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Abstract

This paper proposes design strategies and a comparative study of two antagonistically actuated tensegrity joints: a
revolute (R) joint and an anti-parallelogram (X) joint. Geometrically, the R-joint has a fixed center of rotation while
the X-joint has a moving center of rotation. Both joints are equipped with two lateral springs and are actuated by cables
passing through these springs. Such tensegrity joints can be of interest for developing lightweight manipulators. They
are designed to reach a prescribed wrench-feasible workspace (WFW) with a minimum desired stiffness throughout.
The design strategy relies on the determination of the complete feasible design space for the problem, rather than
resorting to a numerical optimizer for a particular solution. This approach provides more insight into the problem
and also presents the designer with all the feasible designs. Several case studies are considered with different WFW
specifications and design objectives for the R- and X- joints. The optimal designs obtained for the two joints are
compared in terms of their actuation forces, stiffness, geometry, and mass.

Keywords: Revolute joint, Anti-parallelogram joint, Tensegrity, Antagonistic forces, Wrench-feasible workspace,
Stiffness, Feasible design space, Optimal design

Nomenclature
R-joint Revolute joint
X-joint Anti-parallelogram joint
DoF Degree(s)-of-freedom
WFW Wrench-feasible workspace
3D Three-dimensional
ρ Linear mass density
k Spring constant
g Acceleration due to gravity (9.8 m/s2)
M Point mass payload for a joint
d Payload offset from the top bar of a joint
F1, F2 Actuation forces on a joint
Fmax Upper bound on actuation forces
Kr,Kx Stiffness of the R-joint, X-joint
K Minimum desired stiffness specification for a joint
θr, θx Orientation of the R-joint, X-joint w.r.t. vertical
θrm, θxm Positive boundary of the wrench-feasible workspace of R-joint, X-joint
θmax Generalization of θrm and θxm
r Semi-base length of R-joint
h Height of the isosceles triangle in R-joint
η Ratio (r/h)
b Length of base and top bars of X-joint
l Length of crossed bars of X-joint
λ Ratio (l/b)
c Short notation of cos θrm

2 and cos θr
2 (resp. cos θxm and cos θx) for R-joint (resp. X-joint)

s Short notation of sin θrm
2 and sin θr

2 (resp. sin θxm and sin θx) for R-joint (resp. X-joint)
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(
r2 − h2

)
− g

{
M(d+ h) + hρ

(√
h2 + r2 + 2r

)}
C1 2(b2k −Mgd)
C2 bg{M + ρ(b+ l)}
t Upper bound of t
t Lower bound of t

1. Introduction

There has been a growing interest in the robotics community to develop robot manipulators that are lightweight and
energy-efficient. In this regard, the conventional serial architectures of robots are not ideal as they carry heavy moving
masses, in the form of actuator units at each of the joints. As an alternative, the parallel manipulators are better, since
the actuators are generally fixed at the base, while the links and passive joints constitute the moving masses. A class
of parallel manipulators, namely the cable driven parallel manipulators (out of scope of this work), where the actuated
limbs are replaced by remotely actuated cables, are known to possess very high payload to weight ratio.

More recently, cable driven serial kinematic chains, which are devoid of actuators at the joints, but rather actuated
by remote cables, have been considered in [1]. They are interesting solutions for a lightweight design with a large
workspace, that also allows for interaction with the environment [2]. Applications of such robots include artificial
hands [3], exoskeletons [4], and other medical assistance devices. Another avenue to reduce the weight of serial
manipulators comes from the consideration of biologically inspired tensegrity systems. In such systems, all the com-
ponents are loaded axially. Since most of the materials are known to have a better axial strength than bending strength,
it suffices to have simple cross-sections, thereby making them lighter. In this work, two remotely actuated tensegrity
joints, namely, a revolute (R) joint (see Fig. 1(a)), and an anti-parallelogram (X) joint (see Fig. 1(b)) are proposed as
potential alternatives to the conventional joints in robot manipulators.

Remote actuation by cables requires such joints to be redundantly and antagonistically actuated with a number of
motors greater than their respective degree(s)-of-freedom (DoF). The use of redundant actuators, despite making them
expensive candidates, facilitates them with the property of variable stiffness. This makes it possible to develop robot
manipulators suitable for both high stiffness (e.g., machining) and low stiffness (e.g., performing safe interactions)
tasks. Several studies have been conducted recently on the variable stiffness joints/mechanisms. An antagonistically
actuated cable-driven mechanism is proposed as a variable stiffness element for vibration control applications in [5].
It has been shown with a numerical example that in certain conditions the variable stiffness element can be more ef-
fective than passive stiffness components, for these applications. A synthesis method for designing variable stiffness
components by using prestressed elastic elements has been proposed and illustrated with several joints by Boehler
et al. in [6]. This method is focused on achieving the desired stiffness behavior at/near the unloaded configuration
by modifying the springs’ attachment points and their prestress properties. It is noted that no actuators have been
considered for the movement of the joints in [6], thereby differentiating it from this work. In [7], a complete review
of variable stiffness actuators is presented. Several methods for achieving variable stiffness and their respective ap-
plications have been detailed. This paper falls into the category of antagonistic motor setup, but with one significant
difference. In [7], the springs are considered to be attached in series between the link and the actuating cable, whereas
in this work the springs are arranged in parallel with the actuating cables (see Fig. 1). This arrangement is chosen
because it ensures that the joints remain stiff/stable even in the absence of the actuation forces.

The use of R-joint is very common in robotics due to its simplicity in design and ease of manufacture. Apart from its
conventional use in robotics, it has been used for modeling biological systems, such as the vertebrae of a fish in [8].
Some studies have considered an embedded actuation of the R-joint, where a prismatic actuator is used in series with a
spring to control its orientation. Among them, the stiffness characteristics of the joint and its dependence on geometry
were studied in [9]. Stiffness of the R-joint due to the actuators (named as active stiffness) and conditions for it to
be negative were presented in [10]. A design methodology to maximize the proportion of active stiffness in the total
stiffness of R-joint was proposed in [11].

On the other hand, the X-joint is not very popular as a joint in the robotics community. The X-shaped tensegrity
structure was originally conceived by Snelson [12] and gained popularity among artists and architects for building
stable structures [13]. More recently, several 1-DoF and 2-DoF tensegrity mechanisms have been developed based
on the X-shaped model in [14],[15]. The X-joint has also found applications in the model of a knee in [16], gear
trains in [17], and bird neck in [18]. A complete study of workspace, kinematics, and statics of a 2-X manipulator
composed of two X-joints stacked one above the other, has been conducted in [19]. It was illustrated with an example
that the redundancy in actuation, due to the use of four cables, can be exploited to obtain a variable stiffness within
its wrench-feasible workspace (WFW). This makes the manipulator suitable for high stiffness tasks (such as drilling),
while performing safe interactions with the environment when needed. A tentative design optimization scheme of X-
joints to be used in a bird neck model was proposed in [20]. The optimization was conducted in a numerical, iterative
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way in order to maximize the WFW and to ensure a stable configuration at rest, while the maximal actuation force was
fixed. In contrast, this paper deals with the converse problem, where the joints are designed to possess a fixed WFW
with a minimum desired stiffness throughout, and the maximal actuation force is considered as a candidate design
objective. Additionally, an algebraic approach is proposed for the resolution of the problem at hand, while a numerical
strategy was followed in [20]. Very recently, the 2-X manipulator with offsets between the joints was studied in [21].
It was shown that the manipulator with X-joints possesses a significantly larger workspace than the conventional 2-R
manipulator, when identical limits are imposed on the joint motions.

A comparative study of the R- and X- joints, designed to possess an identical WFW with the same stiffness values
at rest and at WFW boundary, has been presented by the authors in [22]. Such a design process would be useful in
developing bio-mimicking mechanisms where the desired stiffness values might be known exactly at the center and
bounds of the WFW. However, in this paper, we are interested in a more general problem, in which the two joints are
designed to possess a stiffness greater than or equal to a user-specified value throughout the WFW. Such a requirement
is often encountered in developing robot manipulators for machining tasks such as drilling, where the exact stiffness
values might not be known, but an estimate of the minimum desired stiffness might be known. It is found that this
problem is more complicated and delves into several cases and sub-cases for its resolution. Nevertheless, the proposed
design strategies are carried out by deriving algebraic expressions of the constraints and of the objective functions.
This approach allows us to characterize the complete feasible design space and to determine optimal solutions directly
without resorting to numerical optimization techniques.

The major contributions of this work may be summarized as follows:

• Strategies to obtain the complete feasible design space for the R- and X- joints, while they are designed to
possess a user-specified WFW with a minimum desired stiffness throughout, are presented.

• Selection of the optimal design is illustrated for different design objectives, specifically, minimization of maxi-
mal actuation force and total joint mass.

• A comparative study on the performance of the optimal designs of R- and X- joints is carried out in terms
of stiffness, geometry, actuation forces, and masses with several numerical examples. General guidelines are
presented on the choice of these joints for different WFW and stiffness requirements.

The rest of this paper is organized as follows: the static models of the R- and X- joints are presented in Section 2,
the conditions for design of these joints are listed in Section 3. It is remarked that parts of Sections 2 and 3, on the
derivation of static models can also be found in the authors’ previous publication [22]. A strategy to obtain the feasible
design space and the optimal design is developed for R-joint in Section 4 and for X-joint in Section 5. A comparative
study on the performance of these joints is conducted with several numerical examples in Section 6. The effects of
mass density, payload parameters, and spring free-length are discussed in Sections 7 and 8. Finally, the conclusions of
this study are reported in Section 9.

2. Static analysis of the joints

The schematic diagrams of the R-joint and the X-joint under study are shown in Figs. 1(a) and 1(b), respectively.

The R-joint is composed of two congruent isosceles triangles (made of three bars), one on top of the other, connected
by a revolute joint at o. The geometry of these triangles is defined by the semi-base length (r) and height (h). The
orientation of this joint is measured by the angle (θr) between the upper triangle and the vertical as shown in Fig. 1(a).

The X-joint is composed of three moving links 2, 3, 4 and a fixed link 1, each connected to its neighbors with a revolute
joint. The links 1 and 4 are each of length b, while the other two links are of length l. The orientation of this joint is
measured by the angle (θx) between the segment joining the midpoints of links 1 and 4, and the vertical as shown in
Fig. 1(b). It is noted that the condition (l > b) is necessary for the assembly of the X-joint. Collisions between the
links can be avoided by arranging them in different layers (see [18]).

Each joint is equipped with a pair of identical springs with spring constant k, to impart stiffness into the system. The
free-lengths of the springs are assumed to be zero in this study. While the physical length of the spring cannot be
zero, it is possible to achieve an effective zero free-length with guiding systems and pulleys between the spring and
the attachment points (see, e.g., [23],[24]). Nevertheless, the effect of non-zero free-length has been discussed briefly
in Section 8.

To take into account a payload or the mass of subsequent joint(s) stacked overhead, a point mass M is considered
to be linked to the segment p1p2 (without any rigid connections) at a distance d. The linear mass density (i.e.,
mass per unit length) of all links and bars (indicated by thick lines in Fig. 1) is given by ρ. Finally, the joints are
actuated antagonistically by cables passing through the springs, imparting forces F1 and F2, respectively, as shown in
Fig. 1. The presence of two actuating cables makes the joints redundantly actuated, but allows for a range of possible
stiffnesses at any given orientation as explained in the following sections.
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(a) R-joint (b) X-joint

Figure 1: Schematics of the joints under study: R-joint (left) and X-joint (right).

It is remarked that the proposed joints qualify as tensegrity joints because it can be shown that all the bars, springs, and
cables experience only external axial loading in static equilibrium. However, there is one minor difference with the
conventional use of the term “tensegrity”, where all the rigid elements (bars) must be loaded in compression, rather
than in tension. It can be shown that the top bars linking p1p2 in the two joints are in tension, suggesting that their
replacement with a cable is potentially possible. But, rigid bars have been chosen against the tensegrity paradigm
and despite the additional mass incurred, for two reasons. Firstly, to ensure that the joints have just one DoF like the
conventional robotic joints and secondly, to cope with the compression loads that are known to arise when the dynamic
effects (out of scope of this paper) are considered.

2.1. Static equilibrium and stiffness of the R-joint

From Fig. 1(a), the coordinates l1 and l2 can be expressed in terms of θr as follows:

l1 = 2

(
h cos

θr

2
− r sin

θr

2

)
, l2 = 2

(
h cos

θr

2
+ r sin

θr

2

)
(1)

The rotation range of the R-joint is limited by singularities due to the actuating cables, in two different ways. Firstly,
due to the occurrence of force-closure singularity (see [25]), when the points bi,o, and pi (i = 1 or 2) become
collinear. Secondly, due to the vanishing of l1 or l2, where the direction of force applied by the respective cable
becomes ill-defined. It can been shown that the limit of motion is due to force-closure singularity when r < h and due
to vanishing of li (i = 1, 2) when r > h. The rotation range depends on the link lengths and reaches its maximum
amplitude ]− π

2 ,
π
2 [ when r = h (see [26] for more details).

