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Abstract

The kinetics of contact processes are determined by the interplay among local mass transfer
mechanisms, spatial heterogeneity, and segregation. Determining the macroscopic behavior of a
wide variety of phenomena across the disciplines requires linking reaction times to the statistical
properties of spatially fluctuating quantities. We formulate the dynamics of advected agents in-
teracting with segregated immobile components in terms of a chemical continuous time random
walk. The inter-reaction times result from the first-passage times of mobile species to and across
reactive regions, and available immobile reactants undergo a restart procedure. Segregation leads

to memory effects and enhances the role of concentration fluctuations in the large-scale dynamics.
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¢ I. INTRODUCTION

7 Mass-action reactions find applicability as population dynamics models of contact pro-
s cesses between agents, spanning biological processes [1], epidemiology [2], ecology [3], quan-
o tum molecular dynamics [4], and chemical reactions in geological media [5]. The large-scale
10 dynamics of such processes are determined by the interplay between local mechanisms,
u spatial heterogeneity, and segregation. Transport limitations under segregation and spa-
12 tial heterogeneity lead to inter-reaction times which are related to the first encounter time
13 between reactants [6-10]. Broad reaction times result in mesoscopic dynamical coupling
11 between transport and reaction due to memory effects [11, 12]. In turn, the large-scale
15 behavior may involve non-classical, fluctuation-driven kinetics [13-15], broad reaction rate
16 distributions [16], time-dependent reaction rates [17], and time-nonlocal kinetics [12]. The
17 concept of residence time and its role in reactive transport have received much attention,
18 in particular in hydrogeological applications [18, 19]. This has led to the formulation of
19 large-scale dynamics in terms of so-called stochastic-convective streamtube models, where
2 reactive transport in the presence of physical and chemical heterogeneity is represented in

2 terms of an ensemble of streamtubes [20-23].

»  The classical picture for stochastic reactions, corresponding to the Gillespie algorithm [24],
23 assumes complete reactant mixing. It leads to exponential inter-reaction times and predicts
2 the classical mass-action rate laws for large reactant numbers [25-27]. The recently proposed
25 chemical continuous time random walk (chCTRW) framework allows for more general inter-
2 reaction times, leading to a broader class of large-scale rate laws including time-nonlocal
2 kinetics [28]. However, linking disorder properties, mass transfer, and inter-reaction times,
2 a fundamental step towards the understanding and quantification of the emergence of large-
20 scale kinetics in the presence of spatial heterogeneity and reactant segregation, remains in

5 general an open problem.

a1 This work develops this link for advective transport under spatial chemical disorder. We
2 consider segregated immobile reactants, which react with mobile components. Inter-reaction
3 times relate directly to first-passage times (FPTs) of mobile reactants to and across reactive
s regions. Upon encountering a reactive region, mobile components come into contact with
35 the locally-available reactants. As we will see, this corresponds to a restart of the immobile

3 reactants according to the original resident copy numbers. Processes under restart have
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Figure 1. Illustration of the model segregation structure. The velocity V' of mobile species (pro-
portional to black bar length) is constant along each separate trajectory and distributed across
trajectories. Mass evolves according to reaction in reactive regions (blue), interspersed with non-

reactive regions (yellow), both of distributed length.

received considerable attention in the context of chemical reactions and in particular as a
framework for optimizing search strategies [29-32].

We derive a generalized master equation [33] for the chemical kinetics using the chCTRW
framework, which we generalize to account for restart and parameterize in terms of the het-
erogeneity. The corresponding large-scale kinetics exhibit memory effects, and fluctuations

about the average concentration play a role at large scales.

II. MODEL

We consider mobile reactants advected along separate trajectories. Advective velocity V'
is constant in each trajectory, and independent and identically distributed (i.i.d.) accord-
ing to a probability density function (PDF) £(-) across trajectories. Additional reactants
are confined to certain regions, see Fig. 1. We term these reactants immobile and these
regions reactive. The latter are treated as well-mixed batch reactors, such that the chemical
dynamics within proceed according to the classical Gillespie algorithm [24].

The length L, of reactive regions is an i.i.d. random variable distributed according to
the PDF p,(-). The well-mixed assumption is difficult to justify if p, has infinite moments.
Instead, we assume L, is characterized by a finite mean ¢,., and for simplicity we set p,(¢) =
e /% /0,.. Segregation of immobile reactants is characterized by the PDF p.(-) of non-
reactive region lengths L. between reactive regions, which are also i.i.d. We distinguish the

cases of mild segregation, corresponding to finite inter-reactive-region mean distance /.., and
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strong segregation, corresponding to infinite mean distance, p.(¢) ~ (£/£.)17P /[€|T(=B)|]
for ¢ > (., where I'(+) is the gamma function, £, is a characteristic length, and 0 < 5 < 1 [34].
We assume in what follows that mobile reactants begin within a reactive region to simplify
the exposition. The general case of start in an arbitrary region, as illustrated in Fig. 1, can
readily be treated in the framework developed below by including an additional waiting time

until the first reaction, corresponding to the time to reach the first reactive region.

The idealized model set forth here retains the key features of segregation and will allow us
to develop a quantitative model of its impact on chemical reactions. We consider in general
a set of m, species S;, j = 1,...,mg, which are subject to m, reactions, Zgnzsl Ti;S; —x,
Z;n:sl pijSj, i =1,...,m,. Each reaction is characterized by its stoichiometry, with r;; (p;;)
denoting the number of reactants (products) of species j consumed (produced) by reaction
i. Furthermore, each reaction is associated with an intrinsic (microscopic) reaction rate
r; which fully determines its behavior under well-mixed conditions. All reactions involve
immobile reactants, so that no reaction occurs outside reactive regions. The chemical state
N (t) describes the number of mobile and immobile reactants of each species at time ¢. The
net change in chemical state due to reaction i is described by the stoichiometry vectors
s; = p; — ;. Sub- or superscripts M, I mark quantities relating to mobile and immobile
components, respectively. For example, the chemical state is decomposed into mobile and

immobile components as N = (N, N7) and the stoichiometry vectors as s; = (sM, s!).

