
HAL Id: hal-03107192
https://hal.science/hal-03107192v1

Preprint submitted on 12 Jan 2021 (v1), last revised 5 May 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamical large deviations for plasmas below the Debye
length and the Landau equation

Ouassim Feliachi, Freddy Bouchet

To cite this version:
Ouassim Feliachi, Freddy Bouchet. Dynamical large deviations for plasmas below the Debye length
and the Landau equation. 2021. �hal-03107192v1�

https://hal.science/hal-03107192v1
https://hal.archives-ouvertes.fr


Journal of Statistical Physics manuscript No.
(will be inserted by the editor)

Dynamical large deviations for plasmas below the Debye
length and the Landau equation

Ouassim Feliachi · Freddy Bouchet

Received: date / Accepted: date

Abstract We consider a homogeneous plasma composed of N particles of the same
electric charge which interact through a Coulomb potential. In the large plasma pa-
rameter limit, classical kinetic theories justify that the empirical density is the so-
lution of the Balescu–Guernsey–Lenard equation, at leading order. This is a law of
large numbers. The Balescu–Guernsey–Lenard equation is approximated by the Lan-
dau equation for scales much smaller than the Debye length. In order to describe
typical and rare fluctuations, we compute for the first time a large deviation principle
for dynamical paths of the empirical density, within the Landau approximation. We
obtain a large deviation Hamiltonian that describes fluctuations and rare excursions
of the empirical density, in the large plasma parameter limit. We obtain this large
deviation Hamiltonian either from the Boltzmann large deviation Hamiltonian in the
grazing collision limit, or directly from the dynamics, extending the classical kinetic
theory for plasmas within the Landau approximation. We also derive the large devia-
tion Hamiltonian for the empirical density of N particles, each of which is governed
by a Markov process, and coupled in a mean field way. We explain that the plasma
large deviation Hamiltonian is not the one of N particles coupled in a mean-field way.
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1 Introduction: kinetic theories, dynamical large deviations and equilibrium
statistical mechanics

In the field of statistical physics, the literature that describes the static fluctuations
of a system around equilibrium and its relaxation to equilibrium is very rich. For
instance, working in the appropriate thermodynamic ensemble, we can express the
probability of observing a given state of a system as a function of the corresponding
thermodynamic potential. Beyond equilibrium, classical kinetic theories describe the
relaxation to equilibrium in some asymptotic regimes. For instance the Boltzmann
equation describes the relaxation to equilibrium of a dilute gas in the Boltzmann-Grad
limit, and the Balescu-Guernsey-Lenard equation in the opposite limit of particles
with long range interactions, for instance plasma in the weak coupling limit or self-
gravitating systems. The Landau equation is either an approximation of the Balescu-
Guernsey-Lenard equation that describes the relaxation of plasma at a scale much
smaller than the Debye length, or an approximation of the Boltzmann equation in the
weak scattering limit. All those classical kinetic equations describe the relaxation of
the empirical distribution gN(r,v, t)≡ 1

N ∑
N
n=1 δ (v−vn(t))δ (r− rn(t)), where δ are

Dirac delta functions, t is time, (rn(t),vn(t))1≤n≤N are the N particle positions and
velocities. The six-dimensional space of one-particle position-velocity, with points
(r,v), is called the µ-space. gN is a distribution over the µ-space that evolves with
time.

The probability Peq
(
gN = g0

)
to observe gN close to a given distribution g0 of

the µ-space, at some fixed arbitrary time, in the microcanonical ensemble, verifies

Peq
(
gN = g0)

∝ eN S [g0 ]
kB . (1)

This is the classical Einstein formula relating the specific entropy S [g0] of the macrostate
g0 with its equilibrium probability. kB is the Boltzmann constant. This can be seen as
a definition of the Boltzmann entropy S [g0] of the macrostate g0. For a dilute gas, be-
cause the particles are independent at leading order, of for systems with long range in-
teractions, because the two-body interactions are weak, it is known that S is the neg-
ative of the Boltzmann H function (S [g0] =−kB

∫
drdvg0 logg0) if the macrostate

g0satisfies the conservation laws (mass, momentum and energy), and S
[
g0
]
= −∞

otherwise.
However all those classical works and results in equilibrium statistical mechan-

ics and kinetic theory do not describe the probability of paths that may lead to any
macrostate g0. More generally, the macroscopic or mesoscopic stochastic process for
gN is not described by classical theories, and dynamical description is restricted to re-
laxation to equilibrium. In principle, very rarely, the microscopic dynamics can lead
the distribution function to follow other paths than the relaxation paths described
by the kinetic equation. What is the probability of such rare excursions? How do
these probabilities depend on the paths? Those are key questions. Answering them
are the starting point for solving many other non-equilibrium problems. Moreover, if
the microscopic dynamics is time-reversible (in the sense of dynamical systems), for
instance if the microscopic dynamics is Hamiltonian, then we expect the stochastic
process for gN to be also time-reversible (in the sense of stochastic processes). It is a
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fundamental question to describe this stochastic process for the empirical distribution
gN .

More precisely we need to estimate the probability P
(
{gN(t)}0≤t≤T = {g(t)}0≤t≤T

)
to observe the evolution of {gN(t)} close to any prescribed path {g(t)}, for times
0≤ t ≤ T , in some asymptotic limit when the kinetic description is valid. The math-
ematical and theoretical formalism adapted to this problem is large deviation theory.
We need to prove the large deviation result

P
(
{gN(t)}0≤t≤T = {g(t)}0≤t≤T

)
�

ε→0
e−

1
ε

∫ T
0 dt Supp{

∫
ġpdrdv−H[g,p]}, (2)

where ġ is the time derivative of g, p is a function over the µ-space and is called
the conjugated momentum of ġ, the Hamiltonian H is a functional of g and p that
characterizes the dynamical fluctuations, and where the symbol �

ε→0
means a loga-

rithmic equivalence (roughly speaking, the log of the left hand side is equivalent to
the log of the right hand side). We note that H is not the Hamiltonian of the mi-
croscopic dynamics but H rather defines a statistical field theory that quantifies the
probabilities of paths of the empirical distribution. H is associated with a Lagrangian
L [g, ġ] = Supp {

∫
ġpdrdv−H[g, p]} and an action

∫ T
0 dt L(g, ġ). The large deviation

speed ε is a small parameter associated to the kinetic limit. ε could be 1/N, but more
generally it will depend on the physical system under consideration.

In the paper [4], we explained why deriving a dynamical large deviation prin-
ciple like (2) shed an illuminating perspective on the irreversibility paradox. In a
nutshell, if the microscopic dynamics is time-reversible, then H will automatically
verify a time-reversal symmetry, relating the microscopic time-reversibility to the
time-reversibility of the stochastic process of the empirical distribution. The entropy
will be automatically related to the quasipotential, quantifying precisely the relation
between the dynamical properties of the field theory determined by H, to the inter-
pretation of the entropy as characterizing the static properties through the Einstein
formula (1). The increase of the entropy for relaxation paths will immediately follow
as a general property of the quasipotential, as a mere consequence of the convexity
of H with respect to the variable p, a property which is always true for a large de-
viation Hamiltonian. Then (2) characterizes the large deviations of a time-reversible
process, and thus does not break the time reversibility. The most probable evolution of
this time-reversible process will break time-reversal symmetry because we consider
a specific path, and will be the solution of the kinetic equation. This explains why the
kinetic equation increases S although the microscopic dynamics is time-reversible.
Moreover, (2) characterizes the probability of any paths at the large deviation level,
and quantifies very precisely the exponential concentration close to the solution of
the kinetic equation.

Several works recently computed the dynamical large deviations for particle sys-
tems. One of the firsts was a work by Derrida, Lebowitz and Speer [8] for systems
of particles that have a Markovian dynamics, for instance the SEP (Simple Exclu-
sion Process). Following this work, Rome’s group derived a consistent general for-
malism to describe phenomenologically macroscopic fluctuation theories [2] of sys-
tems which mesoscopic dynamics is diffusive. Those two complementary approaches
nicely describe the dynamical large deviations for a large class of particle systems.
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However, it would be interesting to deal with large deviation principles for particle
systems with a more physical dynamics than the one considered so far, starting from
the Hamiltonian dynamics of atoms or molecules.

This paper is the second of a series of three in which we address the compu-
tation of the large deviation Hamiltonian H, and of the large deviation parameter
ε , for the three classical kinetic theories associated respectively to the dilute gases
(the Boltzmann equation), mean field interactions, plasma and self-gravitating stars
(the Balescu–Guernsey–Lenard equation), and plasma at a scale much smaller than
the Debye length and in a weak coupling limit (the Landau equation). In our first
paper [4], we explained that for dilute gases, ε is the inverse of the number of par-
ticles in a volume of the size of the mean free path. In this first paper, we also de-
rived the Boltzmann large deviation Hamiltonian (see formulas (55-58) in section
5 of the present paper) from the natural Boltzmann hypothesis of molecular chaos.
Long before our work [4], Rezakhanlou has proven [18] a large deviation result for
1D stochastic dynamics mimicking the hard sphere dynamics. The functional form of
the large deviation Hamiltonian we deduced from Boltzmann’s molecular chaos hy-
pothesis is actually the same as Rezakhanlou’s one. Moreover, for the specific case of
hard spheres and in the Boltzmann-Grad limit, Bodineau, Gallagher, Saint-Raymond
and Simonella [3] have rigorously proven large deviation asymptotics that give an
information equivalent to the large deviation formulas (55-58), and which is valid for
times of order of one collision time, as Lanford result for the kinetic equation.

The aim of the present paper, is to derive the large deviation Hamiltonian, and
the formula for ε , for plasma in the weak coupling limit, and scales much smaller
than the Debye length, which kinetic equation is the Landau equation. The aim of
our third paper, in preparation, is to derive the large deviation Hamiltonian, and the
formula for ε , associated to plasma in the weak coupling limit and systems with long
range interactions, independently on the hypothesis that perturbations are at scales
much smaller than the Debye length. The kinetic equation for this third case is the
Balescu–Guernsey–Lenard [11,15]. In both the second and third paper, we consider
first the case of homogeneous dynamics, for simplicity.

In this paper, we deal with the case of the kinetic theory that leads to the Lan-
dau equation [11,15]. The Landau equation is the law of large numbers for the
relaxation to equilibrium of an homogeneous plasma, in the weak coupling limit
and for perturbations at scales much smaller than the Debye length. We consider
more generally any system with long range interactions at a scale much smaller
than the Debye length scale (the scale at which inertia and interaction effects do
balance each others). For these systems, we consider the rescaled empirical density
gΛ (r,v, t)≡Λ−1

∑
N
n=1 δ (v−vn(t)))δ (r− rn (t)), where Λ is plasma parameter, e.g.

the number of particles in a box of the size of the Debye length. The main result
of this paper is the derivation of the Landau Hamiltonian HLandau that describes the
dynamical large deviations for the probability of any homogeneous evolution paths
{ f (t)}0≤t≤T for the empirical density {gΛ (t)}0≤t≤T . We obtain

P
(
{gΛ (t)}0≤t≤T = { f (t)}0≤t≤T

)
�

Λ→∞
e−Λ

∫ T
0 dt Supp{

∫
drdv ḟ p−HLandau[ f ,p]}, (3)



Dynamical large deviations for plasmas below the Debye length and the Landau equation 5

where p(v, t) is a homogenous function over the µ-space, and where the large devi-
ation Hamiltonian HLandau[ f , p] is

HLandau[ f , p] = HMF [ f , p]+HI [ f , p] , (4)

with

HMF [ f , p] =
∫

drdv f
{

b [ f ] .
∂ p
∂v

+
∂

∂v
.

(
D [ f ] .

∂ p
∂v

)
+D [ f ] :

∂ p
∂v

∂ p
∂v

}
, (5)

and

HI [ f , p] =−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) . (6)

The drift b, diffusion tensor D, and interaction tensor B will be defined in the follow-
ing sections. In particular, in this paper we show that whenever the size of the domain
is larger than the Debye length, the relevant large deviation parameter is the plasma
parameter Λ , while whenever the size of the domain is smaller than the Debye length,
the relevant large deviation parameter is the number of particles.

We give two derivations of this Hamiltonian HLandau. The first derivation starts
from the large deviation Hamiltonian HB [4] of a dilute gas in the Boltzmann–Grad
limit (the large deviation for the Boltzmann kinetic theory) and considers the weak
scattering limit. Both the Landau equation and the large deviation Hamiltonian HLandau
are obtained in the weak scattering limit from the large deviations of the Boltzmann
kinetic theory. As a second derivation, we compute the large deviation Hamiltonian
HLandau directly from the plasma dynamics.

Independently from these two derivations, we also derive another new and im-
portant result: the large deviation Hamiltonian for the empirical density of N par-
ticles driven by N independent Markov processes (equation (41)). In the case of N
diffusions with mean field interactions we obtain the Hamiltonian (5). One of the
conclusions of this paper is that, while the Landau equation can be understood as
a diffusion equation for N independent particles (Fokker-Planck interpretation), the
large deviation Hamiltonian associated to the Landau equation is not the large devia-
tion Hamiltonian of N independent particles. The weak physical interactions impose
a new interaction term (6) which is essential for describing the large deviations. We
prove that this interaction term (6) is also crucial for the energy conservation proper-
ties of the statistical field theory. Finally, all along the paper we prove the expected
properties of the obtained Hamiltonian: conservation law symmetries, time-reversal
symmetry, and we prove that the entropy is the negative of the quasipotential up to
conservation laws.

We also explain that the path large deviation principle for the empirical distri-
bution implies a gradient structure for the Landau equation. This gradient structure
does not involve the Wasserstein distance as in many kinetic theories, but another
more intricate distance that takes into account of the effect of weak interaction be-
tween particles in the kinetic limit.
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The subject of plasma fluctuations is a classical one, see for instance §51 of [11],
or chapter 11 of [1], among hundreds of other publications. For instance, the space-
time two-point correlations for the fluctuations of the distribution function and po-
tential of a plasma with a non-equilibrium distribution function which is stable for
Vlasov dynamics, for times much smaller than the evolution time of the distribution
function itself, can be computed either from a Klimontovich approach [11], a trunca-
tion of the BBGKY hierarchy [15], or using equipartition of local van Kampen modes
[13]. One may wonder how the present work connects to those classical results. First,
as will be clear in section 6.2, our derivation starts from the classical formulas for the
local in time fluctuations of non-equilibrium stable distributions. Then our approach
is fully consistent with the classical results of fluctuations in plasma. However, we
address a question of a nature that has never been considered so far: the probability
that those local fluctuations lead to a large deviation in the long term evolution of the
distribution function. Our main result, the large deviation Hamiltonian that describes
the long term path probability for the distribution function, is thus entirely new, as far
as we know. It is fully compatible with the classical theories of local fluctuations in
plasmas.

In section 2, we present the expected general properties for the dynamical large
deviations of a kinetic theory. In section 2, we also present heuristically two impor-
tant and classical frameworks for dynamical large deviation theory: large deviations
due to N independent small increments leading to an effect of order 1, and large de-
viations for slow-fast systems. In section 3, we present the dynamics of N particles
with Coulomb interactions and the related kinetic equations: the Vlasov, the Balescu–
Guernsey–Lenard and the Landau equations. Inspired by the structure of the Landau
and Balescu–Guernsey–Lenard equation, which can be seen as non-linear Fokker–
Planck equations, we compute in section 4 the large deviation Hamiltonian for the
empirical density of N particles with diffusions coupled in a mean field way. We show
that it cannot be the large deviation Hamiltonian for neither the Balescu–Guernsey–
Lenard nor the Landau equation. In section 5, we derive the large deviation Hamilto-
nian for the kinetic theory associated to the Landau equation, from the one previously
obtained for the Boltzmann equation. This Hamiltonian is quadratic in p the conju-
gated variable to ḟ , showing that for the Landau equation Gaussian fluctuations prop-
erly describe path large deviations. It is natural to use this Hamiltonian large deviation
principle for the Landau equation kinetic theory, to conjecture a Hamiltonian large
deviation principle for the kinetic theory leading to the Balescu–Guernsey–Lenard
equation, by replacing the Landau collision kernel by the Balescu–Guernsey–Lenard
one. We call this Hamiltonian the dressed Landau Hamiltonian. However, we show in
section 5 that this dressed Landau Hamiltonian is not the large deviation Hamiltonian
associated to the kinetic theory leading to the Balescu–Guernsey–Lenard equation.
We argue that the large deviation Hamiltonian for the Balescu–Guernsey–Lenard ki-
netic theory is not quadratic in the conjugated momentum (the large deviations are
driven by non-Gaussian fluctuations). Finally, in section 6, we compute the large de-
viation Hamiltonian directly from the N particle dynamics. We show that a cumulant
expansion coincides with the dressed Landau Hamiltonian, up to a certain truncation
in terms of the power of the interaction potential. We explain that this justifies that
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the large deviation Hamiltonian for the kinetic theory associated to the Landau equa-
tion is quadratic in the conjugated momentum, because of the limit of small scales
compared to the Debye length. This result is fully consistent with the one obtained in
section 5.

2 Dynamical large deviations and kinetic theories

The aim of many works in statistical mechanics is to describe the evolution of the
empirical density of particle dynamics. For instance, in this work, we will consider
the rescaled empirical distribution gε(v, t)≡ ε ∑

N
n=1 δ (r−rn(t))δ (v−vn(t)). A large

deviation principle for the dynamics of the empirical distribution is a result that reads

P
(
{gε(t)}0≤t≤T = {g(t)}0≤t≤T

)
�

ε→0
e−

1
ε

∫ T
0 dt Supp{

∫
ġpdrdv−H[g,p]}, (7)

where ε is a small parameter that can be related to N. This section present a set of
known results about large deviation theory which are essential for the following dis-
cussion. In section 2.1 we describe the expected properties of any such large deviation
principle for the kinetic theory of the empirical distribution. A more detailed account
of a similar discussion can be found in [4]. In section 2.2, we present two important
frameworks that allow to compute dynamical large deviations: on one hand, large de-
viations due to N independent small increments leading to an effect of order 1, and
on the other hand, large deviations for slow-fast systems.

2.1 Large deviation for kinetic theories

2.1.1 General properties of path large deviations and expected properties for large
deviations for kinetic theories

Most probable evolution We consider the properties of a stochastic process which
rare fluctuations are described, at the level of large deviations, by the action

A [g] =
∫ T

0
dt L [g, ġ] =

∫ T

0
dt Supp

[∫
pġ−H [g, p]

]
. (8)

(see equation (7)). The kinetic equation is expected to be the most probable evolution
corresponding to the action (8), and with initial condition gr(t = 0) = g. It is also
called a relaxation path issued from g. It solves ∂gr

∂ t = R [gr], with initial condition
gr(t = 0) = g, where R [g] = arg infġ L [g, ġ]. Then one easily proves that

ġ =
δH
δ p

[g, p = 0] , (9)

is the kinetic equation.
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Quasipotential and macrostate entropy We assume that the stochastic process gε has
a stationary distribution Ps which dynamics follows the large deviation principle

Ps(g)≡ E [δ (gε −g)] �
ε↓0

exp
(
−U [g]

ε

)
, (10)

where U is called the quasipotential. In order to simplify the following discussion,
we also assume that the relaxation equation has a single fixed point g0 and that any
solution to the relaxation equation converges to g0 . Then the quasipotential verifies

U [g] = inf
{{g̃(t)}−∞≤t≤0|g̃(−∞)=g0 and g̃(0)=g}

∫ 0

−∞

dt L
[
g̃, ˙̃g
]
.