The total potential energy of the R-joint, due to gravity (considering the zero potential along X-axis), springs, and
external forces applied by the cables, is obtained to be:

Ur =ρgh
(

2r +
√
r2 + h2

)
cos θr +Mg(d+ h) cos θr + 2k

{
r2 + h2 −

(
r2 − h2

)
cos θr

}
+ F1l1 + F2l2 (2)

where g is the acceleration due to gravity. Differentiation of the total potential energy of the joint w.r.t. θr yields the
equation of static equilibrium, which is of the form: Gr = Γr, where,

Gr = C sin θr, with C = 2k
(
r2 − h2

)
− g

{
M(d+ h) + hρ

(√
h2 + r2 + 2r

)}
(3)

Γr = −F1
dl1
dθr
− F2

dl2
dθr

(4)

The symbol Gr represents the wrench due to gravity and springs, while Γr represents the external wrench applied by
the cables. The forces provided by the cables are limited physically, leading to: F1, F2 ∈ [Fmin, Fmax]. From the ex-
pressions of l1 and l2 in Eq. (1), it can be shown that the coefficient of F1 (resp. F2) in Γr (see Eq. (4)) is positive (resp.
negative) inside the range of motion limited by singularities. Thus, the external wrench Γr is bounded above (resp.
below) by Γmax (resp. Γmin), which occurs when F1 = Fmax and F2 = Fmin (resp. F1 = Fmin and F2 = Fmax). As
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a consequence of these bounds on Γr, the equilibrium equation can be satisfied only when: Gr ∈ [Γmin,Γmax]. The
range of θr ∈ [−θrm, θrm] within which this condition is valid is the WFW for the R-joint. As a numerical illustration,
consider the following data from Section 4.4: ρ = 0.2121 Kg/m, M = 0.2 Kg, d = 0.25 m, r = 0.1 m, h = 0.0179 m,
k = 577.6737 N/m, and Fmax = 35.9457 N. The corresponding plot of wrench boundaries (Γmin,Γmax) and curveGr
are shown in Fig. 2(a). It is observed that the WFW is bounded by the intersection of Gr with the wrench boundaries.
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(a) Plot of Gr and wrench boundary
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(b) Stiffness bounds (forces in N)

Figure 2: WFW (left) and stiffness bounds (right) for the R-joint.

The joint stiffness (Kr) is derived upon computing the second derivative of the total potential energy w.r.t. θr. The
resulting expression is:

Kr = C cos θr +
1

2
F1

(
−h cos

θr

2
+ r sin

θr

2

)
− 1

2
F2

(
h cos

θr

2
+ r sin

θr

2

)
(5)

It is essential to account for the static equilibrium equation (Gr = Γr) while evaluating the stiffness of the joint.
Since the R-joint is redundantly actuated with two cables, there exists an ∞1 combination of forces satisfying the
equilibrium equation at a given orientation. These combinations enable the joint to exhibit a range of stiffness values
at that orientation. The expression for lower boundary of stiffness as a function of θr has been derived in Appendix
A.2 (see Eq. (A.8)). A similar result for the upper boundary of stiffness can also be obtained, following the same
procedure. As a numerical example, the stiffness bounds for the joint parameters listed in Fig. 2(a), are shown in
Fig. 2(b). The corresponding force values are also indicated on the boundaries.

2.2. Static equilibrium and stiffness of the X-joint

From Fig. 1(b), l1 and l2 can be obtained in terms of θx as:

l1 = −b sin θx +
√
l2 − b2 cos2 θx, l2 = b sin θx +

√
l2 − b2 cos2 θx (6)

The singularities that limit the motion of the X-joint occur at θx = ±π2 , irrespective of the dimensions of the links. At
these configurations the entire joint folds flat on a single line.

The total potential energy of the X-joint is computed in a manner similar to that of the R-joint as:

Ux = − cos 2θx
(
b2k − dgM

)
+ {ρ(b+ l) +M} g cos θx

√
l2 − b2 cos2 θx + kl2 + F1l1 + F2l2 (7)

The static equilibrium equation is obtained upon differentiation of the total potential energy of the joint w.r.t. θx
as: Gx = Γx, where: {

Gx = C1 sin 2θx +
C2 sin θx(2b2 cos2 θx−l2)

b
√
l2−b2 cos2 θx

,

with C1 = 2(b2k −Mgd), C2 = bg{M + ρ(b+ l)}
(8)

Γx = −F1
dl1
dθx
− F2

dl2
dθx

(9)

The symbols Gx and Γx possess the same physical meaning as Gr and Γr, respectively and the bounds of Γx are
reached for the same force bounds as for the R-joint. The joint stiffness is obtained from the second derivative of the
total potential function w.r.t. θx. The corresponding expression is:

Kx = 2C1 cos 2θx −
C2 cos θx

{(
l2 − b2 cos 2θx

)2 − b2 (l2 − b2) cos 2θx

}
b (l2 − b2 cos2 θx)

3/2

+ bF1

(
bl2 cos 2θx − b3 cos4 θx

(l2 − b2 cos2 θx)
3/2

+ sin θx

)
+ bF2

(
bl2 cos 2θx − b3 cos4 θx

(l2 − b2 cos2 θx)
3/2

− sin θx

)
(10)
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As a numerical illustration, the data from Section 5.4 have been considered: ρ = 0.2121 Kg/m, M = 0.2 Kg, d =
0.25 m, b = 0.2 m, l = 0.4 m, k = 79.3788 N/m, and Fmax = 21.0137 N. As in the case of R-joint, the WFW and
the stiffness bounds for the X-joint are presented in Fig. 3. From Fig. 3(a), it is observed that the WFW is formed by
three disconnected regions, θxm ∈ [−θxm, θxm] and two smaller isolated regions near the flat singularities

(
θx = ±π2

)
.

A “jump” from one region to another could be possible with a suitable dynamic trajectory as shown in [27], but those
isolated regions are very small and are associated with unstable equilibrium configurations or negative stiffness. Thus,
only the central portion would be considered as the WFW of this joint, in further study. The stiffness bounds of this
joint are plotted for θx ∈ [−θxm, θxm] in Fig. 3(b).
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(b) Stiffness bounds (forces in N)

Figure 3: WFW (left) and stiffness bounds (right) for the X-joint.

3. Feasible designs of the joints for a specified WFW and a minimum stiffness

In this study, the link lengths and the spring constant of the joints are considered to be the design variables, while the
linear mass density and payload characteristics (ρ,M, d) are treated as parameters whose values are known a priori.
The maximal force required to move the joint, referred to as Fmax, is treated as a design variable, though it can also
be considered as an objective function. In this study, the joints will be designed to possess a user-specified WFW
with a minimum desired stiffness throughout. Such a design process will be useful for developing robot manipulators
with a desired workspace size and stiffness requirements for machining applications (e.g., drilling). Other potential
applications include development of bio-mimicking systems and exoskeletons where the desired range of motion and
stiffness characteristics (in some cases) for each of its joints are known beforehand.

The goal is to find optimal designs of the joints, such that the following conditions are met:

• The joint should possess the specified WFW of the general form: [−θmax, θmax] with θmax < π
2 to avoid

singularities.

• The joint stiffness must be greater than or equal to a specified value of K(> 0) throughout the WFW for all
admissible values of forces satisfying the equation of static equilibrium.

• The bounds on link lengths and spring constant must be respected.

Due to symmetry of the joints about their respective zero orientations, ensuring [0, θmax] ∈ WFW, ensures that
[−θmax, 0] ∈ WFW. Similar arguments can be made about the stiffness behavior of the joints as well. This makes
it sufficient to study just one half of the problem, i.e., θr > 0 and θx > 0. In the following, the positive boundary of
WFW is denoted by θrm for the R-joint and θxm for the X-joint.

In accordance with the conditions listed above, several equations and inequalities have been formulated for the two
joints as shown in Table 2 (assuming Fmin = 0). Physically, the first two conditions ensure that no singularities occur
within the WFW and that the positive boundary of the WFW is formed by the intersection of the curves Gr (resp. Gx)
and Γmax (see [26] for more details).

Before proceeding further, two important results are stated:

• The actuation forces have a negative (resp. positive) impact on the stiffness of the R-joint (resp. X-joint).

• The least value of stiffness, when it is imposed to be positive, occurs at the zero orientation or at the boundary
of the WFW for both joints.
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Table 2: Formulation of the stipulated conditions for the design of R-joint and X-joint.

R-joint X-joint{
l1(θrm) > 0, if (r > h)

l2(θrm) < 2w, if (r < h)
(11a)

Gr(θrm) + Fmax
dl1
dθr

(θrm) = 0 (11b)

Kr(θr = 0, F1 = Fmax, F2 = Fmax) ≥ K (11c)
Kr(θr = θrm, F1 = Fmax, F2 = 0) ≥ K (11d)

0 ≤ k ≤ k (11e)
r ≤ r ≤ r (11f)
w ≤ w ≤ w (11g)

No singularities when
(
θxm <

π

2

)
(12a)

Gx(θxm) + Fmax
dl1
dθx

(θxm) = 0 (12b)

Kx(θx = 0, F1 = 0, F2 = 0) ≥ K (12c)
Kx(θx = θxm, F1 = Fmax, F2 = 0) ≥ K (12d)

0 ≤ k ≤ k (12e)

b ≤ b ≤ b (12f)

l ≤ l ≤ l (12g)

Proofs of these results can be found in Appendix A for the R-joint and Appendix B for the X-joint. Using them,
the third and fourth conditions in Table 2 have been included to ensure that the lower boundary of stiffness remains
greater than or equal to the stipulated value of K.

The last three conditions on geometry and spring constant of the joints have been imposed due to practical considera-
tions, such as, availability of corresponding components in the market and ease of fabrication/assembly.

Finally, the ratio of link lengths: η(= r
h ) for the R-joint and λ(= l

b ) for the X-joint have been introduced into the
formulation, eliminating the variables h and l, respectively. This is because the ratio provides more insight into the
problem and also simplifies the resulting expressions considerably.

The design problem involves four design variables, namely, (η, r, Fmax, k) for R-joint and (λ, b, Fmax, k) for X-joint.
It relies on one equation and six inequalities (see Table 2).

As a general strategy, the equation (Eq. (11b) for R-joint and Eq. (12b) for X-joint) will be used to eliminate k.
Consequently, only the two geometric variables and the maximal actuation force Fmax remain, thereby making the
design space three-dimensional (3D). Then, all the inequalities will be reduced to lower/upper bounds on Fmax or
conditions involving only the geometric variables. This will allow us to build the feasible geometric space followed
by the feasible design space, defined below.

• Feasible geometric space: The set of all (η, r) (resp. (λ, b)) values for which at least one feasible design exists
forms the feasible geometric space of the R-joint (resp. X-joint). It is computed as the intersection of all the
inequalities that involve the geometric variables, but devoid of the maximal actuation force (Fmax).

• Feasible design space: The set of all geometric and maximal force values which satisfy all the conditions in
Table 2, defines the complete feasible design space and is referred to as the feasible design space for the joints.
Graphically, it can be obtained as the volume enclosed between the lower and upper boundaries of Fmax inside
the feasible geometric space.

The steps involved in the construction of these design spaces are detailed for the two joints in the following.

4. Complete feasible design space and design strategy for R-joint

A methodology is proposed to build the complete feasible design space of the R-joint satisfying the conditions listed
in the left column of Table 2. Firstly, these conditions are reduced to inequalities involving only (η, r, Fmax) in
Section 4.1. This is followed by the computation of feasible geometric space (η, r) in Section 4.2 and the feasible
design space (η, r, Fmax) in Section 4.3. Finally, a strategy for the design of R-joint is presented with a numerical
example in Section 4.4.

4.1. Treatment of the constraints involved in the design of R-joint

In this section, the substitutions: c = cos θrm
2 , s = sin θrm

2 , have been incorporated to keep the resulting expressions
compact . Since θrm < π

2 , it follows that c > s.

The conditions in Eqs. (11a)-(11g) are treated successively, in the following.