Throughout, we denote the Laplace transform by a tilde, the Laplace variable by A, and
ensemble averages (across trajectories) by angled brackets. A vertical bar is used to denote

conditioning.

We introduce also some key quantities governing the dynamics. The mean time spent
in a reactive region at velocity v is u(v) = ¢, /v, so that 1/u(v) is the probability per unit
time for mobile reactants to exit a given reactive region and experience the delay induced
by the subsequent non-reactive region. Reactive patches are associated with a Damkohler
number Da(v) = u(v)a(m) /7, where 7 are characteristic copy numbers of each species (e.g.,
the initial state) and 7 is an overall characteristic copy number (e.g., the average of 7 across
components or a component of interest). This dimensionless number is the ratio of the
characteristic transport and reaction times in a single reactive region. Finally, the ratio of

characteristic non-reactive and reactive region lengths is denoted by a = £./¢,.

4



g7 III. QUALITATIVE DYNAMICS OF REACTION UNDER SEGREGATION

ss In order to motivate the general theory developed below, we first illustrate the im-
g0 pact of segregation on the large-scale kinetics of the mobile-immobile degradation reaction
o Sy + S —w I, where Sy, is mobile and S; is immobile. We consider both mild and

1 strong segregation, specifically with exponential and Lévy-stable [34] inter-reactive region

©

©

» lengths. For simplicity, we set a fixed velocity V' = v and a fixed number of initial immobile

components mny ; in each reactive region.

©
«

a  We consider an instantaneous, point initial injection of mobile components, and we sim-

s ulate their average degradation under segregation for large particle numbers. When char-

©

s acteristic reactant numbers m — oo, we may define continuous (number) concentrations

7 C(t) = N(t)/m. We take 7 as the average initial number of reactants. The reaction in reac-

©

s tive patches then proceeds according to the well-mixed rate laws. For nj; ; mobile/immobile
o particles under well-mixed conditions, there are nj;n; mobile-immobile particle pairs avail-
1o able for reaction. The reaction between each pair proceeds at the microscopic reaction rate
1 k. The reaction between some pair thus proceeds at a rate a(n) = knymn;. In terms of

» concentrations, the well-mixed rate laws are thus given by

deiipi () wm )
% = —rCe ()™ (1), (1)

= Nk is a macroscopic reaction rate associated with well-mixed concentration de-

1

o

103 where k¢

14 cay. The analytical solution of this equation, along with details on the numerical simulations
10s under segregation, is given in Appendix A.
s The solid lines in Fig. 2 show the ensemble-averaged mobile concentrations ¢,,(t), nor-

1

o

7 malized by the initial concentration cg s, as a function of time t for different values of
108 Damkohler number Da = /iC,qu 1, where ¢g ; is the initial immobile concentration in each
100 reactive region. The evolution of concentration presents qualitative differences in the func-
1o tional form of the decay with varying Damkoéhler number. For mild segregation (left panel),
m the decay at low Da is always exponential, but slower-than-exponential decay is present for
12 longer times as Da increases. Under strong segregation (right panel), we observe power-law
3 decay for all finite Da, characterized by the exponent 3 associated with the inter-reactive-
s region lengths. The solutions for a single well-mixed patch, corresponding to the Da — oo
us limit, are also shown. In this case, the concentration initially decays faster than in the

ue segregated systems. However, due to depletion of the initial immobile concentration, which
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Figure 2. Temporal evolution of concentration under the full degradation reaction Sys + St —x @
(solid lines) and the catalytic degradation reaction Sy + S; — St (markers), for different values
of Damkohler number Da. The initial conditions for mobile and immobile concentrations are
com =4/3 and ¢p 1 = 2/3. Fixed parameters are @ = 2, v = 4, and k¢ = 2, and Da is set by varying
¢,. Concentrations are averaged over 10° realizations. Left: Mild segregation, with exponentially-
distributed non-reactive region lengths. Right: Strong segregation, with Lévy-stable-distributed

non-reactive region lengths with exponent g = 0.7.

in this example is lower than the initial mobile concentration, reaction then slows down and

the mobile concentration approaches equilibrium.

The impact of segregation on reaction dynamics, illustrated here for this simple degra-
dation reaction, is in general due to two factors. First, reaction is punctuated by times
spent in non-reactive regions, which leads to an effective reaction slowdown. Second, mo-
bile components react only with the locally-available immobile reactants in a given region.
When a reactive region is left and a subsequent one is entered, there is a restart of available
immobile reactants, according to their initially-available concentration. In order to highlight
the role of immobile reactant depletion and restart, the markers in Fig. 2 show the evolution
of mobile concentrations for the catalytic degradation reaction Sy; + S; —, Sy, using the
same parameter values as before. In this case, the immobile component acts as a catalyst,
and it is thus neither consumed nor subject to the effect of restart. For a single well-mixed
patch, in the Da — oo limit, the mobile species’ decay is then purely exponential and always
faster than under segregation. However, as Da — 0, corresponding to negligible reaction
within each single region, the decay of mobile concentration becomes identical under the

two reactions.



13 IV. THEORY

14« In what follows, we will discuss and quantify the mechanisms discussed in the previous
135 section. To this end, we develop a general framework for arbitrary reaction dynamics under

136 spatial segregation.

137 A. Catalytic reactions

s We start by examining the case where the immobile components serve as catalysts, i.e.,
150 they participate in the reactions but are not consumed or produced (s! = 0). We further
1o assume for the moment that the immobile reactants are present in identical copy numbers in
11 each reactive region. In this case, the dynamics proceed identically with the classical well-
12 mixed scenario, except the periods of availability of reactants are punctuated by waiting
113 times due to segregation. We proceed to find the chCTRW description of this system in
s terms of a generalized master equation, starting from the determination of the inter-reaction

145 times.