The minimizer of this variational problem, that is the most probable path starting
from g0 and ending at g, is denoted g f (t,g) and is called the fluctuation path ending
at g.

For many kinetic theory, we expect from equilibrium statistical mechanics that the
quasipotential U [g] is the opposite of the entropy S [g] =−

∫
dvdrg logg constrained

by the conserved quantities

U [g] =
{
−S [g] if M [g] = 1, P [g] = 0, and E [g] = E0
−∞ otherwise.

We have the following properties which are direct consequences of the definitions
of H and L, and whose proofs are classical and given for example in sections 7.2 to
7.4 of [4]:

1. H is a convex function of the variable p and H [g, p = 0] = 0, see sec. 7.2.1 of [4].
2. The relaxation paths solve the equation ∂g

∂ t =R [g] with infġ L[g, ġ] = 0=L[g,R [g]],
and R [g] = δH

δ p [g,0], see sec. 7.2.2 of [4].
3. The quasipotential solves the stationary Hamilton–Jacobi equation

H
[

g,
δU
δg

]
= 0, (11)

see sec. 7.2.3 of [4].
4. The fluctuation paths solve

ġ = F [g]≡ δH
δ p

[
g,

δU
δg

]
,

see sec. 7.2.4 of [4].
5. As H is convex, the quasipotential decreases along the relaxation paths

dU
dt

[gr] = H[gr,0]−H
[

gr,
δU
δg

[gr]

]
+
∫

drdv
δH
δ p

[gr,0]
δU
δg

[gr]≤ 0, (12)

see sec. 7.2.5 of [4]. For kinetic theories, because the quasipotential is the entropy
whenever the conservation laws are verified, we can immediately conclude that
the entropy will increase along the solution of the kinetic equation.
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6. As H is convex, the quasipotential increases along the fluctuation paths

dU
dt

[
g f
]
=H[g f ,0]−H

[
g f ,

δU
δg

[
g f
]]

+
∫

drdv
δH
δ p

[
g f ,

δU
δg

[
g f
]] δU

δg

[
g f
]
≥ 0,

(13)
see sec. 7.2.5 of [4]. For kinetic theories, because the quasipotential is the entropy
whenever the conservation laws are verified, we can immediately conclude that
the entropy will decrease along the fluctuation paths.

7. Generalized detailed balance (see sec. 7.3.2 of [4]). Let I be an involution that
characterizes time-reversal symmetry (for instance the map that correspond to
velocity or momentum inversion in many systems). We assume that I is self ad-
joint for the L2 scalar product, that is

∫
drdv I [g] p =

∫
drdvgI [p]. The detailed

balance conditions for the quasipotential U combined with the involution I are
U [g] =U [I [g]] is

H [I [g] ,−I [p]] = H
[

g, p+
δU
δg

]
. (14)

For any systems for which the microscopic dynamics is time reversible, we can in-
fer that the stochastic process of the empirical distribution has to be time-reversal
symmetric. As a consequence the large deviation principle should verify detailed
balance and the symmetry relation has to be verified.

8. As can be easily checked, if either the detailed balance or the generalized detailed
balance conditions are verified, then U satisfies the stationary Hamilton-Jacobi
equation (11).

9. If the detailed balance condition is verified, and if U is the quasipotential, then
for a path {g(t)}0≤t≤T and its time reversed one {I [g(T − t)]}0≤t≤T we have the
symmetry for the path probability

P
[
{gε (t)}0≤t≤T = {g(t)}0≤t≤T

]
e−

U [g(t=0)])
ε = P

[
{gε (t)}0≤t≤T = {I [g(T − t)]}0≤t≤T

]
e−

U [I[g(t=T )]]
ε ,

see sec. 7.3.1 of [4].
10. Conserved quantities (see sec. 7.2.6 of [4]). At the level of the large deviations,

the condition for C [g] to be a conserved quantity is either

for any g and p, L [g, ġ] = +∞ if
∫

drdv
∂g
∂ t

δC
δg
6= 0,

or

for any g and p,
∫

drdv
δH
δ p

[g, p]
δC
δg

= 0. (15)

In general, kinetic theories conserve at least mass, momentum and energy.
11. A sufficient condition for U to be the quasipotential (see sec. 7.4 of [4]). If U

solves the Hamilton–Jacobi equation, if U has a single minimum g0 with U [g0] =

0, and if for any g the solution of the reverse fluctuation path dynamics ∂ g̃
∂ t =

−F [g̃] = − δH
δ p

[
g̃, δU

δ g̃

]
with g̃(0) = g converges to g0 for large times, then U is

the quasipotential.
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2.2 Dynamical large deviations

When the evolution of a stochastic process is the consequence of the effect of a large
number of small amplitude and statistically independent moves, in the limit of a large
number of moves, a law of large number naturally follows. It is often very impor-
tant to understand the large deviations with respect to this law of large number. For
continuous time Markov processes, for instance diffusions with small noises, or more
generally locally infinitely divisible processes, a general framework can be developed
in order to estimate the probability of large deviations. In section 2.2, taken from [4]
and initially inspired by [9,10], we present this framework briefly and the main result:
the formula (16) for computing the large deviation Hamiltonian in this case.

Another classical framework for large deviations are large deviations for the ef-
fective dynamics of the slow variable in a slow-fast dynamics (time averaging of the
fast degrees of freedom). This classical framework is discussed in the case of stochas-
tic processes in [10,22]. When the slow dynamics is deterministic similar results have
been proven for instance by Kiffer. A simple heuristic account is given in [5]. [5] dis-
cuss also at length the case when the fast variable is an Ornstein-Uhlenbeck and the
coupling with the slow variable is through a quadratic form. In this specific case the
Hamiltonian can be computed by solving a matrix Riccati equation.

2.2.1 Large deviation rate functions from the infinitesimal generator of a continuous
time Markov process

We consider {gε(t)}0≤t≤T , a family of continuous time Markov processes parametrized
by a real number ε . We denote Gε the infinitesimal generator of the process (the def-
inition of the infinitesimal generator of a continuous time Markov process is given in
[4]). We assume that for all p ∈ L2

(
T3×R3

)
the limit

H[g, p] = lim
ε↓0

εGε

[
e

1
ε

∫
drdv p(r,v)g(r,v)

]
e−

1
ε

∫
drdv p(r,v)g(r,v) (16)

exists. Then the family gε verifies a large deviation principle with rate ε and rate
function

L [g, ġ] = sup
p
{pġ−H [g, p]} . (17)

This means that the probability that the path {gε(t)}0≤t<T be in a neighborhood of
{g(t)}0≤t<T verifies

P
[
{gε(t)}0≤t<T = {g(t)}0≤t<T

]
�
ε↓0

exp

(
−
∫ T

0 dt L [g, ġ]
ε

)
, (18)

where the symbol �
ε↓0

is a logarithm equivalence (gε �
ε↓0

exp(ϕ/ε) ⇐⇒ limε↓0 ε loggε =

ϕ).
This result is proven for specific cases (diffusions, locally infinitely divisible pro-

cesses) in the Theorem 2.1, page 127, of the third edition of Freidlin-Wentzell text-
book [10]. A general heuristic derivation is given in section 7.1.2 of [4]. Equation
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(16) will be the key starting point for several results of this paper. For instance, we
apply this framework to the fluctuations of N independent diffusions and N diffusions
with mean field coupling in section 4.

In formula (16) the infinitesimal generator is tested through the function e
1
ε

∫
drdv pg.

In the small ε limit, this tests changes of the observable which are of order of ε . The ε

prefactor in the right hand side of equation (16) means that the overall effect of these
small changes of order ε is expected to be of order 1/ε . H in formula (16) thus ac-
counts for the effects of a large number (of order 1/ε) of small amplitude statistically
independent moves (each one of order ε).

2.2.2 Large deviation for slow-fast systems

We consider the slow-fast dynamics{
dXε

dτ
= α(Xε ,Yε)

dYε

dτ
= 1

ε
β (Xε ,Yε)+

1√
ε

γ(Xε ,Yε)
dW
dτ

, (19)

where Xε is the slow variable, Yε the fast variable, W a Wiener process, and ε quan-
tifies the time scale separation. We assume that the dynamics for Yε is mixing over
timescales of order ε . The following discussion would apply for other classes of dy-
namics for Yε , beyond diffusions, with little modifications, for instance for chaotic
deterministic systems with mixing hypothesis.

We are interested in the slow dynamics for Xε . Then for generic hypotheses, we
have the large deviation principle

P(Xε = x) �
ε→0

e−
1
ε

∫ T
0 Supp{ẋ.p−H(x,p)}dτ (20)

with H(x, p) = lim
T→∞

1
T

logEx

{
exp
[

p.
∫ T

0
α(x,Yx(t))dt

]}
, (21)

where p is conjugated to ẋ, the average Ex is an average over the Yx process with
frozen x (the solution of dYx

dt = β (x,Yx)+ γ (x,Yx)
dW
dt

).
This classical result is proven in the case of stochastic processes in [10,22]. When

the slow dynamics is deterministic, similar results have been proven for instance by
Kiffer. A simple heuristic account for any Markov dynamics is given in [5]. The result
(19-21) is easily heuristically understood as L(x, ẋ) = supp {ẋ.p−H(x, p)} appears
as a large-time large deviations result, of the Freidlin-Wentzell type, for the Newton
increment of the slow variable

Xε(τ +∆τ)− x
∆τ

=
1

∆τ

∫
∆τ

0
α (Xε(u),Yε (u)) du' ε

∆τ

∫ ∆τ
ε

0
α (x,Yx (t)) dt.

Then formula (21), with L(x, ẋ) = Supp {ẋ.p−H(x, p)}, appears as a Gärtner–Ellis
formula for the large time large deviations

Ex

[
δ

(
Xε(τ +∆τ)− x

∆τ
− ẋ
)]
�

ε→0
e−

L(x,ẋ)∆τ

ε .

This last formula is the temporal increment of formula (2.2.2).
We will use formula (19-21) for computing the large deviations of the empirical

density, from the microscopic dynamics, in section 6.
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3 Dynamics of plasmas

In this section we set up the definitions, and present known results about the ki-
netic theory of the dynamics of N particles with Coulomb interactions, in limit of
a large plasma parameter (or equivalently weak coupling). In section 3.1, we define
the Hamiltonian dynamics of N particles coupled by a Coulomb pairwise interac-
tion. In section 3.2, we introduce the Vlasov equation that describes the evolution
of the empirical density on timescales of order one. In section 3.3, we introduce the
Balescu–Guernsey–Lenard equation that describes the long time relaxation of the
empirical density, from Vlasov stationary solutions to the Maxwell-Boltzmann equi-
librium distribution, and some of its important physical properties. In section 3.4 we
present the Landau equation, which is an approximation of the Balescu–Guernsey–
Lenard equation which is valid for scales which are small compared to the Debye
length. In section 3.5, we show that these equations can be seen as non-linear Fokker-
Planck equations.

3.1 The dynamics of the Coulomb plasma

We consider of a Coulomb plasma of N particles with positions {rn}1≤n≤N and ve-
locities {vn}1≤n≤N , and with equal charge e and mass m. We consider that rn belongs
to a 3-dimensional torus T3 of size L3 (doubly periodic boundary conditions), and
vn ∈R3. However most of our discussion easily generalizables to rn ∈R3, with slight
modifications. The dynamics is a Hamiltonian one with

drn

dt
= vn

dvn

dt
=− e2

4πε0m ∑
m 6=n

d
drn

W (rn− rm)

(22)

where ε0 is the vacuum permittivity and W is the Coulomb potential. In both a finite
box and an infinite space, W can be defined through its Fourier transform

Ŵ (k) =
∫

dre−ik.rW (r) ,

with
Ŵ (k) =

1
k2 ,

and where k = |k|. We define the Debye length λD =
(

ε0kBT L3

e2N

)1/2
, where kB is the

Boltzmann constant and T the temperature. This length is the typical length beyond
which Coulomb interaction are screened [15]. We also define the plasma electron fre-

quency ωpe =
(

e2N
ε0mL3

)1/2
, which is the pulsation of the Langmuir waves in a plasma

[15], and the thermal velocity vT = λDωpe =
√

kBT/m. Then, if we use the dimen-
sionless variables

r̃ = r/λD, ṽ = v/vT and t̃ = ωpet,
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the dimensionless dynamical equations (22) read
dr̃n

dt̃
= ṽn

dṽn

dt̃
=− 1

Λ
∑

m 6=n

d
dr̃n

W̃ (r̃n− r̃m)

where Λ ≡N (λD/L)3 is the so-called plasma parameter. Λ is the number of particles
in a box of size of the Debye length. In this new system of units, called plasma
units, r̃n belongs to the 3-dimensional torus (L/λD)T3. The dimensionless Coulomb
potential W̃ is defined by

Ŵ
(
k̃
)
=
∫

dr̃e−ik̃.r̃W̃ (r̃) ,

with Ŵ
(
k̃
)
= 1

k̃2 . For simplicity, in the following we omit the tildes when referring
to the dimensionless variables. We will work in dimensionless variables, and give the
main results in both dimensionless and physical variables.

We call µ−space the (r,v) space. The µ−space is of dimension 6. Let us define
gΛ the µ−space empirical distribution function for the positions and velocities of the
N particles rescaled by the plasma parameter

gΛ (r,v, t) =
1
Λ

N

∑
n=1

δ (r− rn(t))δ (v−vn(t)). (23)

In the following we will consider the large plasma parameter limit, Λ → ∞. Consid-
ering that Λ is the number of particles in a box of size of the Debye length, and that
in our non-dimensional units the Debye length is fixed, the scaling 1/Λ in front of
the empirical density (23) is natural.

If the box size L is larger than the Debye length λD, the interactions are screened
beyond the Debye length and the effective interaction length scale is λD. Otherwise,
if the size of the box is smaller than the Debye length, then the interactions are not
screened in the box and they take place on a length scale L. We call `= min{λD,L}
the effective interaction length scale.

In the following, we study the asymptotic dynamics of gΛ as the number of par-
ticles in a box of the size of the effective interaction length scale, e.g. N`3/L3 goes
to infinity. If L > λD, this asymptotic regime is the limit of a large plasma parameter
Λ ; if L < λD, it is the limit of a large number of particles N. In this paper, we present
detailed results for the case L > λD, and we briefly discuss the slight modifications
relevant for the case L < λD at the end of section 6.

3.2 The Vlasov equation

From equation (22), one immediately obtains the Klimontovich equation

∂gΛ

∂ t
+v · ∂gΛ

∂r
− ∂V [gΛ ]

∂r
· ∂gΛ

∂v
= 0, (24)
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where V [gΛ ](r, t) =
∫

dv′dr′W (r− r′)gΛ (r′,v′, t). This is an exact equation for the
evolution of gΛ , if W is regular enough. For the Coulomb interaction, the formal equa-
tion (24) has to be interpreted carefully. In the following, we do not discuss the diver-
gences that might occur related to small scale interactions. At a mathematic level, this
would be equivalent to considering a potential which is regularized at small scales,
and smooth. The Klimontovich equation (24) contains all the information about the
trajectories of the N particles. We would like to build a kinetic theory, that describes
the stochastic process for gΛ at a mesoscopic level.

An important first result is that the sequence {gΛ} obeys a law of large numbers
when Λ →+∞. More precisely, if we assume there is a set of initials conditions {g0

Λ
}

such as limΛ→+∞
1
Λ ∑

N
n=1 g0

n (r,v) = g0 (r,v), then over finite time interval t ∈ [0,T ],
the empirical distribution function gΛ (t) converges to g(t) as Λ goes to infinity, where
g solves the Vlasov equation

∂g
∂ t

+v · ∂g
∂r
− ∂V [g]

∂r
· ∂g

∂v
= 0 with g(r,v, t = 0) = g0 (r,v) . (25)

As the Klimontovich and the Vlasov equations are formally the same, this is actually a
stability result for the Vlasov equation. It has first been proven for smooth interactions
by Braun and Hepp [6] for smooth enough potential W . This Vlasov equation has a
infinity of Casimir conserved quantities. As a consequence, it has an infinite number
of stable stationary states [24]. Any homogeneous distribution g(r,v) = f (v) is a
stationary solution of the Vlasov equation. In the following, we will consider homo-
geneous linearly stable stationary solutions of the Vlasov equation f (v). The linear
stability of such distributions can be assessed by studying the dielectric susceptibility
ε[ f ](k,ω) [15,11], defined by

ε[ f ](k,ω) = 1−Ŵ (k)
∫

dv
k. ∂ f

∂v
k.v−ω− iε̃

. (26)

Equation (26) and every other equations involving ±iε̃ have to be understood as the
limit as ε̃ goes to zero with ε̃ positive. The dielectric susceptibility function ε plays
the role of a dispersion relation in the linearized dynamics, and a solution f is stable
if ε[ f ] has no poles except for ω on the real line.

From the point of view of dynamical systems, those homogeneous solutions might
be attractors of the Vlasov equation, with some sort of asymptotic stability. At a lin-
ear level, this convergence for some of the observables, for instance the potential, is
called Landau damping [15,11]. Such a stability might also be true for the full dy-
namics. Indeed some non-linear Landau damping results have recently been proven
[14].

In the following we will study the dynamics of gΛ , when its initial condition is
close to a homogeneous stable state f (v). On time scales of order one, the distribution
is stable and remains close to f according to the Vlasov equation. However a slow
evolution occurs on a timescale τ of order Λ . For this reason, such f are called quasi-
stationary states [24]. In the following section, we explain that this slow evolution
is described by the Balescu–Guernsey–Lenard equation for most initial conditions.
More precisely, gΛ converges to the solution of the Balescu–Guernsey–Lenard equa-
tion as a law of large numbers.
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3.3 The Balescu–Guernsey–Lenard equation

With the rescaling of time τ = t/Λ , we expect a law of large numbers in the sense that
“for almost all initial conditions” the empirical distribution function gΛ converges to
f , with f that evolves according to the Balescu–Guernsey–Lenard equation

∂ f
∂τ

=
∂

∂v
.
∫

dv2 B [ f ] (v,v2)

(
− ∂ f

∂v2
f (v)+ f (v2)

∂ f
∂v

)
, (27)

with

B [ f ] (v1,v2)= π

(
λD

L

)3 ∫ +∞

−∞

dω ∑
k∈2π(λD/L)Z∗3

Ŵ (k)2 kk
|ε[ f ] (ω,k)|2

δ (ω−k.v1)δ (ω−k.v2) .

(28)
The tensor B is called the collision kernel of the Balescu–Guernsey–Lenard equation.

We know no mathematical proof of such a result. In the theoretical physics liter-
ature, this equation is derived as an exact consequence of the dynamics once natural
hypothesis are made. Two classes of derivations are known, either the BBGKY hier-
archy detailed in [15] or the Klimontovich approach presented for instance in [11].
The Klimontovich derivation is the more straightforward from a technical point of
view. We now recall the main steps of the Klimontovich derivation, that will be use-
ful later.