From Fig. 1(a), it follows that w =
√
r2 + h2 =

r
√
η2+1

η . Substituting this expression for w and using the expressions

7



of l1, l2 from Eq. (1), the inequalities in Eq. (11a) lead to the following conditions: l1(θrm) > 0 =⇒ η < η, where η = cot
θrm

2
, if (η > 1) (13a)

l2(θrm) < 2w =⇒ c−
√
η2 + 1 + ηs < 0, if (η < 1) (13b)

Using the expressions in Eqs. (1) and (3), the condition in Eq. (11b) leads to:

Fmaxr

(
c+

s

η

)
− 2cCs = 0 =⇒ C =

Fmaxr(cη + s)

2cηs
(14)

Equating the above expression of C with the one in Eq. (3), and solving for k yields:

k =
2cgs

{
ηM(dη + r) +

(√
η2 + 1 + 2η

)
ρr2
}

+ Fmaxηr(cη + s)

4c (η2 − 1) r2s
(15)

From the above expression of k, it is clear that (η > 1) is both necessary and sufficient for ensuring k > 0. Hence,
from the results of the previous inequality, the one in Eq. (13a) must be considered. Thus, the condition (1 < η < η)
must be carried throughout the problem.

Using Eq. (14) (resp. Eq. (15)), C (resp. k) can be eliminated from the inequalities in Eqs. (11c) through (11g).
Hence, in the design optimization problem of R-joint, the design space may be reduced to the span of two geometric
variables (η, r) and the maximal actuation force Fmax.

The inequalities on stiffness (Eqs. (11c) and (11d)) and the bounds on (k,w) (Eqs. (11e) and (11g)) are reduced to
conditions involving (η, r, Fmax) in the following.

• Condition on joint stiffness in Eq. (11c):
Using the expression of stiffness from Eq. (5), the inequality in Eq. (11c) can be expanded as:

C − Fmaxr

η
−K ≥ 0 (16)

Substituting for C from Eq. (14) and clearing the common denominator(>0), results in:

Fmaxr(cη − 2cs+ s)− 2cηKs ≥ 0 (17)

The factor (cη − 2cs + s) in the coefficient of Fmax, can be rewritten as (c(η − s) + s(1 − c)). Recalling
that η > 1 and c, s ∈]0, 1[, it follows that this factor is always positive. Hence, the inequality in Eq. (17) can be
rewritten as a lower bound on Fmax as follows:

Fmax ≥ FK1
, with FK1

=
2cηKs

r(cη − 2cs+ s)
(18)

• Condition on joint stiffness in Eq. (11d):
Using Eq. (5), the inequality in Eq. (11d) can be expanded into:

C
(
c2 − s2

)
+

1

2
Fmaxr

(
s− c

η

)
−K ≥ 0 (19)

Substituting for C from Eq. (14) and clearing the common denominator(>0) leads to:

Fmaxr
(
c3η − s3

)
− 2cηKs ≥ 0 (20)

Recalling that c > s and η > 1, the above inequality also leads to a lower bound on Fmax:

Fmax ≥ FK2
, with FK2

=
2cηKs

r (c3η − s3)
(21)

• Bounds on k in Eq. (11e):
Using Eq. (15), it has been shown that the condition for k to be positive is η > 1. Thus, only the upper bound
on k remains to be considered, i.e., k − k ≤ 0. Substituting for k from Eq. (15) and performing the standard
simplifications, as above, results in:

2cgs
{
ηM(dη + r) +

(√
η2 + 1 + 2η

)
ρr2
}

+ Fmaxηr(cη + s)− 4c
(
η2 − 1

)
kr2s ≤ 0 (22)

It is observed that the coefficient of Fmax is positive in this inequality. Hence, the above condition can be
simplified to provide an upper bound for Fmax as follows:

Fmax ≤ F k, where F k =
2cs
[
2
(
η2 − 1

)
kr2 − g

{
ηM(dη + r) +

(√
η2 + 1 + 2η

)
ρr2
}]

ηr(cη + s)
(23)
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• Bounds on w in Eq. (11g):

Substituting w =
r
√
η2+1

η (see Fig. 1(a)) into the condition in Eq. (11g):

w ≤ r
√
η2 + 1

η
≤ w (24)

=⇒

{
r ≥ rw
r ≤ rw

with rw =
wη√
η2 + 1

and rw =
wη√
η2 + 1

(25)

It is noted that the above conditions involve only (r, η), and are devoid of Fmax.

The conditions derived above will be used to construct the feasible geometric space (η, r) for the R-joint, followed by
the derivation of the bounds on Fmax, as detailed in the subsequent sections.

4.2. Feasible geometric space (η, r) of R-joint

Recalling that k is eliminated from the set of design variables using Eq. (15), the design space of the R-joint is only
composed of η, r and Fmax. The intersection of all the conditions involving η and r must be first computed to form
the feasible geometric space (η, r). Thus, the bounds on r, w, and the condition (1 < η < η) are considered from
Eqs. (11f), (25), and (15), respectively. In addition to these, two more conditions which stipulate that the upper
bound of Fmax, i.e., F k, remains greater than the lower bounds (FK1

and FK2
), must also be considered. These two

conditions are treated in the following.

4.2.1. Treatment of
(
F k ≥ FK1

)
Starting with:

F k − FK1
≥ 0 (26)

Substituting for FK1
and F k from Eqs. (18) and (23), results in:

2cs
[
(−cη + 2cs− s)

{
g
{
ηM(dη + r) +

(√
η2 + 1 + 2η

)
ρr2
}
− 2

(
η2 − 1

)
kr2
}
− η2K(cη + s)

]
ηr(cη + s)(cη − 2cs+ s)

≥ 0 (27)

The last factor in the denominator, (cη − 2cs + s), has been shown to be positive below Eq. (17). Also, recalling
that c > 0 and s > 0, it is clear that the remaining factors in the denominator and the first three factors in the numerator
are also positive. This shows that the above inequality requires the last factor in the numerator to be positive, which
can be rewritten as a quadratic inequality in r as follows:

Ar1r
2 +Br1r + Cr1 ≥ 0, where, (28)

Ar1 = (cη − 2cs+ s)
{

2
(
η2 − 1

)
k − g

(√
η2 + 1 + 2η

)
ρ
}

Br1 = −gηM(cη − 2cs+ s)

Cr1 = −η2{dgM(cη − 2cs+ s) +K(cη + s)}
(29)

From the above expressions, it is observed that: Br1 < 0, Cr1 < 0. Thus, the condition (Ar1 > 0) is necessary for
the inequality in Eq. (28) to be satisfied. This requires the last factor in Ar1 to be positive, which is treated further
in Appendix C. The two resulting necessary conditions involving η, k, ρ, and θrm are listed below (see Appendix C
for derivation):

P >
(2c+ 1)s

c2 − s2
where P =

2k

ρg
, c = cos

θrm

2
, s = sin

θrm

2
(30){(

η2 − 1
)2
P 2 + 3η2 − 4

(
η2 − 1

)
ηP − 1 > 0

=⇒ η > η, where η is the largest root of the quartic polynomial
(31)

When the above conditions are satisfied, it is ensured that (Ar1 > 0). Thus, from the discussion in Appendix D, the
inequality in Eq. (28) reduces to a lower bound on r as:

r ≥ rK1
, where rK1

=
−Br1 +

√
B2
r1 − 4Ar1Cr1

2Ar1
(32)

with the expressions of Ar1 , Br1 , Cr1 presented in Eq. (29).
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4.2.2. Treatment of
(
F k ≥ FK2

)
Similar to the previous case, the following result is obtained from (F k − FK2

≥ 0):

r ≥ rK2
, where rK2

=
−Br2 +

√
B2
r2 − 4Ar2Cr2

2Ar2
(33)

The expressions of Ar2 , Br2 , Cr2 can be found in Appendix E.

4.3. Bounds of Fmax and the feasible design space for R-joint

In the previous section, the consideration of the constraints was shown to define bounds on the maximal forces that
depend on the two geometric variables only. Altogether, those bounds along with the bounds on the geometric vari-
ables, define a 3D region in which every point corresponds to a feasible design associated with a maximal actuation
force (see Fig. 5(c) further). Note that if the designer wants to minimize the maximal actuation force, the lower bound
on Fmax defines the objective function and optimal design can be found directly on this surface.

Within the feasible geometric space, it is essential to identify which lower bound of Fmax (FK1
or FK2

), must be
considered for defining the lower boundary of the 3D volume. This requires a classification of the feasible geometric
space into two regions: (FK1

> FK2
) and (FK2

> FK1
). In the region (FK1

> FK2
), the lower boundary of Fmax

is defined by FK1
and in the region (FK2

> FK1
), it is defined by FK2

.

From the expressions of FK1
and FK2

in Eqs. (18),(21), it is observed that only one factor in the denominator is
different between them. Hence, the condition for (FK1

> FK2
) is obtained as:

cη − 2cs+ s < c3η − s3 (34)

=⇒ η < ηK , where, ηK =
2c− 1− s2

cs
(35)

Thus, within the feasible geometric space:

Lower boundary of Fmax = max(FK1
, FK2

) =

{
FK1

, when η < ηK

FK2
, when η > ηK

(36)

The lower boundary as well as the upper boundary (i.e., F k) of Fmax can then be plotted as surfaces over the feasible
geometric space (η, r). The volume enclosed between these surfaces represents the feasible design space, i.e., the set
of feasible (η, r, Fmax) values for a given design problem. Note that any solution in this feasible space does define a
complete design since the associated value of k can be obtained using Eq. (15).

4.4. Design strategy and numerical illustration for R-joint

All the derivations carried out in the previous sections have been consolidated into a flowchart with their corresponding
equation numbers inside “()” in Fig. 4, to present a global view of the process. In order to aid the understanding of
this flowchart, some of its connections (marked in red color1) are explained in a step-wise manner.

• Firstly, all the conditions for design listed in Table 2 are represented by the corresponding equation numbers
Eqs. (11a), . . . , (11g).

• Using the equality condition in Eq. (11b), one arrives at an expression for k in terms of (η, r, Fmax) as shown
in Eq. (15). It is noted that the entire expression could not be presented in the flowchart owing to the large
expressions, nevertheless a functional form, such as k(η, r, Fmax), is indicated in such cases.

• Using the expression of k from Eq. (15), the inequality in Eq. (11c) can be reduced to a lower bound on Fmax

(i.e., Fmax ≥ FK1
) as shown in Eq. (18). Similarly, the condition k ≤ k from Eq. (11e) can be reduced to an

upper bound on Fmax (Fmax ≤ F k) as in Eq. (23).

• In order to satisfy both the conditions Fmax ≥ FK1
and Fmax ≤ F k, it is necessary that F k ≥ FK1

. This
inequality results in three conditions represented in Eqs. (30), (31), and (32). The first one is devoid of any
design variables and hence imposes a necessary condition on the input parameters. The remaining conditions
(Eqs. (31),(32)) represent inequalities on the geometric variables, η > η and r ≥ rK1

(η), which must be
considered for the computation of the feasible geometric space.

1The reader is referred to the web-version of this article for the interpretation of colors.
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It is noted that all other connections in this flowchart have an analogous interpretation.

The final results that will be used directly in the design process, are consolidated into three boxes. The first one
highlights the necessary condition that must be satisfied by the input parameters for the existence of feasible designs.
The second box highlights the conditions that are needed to compute the feasible geometric space (η, r). The last box
shows the steps involved in the determination of the feasible design space.

As an illustration, consider the numerical example corresponding to specification A in Section 6, where θrm is specified
to be 0.35 radians, with a minimum desired stiffness, K = 10 Nm/rad. The mass and payload parameters are assumed
to be: ρ = 0.2121 Kg/m, M = 0.2 Kg, d = 0.25 m. The bounds on spring constant and link lengths are considered to
be: (k, k) = (0, 2000) N/m, (r, r) = (0.025, 0.1) m, and (w,w) = (0.025, 0.2) m. Suppose that we wish to minimize
the maximal actuation force Fmax. The optimal design is found from the following steps:

• The values of cos θrm = 0.9394, η = 5.6558, P = 2k
ρg = 1924.7763, P (η) = (2c+1)s

c2−s2 = 0.5504. Thus, the
necessary condition P ≥ P (η), is satisfied. From Eq. (31), η = 1.0009.

• The feasible geometric space (η, r) is obtained by computing the intersection of the conditions in Eqs. (11f),
(13a), (25), (31), (32), and (33), as shown in Fig. 5(a) (shaded in gray). The lower bounds on r are plotted in
dashed lines, while the upper bounds are plotted in continuous lines. It is observed that the feasible region is
bounded by η = η, r = r, F k = FK1

, and F k = FK2
, in this case.

• From Eq. (35), ηK = 5.4777, which is less than η. The classification of feasible geometric space is shown in
Fig. 5(b), where the region (FK1

> FK2
) is highlighted in orange shade, and the region (FK2

> FK1
), in

blue shade. The lower and upper bounds of Fmax are plotted over the feasible geometric space in Fig. 5(c). The
volume enclosed between the surface F k (gray) and the surfaces FK1

(orange), FK2
(blue) defines the feasible

design space (η, r, Fmax) for the design problem at hand.

