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Abstract
In this paper, we present a categorical approach to learning automata over words, in the sense of the
L∗-algorithm of Angluin. This yields a new generic L∗-like algorithm which can be instantiated for
learning deterministic automata, automata weighted over fields, as well as subsequential transducers.
The generic nature of our algorithm is obtained by adopting an approach in which automata
are simply functors from a particular category representing words to a “computation category”.
We establish that the sufficient properties for yielding the existence of minimal automata (that
were disclosed in a previous paper), in combination with some additional hypotheses relative to
termination, ensure the correctness of our generic algorithm.
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1 Introduction

Learning automata is a classical subject at the intersection of machine learning and automata
theory. It has found a wide range of applications spanning from adaptive model checking,
compositional verification to learning network invariants or interface specifications for Java
classes. We refer the reader to [18] and the references therein for a survey of such applications.

The most famous learning algorithm for automata is certainly the L∗-algorithm of Angluin
[1]. Its goal is to learn a regular language of words L. For this, the algorithm interacts with
a teacher (an oracle) who knows L by asking two kinds of queries:
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Membership query it can ask whether a given word belongs to L, or
Equivalence query it can provide a hypothesis automaton and ask the teacher whether this

automaton recognizes L or not. If the answer is no, the teacher is bound to provide a
counter-example word, witnessing the non-equivalence.

The algorithm stops when the teacher agrees that the hypothesis automaton recognizes the
language L. A key property of the L∗-algorithm is that it terminates in time polynomial in
the size of the alphabet, of the minimal deterministic automaton for L, and of the longest
counter-example. Furthermore, all candidate automata appearing during its execution (and
hence in particular the final one) are deterministic, complete, and minimal.

The L∗-algorithm

Let us illustrate the behaviour of this algorithm when it tries to learn the language {a} over
the alphabet Σ = {a}. At each step, the algorithm maintains two sets of words Q,T , starting
with Q = {ε}, T = {ε}. One can understand Q as a set of words which identify states of the
hypothesis automaton under construction. The set T is used in order to discover if words
need to be distinguished by the automaton: two words u, v ∈ Σ∗ are T -equivalent if for
all t ∈ T , ut ∈ L if and only if vt ∈ L.

At the beginning, the algorithm attempts to construct an automaton with as sole state
ε ∈ Q, which has to be initial. In particular, the target of the transition labelled a issued
from ε has to be determined. Such a transition should go to a state in Q which has to be
T -equivalent to εa = a. It fails since there are no such states in Q (we say that the pair Q,T
fails to have the closedness property). The algorithm corrects it by adding the word a to Q.
We reach Q = {ε, a}, T = {ε}. The algorithm now tries to construct an automaton with
states Q = {ε, a}: this time, it is possible to construct an a-labelled transition from ε ∈ Q
to a ∈ Q. What should now be the a-labelled transition issued from a? It should be
some state q ∈ Q which is T -equivalent to aa. Luckily, there is one, namely ε. Hence,
we succeed in constructing the left hypothesis automaton in Figure 1. The algorithm now

ε a

a

a

ε a aa
a a

a

Figure 1 Two successive hypothesis automata.

queries for equivalence of the language of this automaton with the language. This fails
since a(aa)∗ 6= L = {a}, and hence the teacher answers in return a counter-example word,
say aaa. The algorithm then adds (for reasons that are not detailed here) the prefix aa of aaa
to Q, yielding Q = {ε, a, aa}, T = {ε}. Here, ε and aa are T -equivalent, but constructing an
a-labeled transition from ε would yield a, while constructing one from aa would yield aaa,
which is T -equivalent to ε. Hence, ε and aa cannot be merged as a same state (we say that
Q,T fails to have the consistency property). The algorithm compensates it by adding a to T ,
thus yielding Q = {ε, a, aa} and T = {ε, a}. Now, Q,T are both closed and consistent, and
the right hypothesis automaton in Figure 1 is constructed. It recognizes {a}, and thus the
teacher agrees and the algorithm terminates. It has constructed the minimal deterministic
and complete automaton for the language L = {a}.

This example witnesses the different steps involved in the algorithm: (a) if (Q,T ) is not
closed, a word is added to Q, (b) if (Q,T ) is not consistent, a word is added to T , and (c)
when (Q,T ) is both closed and consistent, it is possible to construct a hypothesis automaton
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and perform an equivalence query: if this automaton happens to not accept the expected
language, the teacher provides a counter-example word from which words to add to Q are
constructed. The algorithm functions by performing the operation until the teacher agrees.

The correctness of the algorithm bears many resemblances with the question of minimizing
deterministic automata. This can be witnessed in the fact that the L∗-algorithm automatically
constructs minimal deterministic and complete automata. It can also be witnessed in the
fact that the T -equivalences induce along the run finer and finer partitions of the words that
converge eventually to the Myhill-Nerode equivalence, another notion highly connected to
minimization questions.

