x
+

2 log(16t log(x))

x
. (11)

Here, t = ‖z‖−2 and x = N . For z /∈ B(0, N−β), ‖z‖−2 log(N) ≥ N2β log(N), which becomes
arbitrarily large when N is large. Therefore, we can apply the inequality, at least when N is
larger than some N0 which does not depend on z. Using also the scaling property of the Brownian
motion, we end up with

P0

(
sup

0≤u≤1
θB|[0,u](z) ≥ N

)
≤ 8

N
+

2 log(16‖z‖−2 log(N))

N
. (12)

There is a constant C, which does not depend on z ∈ R2 \B(0, N−β), such that the right-hand

side is less than C log(N)
N . Up to modi�cation of the constant C, the inequality

P0

(
sup

0≤u≤1
θB|[0,u](z) > N

)
≤ C log(N)

N
(13)

stays true for N < N0, which concludes the proof. �

Proof of Lemma 2.1. First, we rewrite Ez,z′
[
D

(2)
N

]
:

Ez,z′
[
D

(2)
N

]
= Ez,z′

[∫
R2

1|θB(ξ)|≥N1|θB′ (ξ)|≥N dξ

]
=

∫
R2

Pz(|θB(ξ)| ≥ N)Pz′(|θB(ξ)| ≥ N) dξ

=

∫
R2

fN (ξ − z)fN (ξ − z′) dξ.

Now we distinguish between the three results we want to show.

First case. Using the Cauchy�Schwarz inequality and the sublemma, we �nd∫
R2

fN (ξ − z)fN (ξ − z′) dξ ≤
∫
R2

fN (ξ)2 dξ

≤ |B(0, N−β)|+ C2 log(N)2N−2|B(0, N δ/2)|+ C2

∫
R2\B(0,Nδ/2)

e−
1
4
‖ξ‖2 dξ

≤ C ′N−2β + C ′ log(N)2N−2+2δ + C ′e−
1
16
N2δ

.

We take 0 < δ < ε
4 and β > 1− ε

2 to obtain the desired result.
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Second case. We assume that ‖z − z′‖ ≥ N δ. Since fN is bounded by 1, we have:∫
R2

fN (ξ − z)fN (ξ − z′) dξ ≤
∫
B(z,Nδ/2)

fN (ξ − z′) dξ +

∫
R2\B(z,Nδ/2)

fN (ξ − z) dξ

≤ CN2δe−
1
16
N2δ

+ C

∫
R2\B(0,Nδ/2)

e−
1
16
‖ξ‖2 dξ

≤ C ′N2δe−
1
16
N2δ

≤ C ′′e−
1
17
N2δ

.

Third case. We denote the 2-dimensional heat kernel by

p(t, x, y) =
1

2πt
exp

(
− ‖x− y‖

2

2t

)
.

We use the two �rst cases with some ε′ < ε, and we set δ = ε−ε′
2 .

Ez,N (z,σ2)

[
D

(2)
N

]
≤
∫
B(z,Nδ)

p(σ2, z, ξ)Ez,ξ
[
D

(2)
N

]
dξ +

∫
R2\B(z,Nδ)

p(σ2, z, ξ) Ez,ξ
[
D

(2)
N

]
dξ

≤ |B(z,N δ)|‖p(σ2, z, ·)‖∞ sup
z,z′∈R2

Ez,z′
[
D

(2)
N

]
+ sup
‖z−z′‖≥Nδ

Ez,z′
[
D

(2)
N

]
≤ CN

−2+ε′+2δ

σ2
+ Ce−

1
17
N2δ

≤ C ′N
−2+ε

σ2
.

For σ ≥ 1, we can directly replace σ2 by σ2 + 1 and C ′ by 2C ′. For σ ≤ 1, the third statement
directly reduces to the �rst one, so we can again replace σ2 with σ2 + 1. �

Proof of Sublemma 2.4. Once again, the �rst case is trivial. For the third one, we remark that

f
(2)
N (z1, z2) ≤ fN (max (‖z1‖, ‖z2‖)) and we apply the third case in Lemma 2.2.
The second case is a bit subtler than the one in lemma 2.2, because we had a turnkey inequality

which is not su�cient to conclude here. The very rough idea is that if B must turn N times
around z1 and N times around z2, then there is a time S when it has turned N

2 times around

one of them (say, z1), but still has to turn N
2 times around the other one. In order to do the

�rst part of that, it has to go close to z1, and then go close to z2. Both conditions have a small
probability to be satis�ed (this is the content of Lemma 2.2). Besides, they are formulated in a
way such that one depends on B before S, whilst the other depends on B after S. This permits
us to bene�t from the Markov property.

We introduce the rays d1 = z1 + R+(z1 − z2) and d2 = z2 + R+(z2 − z1). In words, d1 starts
at z1 and goes away from z2, whilst d

2 starts at z2 and goes away from z1.
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We also de�ne the following stopping times, with the convention that the in�mum of an empty
set is equal to 1, and with i ∈ {1, 2}.

Si = inf{u ∈ [0, 1] : Xu ∈ di, |θB|[0,u](zi)| = bN/2c}

S = min(S1, S2)

U =

{
inf{u ≥ S : |θB|[S,u](z1)| = bN/2c} if S = S2

inf{u ≥ S : |θB|[S,u](z2)| = bN/2c} if S = S1.

In words, we wait for B to wind N/2 times around either z1 or z2 (whatever happens �rst), and
then we wait for it to wind N/2 more times around the other point.

The event {|θB(z1)| ≥ N and |θB(z2)| ≥ N} is then included in the event {U < 1} (up to the
negligible event B1 ∈ d1 ∪ d2).

We write θ∗(s, z) = maxu∈[0,s](θB|[0,u](z)). In particular, we have the following properties:

• The function s 7→ θ∗(s, z) is increasing.
• For all z ∈ R2, under P0, we have the equality in law θ∗(1, z) = θ∗(‖z‖−2, 1), where we
write 1 for the vector (1, 0) ∈ R2.

Using the Markov property between the �rst and the second line, we have:

f
(2)
N (z1, z2) ≤ P0(S = S1 and U < 1) + P0(S = S2 and U < 1)

≤ P0(θ∗B(1, z1) ≥ bN/2c) sup
y∈d1

Py(θ∗(1, z2) ≥ bN/2c)

+ P0(θ∗B(1, z2) ≥ bN/2c) sup
y∈d2

Py(θ∗(1, z1) ≥ bN/2c)

= P0(θ∗(‖z1‖−2, 1) ≥ bN/2c)P0(θ∗(‖z2 − z1‖−2, 1) ≥ bN/2c)
+ P0(θ∗(‖z2‖−2, 1) ≥ bN/2c)P0(θ∗(‖z2 − z1‖−2, 1) ≥ bN/2c).

We use again the inequality (11), which implies that there exists a constant C > 0 such that
for all z ∈ R2 \B(0, N−δ), for all N ≥ 1,

P0(θ∗(‖z‖−2, 1) ≥ bN/2c) ≤ C log(N)

N
.

Outside Tβ,δ, the condition is satis�ed for z = z1, for z = z2, and for z = z2 − z1, so that for all
(z1, z2) /∈ Tβ,δ,

fN (z1, z2) ≤ C2 log(N)2N−2.

This �nishes the proof. �
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Proof of Lemma 2.3. : By translation we can assume z′ = 0. Then:

Ez,0
[(
D

(2)
N

)2]
= Ez,0

[
|{ξ ∈ C : |θB(ξ)| ≥ N and |θB′(ξ)| ≥ N}|2

]
= Ez,0

[ ∫
(R2)2

1|θB(ξ)|≥N1|θB′ (ξ)|≥N1|θB(ξ′)|≥N1|θB′ (ξ′)|≥N dξ dξ′
]

=

∫
(R2)2
P0

(
|θB(ξ−z)|≥N, |θB(ξ′−z)|≥N

)
P0

(
|θB(ξ)|≥N, |θB(ξ′)|≥N

)
dξdξ′

=

∫
(R2)2

f
(2)
N (ξ − z, ξ′ − z)f (2)

N (ξ, ξ′) dξ dξ′.

Here again, we distinguish the three cases.

First case. Using the Cauchy�Schwarz inequality and the sublemma, we �nd∫
(R2)2

f
(2)
N (ξ − z, ξ′ − z)f (2)

N (ξ, ξ′) dξ dξ′

≤
∫

(R2)2

(
f

(2)
N (ξ, ξ′)

)2
dξ dξ′

≤ C2

∫
(R2)2\B(0,Nδ/2)2

e−
1
4

max(‖ξ‖,‖ξ′‖)2 dξ dξ′ + C2V ol(B(0, N δ/2)2) log(N)4N−4 + V ol(Tβ,δ)

≤ C ′e−
1
17
N2δ

+ C ′ log(N)4N−4+4δ + C ′N2δ−2β.

We take 0 < δ < ε
8 and β > 2 + δ − ε

2 to obtain the desired result.

Second case. We assume that ‖z‖ ≥ N δ.∫
(R2)2

f
(2)
N (ξ − z, ξ′ − z)f (2)

N (ξ, ξ′) dξ dξ′

≤
∫
B(0,Nδ/2)×R2

f
(2)
N (ξ − z, ξ′ − z) dξ dξ′ +

∫
(R2\B(0,Nδ/2))×R2

f
(2)
N (ξ, ξ′) dξ dξ′

≤ CN2δ

∫
C
e−

1
4

max( 1
4
N2δ,‖ξ′‖2) dξ′ +

∫
R2\B(0,Nδ/2))×R2

e−
1
4

max(‖ξ‖,‖ξ′‖)2 dξ dξ′

≤ C ′e−
1
17
N2δ

.