• From Fig. 5(d), it is observed that the optimal design corresponding to the least value of Fmax occurs when η = η
and r = r. But, considering the condition η < η (see Eq. (13a)), a factor σ = 0.99 must be multiplied with
η, to remain close to the optimal solution while respecting the strict inequality on η. Therefore, the numerical
values for optimal design of R-joint are found to be: η∗

(
r
h

)
= ση = 5.5993, r∗ = r = 0.1 m, F ∗max =

35.9457 N, k∗ = 577.6737 N/m. The stiffness bounds and a schematic representation of this design are shown
in Figs. 5(e) and 5(f), respectively. From Fig. 5(e), it can be verified that the R-joint is able to reach the
stipulated WFW: θr ∈ [−0.35, 0.35] radians and the lower boundary of stiffness remains above the specified
value of 10 Nm/rad, thereby validating the design requirements.

5. Complete feasible design space and design strategy for X-joint

As in the case of R-joint, a methodology for building the complete feasible design space is proposed for the X-joint
in this section. The conditions on the right column of Table 2 are reduced to inequalities involving only (λ, b, Fmax)
in Section 5.1. The computation of feasible geometric space (λ, b) and of the feasible design space (λ, b, Fmax) are
carried out in Sections 5.2 and 5.3, respectively. Finally, a design strategy is presented for the X-joint with a numerical
example in Section 5.4.

5.1. Treatment of the constraints involved in the design of X-joint

In the context of X-joint, the substitutions c = cos θxm, s = sin θxm, and λ = l
b , have been incorporated for the ease of

analysis. Since it is known that θxm ∈
]
0, π2

[
, it follows that c, s ∈]0, 1[. The list of conditions in Eqs. (12b)-(12g) in

Table 2 are treated successively in the following.

Using Eq. (8), the condition in Eq. (12b), expands into:

bcFmax

(
s√

λ2 − c2
− 1

)
+
C2s

(
2c2 − λ2

)
√
λ2 − c2

+ 2csC1 = 0 (37)

Solving for C1 from the above equation leads to:

C1 =
bcFmax

(√
λ2 − c2 − s

)
+ C2s

(
λ2 − 2c2

)
2cs
√
λ2 − c2

(38)

Using Eq. (38), all the inequalities in Table 2 for the X-joint can be reduced to conditions involving (λ, b, Fmax), as
shown in the following.
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Figure 5: Specification A: Feasible geometric and design spaces, stiffness bounds and schematic of the optimal design minimizing the maximal
actuation force for the R-joint, when θrm = 0.35 radians (≈ 20◦), K = 10 Nm/rad.
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• Condition on joint stiffness in Eq. (12c):
Using Eq. (10), the inequality in Eq. (12c) expands into:

2C1 −
C2

(
λ2 − 2

)
√
λ2 − 1

−K ≥ 0 (39)

Substituting for C1 from Eq. (38) results in:[
bcFmax

√
λ2 − 1

(√
λ2 − c2 − s

)
+ C2s

{√
λ2 − 1

(
λ2 − 2c2

)
− c

(
λ2 − 2

)√
λ2 − c2

}
−Ksc

√
λ2 − 1

√
λ2 − c2

]/[
c
√
λ2 − 1s

√
λ2 − c2

]
≥ 0 (40)

Recalling that λ > 1, it is apparent that
(√
λ2 − c2 > s

)
. Thus, the denominator as well as the coefficient

of Fmax in the numerator are both positive, which allows one to reduce the above inequality to a lower bound
on Fmax as follows: Fmax ≥ FK1

, where

FK1
=

Ksc
√
λ2−1

√
λ2−c2−C2s{√λ2−1(λ2−2c2)−c(λ2−2)

√
λ2−c2}

bc
√
λ2−1(

√
λ2−c2−s)

(41)

• Condition on joint stiffness in Eq. (12d):
Using Eq. (10), the inequality in Eq. (12d) can be expanded into:

bFmax

(
λ2
(
c2 − s2

)
− c4

(λ2 − c2)
3/2

+ s

)
+ 2C1

(
c2 − s2

)
−
cC2

{(
−c2 + λ2 + s2

)2 − (λ2 − 1
) (
c2 − s2

)}
(λ2 − c2)

3/2

−K ≥ 0

(42)

Substituting for C1 from Eq. (38), leads to a lower bound on Fmax, similar to the previous case:

Fmax ≥ FK2
, where FK2

=
cKs

(
λ2 − c2

)3/2
+ C2λ

4s3

bc3
(

(λ2 − c2)
3/2 − s3

) (43)

• Bounds on k in Eq. (12e):
Using the definition of C1 from Eq. (8) in Eq. (38), an expression for k can be obtained in terms of (λ, b, Fmax)
as follows:

k =
bcFmax

(√
λ2 − c2 − s

)
+ C2s

(
λ2 − 2c2

)
+ 4cdgMs

√
λ2 − c2

4b2cs
√
λ2 − c2

(44)

The lower and upper bounds on k lead to explicit conditions on Fmax, as derived below:

– Lower bound on k (k ≥ 0):
Substituting the expression of k from Eq. (44) in the condition k ≥ 0, and observing that the denominator
as well as the coefficient of Fmax are both positive, one obtains:

Fmax ≥ F k, where F k =
−C2s

(
λ2 − 2c2

)
− 4cdgMs

√
λ2 − c2

bc
(√
λ2 − c2 − s

) (45)

Since C2 > 0 by definition (see Eq. 8), it is clear that F k is negative when (λ2 − 2c2) > 0. Recall-
ing that λ > 1, it is clear that the above inequality is always satisfied when

(
2c2 < 1

)
or
(
c < 1√

2

)
or
(
θxm > π

4

)
. This implies that the condition k ≥ 0 remains satisfied when the design of X-joint is car-

ried out for θxm ≥ 45◦, which is an interesting information. However, there exists a non-trivial lower
bound for Fmax when λ2 < 2c2.

– Upper bound on k (k ≤ k):
Substituting for k from Eq. (44) into (k − k ≤ 0) and simplifying leads to:

Fmax ≤ F k, where F k =
4b2cks

√
λ2 − c2 − C2s

(
λ2 − 2c2

)
− 4cdgMs

√
λ2 − c2

bc
(√
λ2 − c2 − s

) (46)
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• Bounds on l in Eq. (12g):
From the definition of λ, it follows that: l = λb. Substituting this expression for l into Eq. (12g) leads to:

l ≤ λb ≤ l =⇒

{
b ≥ bl, where bl = l

λ

b ≤ bl, where bl = l
λ

(47)

The bounds on l have resulted in inequalities involving only λ and b.

The conditions derived above will be used to determine the feasible geometric space (λ, b) and the bounds of Fmax

inside this space, as detailed in the following.

5.2. Feasible geometric space (λ, b) for X-joint

As in the case of R-joint, the design space is composed of only the two geometric variables (λ, b), in addition to
Fmax. Indeed, k can be expressed as a function of λ and b using Eq. (44). Determination of the feasible geometric
space requires conditions: (F k ≥ F k), (F k ≥ FK1

), and (F k ≥ FK2
), to be satisfied along with the bounds

on b and l. From Eqs. (45) and (46), it is observed that the expression of F k contains only an additional positive
term, (4b2cks

√
λ2 − c2), in its numerator when compared to that of F k. This shows that the condition (F k ≥ F k)

will always be satisfied without imposing any additional constraints on the design variables. Thus, the remaining two
conditions involving bounds on Fmax are treated in the following.

5.2.1. Treatment of (F k ≥ FK1
)

Substituting for FK1
and F k from Eqs. (41) and (46), in the condition (F k − FK1

≥ 0) yields:

s
√
λ2 − c2

{
−
√
λ2 − 1

(
−4b2k + 4dgM +K

)
+ C2

(
−λ2 + 2

)}
b
√
λ2 − 1

(√
λ2 − c2 − s

) ≥ 0 (48)

It is observed that all factors but the second one in the numerator are positive. Thus, the preceding condition simplifies
to:

−
√
λ2 − 1

(
−4b2k + 4dgM +K

)
+ C2

(
−λ2 + 2

)
≥ 0 (49)

Substituting for C2 from Eq. (8) into the above condition leads to the following inequality in b:

q1(λ, b) := Ab1b
2 +Bb1b+ Cb1 ≥ 0, where, (50)

Ab1 = 4k
√
λ2 − 1− g(λ+ 1)

(
λ2 − 2

)
ρ

Bb1 = −g
(
λ2 − 2

)
M

Cb1 = −
√
λ2 − 1(4dgM +K)

(51)

From the expressions of the coefficients it is observed that (Cb1 < 0), while the signs of the other two coefficients are
dependent on λ. The roots of the quadratic expression are given by:

(b1)1 =
−Bb1 −

√
B2
b1
− 4Ab1Cb1

2Ab1
, and (b2)1 =

−Bb1 +
√
B2
b1
− 4Ab1Cb1

2Ab1
(52)

An interesting observation from Eq. (51) is that the coefficients are independent of θxm, which implies that this con-
straint does not vary even if the design is performed for a different WFW specification. The signs of Ab1 and Bb1 are
studied in a case-wise manner in the following:

• (λ2 ≤ 2):
In this case, Ab1 > 0, Bb1 ≥ 0, Cb1 < 0. From Appendix D, the solution to the inequality in Eq. (50) is given
by: b ≥ (b2)1.

• (λ2 > 2):
In this case, Bb1 < 0, Cb1 < 0. Thus, in order to satisfy the inequality in Eq. (50), it becomes necessary to
impose the condition: Ab1 > 0. Thus, following Appendix D, the solution in this case is also given by: b ≥
(b2)1.

The condition (Ab1 > 0), after squaring and simplifying, leads to:

p(λ) :=
(
λ6 + 2λ5 − 3λ4 − 8λ3 + 8λ− λ2P

′2
+ P

′2
+ 4
)
< 0 (53)

where P
′

= 4k
ρg . Unlike in the case of R-joint, explicit conditions on P

′
could not be derived for the X-joint. But, for

a given value of P
′
, the feasible range of λ can be obtained, numerically. In summary, for (F k − FK1

) ≥ 0 to be
satisfied, the conditions p(λ) < 0 and b ≥ (b2)1 must be considered together.
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5.2.2. Treatment of (F k ≥ FK2
)

Substituting for FK2
and F k from Eqs. (43) and (46), in the condition (F k − FK2

≥ 0) yields:

4b2cks
√
λ2 − c2 + C2s

(
2c2 − λ2

)
− 4cdgMs

√
λ2 − c2

bc
(√
λ2 − c2 − s

) −
cKs

(
λ2 − c2

)3/2
+ C2λ

4s3

bc3
(

(λ2 − c2)
3/2 − s3

) ≥ 0 (54)

Substituting for C2 from Eq. (8), obtaining a common denominator, and clearing all the positive factors, results in a
quadratic inequality in b as follows:

q2(λ, b) = Ab2b
2 +Bb2b+ Cb2 ≥ 0, where, (55)

Ab2 = g(λ+ 1)ρ
{
−2c6 − c2λ2

(
s
√
λ2 − c2 + λ2 + s2

)
+ c4

(
2s
√
λ2 − c2 + 3λ2 + 2s2

)
− λ4s2

}
+k
{

4c3
(
λ2
√
λ2 − c2 + s2

√
λ2 − c2 + λ2s

)
− 4c5

(√
λ2 − c2 + s

)}
Bb2 = gM

[
−2c6 − c2λ2

{
s
(√
λ2 − c2 + s

)
+ λ2

}
+ c4

{
2s
(√
λ2 − c2 + s

)
+ 3λ2

}
− λ4s2

]
Cb2 = dgM

{
4c5
(√
λ2 − c2 + s

)
− 4c3

(
λ2
√
λ2 − c2 + s2

√
λ2 − c2 + λ2s

)}
− cK

(
λ2 − c2

)3/2 (56)

The above expressions are quite complicated for reduction into explicit conditions on λ and b. Hence, further study
must be conducted numerically, by studying the signs of (Ab2 , Bb2 , Cb2) inside the feasible range2 of λ, given by λ ∈]
1, lb

]
. The conditions in Appendix D must be used appropriately depending on the cases that are encountered (see

Table D.3).

5.3. Bounds of Fmax and the feasible design space for X-joint

There are three possible lower bounds for Fmax inside the feasible geometric space for the X-joint, (FK1
, FK2

, F k).
For a given value of (λ, b) inside the feasible geometric space, the greatest of the three lower bounds defines the lower
boundary of Fmax.

In order to classify the feasible geometric space, as in the case of the R-joint, the boundary curves corresponding
to: (FK1

= FK2
), (FK1

= F k), (FK2
= F k) must be plotted inside the design space.