146 1.  Inter-reaction times

1wz The lack of memory of the exponential distribution implies that the distribution of dis-
s tances to the end of reactive regions, starting from any point within a reactive region, has the
10 same length distribution as the full regions [27]. Thus, it is sufficient to study inter-reaction
1s0 times starting at the beginning of reactive regions.

51 Consider a given chemical state N () = n and velocity V = v. For advective transport,
152 the FPT across reactive/conservative regions is given by the crossing time L,./v. Thus,
153 the corresponding PDF's are given by ¢, .(t|v) = vp,..(vt). Following chCTRW theory, we
154 write the inter-reaction times as 7(n,v) = 7,(n) + 7.(7.,v). The intrinsic reaction time 7,
15 Tepresents reaction in the absence of segregation. It depends on the current chemical state
156 and corresponds to time spent in reactive regions, where reaction proceeds according to the
157 classical well-mixed theory. Let ¢](t|n) dt represent the joint probability that, in the absence
18 of segregation, reaction 1 < i < m, fires next and after a waiting time in [¢,¢ + dt]. Then,
159 7,(n) has PDF ¢"(t|n) = >, ¢} (t|n) (see Appendix B for a brief overview of the well-mixed

160 description). The additional global delay 7. is caused by segregation. It corresponds to

7



161 time spent in non-reactive regions, which is fully determined by the current 7. and does
12 not depend further on the chemical state. Specifically, a given time 7, = ¢, corresponds to
163 fully traversing a certain number 7(t,, v) of reactive regions, and 7.(¢,,v) = Z(:t’l"v) L.y/v,
160 where the L.y are i.i.d. according to p.. For exponential reactive lengths, 7(t,,v) is Poisson-
16s distributed, as shown in Appendix C. Thus, segregation leads to a compound-Poisson inter-

166 reaction delay. According to [28], the full inter-reaction time density is then related to the

167 intrinsic inter-reaction time density by

6i(Aln,v) = ¢ [N/ K (Av)|n, v], (2)
168 Where B

- B 1 — b (\|v)

K(\v) = [1 L e ] (3)

160 is the Laplace transform of a memory kernel, as we will see shortly.

170 2.  Generalized master equation

i We first define the probabilities ;(n|n’) of reaction i yielding the chemical state n, given

12 the starting state n’. The change in state is given by the stoichiometry vector s;. Thus,
Vi (n|n/) = 5n,n’+sm (4)

113 where .. is the Kronecker delta. According to the general theory developed in [28], the
s generalized master equation for the ensemble-averaged propagator of the chemical state,

175 given initial state my and velocity v, is then given by

M ZZ/dt’ Yi(n|n') = 0y ]

n'>0 i= 1O

X M;(t —t'|n',v)p(n', t'|ng, v), (5)

176 where the Laplace transforms of the memory functions are given in terms of the inter-reaction

177 time densities as

Agi(A|n, v)
1= gb,()\|n v)
s Using Eq. (13) together with the well-mixed description, we obtain

]\;[i()\]n,'u) (6)

M;(Aln,v) = K (Av)ai(n), (7)



w9 with a;(n) = k;hi(n) and a(n) = " a;(n), where the x; are microscopic rate constants
150 and the h;(n) encode the dependency of the rates on the state. In the absence of segregation,
01 Y, (t) = 0(t). Equation (3) with 1.(\) = 1 leads to K(A|v) = 1, and therefore K (t|v) = (t).
122 This recovers the classical chemical master equation [25]. We thus see that K plays the
183 role of a memory kernel describing reaction slowdown due to segregation. Reactions under
18s compound-Poisson delay, and corresponding simulation techniques to solve the generalized
155 master equation (5), are discussed in general terms in [28]. Note that for catalytic reactions,
186 8/ = 0 implies immobile copy numbers do not change, and it is sufficient to consider the
187 evolution of the mobile components.

188 As an example, consider the catalytic degradation reaction introduced in Section III.
10 We have hi(n) = nymy, the number of pairs of mobile-immobile particles, and a(n) =
wo a1(n) = knymny. The intrinsic waiting time density is given by ¢f(t|n) = a(n)expla(n)t],
1o and the single memory function is M;(A|n,v) = K(Av)a(n). The stoichiometry vector is

102 81 = (—1,0). Thus, the master equation for the mobile components becomes

¢
0 ,t ’ / !
% - —/dt K(t—t)[a(nM,no,I)P(nM,t>

0

, (8)

—a(ny + 1,n01)p(na + 1,t)

113 where we have omitted the dependency on the initial condition and v for notational brevity.
1wsa  The ensemble-averaged probability of a given state at a given time is in general obtained
105 by averaging over velocities and initial conditions. Denote by v/ (+|v) the initial distribution
196 of mobile components at injection and by v;(|v) the initial distribution of immobile reactant
107 numbers across reactive regions, given velocity v. The initial copy number distribution at
10s the first reactive region is thus y(n|v) = vy (na|v)yr(nsv). For equal initial immobile
19 component copy numbers mg; in each reactive patch, yr(n|v) = dnn,,. The probability
200 of finding the state N (t) = m at time t is p(n,t) = (p[n,t|Ny(V),V]), where for each
20 V' = v the initial condition INy(v) is distributed according to v(-|v). We note also that
202 the propagator contains all necessary information to compute spatial quantities. Spatial
203 distributions may be obtained by multiplying the propagator by the probability that mobile
204 Teactants are at position x at time ¢ before averaging, which, assuming mobile species start

205 at © = 0 at t = 0, is given here by the Dirac delta §(x — V't). Similarly, concentrations fluxes

9



206 at a control plane at distance x as a function of time ¢ are obtained by multiplying by the

207 FPT to distance z, given here by §(t — z/V).

208 B. General reactions

200 We now study the general case where reactions may involve net production or consump-
210 tion of immobile components, and where different reactive regions may initially comprise
an different copy numbers of immobile reactants. In this case, as the mobile reactants reach
212 each reactive region, they encounter the initial resident copy numbers. These are then de-
213 pleted or produced according to reaction. Once the mobile components exit a given reactive
214 Tegion and arrive at the subsequent one, they again encounter resident copy numbers accord-
215 ing to their initial distribution. This leads naturally to the concept of restart of immobile
216 components. Developing a generalized master equation for these dynamics thus requires

217 generalizing the inter-reaction times to account for restart.