Third case. We use the two �rst cases with some ε′ < ε, and we set δ = ε−ε′
2 . Then,

E0,N (0,σ2)

[(
D

(2)
N

)2] ≤ ∫
B(0,Nδ)

p(σ2, 0, ξ)E0,ξ

[(
D

(2)
N

)2]
dξ +

∫
R2\B(0,Nδ)

p(σ2, 0, ξ)E0,ξ

[(
D

(2)
N

)2]
dξ

≤ |B(z,N δ)|‖p(σ2, 0, ·)‖∞ sup
z∈R2

E0,z

[(
D

(2)
N

)2]
+ sup
‖z‖≥Nδ

E0,z

[(
D

(2)
N

)2]
≤ CN

−4+ε′+2δ

σ2
+ Ce−

1
17
N2δ

≤ C ′N
−4+ε

σ2
.
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For σ ≥ 1, we can directly replace σ2 by σ2 + 1 and C ′ by 2C ′. For σ ≤ 1, the third statement
directly reduces to the �rst one, so we can again replace σ2 with σ2 + 1. �

3. Asymptotics in L2

3.1. Asymptotic of the mean. Recall that DN denotes the area of the set of points z for
which the winding θB(z) is at least N . Our temporary goal is to obtain a nice bound on the
quantity E[(NDN − 1

2π )2], which is already known to converge to 0 as N → +∞. We �rst show
the following asymptotic, which is a reformulation of Lemma 1.2.

Lemma 3.1. As N tends to in�nity,

E[DN ] =
1

2πN
+O(N−2). (14)

Proof. We use the complex coordinate z on the real plane R2, and we denote by θ̃(z) the value
at time 1 of the continuous determination of the angle of B around z, initialized to be 0 at time
0. It will be convenient here to study θ̃ instead of the integer-valued winding number θ that we
use in the rest of the paper. The reason is that, for a given z, explicit formulas are known about
the law of θ̃(z). For any point z ∈ R2 for which θB(z) is well-de�ned, the quantities θB(z) and

θ̃(z) are related by the bound

|θB(z)− 1
2π θ̃(z)| ≤

1
2 . (15)

It is also convenient to eliminate from our analysis the points on the plane which are very close
from the starting point of our trajectory. Indeed, such points have a higher probability to have
a large winding number. It is thus more convenient to simply bound this probability by 1 than
to try to control this high probability. We thus introduce, for N ≥ 1, the set

D̃N = {z ∈ C \B(0, e−N ) : θ̃(z) ≥ 2πN},

of which we denote the Lebesgue measure by D̃N .
From (15), we deduce the following inclusions:

D̃N+2 ⊆ DN+1 ⊆ D̃N ∪B(0, e−N ) ⊆ DN−1 ∪B(0, e−N ).

In particular,

E[DN ] =
1

2πN
+O(N−2) ⇐⇒ E[D̃N ] =

1

2πN
+O(N−2).

We prove the right-hand side. First, we give an integral representation of the quantity E[D̃N ].
We denote by I0 the modi�ed Bessel function of the �rst kind with parameter 0. The single thing
about this function that we will need is the inequality I0(x) ≥ 1 for x ≥ 0. Then, for θ > π and
ρ, r ≥ 0, Mansuy and Yor showed in [10] (Theorem 5.2) the following equality:

Pr
(
θ̃(0) ≥ θ

∣∣ |B1| = ρ
)

=
1

2π2I0(rρ)

∫ θ+π

θ−π

∫ ∞
0

e−rρ cosh(t) x

x2 + t2
dt dx. (16)

Here of course, the conditioning corresponds to the disintegration with respect to the (continuous)
density of B1. By integrating back with respect to ρ (with the appropriate density), we obtain:

Pr(θ̃(0) ≥ θ) =
1

2π2

∫ ∞
0

ρ

I0(rρ)

∫ 2π

0
p1(r, ρeiφ) dφ

∫ θ+π

θ−π

∫ ∞
0

e−rρ cosh(t) x

x2 + t2
dt dx dρ.
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Using the invariance of the Brownian motion with respect to translation, we have

E0[D̃N ] =

∫
C2\B(0,e−N )

P0(θ̃(z) ≥ 2πN) dz

= 2π

∫ ∞
e−N

rPr(θ̃(0) ≥ 2πN) dr

=
1

π

∫ ∞
e−N

r

∫ ∞
0

ρ

I0(rρ)

∫ 2π

0
p1(r, ρeiφ) dφ

∫ (2N+1)π

(2N−1)π

∫ ∞
0
e−rρ cosh(t) x

x2 + t2
dt dx dρ dr. (17)

Roughly speaking, on the asymptotic regime N → +∞, we have x ' 2πN → +∞ and we
expect that x

x2+t2
' 1

x . We also expect that the bound e−N can freely be replaced with 0. The

multiple integral (17) then decouples into

A

∫ (2N+1)π

(2N−1)π

dx

x
(18)

where

A =
1

π

∫ ∞
0
r

∫ ∞
0

ρ

I0(rρ)

∫ 2π

0
p1(r, ρeiφ) dφ

∫ ∞
0
e−rρ cosh(t) dt dρ dr.

The reader might by puzzled by the fact we �rst introduced a kind of �cuto�� e−N in the de�nition
of D̃N to then remove it with computations. The thing is we remove the cuto� after we replace
x

x2+t2
with 1

x . The rest of this proof consists on a lengthy but elementary computation to show

that the di�erence between (17) and (18) is a O(N−2).
We denote by IN the right-hand side of (17) but with 1

x2+t2
replaced by 1

x2
. Set δN =

IN − E0[D̃N ]. That is,

δN =
1

π

∫ ∞
e−N

r

∫ ∞
0

ρ

I0(rρ)

∫ 2π

0
p1(r, ρeiφ) dφ

∫ (2N+1)π

(2N−1)π

∫ ∞
0
e−rρ cosh(t) t2

x(x2 + t2)
dt dx dρ dr.

Observe that δN ≥ 0. We decompose δN as δ1
N + δ2

N by splitting the �rst integral, with respect
to r, at r = 1:

δ1
N =

1

π

∫ 1

e−N
. . . dr and δ2

N =
1

π

∫ ∞
1

. . . dr.

To estimate δ1
N , we use the bounds

p1(x, y) ≤ p1(0, 0);
1

x2 + t2
≤ 1

x2
;

∫ (2N+1)π

(2N−1)π

dx

x3
≤ 2π

((2N − 1)π)3
; I0(rρ) ≥ 1.

Integrating then with respect to ρ, t and �nally r, we obtain

δ1
N ≤

2π

π
p1(0, 0)

2π

((2N − 1)π)3

∫ 1

e−N
r

∫ ∞
0

ρ

∫ ∞
0

e−rρ cosh(t)t2 dt dρ dr

= O(N−3)

∫ 1

e−N
r

∫ ∞
0

t2

(r cosh(t))2
dt dr

= O(N−2).
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To estimate δ2
N , we also use the bounds e

−rρ cosh(t) ≤ e−ρ cosh(t) (for r ≥ 1) and
∫
C pt(x, y) dy=1.

We then obtain

δ2
N ≤

2

(2π(2N − 1))3

∫ ∞
0

ρ

∫ ∞
0

e−ρ cosh(t)t2 dt dρ.

Computing �rst the integral on ρ, we obtain

δ2
N = O(N−3)

∫ ∞
0

t2

cosh(t)2
dt.

The remaining integral is clearly �nite. We conclude that δN = O(N−2), that is, E0[D̃N ] =
IN +O(N−2). We now wish to eliminate the cuto�, that is to replace IN with IN + JN where

JN =

∫ e−N

0
. . . dr.

Remark that IN +JN is, as we hoped, exactly the right-hand side of (18). Inverting the integrals
on the de�nition of J , we can write it

JN =

∫ ∞
0

. . . dρ.

and we then split the integral with respect to ρ at ρ = 1. We thus de�ne

J1
N =

∫ e−N

0

∫ 1

0

rρ

I0(rρ)

∫ 2π

0
p1(r, ρeiφ) dφ

∫ ∞
0

e−rρ cosh(t) dt dρ dr

J2
N =

∫ e−N

0

∫ ∞
1

rρ

I0(rρ)

∫ 2π

0
p1(r, ρeiφ) dφ

∫ ∞
0

e−rρ cosh(t) dt dρ dr,

and we have

JN = (J1
N + J2

N ) log
2N + 1

2N − 1
.

We will use the following estimation: there exists some �nite C such that for any ρ ∈ (0, 1
cosh(1)),

f(ρ) =

∫ +∞

0

1− (1 + ρ cosh(t))e−ρ cosh(t)

ρ2 cosh(t)2
dt ≤ C + 2 ln(ρ−1). (19)
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We use now this inequality and we postpone its computation to the end of the proof. Using the
facts that p1 is maximal at (0, 0), and that I0 ≥ 1, we have

J1
N ≤ 2πp1(0, 0)

∫ e−N

0

∫ 1

0
rρ

∫ ∞
0

e−rρ cosh(t) dt dρ dr

≤
∫ e−N

0

∫ r

0
u

∫ ∞
0

e−u cosh(t) dt
du

r
dr (u = rρ)

=

∫ e−N

0

∫ ∞
0

1− (1 + r cosh(t))e−r cosh(t)

r cosh(t)2
dt dr (computing the integral on u.).