In the following we will consider statistical averages over measures of initial
conditions for the N particle initial conditions

{
r0

n,v0
n
}

. We denote ES the average
with respect to this measure of initial conditions. As an example the measure of ini-
tial conditions could be the product measure ∏

N
n=1 g0

(
r0

n,v0
n
)

drndvn. But we might
consider other measures of initial conditions. We recall that Λ is the number of par-
ticle in a box of size λD. We will consider the limit Λ → ∞, which is a large parti-
cle number limit. For this reason the limit limΛ→∞ of the empirical density will be
called a law of large numbers1. We assume that for the statistical ensemble of ini-
tial conditions, the law of large numbers limΛ→∞

1
Λ ∑

N
n=1 g0

Λ
(r,v) = g0 (r,v) is valid

at the initial time. This is true for instance for the product measure. In the follow-
ing, for simplicity, we restrict the discussions to cases when the initial conditions
are statistically homogenous: g0 (r,v) = f 0(v). We are then looking for the law of
large numbers limΛ→∞

1
Λ ∑

N
n=1 g0

Λ
(r,v, t) = f (v, t), valid for any finite time t. Al-

ternatively, we define f as the statistical average of gΛ over the initial conditions
f (v, t) = ES (gΛ (r,v, t)).

We define the fluctuations δgΛ by gΛ (r,v, t) = f (v) + δgΛ/
√

Λ . The scaling
1/
√

Λ is natural when we see the Vlasov equation (25) as a law of large numbers
for the empirical distribution. For the potential we obtain V [gΛ ] = V [δgΛ ]/

√
Λ , as

f is homogeneous. If we introduce this decomposition in the Klimontovich equation

1 In order to have a discussion of the asymptotic behavior that will be independent on the box size L, for
instance in order to consider infinite box size, it is more natural to discuss the limit Λ → ∞ than N→ ∞.
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(24), we obtain

∂ f
∂ t

=
1
Λ
ES

(
∂V [δgΛ ]

∂r
.
∂δgΛ

∂v

)
(29)

∂δgΛ

∂ t
+v.

∂δgΛ

∂r
− ∂V [δgΛ ]

∂r
.
∂ f
∂v

=
1√
Λ

[
∂V [δgΛ ]

∂r
.
∂δgΛ

∂v
−ES

(
∂V [δgΛ ]

∂r
.
∂δgΛ

∂v

)]
. (30)

In the first equation, the right hand side of the equation 1
Λ
ES

(
∂V [δgN ]

∂r . ∂δgN
∂v

)
is

called the averaged non linear term and is responsible for the long term evolution
of the distribution f . The right hand side of the second equation 1√

Λ

[
∂V [δgΛ ]

∂r . ∂δgΛ

∂v

−ES

(
∂V [δgΛ ]

∂r . ∂δgΛ

∂v

)]
describes the fluctuations of the non-linear term. For stable

distributions f , and on timescales much smaller than
√

Λ , we can neglect this term,
following Klimontovich and classical textbooks [11]. This closes the hierarchy of the
correlation functions. The Bogoliubov approximation then amounts at using the time
scale separation between the evolution of f and δgΛ . Then for fixed f , the equa-
tion for δgΛ (30) is linear when f is fixed. One computes the correlation function
ES

(
∂V [δgΛ ]

∂r . ∂δgΛ

∂v

)
resulting from (30) with fixed f , and argues that this two point

correlation function converges to a stationary quantity on time scales much smaller
than

√
Λ . Using this quasi-stationary correlation function ES

(
∂V [δgΛ ]

∂r . ∂δgΛ

∂v

)
, one

can compute the right hand side of (29) as a function of f . After time rescaling
τ = t/Λ , the closed equation which is obtained from (29) is the Balescu–Guernsey–
Lenard equation (27). We do not reproduce these lengthy and classical computations
that can be found in a plasma physics textbook, for instance in the chapter 51 of [11].

Symmetries and conservation properties. The Balescu–Guernsey–Lenard equation
(27) has several important physical properties:

1. It conserves the mass M[ f ], momentum P[ f ] and total kinetic energy E[ f ] defined
by

M[ f ] =
∫

dv f (v) , P[ f ] =
∫

dvv f (v) and E[ f ] =
∫

dv
v2

2
f (v) . (31)

2. It increases monotonically the entropy S[ f ] defined by

S[ f ] =−
∫

dv f (v) log f (v) .

3. It converges towards the Boltzmann distribution for the corresponding energy

fB (v) =
β 3/2

(2π)3/2 exp
(
−β

v2

2

)
.

The Balescu–Guernsey–Lenard is a good approximation to describe the long time
evolution of system of particles with mean field interactions but it is quite complicated
to handle, especially because the tensor B depends on the actual distribution f in a
non-trivial way. The Balescu–Guernsey–Lenard operator (the right hand side of (27)),
is a very complex non-linear functional of f .
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3.4 The Landau equation

Neglecting the collective effects in the Balescu–Guernsey–Lenard equation, we ob-
tain the Landau equation

∂ f
∂τ

=
∂

∂v
.
∫

dv2 B(v,v2)

(
− ∂ f

∂v2
f (v)+ f (v2)

∂ f
∂v

)
, (32)

where B for the Landau equation is given by the same expression as the one for B in
equation (28), but with ε (k,ω) = 1:

B(v1,v2) = π

(
λD

L

)3 ∫ +∞

−∞

dω ∑
k∈2π(λD/L)Z∗3

Ŵ (k)2 kkδ (ω−k.v1)δ (ω−k.v2) .

(33)
The Landau approximation of the Balescu–Guernsey–Lenard equation is valid to

describe plasma at scales which are much smaller than the Debye length (associated
with large wavenumbers compared to 1/λD), or globally when the effect of those
scales dominate the collision kernel B. Within this approximation, we can assume
that ε (k,ω) = 1 which means that the dielectric susceptibility does not depend on
the distribution f anymore. This approximation is relevant for many applications in
plasma physics.

3.5 The Balescu–Guernsey–Lenard and Landau equations as non-linear
Fokker-Planck equations

It is possible to consider the Balescu–Guernsey–Lenard and the Landau equations as
non-linear Fokker-Planck equations. Indeed, introducing the drift and the diffusion
terms {

b [ f ] (v) =
∫

dv2B [ f ] (v,v2)
∂ f
∂v2

D [ f ] (v) =
∫

dv2B [ f ] (v,v2) f (v2),
(34)

the Balescu–Guernsey–Lenard and the Landau equations write

∂ f
∂ t

=
∂

∂v

{
− f b [ f ]+D [ f ]

∂ f
∂v

}
. (35)

This is the functional form of a Fokker-Planck equation, but by contrast with the lin-
ear Fokker-Planck equation with constant drift and diffusion coefficient, the drift and
diffusion coefficients depend on f .

We remark that this equation could be obtained from the dynamics of N particles
governed by the Ito diffusion

dvn = b[hN ] (vn)+
∂

∂v
.D[hN ] (vn)dt +

√
2σ [hN ] (vn)dWn,t , (36)



18 Ouassim Feliachi, Freddy Bouchet

with

hN (v, t) =
1
N

N

∑
n=1

δ (vn(t)−v) , (37)

where σ is such that D[hN ] (vn) = σ [hN ] (vn)σ [hN ] (vn)
>, and Wn,t are Wiener pro-

cesses that satisfy E
(
dWm,tdWn,t ′

)
= δm,nδ (t ′− t)dt. In this equation, the drift and

diffusion coefficients b [hN ] and D[hN ] and the matrix σ depend on a mean field way
on the empirical density hN .

There is a link between hN and the empirical density gΛ rescaled by the plasma
parameter. We define fΛ the projection of gΛ over homogeneous distributions over
the µ− space :

fΛ (v, t) =
(

λD

L

)3 ∫
[0,L/λD]

3
drgΛ (r,v, t) .

(both fΛ and gΛ are distributions over the µ− space). We note that fΛ , which is a
homogeneous distribution over the µ−space can also be interpreted as a distribution
over the velocity space. Then using the relation between N and Λ : ΛL3/λ 3

D = N, one
can check that fΛ = hN .

The law of large numbers for the empirical density hN for these N particles
with mean field coupling insures that limN→∞ hN = f where f verifies the Balescu–
Guernsey–Lenard equation (35). From this remark, a natural question is wether the
dynamical large deviations for the empirical distribution hN in (36-37) are the same
as the dynamical large deviations of N particles with Coulomb interactions (the large
deviation of the Balescu–Guernsey–Lenard equation). We address this very natural
question in the following section.

4 Large deviations for N independent diffusions and N diffusions with mean
field coupling

The aim of this section is to address the following question: are the dynamical large
deviations (36) for the empirical distribution hN in (36) the same as the dynami-
cal large deviations of N particles with mean field interactions (the large deviations
for the Balescu–Guernsey–Lenard or the Landau equations)? In section 4.1 we de-
rive the large deviation rate function for the empirical density defined as hN(v, t) =
1
N ∑

N
n=1 δ (vn(t)−v) of N independent particles, where each vn(t) is governed by a

Markov dynamics with infinitesimal generator G.
In section 4.2 we apply this to the case when the N independent Markov dynamics

are diffusions, and in section 4.3 when the particles are not independent anymore but
are coupled in a mean field way, as in (36). For each of these cases we prove that

P
(
{hN(t)}0≤t≤T = {h(t)}0≤t≤T

)
�

N→∞
e−NSupp

∫ T
0 {

∫
dv ḣp−H[h,p]}, (38)

where the corresponding H are given by formula (41), (43) and (46), respectively.
In section 4.3, we prove that the large deviations of the Balescu–Guernsey–Lenard

or the Landau equations are not the large deviations of N diffusing particles with
mean field coupling (36), as might have been naturally hypothesized.
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4.1 Large deviations for the empirical density of N independent Markov processes

We consider N continuous time independent Markov processes {vn(t)}t∈[0,T ],1≤n≤N ,
where each vn(t) is governed by a Markov dynamics with infinitesimal generator G.
G acts on functions φ : R3→ R and is defined by

G [φ ] (v0) = lim
∆T→0

Ev0 [φ (v(∆T ))]−φ (v0)

∆T
. (39)

Then, the empirical density hN verifies a large deviation principle

P(hN = h) �
N→∞

e−NSupp
∫ T

0 {
∫

dv ḣp−H[h,p]} (40)

where
H[h, p] =

∫
dvh(v)G

[
ep(·)

]
(v)e−p(v), (41)

in this expression, the variable p is the conjugate momentum to h, and it is a scalar
function of the velocity v.

Formal proof The empirical density hN is also itself a continuous time Markov pro-
cess. We denote Gh its infinitesimal generator, defined by

Gh [ψ] (h0) = lim
∆T→0

Eh0 [ψ (h(∆T ))]−ψ (h0)

∆T
, .

where ψ is a functional. Then, from the result (16) in section 2.2.1, we know that if
the limit

H[h, p] = lim
N→∞

1
N

e−N
∫

dv phGh

[
eN

∫
dvph

]
,

exists, then we have the large deviation principle (40). Using the definition of the
empirical density, we find

Gh

[
eN

∫
dvphN

]
= Gh

[
e∑

N p(vn)
n=1

]
= lim

∆T→0

1
∆T

(
E
(

e∑
N
n=1 p(vn(∆T ))

)
− e∑

N
n=1 p(vn(0))

)
.

Then, using that the particles are independent

H[h, p] = lim
N→∞

lim
∆T→0

1
N∆T

(
N

∏
n=1

E
(

e∆ p(vn)
)
−1

)
,

where E
(

e∆ p(vn)
)
= E

(
ep(vn(∆T ))

)
e−p(vn(0)). Furthermore, using the definition of

the infinitesimal generator for the diffusion process (39), we have

E
(

e∆ p(vn)
)
= 1+∆T G

[
ep(vn(0))

]
e−p(vn(0))+o(∆T ) (∆T → 0) .



20 Ouassim Feliachi, Freddy Bouchet

To the same precision we can compute the product for 1≤ n≤ N

N

∏
n=1

E
(

e∆ p(vn)
)
−1 = ∆T

N

∑
n=1

G
[
ep(vn(0))

]
e−p(vn(0))+o(∆T ) (∆T → 0) .

From this expansion, it is possible to compute the limit as ∆T goes to 0

lim
∆T→0

1
N∆T

(
N

∏
n=1

E
(

e∆ p(vn)
)
−1

)
=

N

∑
n=1

G
[
ep(vn(0))

]
e−p(vn(0)).

It is important to note that the order of the limits N→∞ and ∆T → 0 is crucial. From
there, it comes easily that

H[h, p] = lim
N→∞

1
N

N

∑
n=1

G
[
ep(vn(0))

]
e−p(vn(0)) =

∫
dvh(v)G

[
ep(·)

]
(v)e−p(v).

We remark that the Hamiltonian (41) is in general not quadratic in p, reflecting
the fact that the large deviations are not Gaussian, although they arise from the sum
of N independent contributions.

4.2 Large deviations for the empirical density of N independent diffusions

From equation (41), it is straightforward to compute the Hamiltonian that describes
the large deviations for the empirical density of N particles with independent diffu-
sions.

Let us consider N particles with velocities {vn}1≤n≤N with the following Ito dif-
fusion dynamics

dvn =

[
b(vn)+

∂

∂v
.D(vn)

]
dt +
√

2σ (vn)dWn,t . (42)

We define D the diffusion tensor as D = σσ>. We call h the probability density
function of vn for some n. It does not depend on n as we consider N non-interacting
particles, we can write the Fokker-Planck equation associated with the diffusion of a
particle

∂h
∂ t

=
∂

∂v
·
{
−hb+D

∂h
∂v

}
.

Now, we define hN the empirical density of the velocity distribution

hN(v, t) =
1
N

N

∑
n=1

δ (vn(t)−v) .

We want to compute H[h, p] the Hamiltonian associated with the large deviation prin-
ciple for the empirical density



Dynamical large deviations for plasmas below the Debye length and the Landau equation 21

P(hN = h) �
N→∞

e−NSupp
∫ T

0 {
∫

dv ḣp−H[h,p]}.

We showed in section 4.1 that H[h, p] is given by

H[h, p] =
∫

dvh(v)G
[
ep(·)

]
(v)e−p(v).

It is a classical result in stochastic analysis that the infinitesimal generator G of the
diffusion stochastic process is

G = b.
∂

∂v
+

∂

∂v
·
(

D
∂

∂v

)
,

the adjoint of the Fokker-Planck operator. This leads to the Hamiltonian associated
with the empirical density of N particles diffusing independently

H [h, p] =
∫

dvh
{

b.
∂ p
∂v

+
∂

∂v

(
D

∂ p
∂v

)
+D :

∂ p
∂v

∂ p
∂v

}
, (43)

where the symbol “:” means the contraction of two second order symmetric tensors :
M : N = Tr(MN) = ∑i j Mi jNi j.

We remark that the Hamiltonian (41) is quadratic in p. This means that the large
deviations are Gaussian. This reflects the fact that the large deviations arise from the
sum of N independent Gaussian increments. Because of this property, we can also
recover from the Hamiltonian an equivalent stochastic differential equation for the
empirical hN that involves a Gaussian noise. More precisely, a quadratic Hamiltonian

H [h, p] =
∫

dvA[h] (v) p(v)+
∫∫

dvdv′p(v)C [h]
(
v,v′

)
p
(
v′
)

is the Hamiltonian that describes the dynamical large deviations of the stochastic
differential equation

∂hN

∂ t
= A [hN ] (v)+

√
2
N

η (v, t)

with
E
(
η (v, t)η

(
v′, t ′

))
=C [hN ]

(
v,v′

)
.

Using partial integration, we can identify A[h] and C [h] (v,v′) for the Hamiltonian
(43). The associated stochastic differential equation for the empirical density is

∂hN

∂ t
=

∂

∂v
·
{
−hNb+D

∂hN

∂v

}
+

√
2
N

η (v, t) (44)

with,

E
(
η (v, t)η

(
v′, t ′

))
=

∂ 2

∂v∂v′
:
(
hN(v)δ

(
v−v′

)
D
)

δ
(
t− t ′

)
.
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Recalling that D = σσ>, we can rewrite equation (44) as a conservative equation

∂hN

∂ t
=

∂

∂v
·

{
−hNb+D

∂hN

∂v
+

√
2
N

hNσξ (v, t)

}
,

with ξ a tridimensional Gaussian noise that satisfies

E
(
ξ

i (v, t)ξ
j (v′, t ′))= δ

i j
δ
(
v−v′

)
δ
(
t− t ′

)
.

4.3 Large deviations for N diffusions with mean field coupling

In the previous section, we have derived the large deviation Hamiltonian for the
empirical density of N independent particles driven by the diffusion (42). We now
consider the case when the drift and diffusion coefficients depend on the empirical
density itself:

dvn = b[hN ] (vn)+
∂

∂v
.D[hN ] (vn)dt +

√
2σ [hN ] (vn)dWn,t , (45)

with hN(v, t) = 1
N ∑

N
n=1 δ (vn(t)−v) . We denote D [h] = σ [h]σ [h]>. For this case,

the particles are no more statistically independent. However, for such a mean field
coupling, it is an easy exercise to adapt the derivation that leads to the Hamiltonian
(41) in section 4.1 to this specific case. We find that the Hamiltonian that describes
the large deviation of the empirical density is

HMF,h [h, p] =
∫

dvh
{

b [h] .
∂ p
∂v

+
∂

∂v

(
D [h]

∂ p
∂v

)
+D [h] :

∂ p
∂v

∂ p
∂v

}
. (46)

The subscript MF,h denotes that this is the Hamiltonian for a mean field dynamics
without spatial structure. We note that this Hamiltonian is the same as (43), but with
drift and diffusion constant that depend of h. The corresponding stochastic dynamics
is

∂h
∂ t

=
∂

∂v
·

{
−hb [h]+D [h]

∂h
∂v

+

√
2
N

hσ [h]ξ (v, t)

}
, (47)

with ξ a tridimensional Gaussian noise that satisfies

E
(
ξ

i (v, t)ξ
j (v′, t ′))= δ

i j
δ
(
v−v′

)
δ
(
t− t ′

)
.

Now let us get back to the remark of section 3.5. In section 3.5, we have noticed
that one could see the Balescu–Guernsey–Lenard and Landau equations as non-linear
Fokker–Planck equation for N diffusions with mean field coupling defined by (36).
As we already stated, the law of large numbers for the empirical density indicates
limN→∞ hN = h, where h solves the Balescu–Guernsey–Lenard equation. For this dy-
namics and for the empirical measure hN , we can derive a large deviation principle
with computations that are analogous to the one we did to obtain the large deviation
principle (38)-(46). The result reads

P
(
{hN(t)}0≤t≤T = {h(t)}0≤t≤T

)
�

N→∞
e−N

∫ T
0 dt Supp{

∫
dv ḣp−HMF,h[h,p]}. (48)
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In the following, we examine the properties of this large deviation Hamiltonian and
we conclude that it cannot describe the large deviations associated to the Balescu–
Guernsey–Lenard kinetic theory.

Relaxation paths and most probable evolutions For the dynamics (45), we also noted
at the end of section 3.5 that the evolution of the average of the empirical density is
given asymptotically by the Balescu–Guernsey–Lenard. As a consequence we expect
the most probable evolution for the Hamiltonian (46), also called a relaxation path
to be the Balescu–Guernsey–Lenard equation (27). Using the equation for relaxation
paths (equation (9) in section 2.1) we check that indeed

∂h
∂ t

=
δHMF,h

δ p
[h, p = 0] =

∂

∂v

{
−hb [h]+D [h]

∂h
∂v

}
. (49)

Relative entropy and quasipotential In section 2.2.1 we define the quasipotential.
For the empirical distribution hN it is defined as P(hN = h) �

N→∞
e−NU [h]. As the N

particles are coupled only in a mean field way, in view of Sanov’s theorem adapted
for this case, it is natural to conjecture that the quasipotential for the dynamics of the
empirical density is U [h] =−S [h] where S is the relative entropy

Srel [h] =−
∫

dvh log
(
h/heq

)
,

where heq is the stationary solution of the Balescu–Guernsey–Lenard equation. A
necessary condition for the −S to be the quasipotential is the stationary Hamilton-
-Jacobi equation HMF,h [h,−δS/δh] = 0. We check in the appendix A that this sta-
tionary Hamilton–Jacobi equation is indeed verified when b [h] = b and D [h] = D do
not depend on h, i.e. when the N diffusions are independent from each other. How-
ever, we also check that this is no more the case in general if b [h] and D [h] actually
depend on h. This remark is enough to conclude that the Hamiltonian (46) cannot be
the correct Hamiltonian system for empirical measure of N interacting particles with
mean field interactions, or for particles with Coulomb interactions.