Following a similar procedure as in Section 5.2.2, the equations corresponding to above mentioned boundaries can be
reduced to quadratic equations in b:

qi(λ, b) := Abib
2 +Bbib+ Cbi = 0, (57)

where i = 3, 4, 5 correspond to the cases (FK1
= FK2

), (FK1
= F k), (FK2

= F k), respectively. The expressions
of each of these coefficients can be found in Appendix E. The roots of the quadratic equations can be computed
analytically as functions of λ and the complete solution in each case is obtained by considering the union of both
roots.

These boundary curves may divide the feasible geometric space into several regions. The greatest of the three lower
bounds of Fmax (i.e., FK1

or FK2
or F k) can be identified in each of these regions, by evaluating them at any point

inside that region. Using this information, the lower boundary of Fmax can be plotted.

Hence, the feasible design space (λ, b, Fmax) can be obtained as the volume enclosed between the lower and upper
boundaries of Fmax. For each solution in this space, the corresponding value of k can be obtained using Eq. (44).

5.4. Design strategy and numerical illustration for X-joint

As in the case of R-joint, the derivations carried out in the previous sections and the final results for the design of
X-joint are consolidated into a flowchart in Fig. 6. As an illustration, consider the numerical example in Section 6
corresponding to specification A, where θxm is specified to be 0.35 radians, with a minimum desired stiffness, K =
10 Nm/rad. The mass and payload parameters are set to: ρ = 0.2121 Kg/m, M = 0.2 Kg, d = 0.25 m. The
bounds on spring constant and link lengths are chosen to be equivalent to that of R-joint (see Section 4.4) as follows:
(k, k) = (0, 2000) N/m, (b, b) = (0.05, 0.2) m, (l, l) = (0.05, 0.4) m.

As for the R-joint, we suppose that we want to minimize the maximal actuation force Fmax. The optimal design for
the X-joint is then obtained through the following steps:

• It is found that P
′

= 4k
ρg = 3849.5527, and that the feasible range of λ corresponding to p(λ) < 0 (see Eq. (53))

is λ ∈]1, 61.5591[, which is much larger than λ ∈
]
1, lb (= 8)

]
.

2The maximum value of λ is obtained to be
(

l
b

)
by considering the bounds specified on l and b.
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• It is found that Ab2 > 0, Cb2 < 0 (see Eq. (56)) inside λ ∈
]
1, lb

]
. Thus, q2(λ, b) > 0 leads to a lower bound

on b as shown in Fig. 7(a) (blue dotted line). The feasible geometric space (shaded in gray) that lies at the
intersection of the conditions highlighted in the first box of Fig. 6, is shown in Fig. 7(a). Analogous to the
R-joint, the lower bounds on b are plotted in dashed lines, while the upper bounds are plotted in continuous
lines. It is observed that the feasible geometric space for the X-joint is bounded only by the limits on l and b, in
this example.

• The boundaries corresponding to (FK1
= FK2

), (FK1
= F k), and (FK2

= F k), i.e., zero level sets of
q3, q4, q5 were plotted in the design space. It was observed that the curves (q4 = 0) and (q5 = 0) did not
intersect the feasible geometric space, while the curve (q3 = 0) split it into two regions. By evaluating q4
and q5 at one point (λ = 2, b = 0.1) inside the feasible geometric space, it was found that the entire region
corresponds to: (FK1

> F k) and (FK2
> F k). Similarly, the nature of the split regions was characterized

by evaluating q3 at one point in each of those regions. The obtained result is depicted in Fig. 7(b), where the
region (FK1

> FK2
) is shown in orange shade, and the region (FK2

> FK1
), in blue shade. As a next step,

the surfaces corresponding to the lower bounds (FK1
(orange), FK2

(blue)) and the upper bound (F k(gray))
of Fmax have been plotted over the feasible geometric space (λ, b) as shown in Fig. 7(c). The volume enclosed
between these surfaces forms the feasible design space (λ, b, Fmax) for this problem.

• From the plot of lower boundary of Fmax in Fig. 7(d), it is apparent that the optimal design solution that results
in a minimum actuation force occurs at l = l, b = b. Thus, the corresponding joint parameters are found to
be: (λ∗

(
l
b

)
= 2, b∗ = b = 0.2 m, l∗ = l = 0.4 m, F ∗max = 21.0137 N, k∗ = 79.3788 N/m). The stiffness

bounds and a schematic representation of this design are presented in Figs. 7(e) and 7(f), respectively. From
Fig. 7(e), it can be verified that the X-joint is able to reach the stipulated WFW: θx ∈ [−0.35, 0.35] radians and
the lower boundary of stiffness remains above the specified value of 10 Nm/rad, thereby validating the design
requirements.

6. Numerical examples and comparison

A comparative study between the optimal designs of R- and X- joints are carried out with numerical examples in this
section.

The links are considered to be made of Aluminum alloy with a circular cross-section of diameter equal to 0.01 m.
Consequently, the linear mass density of the links (ρ) is found to be 0.2121 Kg/m. Point mass (M), mass offset (d) are
set to: M = 0.2 Kg and d = 0.25 m. Four different specifications (A,B,C,D) for WFW have been considered: θrm =
θxm = {0.35, 0.7, 1.0, 1.3} radians, respectively. Ideally, a suitable value for the minimum desired stiffness (K)
should be determined through experiments to estimate the amount of disturbance the joints must withstand. But, in
this study these values are chosen, rather arbitrarily, to be 10 Nm/rad for specifications (A,B,C) and 1 Nm/rad for
specification D. The value of K is reduced for the last specification because no feasible designs could be obtained
with K = 10 Nm/rad and θrm = 1.3 radians for the R-joint. Bounds on spring constant and link lengths are assumed
to be: (k, k) = (0, 2000) N/m for both the joints, (r, r) = (0.025, 0.1) m, (w,w) = (0.025, 0.2) m for the R-joint,
and (b, b) = (0.05, 0.2) m, (l, l) = (0.05, 0.4) m for the X-joint. Two case studies are considered for the comparison
of these joints in the following.

6.1. Minimization of the maximal actuation force Fmax

For the purpose of comparison, the designs are first optimized with the objective to minimize the maximal actuation
force Fmax. Since the design specification A has already been dealt with in detail for the R-joint in Section 4.4 and for
the X-joint in Section 5.4, only the remaining specifications are considered in the following. The feasible geometric
and design spaces, stiffness bounds and schematics corresponding to the optimal design are presented for specification
B in Figs. 8, 9, for specification C in Figs. 10, 11, 12, and for specification D in Figs. 13, 14, for both the joints.
The optimal designs of these joints are compared in terms of their geometry, mass, springs, actuation forces, and
stiffness. In general, it was observed that the R-joint tends to be shorter, requires much stronger springs, and possesses
a more uniform distribution of stiffness throughout the WFW. In contrast, the X-joint achieves a much larger value of
stiffness near the zero orientation and exhibits relatively large variations in stiffness within its WFW. In comparison
with X-joint, the R-joint requires larger forces for small WFW specifications and much smaller forces for large WFW
specifications. More specific details on the difference between the two joints are presented in the following.

• From the plots of the bounding surfaces of Fmax, it is observed that the range of Fmax as well as λ for the
X-joint is much larger than the corresponding ranges of Fmax and η for the R-joint. This indicates that there are
more feasible designs for X-joint satisfying the equivalent set of constraints.

• For both R- and X- joints, the region corresponding to (FK2
> FK1

), i.e., the blue region, keeps increasing

18



1 2 3 4 5 6 7 8

0.0

0.1

0.2

0.3

0.4

(a) Feasible geometric space (λ, b) (shaded in gray)
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(b) Classification of the feasible geometric space (λ, b)
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Figure 7: Specification A: Feasible geometric and design spaces, stiffness bounds and schematic of the optimal design minimizing the maximal
actuation force for the X-joint, when θxm = 0.35 radians (≈ 20◦), K = 10 Nm/rad.
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with the size of the WFW. This implies that the fraction of designs possessing the minimum stiffness (K) at
the boundary of WFW (instead of at the zero orientation) increases for both the joints with increase in WFW
specification. Beyond θrm = θxm = 1.0 radians, it is observed that the feasible geometric space only consists of
the region (FK2

> FK1
), for both the joints.

• In all the examples, optimal design of R-joint occurs at r = r and when η approaches its upper bound η.
Recalling that

(
η = r

h

)
, a larger value for η implies that the R-joint tends to be shorter. On the other hand, for

the X-joint, the optimal design occurs at b = b and l = l for three of the design specifications (A,B,C). This
shows that the X-joint, in contrast to the R-joint, tends to be as large as possible in these cases. It is interesting to
note that the specifications (A,B,C) yield the same geometry (b, l) and different spring constants for the X-joint.
While, for the R-joint, three different geometries as well as spring constants are obtained for those specifications.

• The optimal value of force required is greater for the R-joint for specifications A (1.71 times) and B (1.26 times).
On the other hand, the force required is significantly lower for the R-joint for specifications C (0.73 times) and
D (0.07 times). Thus, when actuation force is the only criterion, the X-joint would be preferred for applications
requiring only a small WFW (up to θmax = 0.7 radians), while R-joint would be favored for a relatively large
WFW (beyond θmax = 1 radian).

• For the X-joint, Fmax has turned out to be significantly larger for specification D (θxm = 1.3 radians, K =
1 Nm/rad), than specification C (θxm = 1 radian, K = 10 Nm/rad), despite a small increase in WFW and
a much smaller stiffness specification. This is because in specification D, WFW boundary of the X-joint is
very close to the flat singularity at θx = ±π2 . The stiffness value drops drastically near singularities, thereby,
necessitating sufficiently large forces to counter the ill effects of such configurations. In order to study only
the effect of large WFW requirement, a new specification D’ (with θxm = 1.3 radians and K = 10 Nm/rad),
which has the same K as that of specification C, is considered. The corresponding optimal design is found to
be: l = 0.4 m, b = 0.2 m, Fmax = 1108.6682 N, k = 780.4586 N/m. This shows that the X-joint requires
roughly 3 times stronger springs and 3 times larger forces, for an increase in WFW from θxm = 1 radian to
θxm = 1.3 radians, when K is fixed at 10 Nm/rad.

• From the plot of stiffness bounds, it is observed that the maximum value of stiffness as well as its distribution
are much larger for the X-joint when compared to its counterpart. Thus, for specifications A and B, the X-joint
allows for a larger range of stiffness tuning, while requiring lower forces, which is a two-fold advantage over the
R-joint for small WFW specifications. On the other hand, the R-joint can achieve a better stiffness resolution
within the WFW, since a large range of forces map to a small range of stiffness for this joint.

• For all design specifications, the mass of the X-joint is slightly greater (about 1.02−1.49 times), while the value
of spring constant is much lower (about 0.1 − 0.5 times), than the respective values of the R-joint. This shows
that the R-joint is slightly lighter, but requires much stronger springs to achieve the same WFW and stiffness
performance as that of the X-joint.

• In the design process, it is also imperative to verify if the optimal designs can withstand the forces they are sub-
jected to during their operation, without failure. Since it is known that all the bars are loaded axially (mostly in
compression), the buckling mode of failure seems the most susceptible. For the data presented above, the critical
buckling load (see, e.g., [28], p. 819) of the longest possible Aluminum bar (upper bound l = 0.4 m) is computed
to be 2119.5697 N. As an example, the optimal X-joint for specification D’ (fifth bullet point) is considered since
it has both the maximum force requirement and the longest bar among all the optimal designs. A safe overes-
timate of the compression load experienced by a crossed bar can be computed as: {Fmax + k(l + b) +Mg},
assuming maximum loading from the actuator, maximum permissible extension in the springs (flat configura-
tion), and direct transmission of the payload weight. Substituting the corresponding joint parameters one obtains
this load to be 1578.9034 N. Clearly, the overestimated compression load is less than the critical buckling load,
thereby proving that this design is safe. Since all the other optimal designs of R- and X- joints are subject to
much lesser actuation forces, they are also determined to be safe.

6.2. Minimization of the joint mass for a given Fmax

Since the tensegrity joints are suitable candidates for building lightweight manipulators, minimization of their mass is
another criterion that can be of interest in the design process. In this scenario, the actuators are assumed to be available
a priori, i.e., Fmax = F 0

max is a known quantity which is equal for both the joints. Practically, this corresponds to a
situation where the designer wants to achieve the stipulated static performance (WFW and minimum stiffness) with
the joints by varying their geometry and springs, while keeping them as light as possible. The comparison analysis is
conducted between the optimal designs of R- and X- joints corresponding to minimum mass.