The L∗-algorithm turns out to be extremely robust, and has been extended to various
other forms of automata (weighted automata over fields [5, 6], nominal automata [19],
omega automata [3], non-deterministic automata [9], alternating automata [2], symbolic
automata [15], subsequential transducers [24,25], transducers of trees [7,8]). Although with a
focus on concrete implementations, Bollig et al. [10] emphasize that “the need for a unifying
framework collecting various types of learning techniques is, thus, beyond all questions.”

Contributions

The aim of this paper is to present such a unifying framework for learning word automata
using the toolkit of category theory. Concretely, we provide an abstract categorical version
of Angluin’s L∗-algorithm, called FunL∗ (Algorithm 1), we prove its correctness and termina-
tion (Theorem 26), and we give three running instantiations for it, namely in the case of
deterministic automata, field weighted automata and subsequential transducers.

To this end, we reuse the framework developed in [13] which models automata as functors
from an input category I (describing the structure of the computation) to an output category
C. For example, to model word automata, the input category is a fixed three-object category
IA∗ , that we will recall in Section 2. By varying the category C, this definition captures several
forms of automata, and in particular the ones mentioned above. In [13], we present sufficient
conditions on C that guarantee the existence of minimal automata. These conditions are
quite mild: C should have certain products and coproducts, on one hand, and a factorization
system, on the other. Apart from these three conditions on the output category, Theorem 26
– which states that our new algorithm computes the minimal automaton for the language to
be learned – requires only one additional assumption which ensures termination, namely a
‘finiteness’ hypothesis (using the notion of noetherianity).

In order to describe our generic FunL∗ algorithm we provide abstract versions of the steps
of the L∗-algorithm described above. These are obtained as follows:

We describe the pair of sets of words (Q,T ) using a four-object category IQ,T , introduced
in Definition 15. This category is a modification of IA∗ , which allows us to obtain a
partial view of the language, namely only its values on words of the form qt and qat with
q ∈ Q, t ∈ T and a a letter in the alphabet.
Computing the approximations of the Myhill-Nerode equivalence (that is, the T -
equivalence relations) roughly corresponds in our generic setting to performing a
minimization-like computation. This is achieved using off-the-shelf results from [13]
by changing the input category from IA∗ to IQ,T . We obtain a form of minimal “biauto-
maton” featuring an ε-transition between its two state objects.
The pair (Q,T ) being closed and consistent amounts to the ε-transition of the above
biautomaton being an isomorphism between the two state objects. We then say that the
pair (Q,T ) is L-automatable. Under this assumption, it is meaningful to collapse the
two state objects, defining in this way the hypothesis automaton (represented now as a
functor IA∗ → C).

CSL 2021
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What is interesting about our FunL∗-algorithm – compared to previous approaches – is
that it highlights the strong relationship between learning and minimizing automata. Each
elementary step of the algorithm involves performing a minimization-like computation and
leverages the modularity of our previous work [13], this time by varying the input category.
In contrast to other category theoretic approaches to learning, FunL∗ does not rely neither on
algebras nor on coalgebras. Instead, we exploit the symmetry of the word automata model.
This is reflected by the self-duality of the input category IA∗ , which is underpinning the well
known duality between observability and reachability.

Finally, a prominent instantiation of the FunL∗-algorithm is Vilar’s learning algorithm
of subsequential transducers [24]. Our notion of L-automatable pairs (Q,T ) perfectly
instantiates to the conditions considered by Vilar to construct a hypothesis transducer. A
coalgebraic modelisation of subsequential transducers was provided in [16], but, to the best
of our knowledge, this example is not featured in the category theoretic learning literature.

Related works

We briefly review the (co)algebraic approaches to automata learning that have been proposed
in recent years. The paper [17] was the first to recast key ingredients of Angluin’s algorithm
in a coalgebraic setting. This line of work was continued with the CALF framework of van
Heerdt et.al [22], which models automata as triples consisting of an algebra for a functor, an
initial map and an output map. In [22, Section 5] a connection between minimization and
learning is mentioned and formalized for DFAs. More precisely, the main theorem proving the
correctness of the learning algorithm [22, Theorem 16] can be used to show the correctness
of the minimization algorithm for DFA, with reachability and observability playing a crucial
role. The same authors proposed in [23] a learning algorithm for automata with side-effects.
These are extensions of DFAs to automata interpreted in a category of Eilenberg-Moore
algebras for a Set monad T – used to represent a certain side effect. For example, the finite
powerset monad corresponds to non-determinism and the ensuing automata model serves
to represent non-deterministic automata. In order to prove the termination of the learning
algorithm, the monad T above is assumed to preserve finite sets. Hence the monad that we
use in the present work to model subsequential transducers does not fit in the scope of [23].
Another small difference is that we work within the Kleisli category.