218 1.  Inter-reaction times under restart

20 In order to make use of the techniques developed in [28], we require that the dynamics
220 be a Markov process in reaction step. For exponential reactive region lengths, whenever a
2z reaction fires, the leftover reactive region length is identically distributed with the full region
222 length, as discussed above. However, if the initial number of immobile reactants depends on
223 the reactive region length, the number of immobile reactants then gives information about
24 the region length, and the inter-reaction times are no longer independent of past history.

25 We assume here that this is not the case.

»s  Consider a given chemical state N (t) = n, velocity V' = v, and lengths of a consecutive
27 reactive/non-reactive region pair L,.. The effect of restart may be treated as a special
28 reaction, which we number ¢ = 0. It fires after a time L, /v and leads to restart of the
29 immobile components after a time (L, + L.)/v. The next reaction to fire is the one with the
23 minimum inter-reaction time, including restart. The inter-reaction time densities, given the
an chemical state, velocity, and region lengths, are defined such that ¢;(t|n,v, L, L.) dt is the

23 joint probability of reaction ¢ firing and the inter-reaction time being in [t, ¢ 4 dt]. Under

10



233 Testart, we write

¢i(tln, v, Ly, Le) = bi(n, v, Ly)dpi(t[n, v, Ly, L), (9)

2 where b;(n,v, L,.) is the propensity of reaction i, i.e., the probability that it fires next, and

25 @i (+|n, v, Ly, Lc) is the inter-reaction time PDF of reaction i given that it will fire next.

26 Restart occurs if the minimum reaction time is larger than the restart time L,/v. This

2 happens with probability |, Lof Jo At ¢"(tin) = exp[—a(n)L,/v]. Otherwise, with probability

2 1 — exp[—a(n)L,/v], the normal reaction with the minimum inter-reaction time fires. Thus,
c—a(m)L, /v

bi(n,v, L,) = . (10)
[1 _ e—a(n)L7./v] ai(n)

230 Here and in what follows, the first case refers to i = 0 (restart), and the second to 1 < i < m,
20 (regular reactions). The inter-reaction time PDFs must also be conditioned on ¢ < L, /v for
2 the regular reactions, and the waiting time associated with restart is (L, + L.)/v, so that
IO
¢|i(t’n7U7LT7LC) = ) (11)
a(n) exp[—a(n)t] H (& N t)

1—exp[—a(n)L,/v] v

22 where H is the Heaviside step function. Thus, according to Eq. (9),

e—a(n)L,./v(s (t _ LT+LC)
¢i(t|n?U>LraLC) = ! . (12)
a;(n)e ™ H (L —¢)

23 Defining ¢;(t|n, v) = (¢;(t|n,v, L, L.)), we find the Laplace transforms

_ by [\ b, (A
G\ v) = Uy | +6f(n)\vw (Alv) | (13)

24 The inter-reaction times are thus fully determined by first-passage properties together with

25 the rates a;(n).

246 2. Generalized chemical master equation under restart

a7 We turn to the generalized master equation incorporating the effect of restart. The transi-

28 tion probabilities v;(n|n') corresponding to the regular reactions remain given by Eq. (4), as

11



29 the effect of these reactions does not change. The effect of the restart reaction, conditioned

250 ON & given velocity v, is characterized by:

Yo(nln',v) = 71(nslv)dn,, m, (14)

51 meaning that mobile reactants remain unaffected, and immobile copy numbers are redrawn
22 from the initial distribution as discussed above. As shown in detail in Appendix D, the
253 generalized master equation corresponding to the dynamics under restart retains the same
24 form as Eq. (5), with the memory functions again given in terms of the inter-reaction time
255 densities according to Eq. (6). However, sums over reactions in both these equations now
26 extend to ¢ = 0, the reaction describing restart, and the inter-reaction time densities are
27 given by Eq. (13). Direct computation shows that the modified inter-reaction times lead
28 t0 the same memory functions for the regular reactions, as given by Eq. (7). Restart is

250 associated with the memory function
My(n|n',v) = K(Av)de(A)/p(v). (15)

260 These results follow from the fact that normal reactions proceed at rate a;(n) in reactive
261 Tegions, whereas restart occurs at rate 1/u(v) and is associated with an additional delay
22 corresponding to traversing a non-reactive region. Realizations of these dynamics may be
23 simulated with recourse to a generalized Gillespie algorithm under restart, which we outline
x4 in Appendix E.

s Consider as an example the full degradation of Section III, with equal initial copy numbers
266 of immobile components ng; in each reactive region. The stoichiometry vector is s; =
o7 (—1,—1), and vy = 0y, . Similarly to Eq. (8) for the catalytic degradation example,

I,no,I(;nM:nﬁw
x%s we find the master equation

t

W = —/dt’K(t —t') [a(nM, nr)p(nar, ng,t')
0

—a(ny + 1,ng + 1)p(nar + 1,07 4+ 1,1) (16)

t

— /dt’ K.(t—1) [a(nM,nI)p(nM,nI,t')
0

— a(nar, no.r)p(nar, no.1, t’)] ,

12



260 where the memory kernel associated with restart is given by the convolution K, (t) =
270 f(f dt' K(t — t')p.(t'), and we have again omitted dependencies on the initial condition and

2711 V.

272 C. Restart and catalytic reactions

o3 Consider equal initial immobile copy numbers in all reactive regions as in Section IV A.
o Since for catalytic reactions s! = 0, immobile copy numbers do not change due to either
275 restart or regular reactions, the ¢+ = 0 term in the master equation is null, and we recover

¢ catalytic dynamics, Eq. (5).