=

∫ e−N

0
rf(r) dr

≤
∫ e−N

0
r(C + 2 log(r−1) dr

= O(Ne−2N ).

For J2
N , since ρ ≥ 1 inside the integral, we can bound e−rρ cosh(t) by e−r cosh(t). Then, we have

J2
N ≤

∫ e−N

0
r
[ ∫ 2π

0

∫ ∞
0

p1(r, ρeiφ)ρ dρ dφ
] ∫ ∞

0
e−r cosh(t) dt dr

=

∫ e−N

0

∫ ∞
0

re−r cosh(t) dt dr

=

∫ ∞
0

1− (1 + e−N cosh(t))ee
−N cosh(t)

cosh(t)2
dt (computing the integral on r)

= e−2Nf(e−N )

= O(Ne−2N ).

From this, we deduce in particular that JN = O(N−2) and �nally that

E[DN ] = A

∫ (2N+1)π

(2N−1)π

dx

x
+O(N−2) =

A

N
+O(N−2).

Wiener's estimate on DN gives E[DN ] = 1
2πN + o( 1

N ). It follows that A = 1
2π and that

E[DN ] =
1

2πN
+O(N−2).

To conclude the proof, we only need to show the inequality (19). It is easily proven that, for
any ρ, t ≥ 0,

0 ≤ 1− (1 + ρ cos(t))e−ρ cosh(t) ≤ ρ2 cosh(t)2.
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For t ≥ 1, we also have 2 sinh(t) ≥ cosh(t). Thus, we have

f(ρ) =

∫ 1

0

1− (1 + ρ cosh(t))e−ρ cosh(t)

ρ2 cosh(t)2
dt+

∫ +∞

1

1− (1 + ρ cosh(t))e−ρ cosh(t)

ρ2 cosh(t)2
dt

≤ 1 +

∫ +∞

1

1− (1 + ρ cosh(t))e−ρ cosh(t)

ρ2 cosh(t)2

2ρ sinh(t) dt

ρ cosh(t)

= 1 + 2

∫ +∞

ρ cosh(1)

1− (1 + u)e−u

u3
du (u = ρ cosh(t))

= 1 + 2

∫ 1

ρ cosh(1)

1− (1 + u)e−u

u3
du+ 2

∫ +∞

1

1− (1 + u)e−u

u3
du.

Because of the exponential decay, the last integral is �nite. Using e−u ≥ 1− u, we then obtain,
for some �nite C,

f(ρ) ≤ C + 2

∫ 1

ρ cosh(1)

1− (1 + u)(1− u)

u3
du

= C + 2

∫ 1

ρ cosh(1)

1

u
du

= C + 2 ln(ρ−1 cosh(1))

= C ′ + 2 ln(ρ−1).

This is the announced inequality. �

Remark 3.2. If we replace the Brownian motion with a Brownian loop, the integrals on φ and
ρ disappear (it is the case ρ = 0), and the Bessel function reduces to 1. In that case, Garban and
Ferreras obtained in [7, Theorem 5.2] the exact value

Ex,x,1[AN ] =
1

2πN2
.

Their computation also uses the explicit expression (16) given by Mansuy and Yor. They then
compute the integrals by performing a residue computation.

Remark 3.3. With a much simpler computation, we also obtain, for every z 6= 0 the estimate
P0(θB(z) ≥ N) = Cz

N +O(N−2). Our estimate (14) does not follow from this simpler estimation,
since the remainder is not uniform near z = 0.

3.2. Decomposition into small pieces. Let γ : [0, 1] → R2 be continuous, and such that
its range has vanishing Lebesgue measure. We will introduce a decomposition that allows us
to relate the large winding set for γ with the large winding sets of di�erent pieces of γ. Two
inclusions are obtained here, and will be used again many times during the paper. Though we
show them in a general framework, we �rst explain brie�y how we will use them.

We �x three positive large integers N,M and T , such that T (M + 1) < N . Typically, T
and M will be (the integer part of) some fractional power of N . The integer T will be the
number of pieces we cut the curve into: we will write γ as the concatenation γ1 · · · γT , where γi
is the restriction of γ to the interval [ i−1

T , iT ]. Using the self-similarity of the Brownian motion,
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the inclusions will induce inequalities in distribution satis�ed by the large winding set of the
Brownian motion. The integerM is used as a barrier between two di�erent situations. Basically,
we want it to be large enough that one can asymptotically neglect the set of points around which
two di�erent pieces both wind at leastM times, but small enough that the relation T (M+1) < N
holds. We invite the reader to always keep in mind the idea that when a Brownian path winds
a lot around some point, only a small piece of the path is responsible for almost all of these
windings.

We now start a rigorous reasoning. Let us introduce some notations. Let N,M, T be three
integers such that T (M + 1) < N . Set 0 = t0 < · · · < tT = 1. Set also γi the restriction of γ to
[ti−1, ti]. We denote by γpl the piecewise linear curve with interpolation times t0, . . . , tT . That
is, for i ∈ {1, . . . , T} and u ∈ [0, 1),

γpl(ti−1 + u(ti − ti−1)) = γ(ti−1) + u(γ(ti)− γ(ti−1)).

We denote the function θγi by θi. The following equality of measurable functions holds almost
everywhere:

θγ = θγpl +

T∑
i=1

θi.

It actually holds pointwise at any point z ∈ R2 which does not lie on the range of γ, nor on the
range of γpl, nor on the segment between γ0 and γ1. We �x such a z, and we assume that it
satis�es θγ(z) ≥ N .

It is easy to see that |θγpl | is bounded by T
2 , hence by T . This implies

∑T
i=1 θi(z) ≥ N − T .

Discussing whether the second highest value of {θi(z) : i ∈ {1, . . . , T}} is more or less than M ,
we have two cases. Either there exist two integers i, j ∈ {1, . . . , T}, i 6= j such that

θi(z) ≥M and θj(z) ≥M,

or there exists an integer i ∈ {1, . . . , T} such that θi(z) ≥ N − T − (T − 1)M .
This gives us a condition implied by θγ(z) ≥ N . Similarly, we show that θγ(z) ≥ N is implied

by the condition that there exists one integer i ∈ {1, . . . , T} such that θi(z) ≥ N+T +(T −1)M ,
and that there is no pair of integers i, j ∈ {1, . . . , T}, i 6= j such that

|θi(z)| ≥M and |θj(z)| ≥M.

We introduce the following notation, for all positive integers N and M (with implicit depen-
dency on T and on the decomposition into T pieces):

DN (γ) = {z ∈ R2 : θγ(z) ≥ N}
DiN (γ) = {z ∈ R2 : θi(z) ≥ N}

Di,jM (γ) = {z ∈ R2 : |θi(z)| ≥M and |θj(z)| ≥M}.
The same notation without γ means that we take γ = B, a standard Brownian motion from
[0, 1] to R2, with ti = i

T for i ∈ {0, . . . , T}.
Then, our previous reasoning translates into the following inclusions:

T⋃
i=1

DiN+T+M(T−1)(γ) \
⋃

1≤i<j≤T
Di,jM (γ) ⊆ DN (γ) ⊆

T⋃
i=1

DiN−T−M(T−1)(γ) ∪
⋃

1≤i<j≤T
Di,jM (γ). (20)
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Using the inclusion DiN+T+M(T−1)(γ)∩DjN+T+M(T−1)(γ) ⊆ Di,jM (γ) and the Bonferroni's inequal-

ities, we have corresponding inequalities at the level of measures:

T∑
i=1

Di
N+T+M(T−1)(γ) −

∑
1≤i<j≤T

Di,j
M (γ) ≤ DN (γ) ≤

T∑
i=1

Di
N−T−M(T−1)(γ) +

∑
1≤i<j≤T

Di,j
M (γ). (21)

Let us remark that in this last step, we could have use any measure µ instead of the Lebesgue
measure, under the sole conditions that µ(Range(γ)) = µ(Range(γpl)) = 0.

3.3. Asymptotic for the second moment. We now prove Lemma 1.3 about the second mo-
ment of DN . Let us �rst state it again.

Lemma 3.4. For all δ ∈
(
0, 1

3

)
, there exists C ≥ 0 such that for all N ≥ 1,

N2δ Var [NDN ] ≤ C.

Proof. We write dN = E[DN ], and x+ (resp. x−) for the positive (resp. negative) part of a real
number x. We also set N+ = N +T +M(T −1), and N− = N −T −M(T −1). The value of M
and T will be given later on by M = bNmc and T = bN tc for some positive exponents m, t, so
that N+ and N− only depends on N . Besides, the exponents are assumed to satisfy m+ t < 1
so that

N+ ∼
N→+∞

N ∼
N→+∞

N−.

We know from (21) that

DN ≤
T∑
i=1

Di
N− +

∑
1≤i<j≤T

Di,j
M

so that

N(DN − dN ) ≤ N
T∑
i=1

(
Di
N− −

dN−
T

)
+N(dN− − dN ) +N

∑
1≤i<j≤T

Di,j
M .

Taking positive parts, squares, and expectations, and using the identity

(a+ b+ c)2 ≤ 3(a2 + b2 + c2),

we obtain

Ex
[(
N(DN − dN )+

)2] ≤ 3

T∑
i=1

Var[NDi
N− ] + 3N2(dN − dN−)2 + 3N2E

[( ∑
1≤i<j≤T

Di,j
M

)2]
≤ 3T−1 Var[NDN− ] + 3N2(dN − dN−)2 + 3N2E

[( ∑
1≤i<j≤T

Di,j
M

)2]
.