Moreover an easy direct computation shows that

∫
dv

δHMF,h

δ p
[ f , p]

δE
δ f
6= 0,

where E is the kinetic energy (31). As explained in section 2.2.1,
∫

dv δHMF,h
δ p [ f , p] δE

δ f =
0 is the energy conservation formula. Equivalently the noise in equation (47) is not an
energy conserving noise, and thus cannot describe the empirical density of particles
with Coulomb interactions (22).

We thus conclude the Hamiltonian (46) is not the Hamiltonian for the large devi-
ations of systems of particles for N interacting particles with mean field interactions,
or for particles with Coulomb interactions. In the next sections we derive in two dif-
ferent ways the large deviation Hamiltonian for the Landau equation.
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5 Large deviations associated with the Landau kinetic theory from the
Boltzmann kinetic theory

The Landau equation has been presented in section 3.4 as an approximation of the
Balescu–Guernsey–Lenard equation. However it also has a strong link with the Boltz-
mann equation that describes a dilute gas of particles in the Boltzmann–Grad limit.
One can look for instance in [11] for this connection. Moreover, the large deviation
Hamiltonian for the Boltzmann equation has already been obtained, for toy models
which are analogue to the dilute gas dynamics [18] or for the dilute gas dynamics
[3,4]. The aim of this section is to derive the large deviation Hamiltonian associated
with the Landau equation from the large deviation Hamiltonian associated with the
Boltzmann equation.

In section 5.1, we introduce the notations for the Boltzmann equation and the
large deviation Hamiltonian for a dilute gas in the Boltzmann–Grad limit. In section
5.2, following [11], we derive the Landau equation from the Boltzmann equation us-
ing the grazing collision limit. Using the same limit but for the large deviation Hamil-
tonian, rather than for the kinetic equation, we derive the large deviation Hamiltonian
for the Landau equation (64) in section 5.3. In section 5.4, we show that this Hamil-
tonian satisfies all the expected symmetries and conservation properties. In section
5.5, we derive the gradient flow structure of the Landau equation associated with this
Hamiltonian. In section 5.6, we conjecture the Hamiltonian associated with Balescu–
Lenard–Guernsey equation from the Landau equation Hamiltonian.

5.1 The Boltzmann equation for a dilute gas

We consider the dynamics of a dilute gas composed of atoms or molecules. We ne-
glect any internal degrees of freedom. We assume that the N particles evolve through
a Hamiltonian dynamics with short range two body interactions, for instance hard
sphere collisions.

Let us first define the collision kernel and the collision cross-section. We consider
a thread of particles with velocities v1 that meets a thread of particles with veloci-
ties v2. We assume that particles of each velocity type are distributed according to a
homogeneous point Poisson process with densities ρ(v1)dv1 and ρ(v2)dv2, respec-
tively. These particle distributions will give rise to collisions where (v1,v2) particle
pairs undergo a random change towards pairs of the type (v′1,v

′
2), up to (dv′1,dv′2).

This occurs at a rate per unit of time and unit of volume which is proportional to the
v1 incident particle number ρ(v1)dv1, the v2 incident particle number ρ(v2)dv2, dv′1,
and dv′2. The proportionality coefficient is called the collision kernel and is denoted

w0
(
v′1,v

′
2;v1,v2

)
/2. (50)

The local conservation of momentum and energy implies that

w0(v′1,v
′
2;v1,v2) = σ0(v′1,v

′
2;v1,v2)δ

(
v1 +v2−v′1−v′2

)
δ

(
v2

1 +v2
2−v′21−v′22

)
,

(51)
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where σ0 is the diffusion cross-section. σ0 is of the order of a2 where a is a typical
atom size. We detail the different symmetry properties of the collision kernel in annex
C.

Several length scales are important to describe a dilute gas: a typical atom size a,
that we will defined more precisely below in relation with the diffusion cross-section,
a typical interparticle distance 1/ρ1/3 where ρ is the averaged gas density, the mean
free path which is the averaged length a particle travels between two collisions, and
a typical box size L. The mean free path is given by l = c/a2ρ , where c is a non-
dimensional number that depends on the collision kernel. The gas is said dilute if we
have the following relation between those scales

a� 1
ρ1/3 � l.

A limit in which those inequalities are satisfied is called a Boltzmann–Grad limit. We
consider the 4 physically independent parameters a, L, N and the inverse temperature
β (ρ = N/L3). From those four, we can choose two independent non-dimensional
parameters. In the following we choose N and the Knudsen number α = l/L as those
two independent parameters. The inverse of the number of particles in a volume of the
size l is then ε = 1/l3ρ = a2/l2 = a6ρ2 and is another non-dimensional parameter.

We will use the large deviation result in the limit N → ∞ with fixed Knudsen
number α . In this limit, from l = c/a2ρ we see that a2 = c/αN. As the diffusion
cross-section σ0 is of the order of a2, in the limit N→∞, it is thus natural to consider
the rescaled cross-section σ = Nσ0. Moreover, in the following it will be convenient
to consider momentum exchange. We thus use the following definition of w

w
(

v1 +
1
2

q,v2−
1
2

q;q
)
= γNw0(v1 +q,v2−q;v1,v2), (52)

where q is the momentum transfer between the incident particles with momenta
(v1,v2) and the scattered particles with momenta (v1 +q,v2−q). Writing the colli-
sion kernel this way automatically takes into account momentum conservation during
the collision process. In this reasoning, the coefficient γ is any non-dimensional co-
efficient which is held fixed in the limit N → ∞. In the following sections, for the
specific case of the Coulomb interaction, we will consider

γ =

(
λD

L

)3

,

where λD is the Debye length and L the size of the box.
We define a rescaled empirical density

gγ (r,v, t) = (γN)−1
N

∑
n=1

δ (v−vn(t))δ (r− rn(t)) . (53)

We note that with γ = (λD/L)3, gγ coincides with gΛ (r,v, t) = Λ−1
∑

N
n=1 δ (v−

vn(t))δ (r− rn(t)) (see (23), page 13). When these N particles undergo a dilute gas
dynamics, the empirical density gγ has a law of a large numbers. More precisely,
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if we assume that for a set of initial conditions, an initial law of large numbers
holds: limN→∞ (γN)−1

∑
N
n=1 g0

γ (r,v) = g0 (r,v), then we have at a time t the law of
large numbers limN→∞ (γN)−1

∑
N
n=1 gγ (r,v, t) = g(r,v, t), where g is a solution of

the Boltzmann equation

∂g
∂ t

+v.
∂g
∂r

=
∫

dv2dqw
(

v+
1
2

q,v2−
1
2

q;q
)
[g(v+q,r)g(v2−q,r)−g(v,r)g(v2,r)] , (54)

with initial condition g(r,v,0) = g0 (r,v). We refer to classical textbooks in kinetic
theories, for instance [11], or [4] for a detailed presentation of an heuristic derivation
of the Boltzmann equation.

In [4], a large deviation principle for the empirical density is derived (equations
(1) to (3) in [4]). This large deviation is derived in the limit ε = 1/Nα3→ 0. In this
paper, we will consider the limit γN→∞, with fixed Knudsen number and fixed γ . In
this limit, we have ε = 1/Nα3→ 0. Then the large deviation result justified in [4] can
be directly used in this paper. After adapting equations (1) to (3) in [4] to the notation
(52) and (53), we have

P
({

gγ(r,v, t)
}

0≤t≤T = {g(r,v, t)}0≤t≤T

)
�

N→∞
e−γN

∫ T
0 Supp{

∫
drdv ġp−HB[g,p]}, (55)

where
HB [g, p] = HC [g, p]+HT [g, p] , (56)

and with the collision Hamiltonian

HC [g, p] =
1
2

∫
dv1dv2dqdrw

(
v1 +

1
2

q,v2−
1
2

q;q
)

×g(r,v1)g(r,v2)
{

e[−p(r,v1)−p(r,v2)+p(r,v1+q)+p(r,v2−q)]−1
}
, (57)

and the free transport Hamiltonian

HT [g, p] =−
∫

drdv p(r,v)v.
∂g
∂r

(r,v). (58)

5.2 From the Boltzmann to the Landau equations

In the case of long-range interactions between particles, e.g. Coulomb type interac-
tions, the two-particle collisions are dominated by small-angle scattering events. This
allows some simplification. The related limit is called the grazing collision limit. In
this section we justify that in the grazing collision limit and for a homogeneous gas,
from the Boltzmann equation one obtains the Landau equation

∂ f
∂ t

=
1
Λ

∂

∂v

∫
dv2 B(v,v2)

(
− ∂ f

∂v2
f (v)+

∂ f
∂v

f (v2)

)
, (59)

where the tensor B is defined by (33), page 17. In equation (32) of section (3.4),
we expressed this equation with the time variable τ = t/Λ rescaled by the plasma
parameter. This is why there is no factor Λ−1 in the right hand side of equation (32).
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The following derivation of the Landau equation from the Boltzmann equation is
strongly inspired by the paragraph §42 of [11]. However, here we present a slightly
different derivation. First, we consider homogenous solutions of the Boltzmann equa-
tion g(r,v, t) = f (v, t) that do not depend on the position variable. The homogeneous
Boltzmann equation reads

∂ f
∂ t

=
∫

dv2dqw
(

v+
1
2

q,v2−
1
2

q;q
)
[ f (v+q) f (v2−q)− f (v) f (v2)]︸ ︷︷ ︸

I(v)

. (60)

From there, we will work in the grazing collision limit, meaning that we will only
take into account collisions that imply small transfer of momentum. More precisely,
we consider only collisions with |q| � |v|, |v2|. This approximation is relevant and
often used in plasma physics, where Coulomb interactions tend to make collisions
with small scattering angles more numerous and more influential than the other ones,
see the first chapter of [15] for quantitative arguments. In order to understand at which
precision we shall use this approximation, let us first give the relation between B and
the collision kernel:

B(v1,v2) =
1
2

Λ

∫
dqw(v1,v2;q)q⊗q, (61)

where q1⊗q2 is the tensor product of the two vectors q1 and q2 (a tensor of rank 2). In
appendix B, we prove that for Coulomb interaction the two expression for B, (61) and
(33) are equal. In the following, we will omit the tensor product symbol, and a product
of vector without a dot should be understood as a tensor product: q1q2 ≡ q1⊗ q2.
In the case of the Landau equation, the tensor B is well known and has a list of
properties related to the geometry and the physics of the collisions (conservation laws
and symmetry properties). For our study, we will retain that B is a symmetric tensor,
that B is symmetric with respect to the exchange of its two arguments: B(v1,v2) =

B(v2,v1), and that B(v1,v2).(v1− v2) =
−→
0 , we prove these properties in appendix

C.2. We will make a link between those properties and the symmetries of the Landau
equation (59) in section 5.4.2.

In appendix D.1, we develop I in the Boltzmann equation (60) at order 2 in q and
we obtain the Landau equation (59). We have thus justified the Landau equation as
an approximation of the Boltzmann equation in the grazing collision limit.

5.3 Deriving Landau’s large deviation principle from Boltzmann’s large deviation
principle

In this section we derive the Hamiltonian for the path large deviations of the Lan-
dau equation from the Hamiltonian for the path large deviations of the Boltzmann
equation, using the grazing collision limit.
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We start from the large deviation principle discussed in section (5.1). Adapting
the discussion of section (5.1), with

gΛ (r,v, t) = Λ
−1

N

∑
n=1

δ (v−vn(t))δ (r− rn(t)) ,

and with γ = (λD/L)3, we have

P
(
{gΛ (r,v,τ)}0≤τ≤T = {g(r,v,τ)}0≤τ≤T

)
�

Λ→∞
e−Λ

∫ T
0 Supp{

∫
drdv ġp−ΛHB[g,p]}dτ ,

where HB is given by (56) and where we used the rescaled time variable τ = t/Λ by
the plasma parameter Λ in the large deviation action.

In the following we will be interested in the case of homogeneous distributions,
i.e. distributions that only depend on the velocity variable, denoted by the letter f :
g(r,v, t) = f (v, t). Then the large deviation principle reads

P(gΛ = f ) �
N→∞

e−Λ
∫ T

0 Supp{
∫

drdv ḟ p−H[ f ,p]}dτ , (62)

with

H [ f , p] =
Λ

2

∫
drdv1dv2dqw

(
v1 +

1
2

q,v2−
1
2

q;q
)

× f (v1) f (v2)
{

e[−p(v1)−p(v2)+p(v1+q)+p(v2−q)]−1
}
. (63)

The idea to obtain the large deviation Hamiltonian for the Landau equation, is to
use the same hypothesis of grazing collisions used in section (5.2). As in section (5.2),
we will make a Taylor expansion in q at order 2. Rather than doing this expansion
for the Boltzmann equation, we do it in the large deviation Hamiltonian (63). The
full computation is detailed in appendix D.2, and we find that the large deviation
Hamiltonian HLandau[ f , p] for the Landau equation is

HLandau[ f , p] = HMF [ f , p]+HI [ f , p] , (64)

with

HMF [ f , p] =
∫

drdv1 f
{

b [ f ] .
∂ p
∂v1

+
∂

∂v1

(
D [ f ]

∂ p
∂v1

)
+D [ f ] :

∂ p
∂v1

∂ p
∂v1

}
,

and

HI [ f , p] =−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) ,

where b [ f ] and D [ f ] are defined in equation (34), and in which we recognize HMF =∫
drHMF,h where HMF,h is the mean field Hamiltonian (46) and a new additional term

HI .
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We have thus justified a large deviation principle for the rescaled empirical den-
sity gΛ in the limit of a large plasma parameter Λ . It reads

P
(
{gΛ (r,v,τ)}0≤τ≤T = { f (v,τ)}0≤τ≤T

)
�

Λ→∞
e−ΛSupp

∫ T
0 dτ{∫ drdv ḟ p−HLandau[ f ,p]},

(65)
where HLandau is defined in (64).

We note that this Hamiltonian is quadratic in its conjugate momentum p. Then, in
the grazing collision limit, the large deviations are Gaussian. This is a consequence of
neglecting the collisions that involve large changes of velocity for the particles. This
constrains the fluctuations of the empirical density gΛ in a reduced range where they
can be considered as Gaussian fluctuations. As mentioned in section 4.2, a quadratic
Hamiltonian can be associated with a stochastic differential equation involving a
Gaussian noise. In this case,

∂gΛ

∂τ
=

∂

∂v
·
{
−gΛ b+D

∂gΛ

∂v

}
+

√
2
Λ

η (v,τ) , (66)

with

E
(
η (r,v,τ)η

(
r′,v′,τ ′

))
=

∂ 2

∂v∂v′
:
(
gΛ (v)δ

(
v−v′

)
D−gΛ (v)gΛ (v′)B

(
v,v′

))
δ
(
r− r′

)
δ
(
τ− τ

′) .
The Gaussian fluctuations have a non-trivial correlation structure.

5.4 Verifications of the properties of the Hamiltonian

Let us check all the expected properties for the Hamiltonian (64).

5.4.1 Most probable evolution

First, we should verify that the most probable evolution associated with this Hamil-
tonian is the Landau equation, i.e. that

∂ f
∂τ

=
δHLandau

δ p
[ f , p = 0] =

∂

∂v1

{
− f b [ f ]+D [ f ]

∂ f
∂v1

}
. (67)

We already know from equation (49)

δHMF

δ p
[ f , p = 0] =

∂

∂v1

{
− f b [ f ]+D [ f ]

∂ f
∂v1

}
.

In addition to this,

δHI

δ p
[ f , p] =−2

∂

∂v1

{∫
dv2 f (v1) f (v2)B(v1,v2)

∂ p
∂v2

}
,

in particular, δHI
δ p [ f , p = 0] = 0. Thus, property (67) is verified. It is important to

notice that, since we rescaled the time variable τ = t/Λ by the plasma parameter,
there is no factor Λ−1 in the right hand side of (67).
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5.4.2 Conservation laws

From the result (15) of section 2, we know that a functional C[ f ] is a conserved
quantity if and only if

∫
drdv δHLandau

δ p
δC
δ f = 0 or equivalently, if for any f , p and α:

HLandau[ f , p] = HLandau[ f , p+α
δC
δ f ].

Mass conservation It is easily checked that the mass M[ f ] defined as M[ f ] =
∫

dv f
is conserved. Indeed, δM

δ f = 1 and HLandau [ f , p+α] = HLandau [ f , p] as H does not
depend explicitly on p but only on its derivatives.

Momentum conservation Let us check the conservation of P the momentum defined
as P[ f ] =

∫
dvv f . First, we notice that δP

δ f = v. The functional derivative of H is

δHLandau

δ p
=
∫

dv2
∂

∂v

{
−B(v,v2)

[
∂ f
∂v2

f (v)− ∂ f
∂v

f (v2)+2 f (v) f (v2)

(
∂ p
∂v
− ∂ p

∂v2

)]}
.

Hence, integrating by parts we have
∫

drdv
δHLandau

δ p
δP
δ f

=
∫

drdvdv2 B(v,v2)

[
∂ f
∂v2

f (v)− ∂ f
∂v

f (v2)+2 f (v) f (v2)

(
∂ p
∂v
− ∂ p

∂v2

)]
.

Then, using the fact that B(v,v2) = B(v2,v), we find∫
drdv

δHLandau

δ p
δP
δ f

= 0.

This means that the total momentum P is conserved by the dynamics. During this cal-
culation, it is interesting to notice that both the first two terms and the last two terms of
H preserve the momentum independently. This means that both the deterministic part
of H and the noise part of H preserve the momentum independently. More precisely,
the last term that came up with our approach, which did not appear in the naive mean
field approach, compensates the contribution of the last term of HMF . Another inter-
esting property, is that a necessary condition for the deterministic part of the Hamil-
tonian to conserve the momentum is the following relation between the deterministic
drift b and the deterministic diffusion coefficient D:

∫
dv f (v)

{
b [ f ]+ ∂

∂v .D [ f ]
}
= 0.

Energy conservation Now we should check that the total kinetic energy E is con-
served, with E[ f ] = 1

2
∫

dvv2 f . Here, δE
δ f = 1

2 v2. Using an integration by part we can
write

∫
dv

δHLandau

δ p
δE
δ f

=
∫

dvdv2 B(v,v2)

{(
∂ f
∂v2

f (v)− ∂ f
∂v

f (v2)

)
.v

+2
(

f (v) f (v2)

(
∂ p
∂v
− ∂ p

∂v2

))
.v
}
,

and because B(v,v2) = B(v2,v), we have
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∫
dv

δHLandau

δ p
δE
δ f

=
∫

dvdv2

{
∂ f
∂v2

f (v)+2 f (v) f (v2)
∂ p
∂v

}
B(v,v2).(v−v2).