2

<

o7 The catalytic description also plays a role as the limiting behavior for slow reaction. For
o8 small Damkohler number, Da < 1, the dynamics are transport-dominated at the scale of a

a79 single region, meaning that many reactive regions must be visited before appreciable change

<

20 due to reaction can occur. For fixed initial immobile copy numbers, the reset mechanism

281 ensures there is no appreciable change in immobile copy numbers. The catalytic description

@

2

@

2 is then valid for arbitrary reactions, and the subordination formulation of [28] holds. Note

283 also that under these conditions, for arbitrary initial copy numbers, the dynamics are inde-

@

28 pendent of the specific reactive region length distribution as long as it has a finite mean, see

285 Appendix C.

26 D. Large-scale kinetics

27 Next, we obtain the large-scale description corresponding to the mesoscopic master equa-
288 tions developed in the previous sections. In the large particle number limit, we work in terms
20 of concentrations C(t) = N (t)/m as introduced in Section III. Correspondingly, we define
w0 al(e) = kChC (), a(c) = .7 af(e), with k€ = R=i= T”_lmi/HTglrU! the macroscopic

201 rate constants and hf'(c) = [} ¢;”. Note that these quantities are fully defined in terms

202 of their microscopic equivalents. For example, considering again the degradation reaction
23 of Section III, we have k¢ = nik and h¢(n) = cycp, from which a®(¢) = af(c) = k®cacp,
204 the usual rate in the well-mixed rate laws for concentration. The average initial numbers of
205 immobile components for velocity v are denoted by € ;(v) and the average concentrations

206 for initial condition ¢y and velocity v by €(t|egy, v) = (C(t)|co, v).

13



207 1. Dynamical equations

28  In Appendix F, we show that the ensemble-averaged concentrations obey the integro-

200 differential dynamical equations
t

dEM(t|CU7U)
denlicr) /dtK t|vZS )]0, v),

de;(t]eo,v)
derlticn.v) Zs o, v)

— u(v) " [Er(tleo, v) — Co,r(v)] - (17)
s00 Segregation induces memory effects in the form of a convolution with a memory kernel for the
;o1 mobile components. For the immobile components, restart leads to a mean-reverting forcing
sz term. For muld segregation, the memory is short-term, and the late-time rate equations are
s03 time-local, whereas memory is long-range under strong segregation and the late-time rate
304 equations involve non-local fractional derivatives [35].

s In the classical rate laws, fluctuations vanish in the large-particle-number limit and
w6 (aS[C(t)]|co,v) = af[e(t|co,v)] [27]). Here, this is not the case. Under strong segrega-
so7 tion, realizations of the dynamics break ergodicity weakly due to large fluctuations in the
308 inter-reaction times, leading to persistent fluctuations about the average concentrations [28].
500 Under mild segregation, short-term memory effects coupled with the discontinuous changes
s10 in immobile concentrations caused by restart also prevent the fluctuations from vanishing.
sn While equations for higher moments of the concentration can be found by appropriate av-
a2 eraging of the generalized master equation (5), these depend on still higher moments, and
a13 closed rate equations for the average components do not exist in general. In other words, fluc-
s tuations play an important role in the mean behavior, analogous to Ovchinnikov—Zeldovich
us segregation in a bimolecular annihilation reaction among diffusing components [13, 36].
u6 A common approach is to employ moment closure approximations [37, 38], a technique
s1i7 that must be adapted to specific reactions and which we do not explore here. We employ
a1 stochastic algorithms, outlined in Appendix E, to numerically solve for the exact average
s concentration. We note here that the mean-reverting term in the large-scale description
320 of immobile concentration depends only on average concentrations. Thus, the catalytic
a1 description (for catalytic reactions or the low-Damkohler limit of general reactions, see Sec-

2 tions IV A and IV C) holds at the large scale even if initial immobile copy numbers vary
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323 ACTOSS reactive regions.

24 2. Asymptotics

»s  We now examine the asymptotic behavior of the large-scale kinetics. For mild segrega-
w6 tton, under which the inter-reactive-region lengths have a mean, the Laplace transform of
27 the corresponding FPT is approximated by ¢.(Av) &~ 1 — au(v)A for A < 1/[au(v)], cor-
328 Tesponding to large times compared to the mean time to traverse a non-reactive region. To
20 leading order in A < 1/[(1 + a)u(v)] (corresponding to large times compared to the mean

30 time to traverse a reactive and a non-reactive region),

1| 1/n)

1+« ai(n)

M;(\|n,v) = (18)

;31 This leads to time-local equations for the mobile components at late times,

dEM(ﬂC(),U)

o (1+a)u Zs t)]|co, v). (19)

sz For strong segregation, under which the inter-reactive region lengths do not have a mean,
2 we have instead the small-A expansion 1.(Av) &~ 1 —[ou(v)A)?, 0 < 8 < 1. To leading order
s in A << 1/[(1 4 a)u(v)],

- 1/p(v
Mi(Am,v) = p(v)A [ap(v) A~ ) , (20)

a; (n)

135 yielding, at late times, the time-nonlocal equations

mr

= lap(v)] u(v) Y s (af [C(1)]]eo, v), (21)

i=1

dBEM(t|CO, U)
dt?

5 where d”/dt? denotes the Riemann-Liouville fractional derivative of order 3 [35].