For the second inequality, we used the fact that the variables Di
N− are i.i.d., and distributed

as T−1DN− . This in turn follows directly from the Markov property, and scale and translation
invariance of the Brownian motion. The apparently insigni�cant T−1 factor that appears here is
actually the core of the proof: the sum of the �uctuations of the Di

N is of lesser order than the
sum of the absolute values of these �uctuations. This is whyDN itself has very small �uctuations.
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We now �x some ε > 0. Using the preliminary lemma 2.3, with the scaling B ↔ T−1B, we
have the following inequalities, for some constant C,C ′:

Ex
[( ∑

1≤i<j≤T

Di,j
M

)2] ≤ T 2
∑

1≤i<j≤T
Ex
[(
Di,j
M

)2]
≤ T 2

∑
1≤i<j≤T

T−2CM−4+ε

j − i

≤ C ′M−4+εT log(T ). (22)

To control nicely dN − dN− , we summon the convergence shown by W. Werner:

N2|{z ∈ R2 : θB(z) = N}| L2

−→
N→+∞

1

2π
. (23)

In particular, this implies that the family n2(dn+1 − dn) is bounded, so that

|dN − dN− | ≤
N∑

n=N−

C

n2
≤ C ′(N −N−)

NN−
∼

N→+∞
C ′MTN−2.

We do the same computation for the negative part, and we obtain the existence of some C such
that

Var[NDN ] ≤ C
(
T−1(Var[NDN− ] + Var[NDN+ ]) +

M2T 2

N2
+N2M−4+εT log(T )

)
. (24)

Using now the explicit expressions of M and T , we obtain, for m, t ∈ (0, 1) such that m+ t < 1,
and ε > 0 arbitrary:

Var[NDN ] ≤ C
(
N−t(Var[NDN− ] + Var[NDN+ ]) +N−2+2m+2t+ε +N2−4m+t+ε

)
. (25)

If we have some asymptotic bound on Var[DN ], we can now put it on the right-hand side of
the equation and hope that it will lead to a better asymptotic bound: if the additional terms are
small enough, we should gain a factor CN−t. We will iterate this process, with di�erent values
for t and m at each iteration. We recursively de�ne a sequence α by α0 = 0, αk+1 = 5αk+2

8 . We
show the following:

Claim 3.5. For all k ∈ N, for all ε > 0, there exists C such that for all N , Var[NDN ] ≤
CN−αk+ε.

For k = 0, this follows directly from (6).
Now assume this to be true for some k, and use (25) with t = 2−3αk

8 > 0,m = 4−t
6 − ε > 0:

Var[NDN ] ≤ C ′N−
2−3αk

8
−αk+ε + C ′N2+

2−3αk
8
−4( 4−t

6
−ε)+ε log(N)

≤ C ′′N−αk+1+6ε

which conclude the recursion. Since αk →
k→∞

2
3 , we deduce Lemma 1.3. �
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4. From L2 to almost sure estimates

Our goal in this section is to go from the asymptotic estimation of DN in L2 to an asymptotic
estimation of DN in the almost sure sense. We achieve this by inserting a supremum under the
expectation. Then, the Bienaymé�Tchebychev inequality allows us to deduce an almost sure
bound. We �rst show the following general maximal inequality, with assumptions suited to our
purpose. As it is formulated, this lemma also allows one to work in Lp instead of L2.

Lemma 4.1. Let (DN )N∈N be a random sequence which is almost surely decreasing and takes
non-negative values. Assume that there exists m ≥ 0, δ ∈ (0, 1) and p > 1 such that, for all N
large enough,

E[|NDN −m|p] ≤ N−δ.

Then, for δ′ < p−1
p δ,

E
[

sup
N≥N0

N δ′ |NDN −m|p
]
−→
N0→∞

0.

Proof. Let ω ∈
(

1
δ−δ′ ,

p−1
δ′

)
. This set is non empty precisely when δ′ < p−1

p δ. Let also Ñ =

{bKωc : K ∈ N∗}. The main idea of the proof is to replace N with Ñ in the supremum. Since
this set is `sparser', we can then bound the supremum with a sum, and still get something �nite.

Of course, we then have to replace back Ñ with N. This is done by showing that NDN varies
slowly.

For M ∈ Ñ, let s(M) be the successor of M in Ñ (that is, the smallest element of Ñ which is

strictly larger than M). Then, for N ∈ N, let N− and N+ be the two unique elements of Ñ such
that N− ≤ N < N+ = s(N−).

Then, N
δ′
p (NDN −m) is less than N

δ′
p

+ (N+DN− −m). We decompose this quantity into

N
δ′
p

− (N−DN− −m) + (N
δ′
p

+ −N
δ′
p

− )(N−DN− −m) +N
δ′
p

+ (N+ −N−)DN− .

For N0 ∈ Ñ, we obtain

E
[

max
N∈N
N≥N0

1NDN−m≥0N
δ′(NDN −m)p

]
≤ Cp

(
E
[

max
M∈Ñ
M≥N0

M δ′(MDM −m)p
]

+ E
[

max
M∈Ñ
M≥N0

(s(M)
δ′
p −M

δ′
p )p(MDM −m)p

]
+ E

[
max
M∈Ñ
M≥N0

(s(M))δ
′
(s(M)−M)pDp

M

])
.

The �rst term on the right-hand side is the one that we wanted in the �rst place: the same thing

as our initial maximum, but with Ñ instead of N.
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To bound the two other terms, let us remark that for any α 6= 0, s(M) ∼M and s(M)α−Mα ∼
Cα,ωM

α− 1
ω for some constant Cα,ω. The previous expression can then be reduced to

E
[

max
N∈N
N≥N0

1NDN≥mN
δ′(NDN −m)p

]
≤ C ′

(
E
[

max
M∈Ñ
M≥N0

M δ′(MDM −m)p
]

+ E
[

max
M∈Ñ
M≥N0

(M δ′− pω (MDM −m)p
]

+ E
[

max
M∈Ñ
M≥N0

M δ′+p− pωDp
M

])
≤ C ′′

(
E
[

max
M∈Ñ
M≥N0

M δ′(MDM −m)p
]

+ E
[

max
M∈Ñ
M≥N0

M δ′+p− pωDp
M

])
. (26)

Let us denote K0 = bN
1
ω

0 c. Then,

E
[

max
N∈Ñ
N≥N0

N δ′ |NDN −m|p
]
≤
∑
N∈Ñ
N≥N0

E
[
N δ′ |NDN −m|p

]
≤
∑
N∈Ñ
N≥N0

N δ′−δ

≤
∑
K∈N
K≥K0

Kω(δ′−δ)

≤ (N
1
ω

0 )ω(δ′−δ)−1(1 + o(1)) (since ω(δ′ − δ) < −1)

≤ N
(δ′−δ)− 1

ω
0 (1 + o(1)). (27)

Replacing N with Ñ is necessary for the inequality from the second to the third line: the additional
power ω makes the sum converge.

To control the last error term, we also need the following estimation:

E
[

max
N∈Ñ
M≥N0

N δ′+p− pωDp
N

]
≤
∑
N∈Ñ
N≥N0

N δ′+p− pωE
[
Dp
N

]

≤ C
∑
N∈Ñ
N≥N0

N δ′− pω

≤ C
∑
K∈N
K≥K0

Kωδ′−p

≤ C ′Kωδ′−p+1
0 , since ωδ′ − p < −1. (28)
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Putting (26), (27) and (28) together, we obtain

E
[

max
N∈N
N≥N0

1NDN−m≥0N
δ′(NDN −m)p

]
→

N0→+∞
0.

We show similarly that

E
[

max
N∈N
N≥N0

1NDN−m≤0N
δ′(NDN −m)p

]
→

N0→+∞
0,

which concludes the proof of the lemma. �

Proposition 1.4 gives us the preliminary estimate needed to apply this lemma with p = 2 and
δ ∈ (0, 2

3). We obtain the following bound.

Corollary 4.2. Let δ ∈
(
0, 1

6

)
. Then, there exists a �nite constant C such that

E
[

max
N∈N∗

N2δ
(
NDN − 1

2π

)2] ≤ C.
By application of the Bienaymé�Tchebychev inequality, we immediately deduce the following.

Corollary 4.3. Let δ ∈
(
0, 1

6

)
. Then, there exists a �nite constant Cδ such that for all ξ > 0

P
(

max
N∈N∗

N δ
∣∣NDN − 1

2π

∣∣ ≥ Cδ√
ξ

)
≤ ξ.

The condition (C) is, in particular, almost surely satis�ed by the winding measure µB. In
other words, µB lies almost surely in the strong attraction domain of a Cauchy distribution.
What remains to be done in order to prove Theorem 1.1 is the computation of the position
parameter pB of the limiting Cauchy distribution.

5. Computation of the position parameter

For the planar Brownian motion B = (X,Y ), de�ne

AB =

∫ 1

0
Xt dYt −

X1 +X0

2
(Y1 − Y0),

the Lévy area of B.
Our goal, in this section, is to show the equality between this Lévy area and the position

parameter of the measure µB:

Lemma 5.1. Let B be a planar Brownian motion. Then, almost surely,

pB = AB.