The feasible design space for this problem is defined by the intersection of the feasible design space derived previously
and the plane Fmax = F 0

max as shown in Fig. 15(a) (bounded by the dashed lines). The variation of joint mass can be
plotted inside this feasible space and the optimal design can be identified directly, as in the previous scenarios. The
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Figure 8: Specification B: Feasible geometric space and bounding surfaces of Fmax for both R-joint and X-joint, when θrm = θxm = 0.7 radians (≈
40◦), K = 10 Nm/rad.
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Figure 9: Specification B: Stiffness bounds and schematics of the optimal design corresponding to minimum Fmax, for both R-joint and X-joint,
when θrm = θxm = 0.7 radians (≈ 40◦), K = 10 Nm/rad.
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Figure 10: Specification C: Feasible geometric space for both R-joint and X-joint, when θrm = θxm = 1.0 radian (≈ 58◦), K = 10 Nm/rad.
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(a) R-joint: bounding surfaces for Fmax (b) X-joint: bounding surfaces for Fmax

(c) R-joint: lower bound of Fmax and the optimal solution (d) X-joint: lower bound of Fmax and the optimal solution
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(f) X-joint: stiffness bounds for optimal design (forces in N)

Figure 11: Specification C: Bounding surfaces of Fmax, stiffness bounds of the optimal design corresponding to minimum Fmax, for both R-joint
and X-joint, when θrm = θxm = 1.0 radian (≈ 58◦), K = 10 Nm/rad.
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Figure 12: Specification C: Schematic of the optimal design corresponding to minimum Fmax for both R-joint and X-joint, when θrm = θxm =
1.0 radian (≈ 58◦), K = 10 Nm/rad.
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Figure 13: Specification D: Feasible geometric space and bounding surfaces for Fmax for both R-joint and X-joint, when θrm = θxm = 1.3 radi-
ans (≈ 75◦), K = 1 Nm/rad.
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(a) R-joint: lower bound of Fmax and the optimal solution (b) X-joint: lower bound of Fmax and the optimal solution
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Figure 14: Specification D: Lower bounding surface for Fmax, stiffness bounds and schematic of the optimal design corresponding to mini-
mum Fmax, for both R-joint and X-joint, when θrm = θxm = 1.3 radians (≈ 75◦), K = 1 Nm/rad.
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maximal actuation forces have been fixed at F 0
max = 50 N for specification A, F 0

max = 100 N for specification B, and
F 0
max = 190 N for specification C. The specification D has not been considered since there exists no common F 0

max

ensuring feasible designs for both the joints, as explained in the following. The feasible design spaces, variation of
masses, stiffness bounds and schematics of the optimal designs are shown for the two joints, for specification A in
Fig. 15, B in Fig. 16, C in Figs. 17 and 18. The following observations are made from these plots.

• The value of F 0
max has been chosen such that there exists a non-empty feasible design space for both the joints.

However, such a choice does not exist for specification D as can be reasoned from the plots of feasible design
spaces in Figs. 13(c) and 13(d). It is found that there exists no feasible designs for the R-joint when Fmax >
120 N, and for the X-joint when Fmax < 392 N. Thus, it can be concluded that when the actuators are not
strong enough to produce Fmax > 120 N, only the R-joint can satisfy the stipulated requirements on stiffness
for θmax = 1.3 radians.

• Recalling that the actuators are fixed at the base, the mass of R-joint is computed to be 4ρ(r+w) (see Fig. 1(a)),
which can be rewritten in terms of the geometric variables as:

Mass of R-joint = 4ρr

(
1 +

√
1 +

1

η2

)
, recalling η =

r

h
(58)

From the above expression, it is clear that the minimum mass solution requires r to be as small as possible and
η to be as large as possible. From Figs. 15(a), 16(a) and 17(a), it is apparent that the smallest r for a given η
occurs at the intersection of Fmax = F 0

max and the lower/upper boundary of Fmax. Thus, the optimal solution
must occur at the intersection of those surfaces and η = η in all the examples. Plots in Figs. 15(c), 16(c), 17(c))
confirm this result. As explained in Section 4.4, η = ση, σ = 0.99 must be considered in accordance with the
strict inequality η < η.

• Recalling that the actuators are fixed at the base, the mass of X-joint is given by 2ρ(b+ l) (see Fig. 1(b)) which
can be rewritten as 2ρb(1 + λ), recalling λ = l

b . This suggests that the mass of X-joint would be a minimum
when b and λ are both as small as possible. From the plots of feasible design spaces in Figs. 15(b), 16(b), 17(b),
it is found that λ and b are conflicting objectives when minimized. The curve representing the trade-off between
them is formed by the intersection of Fmax = F 0

max and the lower boundary of Fmax. Thus, the minimum mass
solution must occur on this curve, which can be solved for numerically by studying the variation of joint mass
on it (see Figs. 15(d), 16(d), 17(d)).

• The width of the R-joint is greater (1.2− 1.5 times) for specifications A and B, and is about equal for specifica-
tion C, but the height of X-joint is significantly greater (2.4 − 4.4 times) in all the examples. In terms of mass,
the R-joint is found to be slightly heavier (1.2 times) for specification A, about equal for specification B, and
lighter (0.72 times) for specification C. Thus, when the same actuators are used for the two joints, the X-joint
would be preferred for small WFW requirements (up to θmax = 0.7 radians), but the R-joint would be favored
for larger WFW requirements, when joint mass is the criterion.

• The value of spring constant is found to be much higher (about 3− 12 times) for the R-joint in these examples.
In particular, for specification C the spring constant is equal to its upper bound of k = 2000 N/m for the R-joint,
due to the occurrence of the optimal solution on the upper bound of Fmax (F k).

The comments made on the stiffness bounds in the previous case study, are applicable to this problem as well.

7. Effect of mass density and payload

The influence of mass and payload parameters (ρ,M, d) on the optimal design of the two joints was studied with
several numerical examples. The patterns observed are summarized below:

• Influence of (ρ,M, d) on the optimal design of R-joint: It is observed that increasing the values of (ρ,M, d),
roughly up to 5 times their original values, does not impact the geometry (r, η) and the optimal force (Fmax).
This is because the lower boundaries of Fmax (FK1

, FK2
), where the optimal design corresponding to minimum

force occurs, are independent of (ρ,M, d) (see Eqs. (18), (21)). However, spring constant k must change
appropriately to compensate for the variations in mass/payload according to Eq. (15).

Nevertheless, the parameters (ρ,M, d) affect the size of the feasible design space (through curves (F k = FK1
),

(F k = FK2
)), and for relatively large increase (such as 10 times the default values) of these parameters, no

feasible designs can be found for the R-joint.

3The third lower boundary Fk is not considered as it was never found to be greater than FK1
and FK2

to form the lower boundary of Fmax

in any of the examples.
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(a) R-joint: feasible design space for a fixed Fmax (b) X-joint: feasible design space for a fixed Fmax

(c) R-joint: variation of mass inside the feasible design space and the
minimum mass solution

(d) X-joint: variation of mass inside the feasible design space and the
minimum mass solution
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Figure 15: Specification A: Feasible design space, variation of joint mass, stiffness bounds and schematic of the optimal design corresponding to
minimum mass, for both R-joint and X-joint, when Fmax = 50 N, θrm = θxm = 0.35 radians (≈ 20◦), K = 10 Nm/rad.
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(a) R-joint: feasible design space for a fixed Fmax (b) X-joint: feasible design space for a fixed Fmax

(c) R-joint: variation of mass inside the feasible design space and the
minimum mass solution

(d) X-joint: variation of mass inside the feasible design space and the
minimum mass solution
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(e) R-joint: stiffness bounds for optimal design (forces in N)
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(f) X-joint: stiffness bounds for optimal design (forces in N)
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Figure 16: Specification B: Feasible design space, variation of joint mass, stiffness bounds and schematic of the optimal design corresponding to
minimum mass, for both R-joint and X-joint, when Fmax = 100 N, θrm = θxm = 0.7 radians (≈ 40◦), K = 10 Nm/rad.
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(a) R-joint: feasible design space for a fixed Fmax (b) X-joint: feasible design space for a fixed Fmax

(c) R-joint: variation of mass inside the feasible design space and the
minimum mass solution

(d) X-joint: variation of mass inside the feasible design space and the
minimum mass solution
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(e) R-joint: stiffness bounds for optimal design (forces in N)
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(f) X-joint: stiffness bounds for optimal design (forces in N)

Figure 17: Specification C: Feasible design space, variation of joint mass, stiffness bounds of the optimal design corresponding to minimum mass,
for both R-joint and X-joint, when Fmax = 190 N, θrm = θxm = 1 radian (≈ 58◦), K = 10 Nm/rad.
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Figure 18: Specification C: Schematic of the optimal design corresponding to minimum mass, for both R-joint and X-joint, when Fmax = 190 N,
θrm = θxm = 1 radian (≈ 58◦), K = 10 Nm/rad.

• Influence of (ρ,M, d) on the optimal design of X-joint: It is found that the parameters (ρ,M) directly influence
two3 of the lower boundaries of Fmax (FK1

, FK2
) and hence the optimal value of force for the X-joint. On the

other hand, the payload offset d affects only the size of the feasible design space and the existence of feasible
designs, as in the case of R-joint. From numerical examples, it is observed that increasing (ρ,M) results in an
increase of the optimal force Fmax required for the X-joint.

The maximal actuation forces required for the R-joint remains greater (resp. lower) than that of the X-joint for
specifications A and B (resp. specifications C and D), even when the joint parameters (ρ,M, d) are significantly
altered. Similarly, the minimum joint mass (when maximal actuation forces are fixed) for R-joint remains greater for
specification A, about equal for specification B, and lesser for specification C in these experiments.

8. Effect of non-zero spring free-length

If a non-zero free-length is considered for the springs, then the following changes are observed in the WFW and
stiffness of the joints:

• Impact on R-joint: The size of the WFW logically decreases since the space occupied by the spring free-length
reduces the rotation range. On the other hand, the stiffness increases irrespective of its geometry (r, h). In some
examples, it was found that l1, l2 (see Fig. 1(a)) need to be smaller than the free-length of the springs to reach
the boundary of the WFW, which is not permissible physically. Hence, as an extension of this work, it is planned
to account for the free-length of springs in the design process itself with additional constraints for the R-joint.

• Impact on X-joint: Unlike in the case of R-joint, it is observed that the size of the WFW increases for the X-
joint when the spring free-length is non-zero, and the corresponding stiffness of the joint decreases. Moreover,
if the spring free-length is chosen to be less than (l − b), i.e., the spring lengths l1, l2 (see Fig. 1(b)) at the flat
singularity, then the springs continue to operate in the tension mode without any issues. Thus, no major changes
would be necessary in the design process for the X-joint.

9. Conclusion

Two antagonistically actuated tensegrity joints, a revolute (R) joint and an anti-parallelogram (X) joint, have been
analyzed and compared in this work. Design strategies have been proposed for these joints to possess a prescribed
WFW with a minimum specified stiffness throughout. The strength of our approach lies in the complete character-
ization of the design space. This strategy requires some preliminary tedious algebraic calculations, but all feasible
designs are obtained. This allows for selecting different optimal designs, such as, for instance, the ones with minimum
actuation force or with minimal mass. The optimal designs of the two joints have been compared on the basis of
actuation forces, stiffness, and geometry, while they were designed to possess the same WFW. It was observed that
when the WFW range is smaller than [−0.7, 0.7] radians, the actuation force required for the R-joint is greater than
that of the X-joint. On the other hand, when the WFW specification is larger than [−1, 1] radians, the force required
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for the X-joint is much greater due to its proximity to the flat singularity. While minimizing the joint masses for a
fixed maximal actuation force, the R-joint turned out to be heavier when the WFW range is smaller than [−0.7, 0.7]
radians, but lighter for larger WFW specifications. These observations on actuation forces and joint masses are found
to be valid even when the mass density and payload parameters are significantly altered.

In general, the R-joint is shorter, requires much stronger springs, and possesses a more uniform distribution of stiffness
throughout the WFW. On the other hand, the X-joint achieves a much larger value of stiffness near the zero orientation
and exhibits relatively large variations in stiffness within its WFW. It is possible to increase the stiffness of the X-joint
at any orientation by suitably increasing the actuation forces, but, this is not possible for the R-joint due to the negative
influence of the actuation forces on stiffness.

In the future, robot manipulators with some or all of its joints replaced with the proposed tensegrity joints will be
studied and experiments will be conducted on test beds.
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Appendix A. Nature of lower bound of stiffness for R-joint

In this appendix, it is established formally that the actuation forces have a negative impact on the stiffness of the
R-joint. Additionally, it is also shown that the least value of stiffness, when it is imposed to be positive, occurs either
at the boundary of the WFW or at the zero orientation when maximum forces are applied. As a preliminary step, it
is proven that F1 > F2 is necessary when Kr > 0 and θr > 0 in Appendix A.1. Using this result, the study of joint
stiffness for θr > 0 is conducted in Appendix A.2. Though this study is confined to the positive half of the WFW, the
results are applicable equally well on the negative half due to symmetry of the joint (see Section 3).