37 V. LARGE-SCALE DYNAMICS OF REACTION UNDER SEGREGATION

18 In order to illustrate the main features of the theoretical developments in the context
139 of a particular reaction, let us return to the large-scale dynamics of mobile concentration

s for the degradation reaction Sy; + Sy —, @ introduced in Section III. As the Damkdéhler

15
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Figure 3. Temporal evolution of concentration for Sy;+S7 — @ under mild segregation for different
values of Damkohler number Da. Symbols represent stochastic simulations based on the Gillespie
algorithm (107 initial mobile particles and 5 - 10° immobile particles per reactive region, averaged
over 10° realizations) and solid lines employ the well-mixed rate equations in reactive regions (10°
realizations). Non-reactive region lengths are exponentially-distributed. Fixed parameters are
a=2,v =4, and k¢ = 2, and Da is set by varying ¢,. Dash-dotted lines (overlapping the solid
lines for low Da) are numerical solutions of Eq. (17) using (Cy;C1) = ¢p;¢;. Left: Average mobile
concentration. The dashed line is the analytical solution in the limit of small Damkdéhler. Right:

Concentration fluctuations.

sa number Da(v) = £9u(v)e r(v) — 0, the changes in immobile concentration due to reaction
s in each region become arbitrarily small, so that (CrCy) = € 1(v)(Ch) at all times. Thus,
a3 for small Da, the late-time rate equation for the mobile component under mild segregation
s 18, according to Eq. (19),

dey(t|eo, v) Da(v)

di = —WEM(HC(),U). (22)

us There is no appreciable reaction before the late-time equation is valid, so that the initial

s condition cp pr may be employed, and

_ B ~_ Da(v)t
cM<t|co,v>—cO,Mexp[ —<1+a>ﬂ<v)]. (23)

w7 Under strong segregation, the Laplace transform of the late-time equation (21) is, for
348 Da(v) < 1,

[op(0)A)?

Da(o) ~ LM (Heo ) = o] = —em(Aeo, v). (24)
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Figure 4. Temporal evolution of concentration for Sy; + St — @ under strong segregation for
different values of Damkohler number Da. Symbols represent stochastic simulations based on the
Gillespie algorithm (107 initial mobile particles and 5 - 10¢ immobile particles per reactive region)
and solid lines employ the well-mixed rate equations in reactive regions. All results are averaged
over 10° realizations. Non-reactive region lengths are Lévy-stable-distributed with exponent 3 =
0.7. Fixed parameters are a = 2, v = 4, and k¢ = 2, and Da is set by varying ¢,. Left: Average
mobile concentration. The dashed line is the late-time analytical solution in the limit of small

Damkohler. Right: Concentration fluctuations.

a9 Noticing that, for small A\, the initial-condition term on the left-hand side dominates, and

'y

3

a

o inverting the Laplace transform,

— ~ Co,M t -
oultens) sttt [ cor] >

st Simulation results for mild segregation are shown in Fig. 3 and for strong segregation
2 in Fig. 4. We consider for concreteness exponential p. for mild and Lévy-stable p. for

353 strong segregation, as before. Note that, unlike in Fig. 2, time is nondimensionalized so

a1

54 as to highlight the collapse of the low-Damkohler behavior onto the Da-independent curve
35 valid for both the full degradation reaction and the catalytic degradation reaction Sy; +
36 S —, S7. Under this nondimensionalization, higher Da leads to slower decay due to the
ss7 effect of depletion of the immobile component. We compare a full stochastic algorithm
358 employing the Gillespie method in reactive regions to a more efficient algorithm, valid for
39 large particle numbers, which makes use of the well-mixed rate equations as in Section III
0 (see Appendix E). The results are in very good agreement.

30 For mild segregation, simulations suggest that (C1Cy) =~ ¢y (v)(Ch) holds at late times,

32 as expected under finite-mean inter-reaction times (see the right panel of Fig. 3). Thus,
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363 the late-time concentration for each velocity v decays in general exponentially as argued
s above, but the leading coefficient differs because the appropriate initial condition for the
35 late-time equation depends on the dynamics before it becomes valid. However, for large Da,
w6 the exponential asymptotic regime is not observed, as the concentration reaches very small
se7 values before it occurs. We show also the solution obtained by numerically integrating the
s closed rate equations obtained by setting (Cy,C;) = ¢y ¢y in Eq. (17) (see Appendix F).
30 [ts breakdown for Da 2 1 is due to the role of concentration fluctuations. Even though the
;0 fluctuations vanish at late times, they have an irreversible impact on the total reaction.

sn Under strong segregation, the leading coefficient varies with Da for two reasons. First,
;2 the initial condition to be used with the asymptotic equation differs as above. Second,
w3 the weak ergodicity breaking displayed by the inter-reaction times impedes (Cr(t)Ch(t)) —
s Co,1(C(t)) for late times, because there is a sufficiently high probability that C)(f) remains
s large due to long non-reactive regions. Nonetheless, simulations suggest that (C;(t)Ch(t)) o
w6 Cr(t)enr(t) = o rep(t) at late times for all values of Da, see the right panel of Fig. 4, so that

577 the power-law behavior o< t=? remains unaffected.

ss VI. CONCLUSIONS

so The link between first-passage and inter-reaction times connects the kinetics of contact
ss0 processes to spatial heterogeneity and segregation. We have quantified this link for advective
;a1 transport under spatial segregation of immobile components and formulated the reaction
;2 dynamics in terms of a generalized master equation. The evolution of total mass may be
383 obtained from this description, and mass fluxes and spatial reactant distributions may also
s be easily computed.

s In contrast to the classical picture for well-mixed reactions, the resulting large-scale ki-
386 netics cannot be fully quantified in terms of the dynamical equations obtained by averaging

ss7 over the chemical master equation. This is due to the presence of concentration fluctuations

3]

;s on the order of the average values, which result from a combination of the restart mech-
;0 anism and memory effects, both caused by segregation. For this reason, closed-form rate

s00 laws valid for all times do not exist in general. In the case of strong segregation, character-

©

sa1 ized by infinite-mean inter-reactive-region distances, memory is long-range and induces weak