To prove this, we will �rst look at piecewise linear approximations of B. We will chose the
dyadic approximations, since it is known that the integrals of x dy along those approximations

converge in the almost sure sense toward the stochastic integral
∫ 1

0 Xt dYt. We compare `integral'
with `position parameter' at the level of the approximations. We then show that there is no
discontinuity of the sequence of position parameters when we pass to the limit. The situation
here is the exact opposite of the one for the previous result: the non-vanishing of the scale
parameter is only due to the small pieces between the Brownian path and its piecewise-linear
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approximation. The position parameter, on the opposite, is very well approximated by the
piecewise-linear approximation.

We will write ∆ for the set of laws µ which lie on the strong attraction domain of a Cauchy
law (that is, those which satisfy Condition (C) after normalization). We also denote by ∆ the
set of curves γ such that νγ ∈ ∆. The ambiguity will always be resolved by the context. For
a given probability space (Ω,F ,P), we also set ∆(Ω) the set of random variables on Ω whose
distribution lies in ∆.

Before we proceed, we should warn the reader about the following facts, which might seem
counter-intuitive: if Ω is large enough, the set ∆(Ω) is not a linear space. Even worse is the fact
that for a general additive subset S of ∆(Ω), the map p : S → R which maps a random variable
to the position parameter of its law, is not additive in general. A counter-example to this was
given by Chen and Shepp [3], where S is actually generated by two Cauchy random variables.

In Section 5.1, we introduce a formula to compute position parameters, and a way to bypass
this global lack of additivity. The next section (Section 5.2), is dedicated to the computation of
the position parameter for the Brownian motion.

5.1. Some properties of Cauchy-like laws. We will need the two following lemma, whose
proofs, given below, consists in simple computations. In what follows, (Ω,F ,P) is a �xed prob-
ability space.

Lemma 5.2. Consider X ∈ ∆(Ω). Let p be its position parameter. For two real numbers a, k
with k > 0, let also (a)k denote the quantity max(min(a, k),−k). Then, we have the following
equalities:

p = lim
N→∞

NE [sin (X/N)] = lim
k→∞

E
[
X1|X|≤k

]
= lim

k→∞
E [(X)k] .

This lemma will allow us to express the position parameter pB in terms of the sequence DN .
We will also need the second following lemma, which roughly speaking states that the position
parameters do add up as soon as the corresponding variables are not too strongly correlated in
their tail behaviour.

Lemma 5.3. Let n ∈ N and X1, . . . , Xn ∈ ∆(Ω) with position parameters p1, . . . , pn. Assume
that there exists δ > 0 such that, for all i, j ∈ {1, . . . , n}, i 6= j,

P(|Xi| ≥ x, |Xj | ≥ x) = o(x−(1+δ)) as x→ +∞.

Then
∑n

i=1Xi ∈ ∆(Ω) and its position parameter p is equal to
∑n

i=1 pi.

Proof of Lemma 5.2. The �rst equality is a known result (see, for example [4], Part XVII, The-
orem 3 p. 580, and conclusive remark p. 581), and relies on the study of the characteristic
function of X. Let µ be the law of X. Let F denote its cumulative distribution function, and
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set F−(x) = F (−x). Let pN = NE [sin (X/N)]. Then,

pN = lim
k→+∞

∫ k

−k
N sin(x/N) dF (x)

= lim
k→+∞

∫ k

0
N sin(x/N) d(1 + F − F−)(x)

= lim
k→+∞

(
N sin(k/N)(1 + F − F−)(k)−

∫ k

0
cos(x/N)(1 + F − F−)(x) dx

)
.

From the fact that µ lies in the strong attraction domain, we deduce that, for some ε > 0,

1 + F (x)− F (−x) = o(x−1−ε). (29)

It follows that

|N sin(k/N)(1 + F − F−)(k)| ≤ k|(1 + F − F−)(k)| = o(1),

so that

pN = −
∫ ∞

0
1x≤N cos(x/N)(1 + F (x)− F−(x)) dx.

The integrand is dominated by the integrable function 1+F−F−, and from pointwise convergence
it follows that

p = lim
N→∞

pN = −
∫ ∞

0
(1 + F (x)− F (−x)) dx.

Besides,

E[X1|X|≤k] =

∫ k

−k
x dF (x)

=

∫ k

0
x d(1 + F − F−)(x)

= k(1− F (k)− F (−k))−
∫ k

0
(1 + F (x)− F (−x)) dx

−→
k→+∞

−
∫ ∞

0
(1 + F (x)− F (−x)) dx (using (29) once again).

This implies the second equality.
For the third equality, it su�ces to remark that

E[(X)k]−E[X1|X|≤k] = k(P(X ≥ k)− P(X ≤ −k)) −→
k→+∞

0.

The proof is complete. �

Proof of Lemma 5.3. We �rst assume n = 2. We set a1, a2 and γ such that

P(Xi ≥ x) =
x→+∞

ai
x

+ o(x−1−γ).
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We also �x ε : 0 < ε < 1− 1
1+δ , and assume xε > 3. We �rst show that X1 +X2 lies on ∆(Ω):

P(X1 +X2 ≥ x) ≥ P(X1 +X2 ≥ x and |X2| ≤ x1−ε)

+ P(X1 +X2 ≥ x and |X1| ≤ x1−ε)

≥ P(X1 ≥ x+ x1−ε)−P(X1 ≥ x+ x1−ε, |X2| ≥ x1−ε)

+ P(X2 ≥ x+ x1−ε)−P(X2 ≥ x+ x1−ε, |X1| ≥ x1−ε)

≥ a1 + a2

x
+O(x−1−ε) +O(x−1−γ) +O(x−(1−ε)(1+δ)).

Besides,

P(X1 +X2 ≥ x) ≤ P(X1 ≥ x− x1−ε) + P(X2 ≥ x− x1−ε) + P(X1 ≥ x1−ε and X2 ≥ x1−ε)

≤ a1 + a2

x
+O(x−1−ε) +O(x−1−γ) +O(x−(1−ε)(1+δ)).

The estimation near −∞ is identical, and it follows that X1 + X2 lies on ∆(Ω). To show that
p = p1 + p2, we use Lemma 5.2. We write k± = k ± k1−ε.

Then,

{X1 ≥ 0, |X1 +X2| ≤ k−} \ {X1 ≥ 0, |X2| ≥ k1−ε, |X1 +X2| ≤ k−}
⊆ {X1 ∈ [0, k]}
⊆ {X1 ≥ 0, |X1 +X2| ≤ k+} ∪ {X1 ∈ [0, k1−ε], |X2| ≥ k} ∪ {X1 ∈ [k1−ε, k], |X2| ≥ k1−ε},

so that

E[X11X1∈[0,k]] ≤ E[X11X1∈[0,k],|X1+X2|≤k+ ]

+ k1−εP({|X2| ≥ k}) + kP(|X1| ≥ k1−ε and |X2| ≥ k1−ε)

≤ E[X11X1∈[0,k],|X1+X2|≤k+ ] + k−ε + k1−(1−ε)(1+δ), (30)

and

E[X11X1∈[0,k]] ≥ E[X11X1≥0,|X1+X2|≤k− ]−E[X11|X2|≥k1−ε,|X1+X2|≤k− ].

To bound the last term, we introduce some ε′ such that ε < ε′ < 1 − 1
1+δ , and we separate the

events {X1 ≤ k1−ε′}, {X1 > k1−ε′}. We obtain

E[X11|X2|≥k1−ε,|X1+X2|≤k− ] ≤ k1−ε′P(|X2| ≥ k1−ε) + kP(|X1| ≥ k1−ε′ and |X2| ≥ k1−ε),

which is less than kε−ε
′
+ k1−(1−ε′)(1+δ). Thus,

E[X11X1∈[0,k]] ≥ E[X11X1≥0,|X1+X2|≤k− ]− kε−ε′ − k1−(1−ε′)(1+δ). (31)
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Finally, writing F for the cumulative distribution function of X1, we have

E[X11X1≥0,|X1+X2|∈[k−,k+]] ≤ k1−εP(|X2| ≥ k − 2k1−ε)

+ (k + 2k1−ε)P(X1 ∈ [k1−ε, k + 2k1−ε], X2 ≥ k1−ε)

+ (k + 2k1−ε)P(X1 ∈ [k − 2k1−ε, k + 2k1−ε])

≤ C(k−ε + k1−(1−ε)(1+δ) + k(F (k + 2k1−ε)− F (k − 2k1−ε)))

≤ C ′(k−ε + k1−(1−ε)(1+δ) + k(kε−2 + k−1−γ)). (32)

With (30), (31) and (32), we obtain

E[X11X1∈[0,k]] = E[X11X1∈[0,k],|X1+X2|≤k+ ] +O(x−ξ)

where ξ = min(ε − ε′, γ, 1 − ε, (1 − ε′)(1 + δ) − 1) > 0. We do the same thing with (−X1, X2),
(X2, X1), and (−X2, X1) instead of (X1, X2), and we obtain

E[X11|X1|≤k] + E[X21|X2|≤k]−E[(X1 +X2)1|X1+X2|≤k+ ] = O(x−ξ) = o(1).

Taking the limit k → +∞, we obtain p1 + p2 − p = 0.
The proof is now complete in the case n = 2, and the inequality

P
(
|Xn| ≥ x and

∣∣ n−1∑
i=1

Xi

∣∣ ≥ x) ≤ P
(
|Xn| ≥

x

n
and ∃i ∈ {1, . . . , n− 1} : |Xi| ≥

x

n

)
.

allows us to extend, by induction, the result to an arbitrary number of random variables. �

Remark 5.4. For the case of the area measures of two independent Brownian motions, the
condition of Lemma 5.3 follows from the preliminary lemma 2.3.