Appendix A.1. Proof for (F1 > F2) when Kr > 0 and θr > 0

Since Kr must be positive for all admissible combinations of forces inside the WFW, it is necessary that Kr(θr =
0, F1 = 0, F2 = 0) > 0. From Eq. (5), this leads to the condition: C > 0. From the expression of C in Eq. (3), this
requires (r > h) to be satisfied.

The static equilibrium equation (Eq. (3) = Eq. (4)) and stiffness expression (see Eq. (5)) can be rewritten in a simplified
form as follows:

2Ccs− rF−c− hF+s = 0 (A.1)

Kr = C(c2 − s2) +
1

2
rF−s+

1

2
hF+c > 0 (A.2)

where c = cos θr
2 , s = sin θr

2 , F
+ = F1 + F2, and F− = F1 − F2. Since it is known that the positive half of

WFW must be limited by
(
θr <

π
2

)
due to singularities, it is noted that (c > s). Solving for F+ from Eq. (A.1) and

substituting into the expression in Eq. (A.2), leads to the condition:

F− >
2Cs3

r
(A.3)

Since C > 0 must be satisfied, it is clear that F− > 0, or F1 > F2.

Appendix A.2. Nature of the lower bound of Kr when θr ≥ 0

Solving for F1 from the equation of static equilibrium (Eq. (3) = Eq. (4)) results in:

F1 =
2Ccs+ F2 (rc− hs)

rc+ hs
(≥ 0) (A.4)

Substituting for F1 from Eq. (A.4) into the expression of stiffness in Eq. (5) leads to:

Kr2 =
C
(
c3r − hs3

)
cr + hs

− F2hr

cr + hs
(A.5)
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Similarly, solving for F2 from the equilibrium equation and substituting into the expression of stiffness results in:

F2 =
−2Ccs+ F1(cr + hs)

cr − hs
(≥ 0) (A.6)

Kr1 =
C
(
c3r + hs3

)
cr − hs

− F1hr

cr − hs
(A.7)

From the expressions of stiffness in Eqs. (A.5) and (A.7), it is observed that the coefficients of F2 and F1 are both
negative in the respective equations. This shows that the applied forces F1 and F2 have a negative impact on the
stiffness of the R-joint. Thus, the minimum value of stiffness is achieved when at least one of the applied forces
attains its maximum value of Fmax. Since it has been established in Appendix A.1 that F1 must be greater than F2

in the positive half of the WFW, F1 = Fmax must be considered in this case. Thus, the expression for lower bound of
stiffness may be obtained by substituting, F1 = Fmax, in Eq. (A.7), as follows:

K r1 =
C
(
c3r + hs3

)
cr − hs

− Fmaxhr

cr − hs
(A.8)

In order to investigate the nature of K r1, its first-order and second-order derivatives w.r.t. θr are computed:

dK r1

dθr
=
C
{
hr − 2cs(cr − hs)2

}
2(cr − hs)2

− Fmaxhr(ch+ rs)

2(cr − hs)2
(A.9)

d2K r1

dθ2r
=− Fmax

hr
{
c2
(
2h2 + r2

)
+ 2chrs+ s2

(
h2 + 2r2

)}
4(cr − hs)3

+ C
−c5r3 + 3c4hr2s+ c3rs2

(
r2 − 3h2

)
+ c2hs3

(
h2 − 3r2

)
+ ch2r

(
3s4 + 1

)
− h3s5 + hr2s

2(cr − hs)3
(A.10)

The stationary points of the lower bound of stiffness (K r1) are obtained from the roots of
(dKr1

dθr
= 0
)

. Further, the

nature of these stationary points can be found by investigating the sign of d2
Kr1

dθ2r
at those points.

Thus, solving for Fmax from (Eq. (A.9) = 0) yields:

Fmax =
C
(
hr − 2cs(cr − hs)2

)
hr(ch+ rs)

(A.11)

Substituting this result into Eq. (A.10), one obtains:

d2K r1

dθ2r
=

Cζ1
4(cη − s)(c+ ηs)

, where, ζ1 =
(
−2c4η + 6c3s+ 8c2ηs2 + 6cη2s3 − η − 2ηs4

)
(A.12)

with η = r
h . Recalling the conditions C > 0 and (c > s) from Appendix A.1, it is clear that the first factor in the

numerator and all the factors in the denominator of Eq. (A.12) are positive. Thus, the sign of d2
Kr1

dθ2r
depends only on

the sign of ζ1. It is observed that ζ1 is a function of θr and η, which could be positive or negative, in general.

Additionally, it is also necessary to account for the condition F2 ≥ 0, explicitly, on the lower boundary of stiffness
and at the stationary points, since F2 was eliminated using the equilibrium equation. Thus, substituting F1 = Fmax in
Eq. (A.6) and using the expression of Fmax from Eq. (A.11), one obtains:

F2 =
Cζ2
c+ ηs

, where, ζ2 =
{
−2c4η

(
η2 + 1

)
s+ 2c3η2s2 + c

(
η2 − 2s4 − 2η2s2

)
+ ηs

}
(A.13)

It is observed that F2 ≥ 0 requires ζ2 ≥ 0.

In essence, one must study the nature of ζ1, while ensuring that ζ2 ≥ 0. Since the corresponding expressions are quite
complicated for algebraic analysis, further study is conducted through plots. The region in (θr, η) space, where ζ2 ≥ 0
is satisfied is shown in Fig. 19(a). The plot of ζ1 within this feasible region is shown in Fig. 19(b). It is observed that ζ1
is negative for all the admissible values of (θr, η) considered and decreases with increasing value of η. This implies
that, for any given η > 1, there can be at most one stationary point (θr) for K r1, within the positive half of WFW, and
if it exists, it will be a maximum. Using this information, four possible cases are identified for the variation of K r1
against θr as shown in Fig. A.20. In all of these cases, it is found that the minimum value of stiffness (highlighted by
a large dot in Fig. A.20) always occurs at the zero orientation (θr = 0) or at the boundary of the WFW.
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(a) Region in (θr, η) space where ζ2 ≥ 0 (b) Plot of ζ1 in the feasible region where ζ2 ≥ 0

Figure A.19: Plot of feasible region in (θr, η) space and variation of ζ1 inside this region.

Figure A.20: Possible cases for the lower bound of stiffness in the positive half of WFW.
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Appendix B. Nature of lower bound of stiffness for X-joint

In this appendix, it is shown that the actuation forces have a positive impact on the stiffness of the X-joint and that
the least value of stiffness, when it is imposed to be positive, occurs either at the boundary of WFW or at rest (zero
orientation in the absence of forces). As in the case of R-joint, only the positive half of the WFW is considered in this
study due to symmetry (see Section 3).

Appendix B.1. Proof for (F1 > F2) when Kx > 0 and θx > 0

The equilibrium equation (Eq. (8) = Eq. (9)) and the stiffness expression (see Eq. (10)) can be rewritten as follows:

bcsF+

√
λ2 − c2

− bcF− +
C2s

(
2c2 − λ2

)
√
λ2 − c2

+ 2csC1 = 0 (B.1)

Kx = −
bF+

(
c4 − c2λ2 + λ2s2

)
(λ2 − c2)

3/2
+ bsF− + 2C1

(
c2 − s2

)
−
C2c

{(
−c2 + λ2 + s2

)2 − (λ2 − 1
) (
c2 − s2

)}
(λ2 − c2)

3/2
> 0 (B.2)

where F+ = (F1 +F2), F− = (F1−F2). In the context of X-joint, c = cos θx, s = sin θx and λ = l
b . Solving for C1

from Eq. (B.1) and substituting into the expression of stiffness in Eq. (B.2), results4 in:

bc2

s
F− − bc2s2

(λ2 − c2)
3/2

F+ − λ4s2

c (λ2 − c2)
3/2

C2 > 0 (B.3)

Since it is known that C2 > 0 (by definition in Eq. (8)) and F+ > 0, it is observed that the second and third terms
in Eq. (B.3) are both negative. On the other hand, the coefficient of F− is found to be positive. Thus, in order to
ensure that the left hand side of Eq. (B.3) remains positive, F− must necessarily be positive. In other words, when the
stiffness is specified to be positive, it is necessary that F1 > F2 for the X-joint when θx > 0.

Appendix B.2. Nature of lower bound of Kx when θx ≥ 0

Solving for F1 from the static equilibrium equation (Eq. (8) = Eq. (9)), one obtains:

F1 =
bcF2

(√
λ2 − c2 + s

)
+ 2csC1

√
λ2 − c2 + (2c2 − λ2)sC2

bc
(√
λ2 − c2 − s

) (≥ 0) (B.4)

Substituting for F1 from the above equation into the expression of Kx in Eq. (B.2), leads to:

Kx2 =
2bc2

(
λ2 − 1

)
(λ2 − c2)

(√
λ2 − c2 − s

)F2 +
2c2
(
s
√
λ2 − c2 − c2 + λ2 + s2

)
λ2 − c2

C1

+

{
c2λ2

(
s2 − 3c2

)
+ c2s

(
λ2 − 2c2

)√
λ2 − c2 + 2c4

(
c2 − s2

)
+ λ4

}
c (c2 − λ2)

√
λ2 − c2

C2 (B.5)

Similarly, solving for F2 from the equilibrium equation and substituting into the expression of Kx in Eq. (10) yields:

F2 =
bcF1

(√
λ2 − c2 − s

)
− 2csC1

√
λ2 − c2 − (2c2 − λ2)sC2

bc
(√
λ2 − c2 + s

) (≥ 0) (B.6)

Kx1 =
2bc2

(
λ2 − 1

)
(λ2 − c2)

(√
λ2 − c2 + s

)F2 −
2c2
(
s
√
λ2 − c2 + c2 − λ2 − s2

)
λ2 − c2

C1

+

{
c2λ2

(
s2 − 3c2

)
− c2s

(
λ2 − 2c2

)√
λ2 − c2 + 2c4

(
c2 − s2

)
+ λ4

}
c (c2 − λ2)

√
λ2 − c2

C2 (B.7)

From the expressions of Kx2 and Kx1 presented above, it is observed that the coefficients of F2 and F1, respectively,
are always positive. This shows that the applied forces have a positive effect on the stiffness of the X-joint, contrary
to what was observed for the R-joint. Thus, the lower bound for stiffness at a given orientation is obtained when

4Alternatively, it is possible to eliminate F+ using Eq. (B.1), as in the case of R-joint. But, one must account for the condition: F+ ≥ 0 along
with the inequality from stiffness. This turned out to be difficult to handle, algebraically. On the other hand, since there are no constraints on the
sign of C1 (see Eq. (8)), its elimination does not add any conditions other than the one from stiffness.
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at least one of the forces (F1 or F2) is equal to its minimum value of zero. Since it is known from Appendix B.1
that (F1 > F2) when (θx > 0), the lower bound of stiffness is obtained by substituting, F2 = 0 in Eq. (B.5):

Kx2

=
2c2
(
s
√
λ2 − c2 − c2 + λ2 + s2

)
λ2 − c2

C1+

{
c2λ2

(
s2 − 3c2

)
+ c2s

(
λ2 − 2c2

)√
λ2 − c2 + 2c4

(
c2 − s2

)
+ λ4

}
c (c2 − λ2)

√
λ2 − c2

C2

(B.8)

Further study on the nature of Kx2 is conducted by considering its first-order and second-order derivatives w.r.t. θx:

dKx2

dθx

= −
2cC1

[
−c2λ4 + 2s

√
λ2 − c2

{
−c2

(
λ2 − c2

)
+
(
λ2 − c2

)2
+ λ2s2

}
+
(
2λ2 − c2

) {
c4 + s2

(
λ2 − c2

)}]
(λ2 − c2)

5/2

+ C2

[
c2
√
λ2 − c2

{(
λ2 − c2

) {
λ2 − 2c2

(
λ2 − c2

)}
− 2c2s2

(
2λ2 − c2

)}
− s

{
λ4
(
4c4 − c2 + λ2

)
+ 4c2

{
λ2
(
λ2
(
c2 − s2

)
+ c2s2

)
+ 2c4

(
c2 − 2λ2

)}}]/[
c2
(
λ2 − c2

)5/2]
(B.9)

d2Kx2

dθ2x
= C1

[
− 8c8 + 4c6

(
5λ2 + 2s2

)
− 8c4

(
2λ4 + 5λ2s2

)
+ 4c2λ2

(
λ4 − 3s4 + 9λ2s2

)
−2s

√
λ2 − c2

{
−4c6 + 11c4λ2 + c2λ2

(
s2 − 7λ2

)
+ 2λ4s2

}
− 4λ4s2

(
λ2 + s2

)]/[
c2 − λ2

]3
+ C2

[
2c4s

√
λ2 − c2

(
4c6 − 12c4λ2 + 10c2λ4 − c2λ2 − 2λ6 + λ4 − 4λ4s2

)
+
(
λ2 − c2

){ (
28c2 + 5

)
c2λ4s2 − λ4

{
c4 +

(
c2 − 2

)
λ2
}

+ 12c4λ2s2
(
3c2 + s2

)
+ 8c6

{
2c4 − c2

(
2λ2 + 1

)
+ λ4

}}]/[
c3
(
λ2 − c2

)7/2]
(B.10)

As in the previous case, the stationary points of Kx2 can be obtained from
(dKx2

dθx
= 0
)

. The nature of these points

can be found by studying the behavior of d2
Kx2

dθ2x
at those points.