102 ergodicity breaking across trajectories, a typical feature of anomalous transport [39-44].
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33 Future work will focus on extending this approach to more complex transport processes,
300 including effects such as variable velocity within each trajectory [45, 46] and local mixing
15 (e.g., diffusion). Moment closure approximations for the rate equations will also be the

306 subject of further study.
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w00  Appendix A: Well-mixed degradation kinetics

w1 Consider the degradation reaction Sy; + S —, @ introduced in the main text. In a
w02 well-mixed reactor, the kinetic rate laws are given by Eq. (1). For equal initial conditions,

w03 ¢ = (o, Co,r) With ¢o v = co1 = o, the solution is

Co
A P —— Al
CM,I( o) 1+ rCool (A1)

a0s For ¢o v # o 1, setting cpax = max{cyy™, ™} and cyin = min{cy", cf™},

C
Cnin(t1€0) = Coming(t, c)e™™ H(Omax—comin),
(A2)

Cmax(t|co) = CO,maxg(ta Co),

a5 Where

Co,max — CO,min (A3>

7"fct(00,max700,min)

g(t7 CO) =
Co,max — CO,min€

ws  The simulations of the evolution of concentration due to this reaction in the presence
a7 of segregation proceed as follows. A reactive region length ¢ is generated according to the
ws PDF p,. The solution of the well-mixed rate laws is then applied to obtain the evolution
a0 of concentrations for a time interval ¢/v. Then, a non-reactive region length ¢’ is generated
a0 according to p., and no reaction occurs for a time interval ¢ /v. This procedure is iterated up
a1 to a desired time, with the initial condition for the well-mixed rate laws in each reactive patch
a2 being set according to the current mobile concentration and the initial resident immobile

413 concentration.
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as  If one considers instead the catalytic degradation reaction Sy; +S8; — Sy in a well-mixed
a1s reactor, the immobile species concentration does not change and remains equal to ¢y ;. The
a6 rate law for the mobile component is the same as before, and we obtain

C

M (tley) = e oIt (A4)

a7 The simulations under segregation proceed in the same manner as above, using this solution

a5 for the mobile concentration.

219 Appendix B: Intrinsic inter-reaction times

20  This Appendix provides a brief review of the intrinsic inter-reaction times, which char-
a1 acterize reactions in the absence of segregation. These correspond to the classical stochas-
a2 tic theory of well-mixed reaction [24]. Consider a given chemical state n. Each reac-
w23 tion ¢ = 1,...,m, considered in isolation has an exponential inter-reaction time with rate
2 a;(n) = K;h;(n), where k; is a (microscopic) rate constant and h;(n) encodes the dependency

a5 on the chemical state. For mass-action reactions,

ms
: n;!

hi(n) = S AAE— (B1)
‘ H n-j!(nj - Tz‘j)!

a6 It follows from the exponential character of reaction times, and the fact that the next reaction

227 to fire is the one with the minimum waiting time, that the inter-reaction time density is

orltm) = % () (B2)
28 where a(n) = > a;(n), and
¢'(tln) = a(n)e~*"", (B3)

no with ¢"(t|n) dt the probability that the inter-reaction time is in [t,¢ + dt[. The Laplace
a0 transform of the inter-reaction time density is thus

a;(n)

ng(M") = ra(n)-

(B4)

21 Appendix C: Number of traversed reactive regions

s  Here, we determine the distribution v,.(:|t,,v) of the number 7,.(t,,v) of fully traversed

a33 Teactive regions between reactions, given time ¢, spent in reactive regions and velocity v.

20



¢ The length traversed in time ¢, is vt,. The number 7,.(t,,v) of reactive regions traversed in
435 this time is such that their total length is smaller than vt,., but the total length of n,.(¢,,v)+1

a36 Tegions is larger than vt,.. Thus,

ve(klt,,v) = <H (vtr — Z Lnk/>

k'=1
k+1
x H (Z Ly — Utr> > (C1)
k=1

s7 where H is the Heaviside step function and the L, are i.i.d. according to p,. Conditioning

a8 on the total length of the first k regions, we obtain

v (klt,,v) = /Tdﬁ <(5 (f — Zk: Lr,k)>

0 k'=1
X / e’ p,(0). (C2)
vty —4

a0 Taking the Laplace transform with respect to t,,

1— z/NJ,.()\|v)
A

wo Thus, using p,(¢) = e~ /(, and 1,(t|v) = vp,(vt), we have 7,(k|\, v) = p(v)[1+ p(v)A]7F,

vy (kA v) = e (Afv)". (C3)

w1 with p(v) = £, /v. Inverting the Laplace transform,

vty ) = LA ot ()

a2 s0 that n,(t.,v) is Poisson-distributed with mean ¢, /u(v).

a3 Note that, as long as reactive region lengths have a finite mean ¢,., we have, for small
s A < 1/p(v) (corresponding to the large t, > p(v) limit), 1, (A|v) = 1—p(v)A = 1/[14-u(v) ],
ws the Laplace transform of the exponential density. Thus, the distribution of the number of
us traversed reactive patches is always approximately Poisson for large ¢,.. Since typical reaction
a7 times are large when the Damkohler number is low, as explained in the main text, the specific

ag distribution of reactive lengths does not play a role in that case.