5.2. Computation for the position parameter of the Brownian motion. We now have
the tools to show Lemma 5.1.

Proof of Lemma 5.1. For a positive integer N , we set

D−N = |{z ∈ R2 : θB(z) ≤ −N}|.

It is clear, by symmetry of the Brownian motion, thatD−N is equal in distribution toDN , and thus
satis�es the same estimates. Using Lemma 5.2 (which extends directly to the case of measures
with �nite mass), we have

E[|pB|] = E
[∣∣ ∞∑
N=1

(DN −D−N )
∣∣].

The reader will remark that the dominant term in the asymptotic expansion of DN cancels with
the one of D−N , so that it is the second order term which is relevant here. We now use the L2

estimation on Proposition 1.4, which tell us that, for δ < 1
3 , for some constant C,

E[|pB|] ≤
∞∑
N=1

CN−1−δ < +∞,

so that pB has �nite expectation.



28 ISAO SAUZEDDE

Let us denote by Bpl,n the dyadic piecewise linear approximation of B with 2n steps: for
i ∈ {0, 1, . . . , 2n − 1} and u ∈ [0, 1),

Bpl,n
i+u
2n

= B i
2n

+ u
(
B i+1

2n
−B i

2n

)
.

We also let B(i, n) be the restriction of B to the interval
[
i−1
2n ,

i
2n

]
, so that

θB = θBpl,n +
2n∑
i=1

θB(i,n).

Let us assume that the equality holds at the level of position parameters, that is

pB = pBpl,n +

2n∑
i=1

pB(i,n). (?)

Since the function θBpl,n is bounded, it is easy to see that pBpl,n =
∫
R2 θBpl,n , and that this is

equal to ABpl,n . It is widely known, from the early introduction of the Lévy area, that ABpl,n
converges toward AB, in the almost sure sense, as n→∞. Thus, under the assumption (?), the
conclusion would follow from

2n∑
i=1

pB(i,n)
p.s.−→
n→∞

0. (33)

Since we already know that

2n∑
i=1

pB(i,n)
p.s.−→
n→∞

pB −AB,

it is actually su�cient to show that the convergence (33) holds in distribution. Remark that the
curves (B(i, n) − B i−1

2n
)i∈{1,...,2n} are i.i.d. Brownian motions, so that their position parameters

are i.i.d. variables. Their position parameters pB(i,n) are equal in distribution to pB
2n , because

of the scaling property of Brownian motion. Since pB has �nite expectation, the weak law
of large numbers applies and ensures that

∑2n

i=1 pB(i,n) converges in distribution towards the
expectation of pB. By symmetry of the Brownian motion, this expectation is zero, which implies
(33). Remark that the strong law of large numbers does not apply directly, because we have a
triangular array instead of a sequence of random variables.

There is only (?) left to show.
Remark �rst that for any two curves γ, γ′, if γ lies in the strong attraction domain of the

Cauchy law and µγ′ admits a �rst moment, then γ · γ′ lies in the strong attraction domain of the
Cauchy law, and pγ·γ′ = pγ + pγ′ . This follows directly from Slutsky's Lemma.

Since θBpl,n is a bounded function, µγ′ admits a �rst moment (recall that n is �xed here). We

let (Bpl,n)−1 be the curve Bpl,n with reversed orientation, and B · (Bpl,n)−1 be the concatenation
of B and (Bpl,n)−1, so that

pB = pB·(Bpl,n)−1 + pBpl,n .
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Remark that the following equality holds almost everywhere

θB·(Bpl,n) =
2n∑
i=1

θB(i,n).

We now want to apply Lemma 5.3.
Let (X1, . . . , X2n) be a family of Z-valued random variables such that

P((X1, . . . , X2n) = (0, . . . , 0)) = 0

and for any (k1, . . . , k2n) ∈ Z2n \ {0},

P((X1, . . . , X2n) = (k1, . . . , k2n)) =
1

Z
|{z ∈ R2 : ∀i ∈ {1, . . . , 2n}, θB(i,n)(z) = ki}|

where the normalizing constant Z is such that P is a probability measure.
For i, j ∈ {1, . . . , 2n}, i 6= j, set

Di,j
n,N = |{z ∈ R2 : |θB(i,n)(z)| ≥ N and |θB(j,n)(z)| ≥ N}|

= ZP(|Xi| ≥ N and |Xj | ≥ N).

Then, for δ, ε > 0 such that 2δ + ε < 2,

P(∃N ≥ N0 : Di,j
n,N ≥ N

−1−δ) ≤
∞∑

k=blog2(N0)c

P(Di,j
n,2k
≥ 2(k+1)(−1−δ))

≤
∞∑

k=blog2(N0)c

22(k+1)(1+δ)E
[(
Di,j
n,2k

)2
]

≤
∞∑

k=blog2(N0)c

C2−2n22k(1+δ)2k(−4+ε) (using Lemma 2.3 )

−→
N0→+∞

0. (34)

This implies that, for all n, i, j, P-almost surely, the hypothesis of Lemma 5.3 is satis�ed for
(X1, . . . , X2n) (under P). Thus, P-almost surely, (?) holds. This ends the proof of Lemma 5.1,
and thus of our main theorem 1.1. �

5.3. Proof of Theorem 0.1. The goal of this section is to show that Theorem 1.1 does imply
Theorem 0.1, as we announced earlier. We �rst show the following lemma.

Lemma 5.5. Let (Xi)i∈N be a family of i.i.d. random variables. For any N ∈ N, let P (N) be
a Poisson random variable with parameter N and independent from the family (Xi)i∈N. Assume
that the random variables

ZN =
1

N

N∑
i=1

Xi

converge in distribution as N → +∞. Then,

Z̃N =
1

N

P (N)∑
i=1

Xi
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also converge in distribution as N → +∞, and the limiting distributions are the same.

Proof. Let φ (resp. φN , φ̃N ) be the characteristic function of Xi (resp. ZN , Z̃N ). Set also φ∞
the characteristic function of the limit distribution of the ZN .

Let θ ∈ R and set uN = φ( θN ). As N → +∞, uN → φ(0) = 1. Hence uN − 1 ∼
N→∞

Log(uN )

where Log is a determination of the logarithm continuous at 1 and with Log(1) = 0. Then

N(uN − 1) ∼
N→∞

N Log(uN ).

In C/2iπZ, for N large enough, uN 6= 0 and then N Log(uN ) = Log(uNN ) = Log(φN (θ)). The
assumption of the lemma ensures that φN (θ) →

N→∞
φ∞(θ). Hence, in C/2iπZ,

N(uN − 1) →
N→∞

Log(φ∞(θ)).

It follows that exp(N(uN − 1)) →
N→+∞

φ∞(θ). The random variable Z̃N is a compound Poisson

variable, and φ̃N (θ) is equal to exp(N(uN − 1)), so φ̃N (θ) →
N→+∞

φ∞(θ). Since this is true for

any θ ∈ R, the conclusion of the lemma follows from the Lévy's continuity theorem. �

We now start the proof of Theorem 0.1.

Proof. Let Ω0 be the full probability event of Theorem 1.1. It is a subset of the probability space
Ω in which the Brownian motion is de�ned. We set ω ∈ Ω0.

Set R = supt∈[0,1] ‖Bt(ω)‖ and νR the probability law de�ned in Z (including 0) by

νR(N) =
|{z ∈ B(0, R) \ Range(B(ω)) : θB(ω)(z) = N}|

|B(0, R)|
.

The probability law is related to the probability law νB(ω) by the relation

νR(N) =
Z

|B(0, R)|
νB(ω) +

|B(0, R)| − Z
|B(0, R)|

δ0 (35)

with Z the mass of µB(ω).
We denote by NK the cardinal of P(K) ∩ B(0, R), which is a Poisson random variable with

parameter |B(0, R)|K. Set (Xi)i∈N a family of i.i.d. random variables distributed as νR, and
independent from NK . Then,∑

z∈P(K)

θB(ω)(z) =
∑

z∈P(K)∩B(0,R)

θB(ω)(z)
(d)
=

NK∑
i=1

Xi (36)

Using (35), we can writeXi = BiYi where the Bi are Bernoulli's random variables with parameter
Z

|B(0,R)| , the Yi are distributed as νB(ω) and Bi is independent from Yi. Since the Xi, NK are

globally independent, we can further assume that the Bi, Yi, NK are also globally independent.
Set MK = |{i ∈ {1, . . . , NK} : Bi = 1}|, which is easily seen to be a Poisson random variable
with parameter ZK. Then,

NK∑
i=1

Xi
(d)
=

MK∑
i=1

Yi. (37)
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Theorem 1.1 implies that
∑ZK

i=1 Yi converges in distribution toward a Cauchy distribution with

position parameter pB(ω). Lemma 5.5 then implies that
∑MK

i=1 Yi also converges in distribution
toward a Cauchy distribution with position parameter pB(ω). Together with (36) and (37), we
obtain Theorem 0.1. �

6. From L2 estimates to Lp estimates

We now extend the second order bound that we obtained from L2 to Lp, for any p ∈ (2,+∞).
The goal of this section is show Theorem 1.5. We �rst show a `large deviation' bound.