We have seen in appendix (C.2), that B(v,v2).(v− v2) =
−→
0 , as a consequence of

energy conservation in each collision. Then the integrand of the last formula is zero
and we find that the total kinetic energy is conserved. Here too, both the deterministic
part and the noise part of H preserve energy independently.

5.4.3 Entropy, quasipotential and time reversal symmetry

Entropy and quasipotential We define S[ f ] the entropy functional:

S[ f ] =−
∫

dv f log f (68)

Using results from section 2, we are going to check that−S is a quasipotential as long
as the conservation laws of mass, momentum and energy hold. Here, we only check
the necessary condition which is that−S satisfies the Hamilton-Jacobi equation, more
precisely that: HLandau

[
f ,− δS

δ f

]
= 0.

Given the definition of S, δS
δ f = − log f + c where c is a constant which, because

of the mass conservation, has no effect and we have

HLandau

[
f ,− δS

δ f

]
=
∫

drdvdv2

(
f (v) f (v2)

∂ 2B
∂v∂v2

− ∂ f
∂v

∂ f
∂v2

B
)
.

Integrating by parts twice the second term, we find out that the integrand is zero and
that −S satisfies the Hamilton-Jacobi equation: H

[
f ,− δS

δ f

]
= 0.

Time reversal symmetry We define the time reversal operator I by I[ f ](v) = f (−v).
One can easily check that HLandau [I[ f ],−I[p]] = HLandau

[
f , p− δS

δ f

]
. The computa-

tion is very close to the one above, that was performed to prove that the entropy is the
negative of the quasipotential up to conservation laws.

We stated in section 2 that HLandau [I[ f ],−I[p]] = HLandau

[
f , p− δS

δ f

]
implies a

time reversal symmetry of the path { f (t)}0≤t≤T at the level of large deviations. The
fluctuation paths are thus the time reversed of the relaxation paths.

Moreover, from results (13) and (12) of section 2, we deduce that entropy in-
creases along the relaxation paths. Thanks to the time reversal symmetry of the large
deviation structure, we can also conclude that the entropy decreases along the fluctu-
ation paths.

As a conclusion, we have derived the Hamiltonian for the Landau equation and
we have checked all its expected properties.
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5.5 The gradient flow structure of the Landau equation derived from the large
deviation Hamiltonian

It is customary and classical to observe that many dynamical models related to kinetic
theories and mesoscopic systems in interaction with thermal baths have a gradient-
transverse structure

∂ f
∂ t

=−Grad f U [ f ]+G [ f ] , (69)

where U might be the free energy or minus the entropy, where for any f
(
Grad f U ,G

)
=

0. Grad f is the gradient with respect to a f -dependent norm (p,C [ f ] p), where C is
a quadratic form: Grad f U [ f ] = C [ f ] δU

δ f . G is often associated to the microscopic
reversible dynamics or the free transport.

For example, for the Fourier law ∂ρ

∂ t = D ∂ 2ρ

∂r2 , has this structure [16,23], where
U =

∫
drρ logρ is the negative of the relative entropy, the metric used to compute

the gradient is the Wasserstein distance with C [ f ] (r,r′) = D ∂ 2

∂r2 (ρ(r)δ (r− r′)), and
G = 0. Another classical example is the McKean-Vlasov equation [16,23].

For the Landau equation, such a gradient structure has recently been described by
[7]. In this section, we explain the connection of this structure with the large devia-
tion formalism.

Even if this gradient-transverse structure is customarily observed, it is not always
easy to determine the quadratic form C. Moreover a general explanation of the source
of this structure is of interest. In section 5 of [4], we explain simply, following [12],
that there is a close relation between the large deviations of the empirical density of
particle system with detailed balance, and the gradient-transverse flow structure of
the partial differential equations that describe kinetic theories. Whenever the detailed
balance condition (14) is satisfied at the large deviations level, and whenever the large
deviation Hamiltonian is quadratic in p, U is the quasipotential, and the metric used
to compute the gradient in (69) is given by the quadratic part of the large deviation
Hamiltonian.

If we apply this general result to the Landau equation, using the large deviation
principle that we just derived (equations (64)-(65)), we can conclude that the Landau
equation has a gradient flow structure ∂ f

∂ t = −Grad f U [ f ] (in this case G = 0 for
homogeneous distribution). It reads

∂ f
∂ t

=
∫

dv′C [ f ]
(
v,v′

) δS
δ f

(
v′
)

(70)

where S [ f ] = −
∫

dv f log f is the Boltzmann entropy functional (the negative of the
quasipotential), and C [ f ] is the quadratic part of the Hamiltonian (64) and reads

C [ f ]
(
v,v′

)
=

∂ 2

∂v∂v′
:
(

f (v)δ
(
v−v′

)
D [ f ] (v)− f (v) f (v′)B [ f ]

(
v,v′

))
. (71)

As discussed before, for independent particles, for instance independent Brownian
motion leading to the Fourier law, the gradient is computed with respect to the Wasser-
stein distance. For particles with mean field interactions, for instance leading to the
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McKean–Vlasov equation, the relevant metric is still the Wasserstein one. More gen-
erally for particles with mean field interaction with a diffusion coefficient that might
be non-uniform and f dependent, as described in section 4.3, from the quadratic part
of the Hamiltonian one finds C [ f ] (v,v′)= ∂ 2

∂v∂v′ : ( f (v)δ (v−v′)D [ f ] (v)). This met-
ric is still a kind of deformed Wasserstein one, that involves a f dependent diffusion
coefficient. However for plasma in the weak coupling limit, and the Landau equa-
tion, one can see from equation (71) that the metric is no more simply related to the
Wasserstein distance. One see in equation (71), that to the Wasserstein like term lin-
ear in f associated to independent motion of particles, one has to add a quadratic term
in f related to the weak two-body interactions. This is an interesting remark.

5.6 A possible candidate for the large deviations Hamiltonian for the
Balescu–Guernsey–Lenard equation

The Landau equation is also an approximation of the Balescu–Guernsey–Lenard
equation

∂ f
∂τ

=
∂

∂v

∫
dv2 B[ f ](v,v2)

(
− ∂ f

∂v2
f (v)+

∂ f
∂v

f (v2)

)
,

which only differs from the Landau equation by the definition of the tensor B:

B(v1,v2) = π

(
λD

L

)3 ∫ +∞

−∞

dω ∑
k

kkŴ (k)2

|ε[ f ] (ω,k)|2
δ (ω−k.v1)δ (ω−k.v2) . (72)

where ε[ f ] (ω,k) is the dielectric susceptibility defined by

ε[ f ](k,ω) = 1−Ŵ (k)
∫

dv
k. ∂ f

∂v
k.v−ω− iε̃

,

which depends on the actual distribution of f . We recover the Landau equation by
setting ε (ω,k) to 1. It is easy to check that the tensor B for the Balescu–Guernsey–
Lenard equation satisfies the same property as the tensor B for the Landau equation:

1. B(v1,v2) is a symmetric tensor for all pair of momenta (v1,v2),
2. B(v1,v2) = B(v2,v1),

3. B(v1,v2).(v1−v2) =
−→
0 .

Furthermore, in our derivation of the Hamiltonian for the Landau equation, we never
used the explicit expression of B or the fact it did not depend on f .

All these remarks lead to the natural conjecture that the Hamiltonian (64) could
describe the large deviations for the Balescu–Guernsey–Lenard equation as long as
we replace the Landau expression of tensor B (61) by the Lenard-Balescu expression
of tensor B (72). In other words, we might conjecture that the large deviations of
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the Balescu–Guernsey–Lenard equation are described by the Hamiltonian H(conjecture)
BGL

that reads

H(conjecture)
BGL [ f , p] =

∫
drdv1 f

{
b [ f ] .

∂ p
∂v1

+
∂

∂v1

(
D [ f ]

∂ p
∂v1

)
+D [ f ] :

∂ p
∂v1

∂ p
∂v1

}
. . .(73)

−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B [ f ] (v1,v2) .

One can check that this large deviation Hamiltonian has all the expected proper-
ties: it has the conservation law symmetries and the negative of the entropy −S (see
(68)) solves the stationary Hamilton–Jacobi equation. However, we will prove in sec-
tion 6 that the correct Hamiltonian for the Balescu–Guernsey–Lenard equation is not
quadratic in p, and that a quadratic Hamiltonian in p is obtained only in the Landau
limit kλD� 1 (or k� 1 in our set of non-dimensional variables).

We thus conclude that although very natural, H(conjecture)
BGL is not the Hamiltonian

for the large deviations associated with the Balescu–Guernsey–Lenard equation.

6 Large deviations associated to the Landau kinetic theory from the
microscopic dynamics

In this section, we compute the Hamiltonian for the large deviations of the empirical
density for plasma directly from the dynamics (22). We use the formalism of large
deviations for slow-fast system presented in section 2.2.2. Our result is a series rep-
resentation of the large deviation Hamiltonian for the empirical density of N particles
coupled through Coulomb interactions. We compute explicitly the terms of this series
only to order four. This expansion can be truncated at order two, and then fluctuations
are Gaussian, either the limit of a large plasma parameter (Λ → ∞) when L > λD or
in the limit of large N, when L < λD.

We then discuss the Landau approximation. The Landau approximation is valid
to describe the contributions to the kinetic equation or to the large deviation Hamil-
tonian of very large wavevectors compared to the inverse of the Debye length (k� 1
in non-dimensional plasma variables or equivalently kλD� 1 for physical variables).
We show that within the Landau equation, this series expansion of the Hamiltonian
can be truncated at order two, with larger order terms being negligible. Through this
truncation and noting that some terms of order two in p are also negligible, we obtain
the large deviation Hamiltonian for the Landau equation. The Landau large deviation
Hamiltonian indeed coincide with the one computed in section 5 from the Boltzmann
equation, as expected. In this Landau limit, the large deviation Hamiltonian describes
locally Gaussian fluctuations. We note however, that beyond the Landau limit, when
one cannot assume that k� 1 in non-dimensional plasma variables (or equivalently
kλD� 1 for physical variables), the full expression for the Gaussian fluctuations does
not coincide with the Landau Gaussian fluctuations.

In section 6.1, we introduce the quasi-linear dynamics of the empirical density of
N particles coupled with a Coulomb interaction, for which the law of large numbers
is the Balescu–Guernsey–Lenard kinetic theory. We also explain that this quasi-linear
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dynamics of the empirical density can be seen as a slow-fast system. We can use the
slow-fast large deviation formalism, as presented in section 2.2.2. In section 6.2, we
characterize the stationary process of the fast variables, which is the fluctuating part
of the empirical density. We also perform the computation of the two first terms of its
cumulant series expansion. In section 6.5 we show that the terms of this cumulant se-
ries expansion are naturally ordered as powers of the wavevectors. As a consequence,
from the two first cumulants, we can deduce the expression of the large deviation
Hamiltonian for the Landau equation. In section 6.6, we show that the large deviation
Hamiltonian for the Landau equation, obtained either from the microscopic dynamics
or from the Boltzmann equation, are the same. In section 6.7, we discuss the large
deviation result for the case where the size of the domain is smaller than the Debye
length: L < λD. In section 6.8, we switch back to dimensional variables and we ex-
press the large deviation principle associated with the Landau equation in physical
units.

6.1 The Klimontovich approach, quasilinear and slow-fast dynamics

We consider the empirical density

gΛ (r,v, t) =
1
Λ

N

∑
n=1

δ (v−vn (t))δ (r− rn (t)) ,

rescaled by the plasma parameter Λ , of N particles interacting via a Coulomb poten-
tial according to the dynamics (22). From these equations of motion, we can deduce
the Klimontovich equation

∂gΛ

∂ t
+v · ∂gΛ

∂r
− ∂V [gΛ ]

∂r
· ∂gΛ

∂v
= 0. (74)

We consider the decomposition

gΛ (r,v, t) = fΛ (v)+
1√
Λ

δgΛ (r,v, t) ,

where fΛ (v, t) =
(

λD
L

)3 ∫
[0,L/λD]

3 drgΛ (r,v, t) is the projection of gΛ on homoge-
neous distributions (distributions that only depend on the velocity). From the Klimon-
tovich equation (74), we straightforwardly write

∂ fΛ
∂ t

=
1
Λ

(
λD

L

)3 ∫
dr
(

∂V [δgΛ ]

∂r
.
∂δgΛ

∂v

)
, (75)

∂δgΛ

∂ t
= −v.

∂δgΛ

∂r
+

∂V [δgΛ ]

∂r
.
∂ fΛ
∂v

(76)

+
1√
Λ

[
∂V [δgΛ ]

∂r
.
∂δgΛ

∂v
− λ 3

D
ΛL3

∫
dr
(

∂V [δgΛ ]

∂r
.
∂δgΛ

∂v

)]
.
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Those equations are similar to (29-30), but we do not take statistical averages. We
will study in this section the complete statistics of the right hand side of (75) and not
just its average as in (29-30).

We now assume the validity of the quasi-linear approximation, which amount
at neglecting the terms of order Λ−1/2 in the evolution equation for δgΛ . We also
change the timescale τ = t/Λ and obtain the quasilinear dynamics

∂ fΛ
∂τ

=

(
λD

L

)3 ∫
dr
(

∂V [δgΛ ]

∂r
.
∂δgΛ

∂v

)
, (77)

∂δgΛ

∂τ
= Λ

{
−v.

∂δgΛ

∂r
+

∂V [δgΛ ]

∂r
.
∂ fΛ
∂v

}
. (78)

When Λ goes to infinity, we observe that the equation for δgΛ is a fast process,
with timescales for τ of order 1/Λ , while the equation for fΛ is a slow one with
timescales for τ of order 1. For such slow-fast dynamics, it is natural to consider
fΛ fixed (frozen) in equation (78) on time scales for τ of order τ = 1/Λ . For fixed
fΛ , the dynamics for δgΛ is linear and can be solved. Computing the average of the
term

∫
dr ∂V [δgΛ ]

∂r . ∂δgΛ

∂v , for the asymptotic process for δgΛ for fixed fΛ leads to the
Balescu–Guernsey–Lenard equation, as explained in section 3, or its Landau approx-
imation whenever small length scales dominate the collision kernel of the Balescu–
Guernsey–Lenard equation. Those computations can be found in classical textbooks
[15,11,19].

In the following we want to go beyond these classical computations, by estimat-
ing not just the average of the right hand side in (77)

∫
dr ∂V [δgΛ ]

∂r . ∂δgΛ

∂v , but all the

cumulants of the time averages
∫ T

0
∫

dr ∂V [δgΛ ]
∂r . ∂δgΛ

∂v in order to describe the large de-
viations for the process fΛ . Using the classical result of large deviations for slow-fast
dynamics, as explained in section 2.2.2 (see equations (20-21)), we conclude that

P( fΛ = f ) �
Λ→∞

e−ΛSupp
∫ T

0 {
∫

drdv ḟ p−H[ f ,p]}. (79)

where

H [ f , p] = lim
T→∞

1
T

logE f

[
exp
(∫ T

0
dτ

∫
dv p(v)

∫
dr′

∂V [δgΛ ]

∂r′
.
∂δgΛ

∂v

)]
(80)

and where E f denotes the expectation on the process for δgΛ , where δgΛ evolves
according to

∂δgΛ

∂ t
=

{
−v.

∂δgΛ

∂r
+

∂V [δgΛ ]

∂r
.
∂ f
∂v

}
. (81)

In this equation fΛ = f is frozen and time independent.
We note that to obtain equation (80) from equation (21), we have considered fΛ

as a function of the µ-space. Then the conjugated momentum p(r,v) should also be
a function of the µ-space and the scalar product be the one of the µ-space. How-
ever, recognizing that for homogeneous f , p should also be homogeneous (p(r,v) =
p(v)), and performing trivial integration over r leads to (80).

The goal of the following subsections is to compute (80).
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6.2 The quasi-stationary Gaussian process for δgΛ

In order to compute (80), we first note that for frozen f , equation (81) is linear. It thus
describe a Gaussian process, for instance when the initial conditions are distributed
according to a Gaussian. Moreover, as explained in §51 of [11] such a process is ex-
pected to converge to a stationary Gaussian process irrespective of the initial condi-
tion. The properties of this process are determined by the fact that we are dealing with
a dynamics with discrete particles. In the following we will thus consider averages
in equation (80) as averages over this stationary Gaussian process. Such stationary
averages are denoted ES.

We do not reproduce the classical computations of the correlation functions of
this stationary process, but just report the formulas which can be found for instance
in §51 of [11]. The potential autocorrelation function is homogeneous because of the
space translation symmetry. Then

ES (V [δgΛ ] (r1, t1)V [δgΛ ] (r2, t2)) = CVV (r1− r2, t1− t2) ,

We define ϕ̃ the Fourier-Laplace transform of a function ϕ as

ϕ̃ (k,ω) =
∫
[0,L/λD]

3
dr
∫

∞

0
dt e−i(k.r−ωt)

ϕ (r, t) , (82)

following the same convention as in [11]. The autocorrelation function of the Fourier-
Laplace transform of the potential then reads

ES

(
V
[
δ̃gΛ

]
(k1,ω1)V

[
δ̃gΛ

]
(k2,ω2)

)
= 2π

(
L

λD

)3

δk1,−k2δ (ω1 +ω2) C̃VV (k1,ω1) ,

(83)
where C̃VV is the space-time Fourier transform of CVV . Equation (51.20), §51 of [11],
with the identifications V = ϕ , Ŵ (k) = 1/k2, and with the dimensionless variables
defined in section 3.1, gives

C̃VV (k,ω) = 2π

[∫
dv′ f

(
v′
)

δ
(
ω−k.v′

)] Ŵ (k)2

|ε [ f ] (k,ω)|2
, (84)

Similarly the time stationary correlation functions between the potential and the
distribution fluctuations is space-time homogeneous ES (V [δgN ] (r1, t1)δgN (r2,v, t2))=
CV G (r1− r2, t1− t2,v) , with space-time Fourier transform

ES

(
V
[
δ̃gΛ

]
(k1,ω1) δ̃gΛ (k2,ω2)

)
= 2π

(
L

λD

)3

δk1,−k2δ (ω1 +ω2) C̃V G (k1,ω1,v) .

(85)
Similarly ES (δgΛ (r1,v1, t1)δgΛ (r2,v2, t2)) = CGG (r1− r2, t1− t2,v1,v2) , with

ES

(
δ̃gΛ (k1,ω1) δ̃gΛ (k2,ω2)

)
= 2π

(
L

λD

)3

δk1,−k2δ (ω1 +ω2) C̃GG (k1,ω1,v1,v2) .

(86)
The formulas for C̃V G are given by equation (51.21) and (51.23) respectively, in [11],
with the identifications V = ϕ , Ŵ (k) = 1/k2. They are
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C̃V G (k,ω,v) =− k
ω−k.v− iε̃

.
∂ f
∂v

(v) C̃VV (k,ω)+
2πŴ (k)

ε [ f ] (k,ω)
f (v)δ (ω−k.v) ,

(87)
and

C̃GG (k,ω,v1,v2) = 2πδ (v1−v2) f (v1)δ (ω−k.v1) (88)

+
C̃VV (k,ω)

(ω−k.v1 + iε̃)(ω−k.v2− iε̃)
k.