449 Appendix D: Generalized master equation under restart

0  Consider the process K(t), which describes the number of reactions as a function of

w1 time, and write Ny = N(t). We have K(t) = sup{k | T} < t}, where T} is the time
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w2 of the kth reaction. The propagator can then be written as p(n,t[ng,v) = (dn.Ny, 120, V).

ss3 Conditioning on K (t) = k and T}, = t/,
p(n, t|ng, v) /dtz aNO(Th — ')
k>0
X H(t —t")H[m, — (t — t')]|no, v), (D1)

s with the inter-reaction times 7, = Ty 1 — T} independent of Tj. Thus,

t

pncting,o) = [t 3" Rufn. ¥, o)

0 k>0

«3 / dt" 64(¢" I v), (D2)
=0,y

sss where Ry (n, t|ng, v) = (0n.n, 0(T) — t)|no, v) is the probability per time of arriving at state
w6 v at time ¢ given k reaction steps. The dynamics are Markov in reaction step number k,

s7 and Ry(n, t|ng, v) solves the Chapman-Kolmogorov equation
Rii1(n, t|ng, v) /dt Z Z% n|n’,v)
n/>0 =0
X ¢;(t —t'|n’,v)Ri(n', 1), (D3)
sss with Ro(n, t|ng, v) = Onn,d(t), vi(n|n',v) = vi(n|n’) given by Eq. (4), and vo(n|n’, v) given
w0 by Eq. (14). Laplace transforming Eqs. (D2) and (D3) summed over k,
R(n, A\ng,v) = dnng

+ZZ% n|n’,v)o;(\n', v)R(n/, A|ng, v), (D4)

n’>0 1=0

ﬁ(nﬁ )“n07 U) = R(nv )\|n07 ) Z )\(él()\ln v)a

wo where R(n, t|ng,v) = >, Rr(n,t|ng,v). Eliminating R, we find

)‘ﬁ(na)\’n(h - nno Z Z Vi n‘n U ]

n'>0 =0
x M;(An/,v)p(n', \|ng, v), (D5)
w1 where M;(\|n, v) is given according to Eq. (6), for all 0 < i < m, and with the sum extending

w62 to ¢ = 0. Laplace inversion leads to the same form as the generalized master equation (5),

a3 With the sum extending to 7 = 0.
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464

465

Appendix E: Stochastic simulation algorithms

We describe a generalized Gillespie algorithm that takes into account restart as described

w6 in the main text. Velocity v is to be sampled from the PDF £(-). In order to simulate

s7 dynamics up to time ¢,, (or distance /,,), the following algorithm should be repeated for a

s prescribed number of realizations:

469

470

471

472

473

474

475

476

477

1.

Set time t = 0 (or distance ¢ = 0). Generate n according to the initial state distribu-

tion.
Generate (1 according to p, and At, according to ¢"(-|n), see Eq. (B3).

Find the next reaction ¢: If At, > ¢;/v set i = 0. Else generate 0 < r < a(n) from

the uniform distribution and set ¢ such that a;(n) < r < a;11(n), see Eq. (B3).

If @ = 0 generate {5 according to p. and set At = (¢ + f3)/v. Else set At = At,.
Increment t by At (¢ by vAt).

Ift <t, (¢ <4{,) update n according to 7v;(:|n,v), see Eq. (4), and go to 2. Else set
t =tm ({ =1{,) and end.

ais For large particle numbers, this procedure may be replaced by a more efficient method to

470 find the concentrations:

480

481

482

483

484

485

487

488

1.

Set time t = 0 (or distance £ = 0). Generate ¢ according to the initial concentration

distribution.

Generate (1 according to p, and At, according to ¢"(:|n), see Eq. (B3). Set At =
min{At,, t,, —t}.

Update ¢ according to the well-mixed rate equations over the interval [t,t + At].

Increment t by At (¢ by vAt). If t =t,, ({ ={,,) end.
Generate (5 according to p.. Increment t by At = min{(¢; +ls)/v,t —t,,} (¢ by vAt).

Ift <t, (¢ </{,) generate ¢ according to the initial concentration distribution and

go to 2. Else end.

a0 Note that this algorithm reduces to the one outlined in Appendix A for the reactions con-

400 sidered therein.
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401 Appendix F: Large-scale kinetics

w  Following [28], we define p®(c,t|co,v) = mp(nc, tncy,v), ME (tle,v) = M;(t/nc,v)/n,
wi=1,....,m,, and MY(t|e,v) = My(t|nc,v). We multiply Eq. (D5) by, and sum over, n,

s and write Y =7 [ de in the limit 7 — oco. Integrating by parts, we obtain

Ne(Neo,v) — co =Y _ silyin(ME[NC(1)]|co, v)

=1

— L1 {[C(t) = (Cu(t), €0.1(0))] M [N C ()] eo, v), (F1)
ws where Lo_,5f(t) = f()\). Substituting Eq. (6) for the memory functions, we have,

)\éM()\\co,v) —Ccom =

> RO Lenlaf O e, ).

[\er(Aleo, v) — o1 (v)] [1 + R@W)@c(klv)] _ (F2)

p(v)A

+ Z sI K (Av)Liox(af [C(t)]|eo, v).

ws Using Eq. (3) for the memory kernel, we find that 1 — K (A|v)[1 —e(A|v)]/[n(v)N] = K(\|v),
w7 50 that the second equation may be rearranged and divided by K(A|v) to give

)\é[()\’CO, 1)) — Eo’](v)
f1(v)A

+ i s L\ (af[C(1)]|co, v). (F3)

Aer(Aleo,v) — €or(v) = —

w08 Inverse-Laplace-transforming yields Eq. (17).

w0 In order to integrate Eqgs. (17) for the degradation reaction Sy + S — &, under the
so0 assumption (C7;Cy) = €7 ¢y and mild segregation, note that the memory kernel (3) reads

a0 K(AJv) = 1 — a/[l + a + au(v))], so that, inverting the Laplace transform, K(t[v) =
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s02 0(t) — exp{—(1 + a)t/[ap(v)]}/n(v). Equations (17) then read

dep(t
% = —k s (t]eo, v)7 (t|eo, v)
/QC R = A A / = (4
o 1 [ e, e )
(F4)
dey(t
W — —kC%y(t|eo, v)E1 (teo, v)

_ cilteo,v) —cor
p(v)

s03 We solve these equations numerically using a combination of the forward Euler method for
s+ the derivative with the trapezoidal rule for the convolution integral. We use a discretization

sos time step At = 1072 min{u, 1/(k%conr), 1/(k%co.1)}
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