Lemma 6.1. For any k > 0 and ε > 0, there is a constant C such that for all N ∈ N∗,

P(DN ≥ N−1+ε) ≤ CN−k. (38)

Proof. The proof follows the same pattern as many that we presented already: we start with an
estimation at some rank, we cut the long trajectory into smaller ones, we rescale, and we apply
the known estimation to obtain the one at next rank.

Set pN,ε,C = P(DN ≥ CN−1+ε). Using the Markov inequality and the L2 convergence, we
�rst obtain, for all ε > 0, and for all C > 0, that there is some C ′ such that for all N ∈ N∗,

pN,ε,C ≤ C ′N−2ε.

Suppose that we already know, for all ε > 0 for some a > 1, for all C > 0, for some C ′, that

∀ε > 0, pN,ε,C ≤ C ′N−aε.

Then, set t = aε
1+a and T = bN tc. This is always less than N ε, so that when N is large enough,

T > 0 and N − T > N
2 .

We use here a dichotomy which is simpler than before. Recall that when we pass from a
trajectory from [0, 1] to its pieces of length T−1, we need to replace N with N −T because of the
winding of the piecewise-linear approximation of X. For DN to be larger than some value D,
either there exists some i such that Di

N−T is larger than D
2 , or there is at least two indices i 6= j

such that Di
N−T and Dj

N−T are both larger than D
2T . We thus have the following inequalities:

pN,ε,C = P(DN ≥ CN−1+ε)

≤ P
(
∃i ∈ {1, . . . , T} : Di

N−T ≥ C
2 N
−1+ε

)
+ P

(
∃i 6= j ∈ {1, . . . , T} : Di

N−T ≥ C
2
N−1+ε

T and Dj
N−T ≥

C
2
N−1+ε

T

)
≤ TpN−T,ε+t,C

2
+ T 2p2

N−T,ε,C
2

≤ C ′N t−a(ε+δ) + C ′N2t−2aε

= 2C ′N−
2a2ε
1+a .

Remark that 2a2

1+a > a as soon as a > 1, so that we improved our estimation, but it would not
have worked if we had started with a = 1. In particular, this method cannot be used as a quick
way to improve the L1 convergence of NDN into an L2 convergence.
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Setting now a0 = 2, and an+1 = 2a2n
1+an

, we recursively obtain that for all n ∈ N, for all ε > 0,

for all C > 0, that there is some C ′ such that for all N ∈ N∗,

pN,ε,C ≤ C ′N−anε.

The function f : x 7→ 2x2

1+x − x is strictly positive on [2,+∞). It follows that an −→
n→∞

+∞, which

concludes the proof. �

Remark 6.2. We actually expect P(DN ≥ N−1+ε) to decay at least power-exponentially in N .

We can now show Theorem 1.5.

Proof. First, remark that for any N ∈ N∗, DN ≤ D1 ≤ π‖B‖2∞,[0,1]. The right-hand term admits

moments of all order. Set Cp = E [Dp
1].

Choose ε ∈
(

0, 1
3(p−2)

)
and q > p. Then, using a disjunction and Hölder inequality, we have

E
[∣∣NDN − 1

2π

∣∣p] ≤ E
[∣∣NDN − 1

2π

∣∣p1DN≤N−1+ε

]
+ E

[∣∣NDN − 1
2π

∣∣q]P (DN ≥ N−1+ε
)
. (39)

The �rst term can be bounded by

E
[(
NDN − 1

2π

)2
(N ε(p−2) + (2π)2−p)

]
.

According to 1.4, for any δ < 1
3 , for some C, this is less than CN−δ+ε(p−2).

According to the previous lemma (Lemma 6.1), for all q > 0, there exists some C ′ such that
the second term can be bounded by (N qCq + 1)C ′N−k, which goes to 0 more quickly than any
power of N . Taking ε close to 0, we deduce that for all δ < 1

3 , for all p < ∞, there is some C
such that for all N ∈ N∗,

E
[∣∣NDN − 1

2π

∣∣p] ≤ CN−2δ.

This is the announced bound. �

7. A similar result for Young integration

Let γ = (x, y) : [0, 1] → R2 be a continuous function. Let us recall that θγ(z) denotes the
integer winding of γ around z, obtained by closing γ by adding to it a straight segment between
the endpoints. When γ is piecewise linear or smooth, the Stokes formula implies∫ 1

0
xt dyt −

x1 + x0

2
(y1 − y0) =

∫
R2

θγ(z) dz. (40)

Our main theorem can be understood as a generalization of this result to the case when γ is a
Brownian motion.

We now show Theorem 7.1, which states that (40) can also be generalized (without Cauchy

laws involved) when the Young integral
∫ 1

0 xt dyt is well de�ned. Let us recall that a dissection
D of [0, 1] is a �nite increasing sequence 0 = t0 < · · · < tn = 1 (with n that depends implicitly
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on D). Its mesh |D| is the positive real max{ti − ti−1 : i ∈ {1, . . . , n}}. The p-variation norm
‖x‖p of a continuous function x : [0, 1]→ R is the (possibly in�nite) quantity(

sup
D

n∑
i=1

|xti−1 − xti |p
) 1
p

where the supremum is over the dissections D = (t1 < · · · < tn) of [0, 1]. We denote by Vp the
set of continuous functions from [0, 1] to R with �nite p-variation. We also let Vp,q be the set of
couples γ = (x, y) with x ∈ Vp, y ∈ Vq. We identify such a couple γ with the function from [0, 1]
to R2 that maps t to (xt, yt).

Theorem 7.1. Let p, q ≥ 1 be reals such that δ = 1
p + 1

q − 1 > 0. Let γ ∈ Vp,q. Then, the range

of γ has zero Lebesgue measure and θγ ∈ Lr(R2,Z) for any r ∈ [1, 1 + δ). Besides, the equality
(40) holds if the left-hand side is interpreted as a Young integral.

In [2, Theorem 3.2], a similar result is shown in the case where γ is further assumed to be
simple.

We recall from the theory of Young integration that a control is a function ω : ∆ = {(s, t) : 0 ≤
s ≤ t ≤ 1} → R which is continuous, vanishes on the diagonal, and satis�es ωs,t+ωt,u ≤ ωs,u for
s < t < u. As a preliminary material, we state four previously known results. We give a precise
reference for each of them, but we also refer the reader to [5] and [9] as general references. Apart
from the �rst one, all of them are used in the construction of the Young integral. The proof of
Theorem 7.1 is partly similar to this construction.

Theorem 7.2 (Bancho�-Pohl inequality, [1]). Let γ : [0, 1]→ R2 be a continuous function with
�nite 1-variation. Then, θγ ∈ L2 and

‖θγ‖2L2 ≤
‖γ‖21
4π

.

Theorem 7.3 ([6, lemma 6.2] ). Let Γ : ∆ = {0 ≤ s < t ≤ 1} → R and assume that

• there exists a control ω̂ such that

lim
r→0

sup
(s,t)∈∆:ω̂(s,t)≤r

Γs,t
r

= 0,

• there exist a control ω and θ > 1, ξ > 0 such that

|Γs,u| ≤ |Γs,t|+ |Γt,u|+ ξω(s, u)θ

holds for 0 ≤ s ≤ t ≤ u ≤ 1.

Then, for all 0 ≤ s < t ≤ 1,

|Γs,t| ≤
ξ

1− 21−θω(s, t)θ.

For a function x : [0, 1] → R and a dissection D = (t0 < · · · < tn) of [0, 1], let xD be the

piecewise linear function de�ned by xDt = t−ti−1

ti−ti−1
xti + ti−t

ti−ti−1
xti−1 , where i ∈ {1, . . . , n} is such

that ti−1 ≤ t < ti.
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Theorem 7.4 ([6, theorem 5.25]). Let x ∈ Vp. Let (Dn) be a sequence of dissections of [0, 1]
with mesh converging to 0. Then, xDn converges to x in uniform norm and for all n,

‖xDn‖p ≤ 31−1/p‖x‖p.

Theorem 7.5 ([6, theorem 5.33] (Wiener's characterization)). Let x ∈ Vp. The following state-
ments are equivalent:

1. x belongs to the p-variation closure of V1.

2. lim
ε→0

sup
D:|D|<ε

n∑
i=1

d(xti−1 , xti)
p = 0.

To be clear, in the second statement, the supremum is taken over all dissections of [0, 1] with
mesh less than ε.

The proof of Theorem 7.1 is organized as follows. First, we show an inequality similar to the
Young�Loéve estimate: for smooth enough curves, the Lr norm of θγ can be controlled by the
p (resp. q)-variation of its coordinates. This is Lemma 7.6. We then show that θγ is de�ned
almost everywhere (Lemma 7.7), that it lies in Lr for r small enough (Lemma 7.8), and �nally
that the equality (40) holds.

We �x once and for all p, q and δ as in Theorem 7.1.

Lemma 7.6. Let γ = (x, y) : [0, 1] → R2 be a continuous curve with �nite 1-variation. Then,
for every r ∈ [1, 2], θγ ∈ Lr. Moreover, for all δ ≤ 1 and all r ∈ [1, 1 + δ), one has

‖θγ‖Lr ≤
‖x‖p‖y‖q

1− 21− 1+δ
r

. (41)

Proof. For 0 ≤ s < t ≤ 1, set θs,t = θγ|[s,t] and Γs,t = ‖θs,t‖Lr . For 0 ≤ s < t < u ≤ 1, let Ts,t,u
be the convex hull of {γs, γt, γu}.