∂ f
∂v

(v1)k.
∂ f
∂v

(v2)

− 2πŴ (k)k.
∂ f
∂v

(v1)
f (v2)δ (ω−k.v2)

ε (k,ω)(ω−k.v1 + iε̃)

− 2πŴ (k)k.
∂ f
∂v

(v2)
f (v1)δ (ω−k.v1)

ε∗ (k,ω)(ω−k.v2− iε̃)
.

We note that the order in the correlation functions for V and δgΛ matters. We have
ES (δgΛ (r1,v, t1)V [δgΛ ] (r2, t2))=CGV (r1− r2, t1− t2,v). Then C̃V G (k,ω,v) = C̃GV (−k,−ω,v)
= C̃GV

∗
(k,ω,v) . We also note the symmetry property of C̃GG: C̃GG (k,ω,v1,v2) =

C̃GG (−k,−ω,v2,v1), which is a consequence of the symmetry CGG (r, t,v1,v2) =
CGG (−r,−t,v2,v1).

From this stationary Gaussian process, we are now ready to compute the large
deviation Hamiltonian through a cumulant expansion in the two following sections.

6.3 Computation of a series expansion of large deviation Hamiltonian

In order to have explicit formulas for (80), in this section we first compute the two
first cumulants for

X [ f ] =−
∫ T

0
dt
∫

dv
∂ p
∂v

∫
dr

∂V [δgΛ ]

∂r
.δgΛ . (89)

If we expand a cumulant generating function for a random variable X , we obtain
logEexp(X) = E(X)+EE

(
X2
)
/2+H>2, where for the second order cumulant we

use the notation EE
(
X2
)
= E

(
X2
)
− [E(X)]2, and where H>2 is the contribution of

all cumulants of order larger than 2. We thus have

H = H(1)+H(2)+H>2. (90)

If X is given by (89), we have

H(1) =
∫

dr
∫

dv
∂ p
∂v

(v) .C(1)(v), where C(1)(v) =−ES

(
∂V [δgΛ ]

∂r
δgΛ

)
. (91)

and

H(2) =
∫

drdv1dv2
∂ p
∂v

(v1)
∂ p
∂v

(v2) : C(v1,v2), (92)



Dynamical large deviations for plasmas below the Debye length and the Landau equation 39

where

C(v1,v2) = lim
T→∞

1
2T

∫ T

0
dt1
∫ T

0
dt2
∫

dr1

∫
dr2 EE

[
∂V [δgΛ ]

(1)

∂r
δg(1)

Λ

∂V [δgΛ ]
(2)

∂r
δg(2)

Λ

]
. (93)

We note that C is a second order tensor and that in the formula for H(2) , the symbol
“:” means the contraction of two second order tensors. In the formula for C, the
superscripts (1) or (2) mean that the quantities are evaluated at either (r1, t1) and
(r2, t2), respectively, or (r1,v1, t1) and (r2,v2, t2), respectively.

We note that a truncation at second order of the cumulant expansion gives a
Hamiltonian which is quadratic in p.

Computation of the first cumulant Using (89) and (87) one can compute C(1). The
computations can be found in appendix F.1. The computations are not exactly the
same, but really similar to the one in §51 of [11]. One obtains

C(1)(v) =
∫

dv2 B [ f ] (v,v2)

(
− ∂ f

∂v2
f (v)+ f (v2)

∂ f
∂v

)
= b [ f ] (v) f (v)−D [ f ] (v) .

∂ f
∂v

(v) ,

where B is the tensor defined in equation (28). Integrating over r in equation (91), we
find that H(1) is then given by

H(1) =
∫

drdv f (v)
{

b [ f ] .
∂ p
∂v

+
∂

∂v

(
D [ f ]

∂ p
∂v

)}
, (94)

where b [ f ] and D [ f ] are defined in equation (34). H(1), which is the linear part with
respect to p, gives the formula that corresponds to the Balescu–Guernsey–Lenard
operator, as expected.

Computation of the second cumulant Now, the more challenging and new part is to
compute H(2) the second cumulant. In order to compute (93) using (89), we see that
we will have to evaluate four-point correlation functions. As the fluctuations are lo-
cally Gaussian, we can use Wick’s theorem in order to express the four-points correla-

tion functions ES

(
∂V [δgN ]

(1)

∂r
∂V [δgN ]

(2)

∂r δg(1)N δg(2)N

)
as a sum of products of two-points

correlation functions, and use the formulas for the two point correlation functions.
After some lengthy computations reported in appendix F.2, we obtain the result

H(2) =
∫

drdv1
∂ p
∂v

(v1)
∂ p
∂v

(v1)D(v1) f (v1)

−
∫

drdv1dv2
∂ p
∂v

(v1)
∂ p
∂v

(v2) : B[ f ](v1,v2) f (v1) f (v2)

+
∫

drdv1dv2dv3dv4
∂ p
∂v1

∂ p
∂v2

B(2) (v1,v2,v3,v4)

{
f (v1) f (v2)

∂ f
∂v3

∂ f
∂v4

−2 f (v1)
∂ f
∂v2

f (v3)
∂ f
∂v4

+
∂ f
∂v1

∂ f
∂v2

f (v3) f (v4)

}
, (95)
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with

B(2) (v1,v2,v3,v4) = 2π
3
(

λD

L

)3

∑
k

∫
dω kkkk

Ŵ (k)4

|ε (k,ω)|4
4

∏
i=1

δ (ω−k.vi) , (96)

being a fully symmetric order-4 tensor.

6.4 Computation of higher order cumulants

Using this same method, it is possible to compute, by induction, every terms of the
cumulant expansion. However, there is a infinity of them, and a priori they are non-
zero and, in general, they are of the same order of magnitude as the second order one.
Nevertheless, we can recognize a pattern in the cumulant expansion. To understand
it better, let us compute the following term in the cumulant expansion of the large
deviation Hamiltonian .

In this subsection, we compute the third cumulant, but the procedure would be
exactly the same if we were to compute the n-th cumulant. We already computed the
first two cumulants H(1) and H(2) associated to this cumulant generating function.
Now let us compute the third cumulant H(3) which can be expressed as a combination
of moments of the random variable X (89):

H(3) = lim
T→∞

1
T

(
E
(
X3)−3E

(
X2)E(X)+2E(X)3

)
.

Similarly, we denote H(n) the term of the large deviation Hamiltonian (80) accounting
for the contribution of the n-th cumulant of the random variable X (89).

Because the process for δgΛ is Gaussian, we can compute all the moments of
X from the two-points correlation functions (84, 87, 88) and the Wick theorem. To
express the result, let us introduce the fully symmetric order-2n tensor B(n) defined
as

B(n) (v1, . . . ,v2n) =
(2π)2n

4πn

(
λD

L

)3

∑
k

∫
Γ

dω
k⊗2nŴ (k)2n

|ε (k,ω)|2n

2n

∏
i=1

δ (ω−k.vi) , (97)

where k⊗2n is the tensor k⊗ ...⊗k
2n times

, such as B(1) = B, and it is consistent with the

definition of B(2) (132). Then, the third cumulant reads

H(3) =
∫

drdv1dv2dv3dv4 f (v2) f (v3)

(
f (v1)

∂ f
∂v4
− ∂ f

∂v1
f (v4)

)
B(2) ∂ p

∂v1

∂ p
∂v2

{
∂ p
∂v2
− ∂ p

∂v3

}
+
∫

drdv1 . . .dv6
∂ p
∂v1

∂ p
∂v2

∂ p
∂v3

B(3)
{

f (v1) f (v2) f (v3)
∂ f
∂v4

∂ f
∂v5

∂ f
∂v6

−3
∂ f
∂v1

f (v2) f (v3) f (v4)
∂ f
∂v5

∂ f
∂v6

+3 f (v1)
∂ f
∂v2

∂ f
∂v3

f (v4)
∂ f
∂v5

∂ f
∂v6
− ∂ f

∂v1

∂ f
∂v2

∂ f
∂v3

f (v4) f (v5) f (v6)

}
. (98)

We note that H(3) involves a term which is proportional to B(3), but also a term which
is proportional to B(2).
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We do not report the detailed computation, but we have explicitly computed H(4)

(see appendix G). We observe that it involves terms which are proportional to B(4)

and B(3), but no terms which are proportional to either B(2) or B(1) . Based on this
remark, we conjecture that H(n) contains only terms which are proportional to B(n)

and B(n−1), and that the tensor B(k) for k < n− 1 are not involved in the expression
for H(n).

As we will explain in the next subsection, in the context of the Landau approxima-
tion, there is a natural hierarchy between the tensors B(n) and the cumulant expansion
can be simply truncated.

6.5 Hierarchy of the series expansion within the Landau approximation

Let us first recall that we can obtain the Landau equation from the Balescu–Guernsey–
Lenard equation. The collision kernel for the Balescu–Guernsey–Lenard equation
converges to the Landau collision kernel in the limit where all the wavevectors in
(28) satisfy kλD � 1. In our system of plasma unit, where the length unit is renor-
malized by the Debye length, this means that the Balescu–Guernsey–Lenard collision
kernel converges toward the Landau collision kernel in the limit of infinitely large
wavevectors. In a similar way, we obtain the large deviation Hamiltonian for the Lan-
dau equation HLandau from the large deviation Hamiltonian H (90) of the empirical
density of N Coulomb interacting particles using the same limit.

In the expression of the tensor B(1) = B

B(1)=B(v1,v2)= π

(
λD

L

)3 ∫ +∞

−∞

dω ∑
k

kk
k4n |ε[ f ] (ω,k)|2

δ (ω−k.v1)δ (ω−k.v2) ,

the Landau approximation implies that k� 1. In this context, we can consider that
the dielectric function ε is equal to one. From there, a clear hierarchy appears in the
cumulant series expansion (90). For n≥ 2, the terms involving

B(n) (v1, . . . ,v2n) =
(2π)2n

4πn

(
λD

L

)3

∑
k

∫
Γ

dω
k⊗2n

k4n |ε (k,ω)|2n

2n

∏
i=1

δ (ω−k.vi)

will be negligible with respect to the terms involving B(1) = B.
Let us define

B(n)
k (v1, . . . ,v2n) =

∫
Γ

dω
k⊗2n

k4n |ε (k,ω)|2n

2n

∏
i=1

δ (ω−k.vi) ,

such that

B(n) (v1, . . . ,v2n) =
(2π)2n

4πn ∑
k

(
λD

L

)3

B(n)
k (v1, . . . ,v2n) .

Let us evaluate the size of B(n)
k in terms of the wavevectors k. We have,

B(n)
k (v1, . . . ,v2n) = k1−4n m⊗2n

|ε (k,ω)|2n

2n

∏
i=2

δ (m.(v1−vi)) ,



42 Ouassim Feliachi, Freddy Bouchet

where m = k/k. Then,(
λD

L

)3

B(n)
k =

k�1
O

((
λD

Lk

)3(1
k

)4n−4
)
, (99)

where O (km) means that the term is of order km.
Furthermore, we note the wavevectors k are of the form 2π (λD/L) l with l ∈ Z3.

Then
(

λD
Lk

)3
is of order one at most. Thus, we can conclude that within the Landau

approximation (k� 1 in our non-dimensional plasma variables) all the tensors B(n)

are negligible except for B(1) = B. We have presented all the computation and this
estimation in a finite box of length L. However similar reasoning generalize easily to
an infinite box.

As a conclusion, at leading order, we can just keep the terms involving B(1) in
the cumulant series expansion, and the large deviations Hamiltonian for the Landau
equation reads

HLandau [ f , p] =
∫

drdv1 f
{

b [ f ] .
∂ p
∂v1

+
∂

∂v1

(
D [ f ]

∂ p
∂v1

)
+D [ f ] :

∂ p
∂v1

∂ p
∂v1

}
−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) . (100)

This is exactly the Hamiltonian we derived from the Boltzmann equation large devi-
ation Hamiltonian in section 5.3.

6.6 Large deviations for the Landau equation

In the previous section 6.5, we have established a large deviation principle for the ho-
mogeneous projection of the empirical density of N particles submitted to pairwise
Coulomb interactions in the Landau approximation. It describes dynamical fluctua-
tions beyond the Landau equation. More precisely, if we consider N particles evolving
according to the dynamics (22), in a 3-dimensional torus of size (L/λD)

3 where λD
is the Debye length, fΛ the homogeneous projection of the empirical density

fΛ (v, t) =
1
Λ

(
λD

L

)3 N

∑
n=1

δ (v−vn (t)) ,

follows the large deviation principle

P( fΛ = f ) �
Λ→∞

e−ΛSupp
∫ T

0 {
∫

drdv ḟ p−HLandau[ f ,p]}, (101)

where the large deviation Hamiltonian HLandau is given by (100).
Although this Hamiltonian is exactly the one we derived in section 5 from the

large deviation Hamiltonian associated to the Boltzmann equation, the large devi-
ation principle (101) is slightly different. Indeed, the large deviation principle (65)
describes large deviations of the empirical density gΛ , whereas the large deviation
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principle (101) only describes the large deviations for fΛ which is the projection of
gΛ over homogeneous distributions. However, it is possible to obtain (101) from (65)
through the use of the contraction principle. In large deviation theory, the contraction
principle states that if we know a large deviation principle for a random variable X
with a large deviation function I (x) it is possible to obtain a large deviation princi-
ple for any function ϕ (X) of this random variable and the associated large deviation
function is Iϕ (y) = infϕ(x)=y I (x). The two results are thus fully consistent.

Based on the discussion of section 5.4, the large deviation Hamiltonian HLandau
satisfies all the expected properties of the large deviation Hamiltonian for the Lan-
dau equation: mass, momentum and energy conservation, as well as entropy as the
opposite of the quasipotential and time-reversal symmetry.

6.7 Large deviations for the Landau equation when L < λD

Whenever the size of the domain is smaller than the Debye length, the relevant large
deviation parameter is the number of particles in a box of the size of the effective
interaction length scale ` = L; i.e. the relevant large deviation parameter is N. We
can then study the asymptotics of the empirical density gΛ and its homogeneous
projection as N goes to infinity. Because Λ = (λD/L)3 N, when L < λD the large N
limit implies the large Λ limit, which is responsible for the kinetic behavior of the
empirical density. In order to make explicit that N is the natural large deviation rate,
we perform the trivial integral on the positions in the large deviation principle (101).
It is then possible to rephrase the large deviation principle (101) as following

P( fΛ = f ) �
N→∞

e−NSupp
∫ T

0 {
∫

dv ḟ p−HLandau,h[ f ,p]}, (102)

by defining HLandau,h as the large deviation Hamiltonian divided by the volume of the
domain, such that

HLandau =
∫

drHLandau,h =

(
L

λD

)3

HLandau,h,

and

HLandau,h [ f , p] =
∫

dv1 f
{

b [ f ] .
∂ p
∂v1

+
∂

∂v1
.

(
D [ f ]

∂ p
∂v1

)
+D [ f ] :

∂ p
∂v1

∂ p
∂v1

}
−
∫

dv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) .

Using this same relation between N and Λ , we already have remarked that

fΛ (v, t) =
1
Λ

(
λD

L

)3 N

∑
n=1

δ (v−vn (t)) =
1
N

N

∑
n=1

δ (v−vn (t)) = hN (v, t) ,

where hN is the velocity empirical density rescaled by the number of particles defined
in section 3.5. Then, we have the following large deviation principle for hN

P(hN = f ) �
N→∞

e−NSupp
∫ T

0 {
∫

dv ḟ p−HLandau,h[ f ,p]},
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which is very similar to the large deviation principle (48) we established for the ve-
locities empirical distribution of N diffusing particles coupled in a mean field way,
except that the large deviation Hamiltonian HLandau,h contains an additional term in
addition to HMF,h (46), accounting for the weak interactions between the particles.

If in addition to L < λD we have L� λD, then, because the wavevectors k are in
2π (λD/L)Z3 we have for all scales k� 1. This amounts at saying that the Landau
approximation holds at all scales and that the large deviations described by (102) are
Gaussian regardless of the scale of the fluctuations.

6.8 Large deviations for the Landau equation expressed in physical variables

In section 5.3, we established a large deviation principle (equations (64)-(65)) that
describes the large deviations of the probability of homogeneous evolution paths for
the empirical density gΛ (r,v, t) = Λ−1

∑
N
n=1 δ (v−vn(t))δ (r− rn(t)). As discussed

in section 6.6, this result is consistent with the large deviation principle for the projec-
tion of the empirical density on homogeneous paths fΛ (v, t)=Λ−1 (λD/L)3

∑
N
n=1 δ (v−vn (t)) .

So far, we expressed those results in a set of non-dimensional variables adapted to
Coulomb plasmas.

We can express this large deviation result in physical variables, with the change
of variables

vϕ = vT v,kϕ = k/λD, tϕ = Λτ/ωpe,

where vT the thermal velocity, λD the Debye length, and ωpe the plasma electron
frequency are defined in section 3.1., and we denoted dimensional variables expressed
in physical units with a subscript ϕ .

In the following we omit the subscript ϕ . The result is a large deviation principle
for the empirical density in physical units

gΛ (r,v, t) =
1
Λ

N

∑
n=1

δ (v−vn(t))δ (r− rn(t))

which reads

P
(
{gΛ}0≤t≤T = { f}0≤t≤T

)
�

Λ→∞
e−ΛSupp

∫ T
0 dt{∫ drdv ḟ p−HLandau[ f ,p]},

where

HLandau [ f , p] =
∫

drdv1 f
{

b [ f ] .
∂ p
∂v1

+
∂

∂v1
.

(
D [ f ]

∂ p
∂v1

)
+D [ f ] :

∂ p
∂v1

∂ p
∂v1

}
−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) .

with {
b [ f ] (v) =

∫
dv2B(v,v2)

∂ f
∂v2

D [ f ] (v) =
∫

dv2B(v,v2) f (v2),
(103)
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and

B(v1,v2) =
Λq4

m2ε2
0

π

L3 ∑
k∈(2π/L)Z∗3

(
Ŵ (k)

)2 kkδ (k.v2−k.v1) . (104)

And the associated Landau equation reads

∂ f
∂ t

=
∂

∂v
.
∫

dv2 B(v1,v2)

(
− ∂ f

∂v2
f (v)+ f (v2)

∂ f
∂v

)
. (105)

This differs slightly with the Landau equation one can found in the plasma literature
[19,11,15] by a factor Λ in the tensor B (104). Typically, in those references, the
Landau equation is an evolution equation for the average of the non-rescaled empir-
ical density. Here, we rescaled the empirical density by the plasma parameter Λ . In
order to recover the Landau equation of [19,11,15], one should replace f in equation
(105) by f0/Λ . The resulting evolution equation for f0 would be the usual Landau
equation, where f0 = E(ΛgΛ ) is the distribution function typically used in plasma
textbooks.

Conclusions

The main result of this paper is the large deviation principle for the dynamics of the
empirical density of a homogeneous Coulomb plasma of N equal charges particles.
More precisely, we have shown that the probability of a homogeneous evolution path
{ f (t)}0≤t≤T for the empirical density gΛ (r,v, t)=Λ−1

∑
N
n=1 δ (v−vn(t))δ (r− rn(t))

follows a large deviation principle

P
(
{gΛ (t)}0≤t≤T = { f (t)}0≤t≤T

)
�

Λ→∞
e−Λ

∫ T
0 dt Supp{

∫
drdv ḟ p−HLandau[ f ,p]},

where the large deviation Hamiltonian HLandau[ f , p] is

HLandau[ f , p] = HMF [ f , p]+HI [ f , p] ,

with

HMF [ f , p] =
∫

drdv f
{

b [ f ] .
∂ p
∂v

+
∂

∂v
.