Thus, solving for C1 from (Eq. (B.9) = 0) and substituting the result into Eq. (B.10), one obtains:

d2Kx2

dθ2x
=

C2γ1
c3(λ2 − c2)5/2γ2

where, (B.11)

γ1 =

−8c16 +2λ8s
(
s2 +2

) (
λ2
√
λ2 − c2 +s2

√
λ2 − c2 +λ2s

)
− c2λ6

{
8s7
√
λ2 − c2 +4

(
2λ2 +1

)
s5
√
λ2 − c2

+ 32λ2s3
√
λ2 − c2 + 4λ2

(
λ2 + 3

)
s
√
λ2 − c2 + 2λ4 + 8λ2s6 + 13λ2s4 + λ2

(
11λ2 + 6

)
s2
}

+4c14
(

8s
√
λ2 − c2+3λ2+2

)
−2c12

{
−16s3

√
λ2 − c2+

(
21λ2+16

)
s
√
λ2 − c2−4λ4+6λ2−4s4+4s2

}
− c10λ2

{
28s3

√
λ2 − c2 + 6

(
λ2 − 7

)
s
√
λ2 − c2 + λ2

(
24λ2 + 5

)
+ 12s4 + 4

(
4λ2 − 3

)
s2
}

+ c8λ2
{

14s5
√
λ2 − c2 − 2

(
17λ2 + 7

)
s3
√
λ2 − c2 + λ2

(
26λ2 + 3

)
s
√
λ2 − c2 + λ4

(
16λ2 + 17

)
− 36λ2s4

+ 4λ2
(
5λ2 + 9

)
s2
}
− c6λ4

{
40s5

√
λ2 − c2 +

(
29− 82λ2

)
s3
√
λ2 − c2 + 2λ2

(
5λ2 + 14

)
s
√
λ2 − c2

+λ2
(
4λ4 +11λ2 +2

)
+12s6 +

(
3−64λ2

)
s4 +77λ2s2

}
+ c4λ6

{
48s5

√
λ2 − c2 +

(
53−36λ2

)
s3
√
λ2 − c2

+
(
19λ2 + 8

)
s
√
λ2 − c2 + λ2

(
3λ2 + 4

)
+ 20s6 +

(
14− 24λ2

)
s4 +

(
−4λ4 + 48λ2 + 2

)
s2
}

(B.12)
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γ2 = c6 + c2λ2
(

6s
√
λ2 − c2 + λ2 + 3s2

)
− 2λ2s

{
(λ2 + s2)

√
λ2 − c2 + λ2s

}
− c4

(
4s
√
λ2 − c2 + 2λ2 + s2

)
(B.13)

It is observed that all the factors except for γ1 and γ2, are positive in d2
Kx2

dθ2x
. Thus, the sign of d2

Kx2
dθ2x

depends only on
the signs of γ1 and γ2.

As in the study of R-joint, the condition: F1 ≥ 0 (see Eq. (B.4)) must be accounted for, explicitly, on the lower
boundary of stiffness and at the stationary points. Thus, substituting F2 = 0 in Eq. (B.4) and eliminating C1 using the
condition (Eq. (B.9) = 0), one obtains:

F1 =
C2λ

4s2
[{

2c2
(
λ2 − 1

)
− c2 + λ2

}√
λ2 − c2 + c2s

(
λ2 − c2

)]
bc3
(√
λ2 − c2 − s

)
γ2

(B.14)

where γ2 is defined in Eq. (B.13). It is observed that except for γ2, all other factors are positive, when (λ > 1). Thus,
the condition F1 ≥ 0 requires γ2 > 0 to be satisfied. Using this result, from Eq. (B.11) it is found that the sign

of d2
Kx2

dθ2x
purely depends on the sign of γ1.

In essence, the sign of γ1 when γ2 > 0 must be studied. Since the expressions of γ1 and γ2 are quite complicated
for algebraic analysis, further study is conducted through plots, as in the case of R-joint. The region in (θx, λ) space
where γ2 > 0 is plotted in Fig. 21(a) and the surface plot of γ1 inside this region is shown in Fig. 21(b). From these
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(a) Region in (θx, λ) space where F1 ≥ 0 (b) Plot of γ1 in the feasible region where F1 ≥ 0

Figure B.21: Plot of feasible region in (θx, λ) space and variation of of γ1 inside this region.

plots it is observed that γ1 is negative for all admissible values of (θx, λ) considered and decreases with increasing λ.
Thus, following the same line of arguments in the case of R-joint, there exists at most one stationary point for Kx2
within the positive half of the WFW, and if it exists, it must correspond to a maximum. Hence, the least value of
stiffness must occur either at the zero orientation or at the boundary of the WFW, for the X-joint.

Appendix C. Treatment of the necessary condition: Ar1 > 0

From the expression of Ar1 in Eq. (29), the condition Ar1 > 0 yields:

2k
(
η2 − 1

)
− ρg

(√
η2 + 1 + 2η

)
> 0 (C.1)

=⇒ P
(
η2 − 1

)
−
(√

η2 + 1 + 2η
)
> 0 (C.2)

where P = 2k
ρg , is a function of the linear mass density of the material and upper bound of spring constant, k. The

necessary condition on P for the above inequality to be satisfied is derived in Appendix C.1. After ensuring the
validity of that condition (i.e., P > P (η)), the necessary condition on η can be derived as follows. Taking the second
term in Eq. (C.2) to the right hand side and squaring both sides, results in:(

η2 − 1
)2
P 2 + 3η2 − 4

(
η2 − 1

)
ηP − 1 > 0 (C.3)

Since the left hand side of the above inequality is a quartic expression in η that does not factor out in the symbolic form,
it is very difficult to obtain explicit conditions on η in terms of P . From several numerical examples, it is observed
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that the inequality in Eq. (C.2) reduces to a lower bound on η as: η > η, where η is the largest root of the quartic
expression in Eq. (C.3). As a numerical illustration, consider k = 2000 N/m, ρ = 0.2121 Kg/m and θrm = 1 radian.
The corresponding values of P = 1924.7763 and η = 1.0009. A plot highlighting the feasible region in (η, P ) space
is presented in Fig. C.23. It is observed that η approaches unity with increasing value of P .

Figure C.22: Variation of least feasible P with θrm.

Figure C.23: Feasible region in (η, P ) space when θrm = 1 radian.

Appendix C.1. Necessary condition involving (k, ρ, θrm)

Rearranging the inequality in Eq. (C.2) one obtains a lower bound on P as:

P ≥ P , where P =

√
η2 + 1 + 2η

η2 − 1
(C.4)

The derivative of P w.r.t. η is computed to be:

dP
dη

= −η
3 + 2

√
η2 + 1η2 + 2

√
η2 + 1 + 3η

(η2 − 1)
2
√
η2 + 1

(C.5)

which is clearly negative. This shows that P decreases monotonically with η. Hence, a necessary condition for
satisfying the inequality in Eq. (C.4) is that P be greater than the smallest P , i.e., P > P (η = η). From Eq. (13a), it
is known that η = cot θrm

2 (= c
s ), which upon substitution into the above condition yields:

P > P (η = η) =⇒ 2k

ρg
>

(2c+ 1)s

c2 − s2
(C.6)

This condition involving (ρ, k, θrm) must be satisfied necessarily for the existence of feasible designs. A plot of P (η)
against θrm is shown in Fig. C.22. It is apparent that the value of P (η) increases as the specified θrm increases, which in
turn means that the springs should be stronger (higher k) or the linear mass density (ρ) must be smaller. Interestingly,
the payload characteristics (M,d) do not appear in these conditions.

Appendix D. Analysis of a quadratic inequality

Consider an inequality of the form:

Axx
2 +Bxx+ Cx ≥ 0, with (x ≥ 0) (D.1)

The discriminant of the above expression is given by:

δx = B2
x − 4AxCx (D.2)

It is known that the roots of the quadratic expression in Eq. (D.1) are:

x1 =
−Bx −

√
δx

2Ax
, x2 =

−Bx +
√
δx

2Ax
(D.3)

Depending on the signs of (Ax, Bx, Cx), the inequality in Eq. (D.1) will lead to different conditions on x(> 0) as
illustrated in Table D.3.
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Table D.3: Reduction of the inequality in Eq. (D.1) to bounds on (x > 0)

Case Sign of Ax Sign of Bx Sign of Cx Nature of roots/discriminant Solution to Eq. (D.1)
1 + + + Immaterial Satisfied ∀x > 0
2a

+ − +
δx ≤ 0 Satisfied ∀x > 0

2b δx > 0 =⇒ x1 > 0, x2 > 0 (0 ≤ x ≤ x1) ∪ (x ≥ x2)
3 + +/− − δx > 0, x1 < 0, x2 > 0 x ≥ x2
4 − +/− + δx > 0, x1 > 0, x2 < 0 0 ≤ x ≤ x1
5a − + − δx < 0 No solution
5b δx ≥ 0 =⇒ x1 > 0, x2 > 0 x ∈ [x2, x1]
6 − − − Immaterial No solution

Appendix E. Expressions of the coefficients in Eqs. (33) and (57)

The expressions of symbols Ar2 , Br2 , Cr2 used in Eq. (33) are listed below:
Ar2 =

(
c3η − s3

){
2
(
η2 − 1

)
k − g

(√
η2 + 1 + 2η

)
ρ
}

Br2 = −gηM
(
c3η − s3

)
Cr2 = −η2

{
dgM

(
c3η − s3

)
+K(cη + s)

} (E.1)

The coefficients in Eq. (57) for the cases i = 3, 4, 5 are provided below:

Ab3 = g(λ+ 1)ρ
{
−2c6

√
λ2 − 1− c2λ2

√
λ2 − 1

(
s
√
λ2 − c2 + λ2 + s2

)
−c5

(
λ2 − 2

) (√
λ2 − c2 + s

)
+ c4
√
λ2 − 1

(
2s
√
λ2 − c2 + 3λ2 + 2s2

)
+c3

(
λ2 − 2

) (
λ2
√
λ2 − c2 + s2

√
λ2 − c2 + λ2s

)
− λ4

√
λ2 − 1s2

}
Bb3 = gM

{
−2c6

√
λ2 − 1− c2λ2

√
λ2 − 1

(
s
√
λ2 − c2 + λ2 + s2

)
−c5

(
λ2 − 2

) (√
λ2 − c2 + s

)
+ c4
√
λ2 − 1

(
2s
√
λ2 − c2 + 3λ2 + 2s2

)
+c3

(
λ2 − 2

) (
λ2
√
λ2 − c2 + s2

√
λ2 − c2 + λ2s

)
− λ4

√
λ2 − 1s2

}
Cb3 = c

√
λ2 − 1K

[
−λ2
√
λ2 − c2 + c2

{(
λ2 + 1 + s2

)√
λ2 − c2 + λ2s

}
− c4

(√
λ2 − c2 + s

)]
(E.2)


Ab4 = g(λ+ 1)

(
λ2 − 2

)
ρ

Bb4 = gM
(
−2 + λ2

)
Cb4 =

√
λ2 − 1(4dgM +K)

(E.3)


Ab5 = g(λ+ 1)ρ

[
2c6 + c2λ2

{
s
(√
λ2 − c2 + s

)
+ λ2

}
− c4

{
2s
(√
λ2 − c2 + s

)
+ 3λ2

}
+ λ4s2

]
Bb5 = gM

[
2c6 + c2λ2

{
s
(√
λ2 − c2 + s

)
+ λ2

}
− c4

{
2s
(√
λ2 − c2 + s

)
+ 3λ2

}
+ λ4s2

]
Cb5 = cK

(
λ2 − c2

)3/2 − 4c5dgM
(√
λ2 − c2 + s

)
+ 4c3dgM

(
λ2
√
λ2 − c2 + s2

√
λ2 − c2 + λ2s

) (E.4)
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