For f ∈ Vp, let ‖f‖p,[s,t] be the p-variation norm of the restriction of f to [s, t] (linearly
reparametrized by [0, 1]). We will apply Theorem 7.3 with ξ = 1, with the controls ωs,t =

‖x‖1/(1+δ)
p,[s,t] ‖y‖

1/(1+δ)
q,[s,t] and ω̃s,t = ‖x‖1,[s,t] + ‖y‖1,[s,t]. These are the exact same controls that one

uses to prove the Young�Loève estimate, and we refer to [6] again for the proof that these are
indeed controls (see Proposition 1.15, Exercise 1.10, Proposition 5.8 and page 120).

Since θ takes its values in Z, one has

Γs,t =

(∫
R2

|θs,t(z)|r dz

) 1
r

≤
(∫

R2

θ2
s,t(z) dz

) 1
r

≤
‖γ‖

2
r

1,[s,t]

4π
≤
ω̃

2
r
s,t

4π
.

This allows us to obtain the �rst assumption of 7.3.
Then, for s < t < u, set ξs,t,u = θs,u − θs,t − θt,u, so that

|ξs,t,u| = 1Ts,t,u .

Thus, ‖θs,u‖Lr ≤ ‖θs,t‖Lr + ‖θt,u‖Lr + ‖1Ts,t,u‖Lr , that is,

|Γs,u| ≤ |Γs,t|+ |Γt,u|+ |Ts,t,u|
1
r ≤ |Γs,t|+ |Γt,u|+ ω(s, t)

θ
r .
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This is the second assumption of 7.3, with ξ = 1.
We now apply 7.3 to obtain the announced result. �

Lemma 7.7. For any γ ∈ Vp,q, the range of γ has vanishing Lebesgue measure.

Proof. Let γ ∈ Vp,q. The range of γ|[ k
ε
, k+1
ε

] is included in a box of length Cε1/p and width Cε1/q,

for some constant C that depends only on γ, p, q. Such a box can be covered by C ′ε1/p+1/q−2

balls of diameter ε. Thus, it is possible to cover the whole range of γ with no more than
ε−1C ′ε1/p+1/q−2 = C ′ε−(2−δ) balls of diameter ε. Thus, the range of γ has Hausdor� dimension
at most 2− δ, and thus has vanishing Lebesgue measure. �

Lemma 7.8. For any γ ∈ Vp,q, the function θγ lies in Lr(R2,Z) for any r < 1 + δ. Besides,

‖θγ‖Lr ≤
31−δ

1− 21− 1+δ
r

‖x‖p‖y‖q. (42)

Proof. We set γ(ε) the ε-thickening of the range of γ, that is the set {x ∈ R2 : d(x,Range(γ)) < ε}.
From the fact that the range of γ has vanishing measure, we deduce that the Lebesgue measure
|γ(ε)| of γ(ε) goes to 0 with ε.

We now �x a sequence (δn)n≥0 decreasing to 0, and for all n, a dissection Dn with mesh less
than δn. We set γn = (xDn , yDn). We �x ε > 0, and n0 such that for n ≥ n0, the range of γn is

included in γ(ε). Then, for every k > 0 and r < δ,∫
R2

min(|θγ(z)|r, k) dz ≤
∫
R2

|θγn(z)|r dz + k|γε|

≤
(
‖xn‖p‖yn‖q

1− 21− δ
r

)r
+ k|γε| (using Lemma 7.6)

≤
(

31−δ‖x‖p‖y‖q
1− 21− 1+δ

r

)r
+ k|γε| (using Lemma 7.4).

We let ε go to zero and then k go to in�nity to conclude. �

Finally we are ready to show the theorem.

Proof of Theorem 7.1. Let γ = (x, y) ∈ Vp,q. From the previous lemma, we know that both sides
of (40) are well de�ned.

In the case when γ is piecewise-linear, an easy recursion on the number of vertices shows the
equality stated by Theorem 7.1.

According to [6, Corollary 5.35], since x has �nite p-variation, it belongs to the closure of V1

in p′-variation norm for all p′ > p. Together with the Wiener's characterization, this implies

lim
ε→0

sup
D:|D|<ε

n∑
i=1

|xti − xti−1 |p
′

= 0.

Let D = (t0 < · · · < tn) be a dissection of [0, 1]. A consequence of Wiener's characterization is
that when the mesh of D is small enough, the maximum over i ∈ {1, . . . , n} of ‖x‖p′,ti−1,ti (resp.
‖y‖q′,ti−1,ti) is less than 1. We assume this condition to be satis�ed.
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We have the equality almost everywhere:

θγ = θγD +

n∑
i=1

θγ|[ti−1,ti]
.

With δ′ = 1
p′ + 1

q′ − 1 > 0, and p′′ > p′ > p, q′′ > q′ > q such that 1
p′′ + 1

q′′ = 1, we have:∫
R2

|θγ(z)− θγD(z)| dz ≤
n∑
i=1

∫
R2

|θγ|[ti−1,ti]
(z)| dz

≤ 31−δ′

1− 2δ′

n∑
i=1

‖x‖p′,ti−1,ti‖y‖q′,ti−1,ti (using (42) with r = 1)

≤ 31−δ′

1− 2δ′

(
n∑
i=1

‖x‖p
′′

p′,ti−1,ti

) 1
p′′
(

n∑
i=1

‖y‖q
′′

q′,ti−1,ti

) 1
q′′

≤ 31−δ′

1− 2δ′

(
n∑
i=1

‖x‖p
′

p′,ti−1,ti

) 1
p′′
(

n∑
i=1

‖y‖q
′

q′,ti−1,ti

) 1
q′′

−→
|D|→0

0.

Thus, θγD converges in L1 to θγ . Since the Young integral is also continuous and since (40) holds

for the piecewise linear curve γD, the integral
∫
R2 θγD(z) dz converges to both the left-hand side

and the right-hand sides of (40). This concludes the proof. �

8. Further discussion

For a real number x and a positive number k, recall that we denote by (x)k the quantity
max(min(a, k),−k). The main theorem of this paper implies that we can use, as a de�nition for

the integral
∫ 1

0 X dY , the almost surely de�ned quantity

lim
k→+∞

∫
R2

(θB(z))k dx ∧ dy. (43)

This de�nition would have, from our point of view, three important advantages that we brie�y
discuss now.

The �rst one is that the expression (43) does not really require to know the structure of vector
space on R2, nor actually its structure of Riemannian manifold. Given the di�erential structure
and orientation of R2, the data of a closed curve γ with vanishing measure (a property that does
not depend on a speci�c choice of volume form), and of a smooth di�erential 1-form α, we can
as well form the quantity ∫

R2

(θγ(z))k dα

and hope that it will have a limit as k → +∞. The invariance of the integral under di�eomor-
phisms is then granted by de�nition. A similar property seems rather di�cult to obtain for other
integration theories, and even false for the simple case of the Young integral: even rotations of
the plane can mix up the regularities, and turn a well-posed integral into an ill-posed one. Any
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integration theory that would rely on approximations by piecewise geodesic curves is likely to
su�er from this metric dependency that we avoid here.

The second advantage is also linked with the approximations. The usual de�nition of the
stochastic integral imposes to choose at some point a sequence of dissections. One example for
which this dependence appears is the following. Let ∆ = (∆t,n)t∈[0,1],n∈N, with each ∆t,n a
dissections of [0, t]. Then, the set Γ(∆) of couples (ω, t) for which the Riemann sums associated
with ∆t,n converge (as n→ +∞) depends on ∆. For two such families ∆,∆′, even if we assume
that ∆t and ∆′t are increasing sequences (for all t), there is no clear relation between Γ(∆) and
Γ(∆′). This forbids to de�ne a universal `good' set Γ of couples (ω, t) for which the integral∫ t

0 X dY is well-de�ned. When we replace the limit of the Riemann sums with a continuous
modi�cation of it, we simply eliminate this set and we cannot study it anymore. As opposed to
that, our approach allows to de�ne such a `good' set Γ without any additional data involved.

The last advantage is the generality to which this de�nition extends. We will discuss this
precise point further in a forthcoming paper. We intend to show that one can recover the
Young integration and a large part of stochastic calculus (not restricted to semi-martingales). In
particular, some `weak' di�eomorphism invariance of those integral theories can then be proved.
We also intend to show that one can de�ne new integrals, for which both the 1-form α and the
path γ are random and very irregular.

There are nonetheless three important drawbacks. The �rst one is technical: as we have seen,
it seems rather di�cult to show the existence of the limit (43), even for the most simple cases,
for which the stochastic integral is almost trivially shown to be well de�ned.

The second downside is that Chasles' relation is not satis�ed in full generality. We had a
glimpse of that problem when we computed the position parameter. Though, we still managed
to circumvent the di�culty, which gives hope for this drawback not to be critical. In practice,
for a given set of curves, we should most often be able to show that Chasles' relation holds for
these curves. The defect on Chasles' relation is similar to the fact that the sum of two Cauchy
laws might be a Cauchy law with a position parameter di�erent from the sum of the two previous
position parameters.

The third drawback is that since the de�nition does not depend on the linear structure of R2,
the map `γ 7→

∫
γ α' does not seem to be linear in general. This is nonetheless not very surprising

if we consider it as an integral map from curves on a manifold.
In a di�erent direction, it is possible to extend the main result of this paper to study asymp-

totically the monodromy of the Brownian motion when we consider a �at G-bundle over R2 \ P
and the random points on P carry curvature of the order of the inverse of the intensity of P.
More details should be given in another forthcoming paper.
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