(
D [ f ] .

∂ p
∂v

)
+D [ f ] :

∂ p
∂v

∂ p
∂v

}
,

and

HI [ f , p] =−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) .

where D [ f ], b [ f ] are defined in equation (103), and B is defined in equation (104).
This result has been obtained both from the large deviation Hamiltonian associated
with the Boltzmann equation, and directly from the dynamics. This result is expressed
in physical variables, but throughout the paper we worked with a non-dimensional set
of variables adapted to plasmas. The connection is made between these two sets of
variable in section 6.8.
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This result is valid only for fluctuations at wavenumbers k such that kλD � 1
in physical units. This large deviation Hamiltonian is quadratic in its conjugate mo-
mentum meaning that large deviations are Gaussian. It also satisfies all the expected
properties: conservation laws, time-reversal symmetry and consistency with equilib-
rium thermodynamics.

This paper also contains a set of complementary results. It contains the expres-
sion for the Hamiltonian for the path large deviations of the empirical density of N
independent Markov processes (41) , of N independent diffusions (43), and of N dif-
fusions coupled in a mean field way (46). It also contains an explicit gradient flow
structure for the Landau equation (70), deduced from the large deviation Hamiltonian.
We also obtained results for the empirical density of N particles with long-range in-
teractions without the Landau approximation. In this general case, we established a
cumulant generating function representation of the large deviation Hamiltonian for
the empirical density (80). We computed a cumulant expansion of this cumulant gen-
erating function up to order four.

Our results are exact computations, once natural hypothesis are made. The first
main hypothesis is the validity of the quasilinear approximation. The second one is
convergence of the Gaussian process of fluctuation to a stationary process. The third
one is the validity of the classical expression for the large deviation Hamiltonian,
in this context. The quasilinear approximation is very natural and is obtained natu-
rally as the leading order contribution in a series expansion. The second hypothesis is
partly justified in classical textbook, although a rigorous proof is missing. Actually,
from a mathematical point of view, the type of convergence to consider is not clear.
About the third one, we note that classical theorem for large deviations for slow-
fast systems use sufficient ergodicity hypothesis which are probably wrong for this
problem. A mathematical proof would thus require interesting mathematical devel-
opments. Actually the second and third hypothesis are strongly connected. In order
to obtain a theorem, these three hypothesis should be proven. As far as we under-
stand such a task seems out of reach of the best mathematicians, currently. However
it might be achievable in the future, which would be a fascinating perspective.

A natural extension of this work would be to compute the large deviation Hamilto-
nian associated with the Balescu–Guernsey–Lenard equation. This would be a large
deviation principle for the empirical density of N particles which interact through
long-range interactions, for instance through Coulomb interactions, but without the
Landau approximation. This will be the subject of an upcoming paper.

In this paper, we obtained results quantifying the dynamical fluctuations of the
empirical density of a Coulomb plasma in the large plasma parameter limit. A series
of mathematical papers [20,21,17] focus on fluctuations of stationary observables
for Coulomb gases without using the large plasma parameter limit. This raises the
question of whether it would be possible to obtain results about the dynamical fluc-
tuations of the empirical density without the hypothesis of a large plasma parameter
limit. This is an interesting perspective that would extend our present work, and at
the same time would extend the static picture discussed in [20,21,17].
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Another perspective and extension would be to obtain a large deviation princi-
ple and Hamiltonian for the evolution of inhomogeneous distribution functions. This
would be particularly relevant for systems that are naturally inhomogeneous, for in-
stance self-gravitating systems with application in galactic and globular cluster dy-
namics.

Finally, a large part of the computations and reasonings of this paper can be for-
mulated beyond the framework of Coulomb plasmas. One of the first generalization
we think about is to investigate the large deviations for the empirical density of parti-
cles which interact through long range potential and are stochastically forced out-of-
equilibrium. Beyond interacting particles system, it will be interesting to use this tool
to investigate two-dimensional and geostrophic turbulence. The dynamics of those
hydrodynamical systems has deep analogies with systems with long-range interac-
tions.

A The relative entropy for N independent diffusions solves the stationary
Hamilton–Jacobi equation

We consider the relative entropy

Srel [h] =−
∫

dvh log
(

h
heq

)
,

where heq is the equilibrium distribution. In this appendix, we shows that −Srel solves the stationary

Hamilton-Jacobi equation (HMF,h

[
h,− δSrel

δh

]
= 0), for the case of N independent diffusions (42). We recall

that HMF,h

[
h,− δSrel

δh

]
= 0 is a necessary condition for −Srel to be the quasipotential. By contrast, when

those N diffusions are coupled in a mean field way (in (45)) and the drift and diffusion coefficients depend
actually on h, we are no more able to conclude that HMF,h

[
h,− δSrel

δh

]
= 0 and we believe this is actually

wrong in general.
In both cases, the large deviation Hamiltonian for the empirical density hN reads

HMF,h [h, p] =
∫

dvh
{

b [h] .
∂ p
∂v

+
∂

∂v

(
D [h]

∂ p
∂v

)
+D [h] :

∂ p
∂v

∂ p
∂v

}
. (106)

In the simple case where the N diffusions are independent, the drift and the diffusion coefficients do not
depend on the actual distribution h: b [h] = b and D [h] = D. In order to check that the relative entropy
Srel is the opposite of the quasipotential, according to property 11 from section 2.1, we shall check that it
solves the stationary Hamilton–Jacobi equation

HMF,h

[
h,− δSrel

δh

]
= 0. (107)

We have

− ∂

∂v

(
δSrel

δh

)
=

1
h

∂h
∂v
− 1

heq

∂heq

∂v
, (108)

and heq solves the stationary Fokker–Planck equation

∂

∂v

(
D
[
heq
] ∂heq

∂v
−b
[
heq
]

heq

)
= 0. (109)

Using (108) we have

HMF,h

[
h,− δSrel

δh

]
=
∫

dv

{
b [h]

∂h
∂v
− h

heq

∂heq

∂v
b [h]+D [h]

∂heq

∂v
1

heq2

(
∂h
∂v

heq−
∂heq

∂v
h
)}

.
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Now, we integrate by parts the first and the last term of the expression above, noting that

1
heq2

(
∂h
∂v

heq−
∂heq

∂v
h
)
=

∂

∂v

(
h

heq

)
,

and

−h
∂b [h]

∂v
− h

heq

∂heq

∂v
b [h] =− h

heq

∂

∂v
(
b [h]heq

)
.

We obtain

HMF,h

[
h,− δSrel

δh

]
=
∫

dv
h

heq

∂

∂v

(
D [h]

∂heq

∂v
−b [h]heq

)
.

We see that if for any h
∂

∂v

(
D [h]

∂heq

∂v
−b [h]heq

)
= 0, (110)

then HMF,h

[
h,− δSrel

δh

]
= 0 for any h. When b [h] = b and D [h] = D do not depend of f , i.e. when the

N diffusions are independent, this identity is equivalent to the stationary Fokker–Planck equation (109).
It thus holds. It follows that the Hamilton–Jacobi equation (107) is verified and that the negative of the
relative entropy solves the stationary Hamilton–Jacobi equation, for the case of N independent diffusions.

However, when the drift and the diffusion coefficient do depend on the distribution, (110) is no more
true for any h. Then, we cannot conclude anymore that the relative entropy solves the stationary Hamilton–
Jacobi equation.

B Consistence of the two definitions of the tensor B

We prove that for Coulomb interaction the two expressions for B, (61) and (33) are equal.
The first expression for B, (61), is

B(v1,v2) =
1
2

Λ

∫
dqw(v1,v2;q)q⊗q,

Expressing w in terms of the cross-section σ0 through (52) with γ = (λD/L)3, using (51), and choosing for
σ0 the Rutherford diffusion cross-section

σ0(v1 +q,v2−q;v1,v2) =
1

4π2Λ 2q4 ,

for two-body collisions of particles with electrostatic interactions [19], we obtain

B(v1,v2) =
∫

dq
q⊗q
8π2q4 δ (2q.(v2−v1)) . (111)

We perform the integration over q angle in (111) to get

B(v1,v2) =C
g2Id−gg

g3 ,

with C = (8π)−1 ∫ ∞

0 q−1dq, g = v2−v1, and where Id is the identity matrix in three-dimension. We note
that B(v1,v2) is proportional to g2Id− g⊗ g, which is the projector on the plane orthogonal to v2− v1.
This should have been expected as a consequence of symmetries.

In order to obtain the proportionality coefficient C we follow equations (6.3.15-6.3.21) in chapter 6.3
of Schram’s textbook [19]. This chapter explains how one can deal with the logarithmic divergence arising
in the computation of C. Briefly, one has to regularize the Coulomb interaction at large and small scales
by introducing cut-offs, justified by the geometry of grazing collision at small scales, and by the Debye
shielding at large scales. The final result reads

B(v1,v2) =
1

8π
lnΛ

g2Id−gg
g3 . (112)

Following the computations in chapter 8.4 of Schram’s textbook [19], we can show in a similar way
that the definition of B given by (33) is also equal to (112). We have thus conclude that the two expression
for B, (61) and (33) are equal.
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C Symmetries and conservation laws associated with the collision kernels

C.1 The Boltzmann collision kernel

The time reversal symmetry of the microscopic Hamiltonian dynamics imposes that

w0(v′1,v
′
2;v1,v2) = w0(−v1,−v2;−v′1,−v′2). (113)

The space rotation symmetry imposes that for any rotation R that belongs to the orthogonal group SO(3)

w0(v′1,v
′
2;v1,v2) = w0(Rv1,Rv2;Rv′1,Rv′2).

The combination of the time reversal symmetry and of the space rotation symmetry for R = −I, where I
is the identity operator, implies the inversion symmetry

w0(v′1,v
′
2;v1,v2) = w0(v1,v2;v′1,v

′
2). (114)

The local conservation of momentum and energy implies that

w0(v′1,v
′
2;v1,v2) = σ(v′1,v

′
2;v1,v2)δ

(
v1 +v2−v′1−v′2

)
δ

(
v2

1 +v2
2−v′21−v′22

)
, (115)

where σ is the diffusion cross-section. σ is of the order of a2 where a is a typical atom size.

C.2 The Landau collision kernel

The tensor B defined by

B(v1,v2) =
Λ

2

∫
dqw(v1,v2;q)q⊗q, (116)

involved in the Landau equation (59) has properties related to the symmetry and conservation properties
of the collision process. In equation (116), w(v1,v2;q) is an approximation at order zero of the collision
kernel w(v1 +q/2,v2−q/2;q) associated with the collision of two particles with momenta (v1,v2) that
exchange a momentum q. We have:

1. w(v1,v2;q) = w(v2,v1;q) because the incident particles are indiscernible,
2. q.(v1−v2)= 0 at leading order in q because of the energy conservation condition v2

1+v2
2 =(v1 +q)2+

(v2−q)2,
3. w(v1,v2;q) = w(v1,v2;−q), which is a direct consequence of (114) and the definition of w (52).

We notice that the momentum conservation is already built-in in the definition of w. The first property
implies B(v1,v2) = B(v2,v1). The second property implies B(v1,v2).(v1−v2) = 0. In addition to that,
B(v1,v2) is by construction a symmetric tensor for every pair (v1,v2).

D Asymptotic expansions leading to the Landau equation and its large
deviation Hamiltonian

D.1 Asymptotic expansions leading to the Landau equation

In this appendix, we start from the collision operator of the Boltzmann equation (the right hand side of
equation (60)), we develop it at order 2 in q , and we prove that we recover the collision term of the Landau
equation (59).
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We start from the expression of I in equation (60). Noting that [ f (v+q) f (v2−q)− f (v) f (v2)] has
no term of order zero, in order to compute an expansion at order 2 in q = |q|, it will be sufficient to work
with the expansions:

w(v+ 1
2 q,v2− 1

2 q;q) = w(v,v2;q)+ 1
2

(
∂w
∂v −

∂w
∂v2

)
.q+O(q2), and

f (v+q) f (v2−q)− f (v) f (v2) =
(

∂ f
∂v f (v2)− ∂ f

∂v2
f (v)

)
.q+

+
(

∂ 2 f
∂v∂v f (v2)+

∂ 2 f
∂v2∂v2

f (v)−2 ∂ f
∂v

∂ f
∂v2

)
: qq+O(q3).

Let us now compute the collision integral I(v) order by order. We directly notice that there is no term of
order zero in q. Let us compute I(1)(v) the term of order 1 of the collision integral

I(1)(v) = Λ

∫
dv2dqw(v,v2;q)

(
∂ f
∂v

f (v2)−
∂ f
∂v2

f (v)
)
.q.

We use that w(v,v2;q) is an even function of q (point 3 of appendix (C.2)). This makes the integrand an
odd function of q, and implies that I(1)(v) = 0.

At order 2 in q we have

I(v)=
Λ

2

∫
dv2dq

{(
∂w
∂v
− ∂w

∂v2

)(
∂ f
∂v

f (v2)−
∂ f
∂v2

f (v)
)
+w

(
∂ 2 f

∂v∂v
f (v2)+

∂ 2 f
∂v2∂v2

f (v)−2
∂ f
∂v

∂ f
∂v2

)}
: qq.

To obtain the Landau equation, we have to write I(v) as a divergence involving the tensor B. In order to do
so, we integrate by parts the term involving ∂w

∂v2
while keeping the terms involving ∂w

∂v . This gives

I(v) =
Λ

2

∫
dv2dq

{
∂w
∂v

(
∂ f
∂v

f (v2)−
∂ f
∂v2

f (v)
)
+w

∂

∂v

(
∂ f
∂v

f (v2)−
∂ f
∂v2

f (v)
)}

: qq.

Now, by noting that I(v) can be written as a total divergence with respect to v and using equation 61 we
obtain

I(v) =
∂

∂v

∫
dv2B(v,v2)

(
− ∂ f

∂v2
f (v)+

∂ f
∂v

f (v2)

)
+o
(
q2) , (117)

with B(v,v2) = Λ
∫

dqw(v,v2;q)q⊗q/2 (see equation (61)), and o
(
q2) means that we omitted terms of

order larger than 2. The term of order 2 is the collision operator of the Landau equation (59).

D.2 Asymptotic expansions leading to the large deviation Hamiltonian associated to
the Landau equation

In this section, we detail the computation of the large deviation Hamiltonian for the Landau equation
starting from the Hamiltonian (63) for the Boltzmann equation and using the grazing collision limit.

First, let us rewrite this Hamiltonian

H[ f , p] =
Λ

2

∫
drdv1dv2dqw

(
v1 +

1
2

q,v2−q;q
)

f (v1) f (v2)
{

e[−p(v1)−p(v2)+p(v1+q)+p(v2−q)]−1
}
.

In order to obtain a Hamiltonian associated with the Landau equation, we will use the same hypothesis of
grazing collisions and a Taylor expansion in q to the same order


w(v1 +

1
2 q,v2− 1

2 q;q) = w(v1,v2;q)+ 1
2

(
∂w
∂v1
− ∂w

∂v2

)
.q+O(q2)

e[−p(v1)−p(v2)+p(v1+q)+p(v2−q)]−1 =
(

∂ p
∂v1
− ∂ p

∂v2

)
.q+

+ 1
2

{
∂ 2 p

∂v1∂v1
+ ∂ 2 p

∂v2∂v2
+
(

∂ p
∂v1
− ∂ p

∂v2

)(
∂ p
∂v1
− ∂ p

∂v2

)}
: qq+O(q3).

We evaluate the terms of H order by order. There is no term of order zero. The term of order one in q is
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Λ

2

∫
drdv1dv2dqw(v1,v2;q) f (v1) f (v2)

(
∂ p
∂v1
− ∂ p

∂v2

)
.q,

which is zero because w(v1,v2;q) is an even function of q (see point 3 of appendix (C.2)). At second order
in q the Hamiltonian reads

HLandau[ f , p] =
Λ

4

∫
drdv1dv2dq f (v1) f (v2)

{
w
[

∂ 2 p
∂v1∂v1

+
∂ 2 p

∂v2∂v2
+

(
∂ p
∂v1
− ∂ p

∂v2

)(
∂ p
∂v1
− ∂ p

∂v2

)]
+

(
∂ p
∂v1
− ∂ p

∂v2

)(
∂w
∂v1
− ∂w

∂v2

)}
: qq.

In this expression, in order to make appear the tensor B(v,v2)=Λ
∫

dqw(v,v2;q)qq/2 (see equation (61)),
we integrate by parts the terms involving ∂w

∂v1
and ∂w

∂v2
, we develop the derivatives of products generated

by partial integration, we use equation (61) and we obtain

HLandau[ f , p] =
1
2

∫
drdv1dv2 B(v1,v2)

{
f (v1) f (v2)

(
∂ p
∂v1
− ∂ p

∂v2

)(
∂ p
∂v1
− ∂ p

∂v2

)
+

+

(
∂ p
∂v1
− ∂ p

∂v2

)(
∂ f
∂v2

f (v1)−
∂ f
∂v1

f (v2)

)}
.

Using the property that B(v1,v2) = B(v2,v1) (see appendix C.2), we have for every function g of (v1,v2):∫
dv1dv2B(v1,v2)g(v1,v2) =

∫
dv1dv2B(v1,v2)g(v2,v1). Using this property we have

HLandau[ f , p] =
∫

drdv1dv2 B(v1,v2)

{
f (v1) f (v2)

(
∂ p
∂v1

∂ p
∂v1
− ∂ p

∂v1

∂ p
∂v2

)
+

∂ p
∂v1

∂ f
∂v2

f (v1)−
∂ p
∂v1

∂ f
∂v1

f (v2)

}
.

We integrate by parts the last term with respect to v1 to obtain

HLandau[ f , p] =
∫

drdv1dv2 f (v1)

{
∂ p
∂v1

B(v1,v2)
∂ f
∂v2

+
∂ p
∂v1

∂ p
∂v1

B(v1,v2) f (v2)+
∂

∂v1

(
B(v1,v2) f (v2)

∂ p
∂v1

)}
−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

B(v1,v2).

From here, using equation (34) we obtain

HLandau[ f , p] = HMF [ f , p]+HI [ f , p] , (118)

with

HMF [ f , p] =
∫

drdv1 f
{

b [ f ] .
∂ p
∂v1

+
∂

∂v1

(
D [ f ]

∂ p
∂v1

)
+D [ f ] :

∂ p
∂v1

∂ p
∂v1

}
,

and

HI [ f , p] =−
∫

drdv1dv2 f (v1) f (v2)
∂ p
∂v1

∂ p
∂v2

: B(v1,v2) .

E Useful formulas

In this appendix, we list and prove some formulas used in section 6.
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E.1 Sokhotski–Plemelj formula

We have

lim
ε̃→0+

1
x− iε̃

= P
(

1
x

)
+ iπδ (x) , (119)

from which we also have

ℑ

(
1

x− iε̃

)
= πδ (x) , (120)

where ℑ(z) is the imaginary part of the complex number z.

E.2 Some properties of the dielectric function

We discuss a few useful properties of the dielectric function. By definition the dielectric function (26) is

ε[ f ](k,ω) = 1−Ŵ (k)
∫

dv
k. ∂ f

∂v
k.v−ω− iε̃

, (121)

Using the definition of the dielectric function (121) and (120), we have

ℑ [ε[ f ](k,ω)] =−πŴ (k)
∫

dvk.
∂ f
∂v

δ (ω−k.v) . (122)

From (121), we readily see that
ε
∗[ f ](k,ω) = ε[ f ](−k,−ω) (123)

where z̄ is the imaginary part of the complex number z.

E.3 Double integral of a homogeneous kernel

E.3.1 Symmetric kernel

Let f be a function for which |
∫

∞

0 f (t)dt|< ∞. Then,

1
2T

∫ T

0

∫ T

0
dt1dt2 f (|t1− t2|) −→

T→∞

∫
∞

0
dτ f (τ) =

1
2

∫
∞

−∞

dτ f (|τ|).

Proof Using the parity of f (|·|), we get

1
2T

∫ T

0

∫ T

0
dt1dt2 f (|t1− t2|) =

1
T

∫ T

0
dt1
∫ t1

0
dt2 f (|t1− t2|).

Rewriting the integrals with the change of variable (t1, t2)→ (τ,τ ′) = (t1, t1− t2) leads to

1
2T

∫∫ T

0
dt1dt2 f (|t1− t2|) =

1
T

∫ T

0
dτ1

∫
τ1

0
dτ2 f (|τ2|).

Defining the function g by g(τ) =
∫

τ

0 dτ2 f (|τ2|), noting that g has a finite limit for large τ and that the
integral on [0,∞[ of g does diverge, we obtain asymptotically,∫ T

0
g(τ)dτ ∼

T→∞
T
∫

∞

0
f (τ)dτ.

Combining the last two equations gives the result we wanted to prove

1
2T

∫∫ T

0
dt1dt2 f (|t1− t2|) −→

T→∞

1
2

∫
∞

−∞

dτ f (|τ|).
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E.3.2 General kernel

Let f be a function for which |
∫

∞

0 f (t)dt|< ∞ and
∣∣∣∫ 0
−∞

f (t)dt
∣∣∣< ∞. Then,

1
T

∫∫ T

0
dt1dt2 f (t1− t2) −→

T→∞

1
T

∫
∞

−∞

dτ f (τ). (124)

Proof First, let us rewrite the integral on t2 using the additivity of integration on intervals

1
T

∫∫ T

0
dt1dt2 f (t1− t2) =

1
T

∫ T

0
dt1
∫ t1

0
dt2 f (t1− t2)+

1
T

∫ T

0
dt1
∫ T

t1
dt2 f (t1− t2) . (125)

Rewriting the first term of (125) with the change of variable (t1, t2)→ (τ,τ ′) = (t1, t1− t2) leads to

1
T

∫ T

0
dt1
∫ t1

0
dt2 f (t1− t2) =

1
T

∫ T

0
dτ

∫
τ

0
dτ
′ f
(
τ
′) ,

and using the Fubini theorem and the change of variable (t1, t2)→ (τ ′,τ) = (t2− t1, t2) leads to

1
T

∫ T

0
dt1
∫ T

t1
dt2 f (t1− t2) =

1
T

∫ T

0
dτ

∫
τ

0
dτ
′ f
(
−τ
′) .

We noticed during the previous proof that

lim
T→∞

1
T

∫ T

0
dτ

∫
τ

0
dτ
′ f
(
τ
′)= ∫ ∞

0
f (τ)dτ.

With a similar computation, we can show that

lim
T→∞

1
T

∫ T

0
dτ

∫
τ

0
dτ
′ f
(
−τ
′)= ∫ ∞

0
f (−τ)dτ =−

∫ 0

−∞

f (τ)dτ.

Then, gathering the two terms of (125) and taking the limit as T goes to infinity, we find that

1
T

∫∫ T

0
dt1dt2 f (t1− t2) −→

T→∞

1
T

∫
∞

−∞

dτ f (τ),

which is what we wanted to prove.

E.4 Fourier–Laplace representation of a product

Let φ and ψ and two functions that admit Fourier–Laplace transforms φ̃ and ψ̃ as defined in equation (82).
Then, ∫

dr
∫

∞

−∞

dt φ (r, t)ψ (r, t) =
1

2π

(
λD

L

)3

∑
k∈(2πλD/L)Z3

∫
Γ

dω φ̃ (k,ω) ψ̃ (−k,−ω) . (126)

Proof
Given the definition (82) of the Fourier-Laplace transform, the inversion formula is

ϕ (r, t) =
1

2π

(
λD

L

)3

∑
k∈(2πλD/L)Z3

∫
Γ

dω ei(k.r−ωt)
ϕ̃ (k,ω) ,

where Γ is a contour to be chosen to insure the convergence. Using the inversion formula, the proof of the
result is straightforward.
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F Computation of the linear part and the quadratic part of the large deviation
Hamiltonian

F.1 Computation of the first cumulant (linear part)

In this appendix, we explicit the computations of C(1), using (91) and (87). This computation is different,
but analogous to the one in §51 of [11]. We start from (91) which leads to

C(1)(v) =− lim
T→∞

1
T

∫ T

0
dtE

(
∂V [δgΛ ]

∂r
δgΛ

)
.

We notice that over time t long enough to forget the information about the initial condition, but short
enough such that the velocity distribution has not changed much, E

(
∂V [δgΛ ]

∂r δgΛ

)
reaches a finite limit.

In this limit, we simply obtain

C(1)(v) =−ES

(
∂V [δgΛ ]

∂r
δgΛ

)
.

We express each of the two terms ∂V [δgΛ ]
∂r (r, t) and δgΛ (r, t) through their Fourier–Laplace transforms,

and we apply ES using (85) to get

C(1)(v) =
−i
2π

(
λD

L

)3

∑
k

∫
Γ

dω kC̃V G (k,ω,v) .

Using (87), we obtain

C(1)(v) =
(

b′ [ f ] (v) f (v)−D′ [ f ] (v) .
∂ f
∂v

(v)
)

with

D′ [ f ] (v) = i
(

λD

L

)3

∑
k

∫
Γ

dω

∫
dv2

kk
k.v−ω + iε̃

f (v2)δ (ω−k.v2)
Ŵ (k)2

|ε[ f ] (ω,k)|2
,

and

b′ [ f ] (v) =−i
(

λD

L

)3

∑
k

∫
Γ

dω
kŴ (k)
ε (k,ω)

δ (ω−k.v) .

Using (120), we compute the real part of
←→
D
′
and get

ℜ
(
D′ [ f ] (v)

)
= D [ f ] (v) =

∫
dv2B [ f ] (v,v2) f (v2),

where

B(v,v2) = π

(
λD

L

)3 ∫ +∞

−∞

dω ∑
k

δ (ω−k.v)δ (ω−k.v2)
kkŴ (k)2

|ε[ f ] (ω,k)|2

is the tensor defined in equation (28).
Using (122), we compute the real part of b′, and get

ℜ
(
b′ [ f ] (v)

)
= b [ f ] (v) =

∫
dv2B [ f ] (v,v2)

∂ f
∂v2

.

It is also easily checked that ℑ

[
C(1)(v)

]
= 0 . We have thus justified that

C(1)(v) =
∫

dv2 B [ f ] (v,v2)

(
∂ f
∂v2

f (v)− f (v2)
∂ f
∂v

)
=

(
b [ f ] (v) f (v)−D [ f ] (v) .

∂ f
∂v

(v)
)
,

where B is the tensor defined in equation (28).
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F.2 Computation of the second cumulant (quadratic part)

In this appendix, in order to compute the second order cumulant of the large deviation Hamiltonian we

use Wick’s theorem to express the four-points correlation functions ES

(
∂V [δgΛ ](1)

∂r
∂V [δgΛ ](2)

∂r δg(1)
Λ

δg(2)
Λ

)
as a sum of products of two-point correlation functions. In such formulas, the superscripts (1) or (2) mean
that the quantities are evaluated at either (r1, t1) and (r2, t2), respectively, or (r1,v1, t1) and (r2,v2, t2),
respectively. We obtain

ES

(
∂V [δgΛ ]

(1)

∂r
∂V [δgΛ ]

(2)

∂r
δg(1)

Λ
δg(2)

Λ

)
−ES

(
∂V [δgΛ ]

(1)

∂r
δg(1)

Λ

)
ES

(
∂V [δgΛ ]

(2)

∂r
δg(2)

Λ

)
=

ES

(
∂V [δgΛ ]

(1)

∂r
∂V [δgΛ ]

(2)

∂r

)
ES

(
δg(1)

Λ
δg(2)

Λ

)
+ES

(
∂V [δgΛ ]

(1)

∂r
δg(2)

Λ

)
ES

(
∂V [δgΛ ]

(2)

∂r
δg(1)

Λ

)

Using (93), we thus obtain
C = Cα +Cβ

with

Cα = lim
N→∞

1
2T

∫
dr1dr2

∫∫ T

0
dt1dt2ES

(
∂V [δgΛ ]

(1)

∂r
∂V [δgΛ ]

(2)

∂r

)
ES

(
δg(1)

Λ
δg(2)

Λ

)
,

and

Cβ = lim
N→∞

1
2T

∫
dr1dr2

∫∫ T

0
dt1dt2 ES

(
∂V [δgΛ ]

(1)

∂r
δg(2)

Λ

)
ES

(
∂V [δgΛ ]

(2)

∂r
δg(1)

Λ

)
.

Due to spatial and temporal homogeneity, the correlations functions only depend on the difference of
the positions and times on which they are computed: ES (V [δgΛ ] (r1, t1)V [δgΛ ] (r2, t2))=CVV (r1− r2, t1− t2),
and ES (δgΛ (r1,v1, t1)δgΛ (r2,v2, t2)) = CGG (r1− r2, t1− t2,v1,v2). We use

ES

(
∂V [δgΛ ]

(1)

∂r
∂V [δgΛ ]

(2)

∂r

)
=− ∂

∂r
∂

∂r
[CVV ] (r1− r2, t1− t2) ,

and apply the result (124) from annex E.3 to find

Cα (v1,v2) =−
1
2

∫
dr1dr2

∫
∞

−∞

dt
∂

∂r
∂

∂r
[CVV ] (r1− r2, t)CGG (r1− r2, t,v1,v2) .

Then, we apply the change of variables (r1,r2)→ (r = r1− r2,r′ = r2), integrate over r′, apply the result
(126) from annex E.3, to obtain

Cα (v1,v2) =
1

2(2π) ∑
k

∫
Γ

dω kkC̃VV (k,ω) C̃GG (−k,−ω,v1,v2) ,

Similarly for Cβ , one obtains

Cβ (v1,v2) =
−1

2(2π) ∑
k

∫
Γ

dω kkC̃V G (k,ω,v1) C̃V G (k,ω,v2) .

Summing these two terms we obtain

C =
1

2(2π) ∑
k

∫
Γ

dω kk
{
C̃VV (k,ω) C̃GG (k,ω,v1,v2)− C̃V G (k,ω,v1) C̃V G (k,ω,v2)

}
. (127)

Let us define A and B as
A ≡ C̃VV (k,ω) C̃GG (k,ω,v1,v2) ,

and
B ≡ C̃V G (k,ω,v1) C̃V G (k,ω,v2) .
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From (84) and (88), A reads

A = 2πδ (v1−v2) f (v1)δ (ω−k.v1) C̃VV (k,ω)

+

(
C̃VV (k,ω)

)2

(ω−k.v1 + iε̃)(ω−k.v2− iε̃)
k.

∂ f
∂v1

k.
∂ f
∂v2

−2πC̃VV (k,ω)Ŵ (k)k.
{

∂ f
∂v1

f (v2)δ (ω−k.v2)

ε (k,ω)(ω−k.v1 + iε̃)
+

∂ f
∂v2

f (v1)δ (ω−k.v1)

ε̄ (k,ω)(ω−k.v2− iε̃)

}
.

Similarly, from (87), we can deduce an expression for B

B =

(
2πŴ (k)
ε (k,ω)

)2

f (v1) f (v2)δ (ω−k.v1)δ (ω−k.v2)

+

(
C̃VV (k,ω)

)2

(ω−k.v1− iε̃)(ω−k.v2− iε̃)
k.

∂ f
∂v1

k.
∂ f
∂v2

−2πC̃VV (k,ω)Ŵ (k)k.
{

∂ f
∂v1

f (v2)δ (ω−k.v2)

ε (k,ω)(ω−k.v1− iε̃)
+

∂ f
∂v2

f (v1)δ (ω−k.v1)

ε (k,ω)(ω−k.v2− iε̃)

}
.

To compute the second cumulant from (127), we are specifically interested in the difference A −B. Let
us split this difference into five terms, labelled ∆1,... ∆5 with

∆1 = 2πδ (v1−v2) f (v1)δ (ω−k.v1) C̃VV (k,ω) ,

∆2 =

(
C̃VV (k,ω)

)2

ω−k.v2− iε
k.

∂ f
∂v1

k.
∂ f
∂v2

{
1

ω−k.v1 + iε̃
− 1

ω−k.v1− iε̃

}
,

∆3 = 2πC̃VV (k,ω)Ŵ (k)k.
∂ f
∂v1

f (v2)δ (ω−k.v2)

ε (k,ω)

{
1

ω−k.v1− iε̃
− 1

ω−k.v1 + iε̃

}
,

∆4 = 2πC̃VV (k,ω)Ŵ (k)k.
∂ f
∂v2

f (v1)δ (ω−k.v1)

ω−k.v2− iε̃

{
1

ε (k,ω)
− 1

ε̄ (k,ω)

}
,

and

∆5 =−
(

2πŴ (k)
ε (k,ω)

)2

f (v1) f (v2)δ (ω−k.v1)δ (ω−k.v2) ,

such that

C =
1

2(2π) ∑
k

∫
Γ

dω kk{∆1 +∆2 +∆3 +∆4 +∆5} . (128)

The first term ∆1 is already explicit, there is nothing more to do. For the other terms, we will use the fact
that for any complex number z, we have z− z̄ = 2iℑ(z) . For ∆2, using the Sokhotski-Plemelj formula
(119), we have

1
ω−k.v1 + iε̃

− 1
ω−k.v1− iε̃

=−2iπδ (ω−k.v1) ,

and then,

∆2 =−2iπδ (ω−k.v1)

(
C̃VV (k,ω)

)2

(ω−k.v2− iε̃)
k.

∂ f
∂v1

k.
∂ f
∂v2

.

We can notice that the imaginary part of ∆2 is odd in (k,ω), whereas its real part is even. Given how ∆2
comes into play in the expression of the second cumulant (128), only the real (and even) part of ∆2 will
contribute to the second cumulant, and

ℜ(∆2) = 2π
2
(
C̃VV (k,ω)

)2
k.

∂ f
∂v1

k.
∂ f
∂v2

δ (ω−k.v1)δ (ω−k.v2) .
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In a similar way, we can prove that only the real parts of ∆3 and ∆4 contribute to (128) and that

ℜ(∆3) =−4π
3C̃VV (k,ω)

Ŵ (k)2

|ε (k,ω)|2
k.

∂ f
∂v1

f (v2)δ (ω−k.v1)δ (ω−k.v2)
∫

dv′ k.
∂ f
∂v′

δ
(
ω−k.v′

)
,

and

ℜ(∆4) =−4π
3C̃VV (k,ω)

Ŵ (k)2

|ε (k,ω)|2
k.

∂ f
∂v2

f (v1)δ (ω−k.v1)δ (ω−k.v2)
∫

dv′ k.
∂ f
∂v′

δ
(
ω−k.v′

)
.

To compute the contribution of ∆5, let use this simple identity

1
ε2 =

1
ε2 −

1

|ε|2
+

1

|ε|2
.

And in a similar way that we did for the other terms, we notice that

1
ε2 −

1

|ε|2
=

1

ε |ε|2
{ε̄− ε}= −2iℑ(ε)

ε |ε|2
.

Then, the fifth term ∆5 reads

∆5 =
2iℑ(ε)

ε |ε|2
(
2πŴ (k)

)2 f (v1) f (v2)δ (ω−k.v1)δ (ω−k.v2)

−

(
2πŴ (k)
|ε (k,ω)|2

)2

f (v1) f (v2)δ (ω−k.v1)δ (ω−k.v2) .

Once again, with parity arguments we can show that only the real part of ∆5 contributes to (128), that is to
say

ℜ(∆5) =
2ℑ(ε)2

|ε|4
(
2πŴ (k)

)2 f (v1) f (v2)δ (ω−k.v1)δ (ω−k.v2)

−

(
2πŴ (k)
|ε (k,ω)|2

)2

f (v1) f (v2)δ (ω−k.v1)δ (ω−k.v2) .

Thanks to this analysis, we can compute C as following

C =
1

2(2π) ∑
k

∫
Γ

dω kkℜ{∆1 +∆2 +∆3 +∆4 +∆5} . (129)

Furthermore, the quadratic term of the Hamiltonian H(2) is linked to this cumulant via the following
formula

H(2) =
∫

drdv1dv2
∂ p
∂v

(v1)
∂ p
∂v

(v2) : C(v1,v2). (130)

Using equations (122, 84, 129, 130), we can show that

H(2) =
∫

drdv1
∂ p
∂v

(v1)
∂ p
∂v

(v1)D(v1) f (v1)

−
∫

drdv1dv2
∂ p
∂v

(v1)
∂ p
∂v

(v2) : B[ f ](v1,v2) f (v1) f (v2)

+
∫

drdv1dv2dv3dv4
∂ p
∂v1

∂ p
∂v2

B(2) (v1,v2,v3,v4)

{
f (v1) f (v2)

∂ f
∂v3

∂ f
∂v4

−2 f (v1)
∂ f
∂v2

f (v3)
∂ f
∂v4

+
∂ f
∂v1

∂ f
∂v2

f (v3) f (v4)

}
, (131)

with

B(2) (v1,v2,v3,v4) = 2π
3
(

λD

L

)3

∑
k

∫
dω kkkk

Ŵ (k)4

|ε (k,ω)|4
4

∏
i=1

δ (ω−k.vi) , (132)

being a fully symmetric order-4 tensor.
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G Expression of the fourth cumulant

In this appendix, we report the result of the computation of H(4) the contribution of the fourth-cumulant to
the large deviation Hamiltonian :

H(4) =
∫

drdv1 . . .dv6 f (v2) f (v3)B(3) ∂ p
∂v1

∂ p
∂v2

∂ p
∂v3

(
4
{

∂ p
∂v4
− ∂ p

∂v3

}
∂ f
∂v1

f (v2) f (v3) f (v4) f (v5)
∂ f
∂v6

+

{
∂ p
∂v4

+
∂ p
∂v3

}(
∂ f
∂v1

∂ f
∂v2

f (v3) f (v4) f (v5) f (v6)− f (v1) f (v2) f (v3) f (v4)
∂ f
∂v5

∂ f
∂v6

))
+
∫

drdv1 . . .dv8
∂ p
∂v1

∂ p
∂v2

∂ p
∂v3

∂ p
∂v4

B(4)
{

f (v1) f (v2) f (v3) f (v4)
∂ f
∂v5

∂ f
∂v6

∂ f
∂v7

∂ f
∂v8

−4
∂ f
∂v1

f (v2) f (v3) f (v4) f (v5)
∂ f
∂v6

∂ f
∂v7

∂ f
∂v8

+6
∂ f
∂v1

∂ f
∂v2

f (v3) f (v4) f (v5) f (v6)
∂ f
∂v7

∂ f
∂v8

−4
∂ f
∂v1

∂ f
∂v2

∂ f
∂v3

f (v4) f (v5) f (v5) f (v6) f (v7)
∂ f
∂v8

+
∂ f
∂v1

∂ f
∂v2

∂ f
∂v3

∂ f
∂v4

f (v5) f (v6) f (v7) f (v8)

}
. (133)
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