Another category theoretic learning algorithm was proposed in [4] and provides a coal-
gebraic and duality theoretic foundation for learning bisimilarity quotients of state-based
transition systems. The core idea is to use logical formulas as tests, taking stock of dual
adjunctions between states and logical theories, formalized as algebra-coalgebra dualities.

The recent paper [21] gives a learning algorithm for automata whose transitions can be
encoded both as algebras for a functor F on a category C, and as coalgebras for the right
adjoint of F (assumed to exist). The approximations of the Myhill-Nerode equivalence present
in the learning algorithm are computed using factorizations of morphisms from approximations
of an initial algebra (obtained using an initial chain) to approximations of a final coalgebra
(obtained using a final co-chain). Some of the ingredients of this category theoretic algorithm
are similar to ours, e.g. the heavy use of factorization systems or the notion of “finite” object
in a category, however, there are more assumptions on the underlying category and on the
preservation properties of the adjoint functors considered in the (co)-algebraic definition of
the automata, see [21, Assumption 3.5] and [21, Assumption 4.1].



T. Colcombet, D. Petrişan, and R. Stabile 15:5

Structure of the paper

In Section 2, we present necessary material from [13], which includes in particular the
categorical modeling of automata, its instantiation for deterministic finite automata, for
field weighted automata and for subsequential transducers, and how to minimize them. This
material is key in our description of the algorithm in Section 3. For simplicity, we describe
first a slightly simplified version of the algorithm. The optimized version is the presented
in [14, Appendix C]. Section 4 concludes.

2 Minimization

In this section, we recall the categorical approach to automata minimization from [12,13].

2.1 Languages and automata as functors
We first recall the notion of automata as functors. We consider an arbitrary small category
I, called the input category, and one of its full subcategories O, denoting by i the inclusion
functor: O I.i Intuitively, I represents the the inner computations performed by
an automaton, and in particular its internal behaviour, while O represents the observable
behaviour of the automaton and is used to define the language it accepts.

We consider another category C, called the output category, which models the output
computed by the automaton (e.g., a boolean value, probabilities, words over an alphabet).

I Definition 1. A C-automaton (or simply an automaton) A is a functor from I to C. A
C-language (or simply a language) L is a functor from O to C. A C-automaton A accepts a
C-language L if A ◦ i = L.

We denote by Auto(L) the subcategory of the functor category [I, C]:
whose objects are all C-automata A accepting L;
whose arrows are C-automata morphisms, meaning natural transformations α : A1 ⇒ A2
such that α ◦ idi = idL.

In this paper, we will instantiate the input category I in two ways. The first one, IA∗ , is
used in [12] to model different forms of word automata; we describe it in this section and use
it for modeling the three running instantiations. In Section 3, we will consider another input
category, IQ,T , which we use in the process of constructing our hypothesis automata.

in st out..

a

/

We define now the input category IA∗ used for describing word automata. Here A is a
finite alphabet, fixed for the rest of the paper, and A∗ the set of words over it. The input
category IA∗ is the category freely generated by the graph on the right, where a ranges over
A: That is, IA∗ is the three-object category with arrows spanned by ., / and a for all a ∈ A,
so that the composition st st stw w′ is given by the concatenation ww′. So, for
example, the morphisms in IA∗ from in to st are of the form .w with w ∈ A∗, while the
morphisms on the object st are of the form w with w ∈ A∗.

Let OA∗ denote the full subcategory of IA∗ on the objects in and out. Its morphisms are
of the form in out.w/ for w ∈ A∗.

CSL 2021
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Hereafter, by a language we mean a functor from OA∗ to C and by an automaton we
mean a functor from IA∗ to C. If L(in) = X and L(out) = Y , a language L will be referred
to as a (C, X, Y )-language; if A(in) = X and A(out) = Y , an automaton A will be called a
(C, X, Y )-automaton. We provide three running instantiations of the output category C and
of the objects X and Y , in order to model deterministic automata, field weighted automata
and subsequential transducers.

I Example 2 (Deterministic automata). A deterministic and complete automaton is a
(Set, 1, 2)-automaton. Indeed, we can see a functor A : IA∗ → Set with A(in) = 1 and
A(out) = 2 as a deterministic automaton by interpreting
A(st) as its set of states,
A(.) : 1→ A(st) as choosing the initial state,
A(a) : A(st)→ A(st) as the transition map for the letter a ∈ A,
A(/) : A(st)→ 2 as the characteristic map of the subset of accepting states.

I Example 3 (Weighted automata over a field). Let K be a field and let Vec denote the
corresponding category of K-vector spaces and linear transformations. A weighted automaton
over the field K (in the sense of [20]) is a (Vec,K,K)-automaton. Indeed, a functor A : IA∗ →
Vec with A(in) = K and A(out) = K is seen as a weighted automaton over K by interpreting
A(st) as the vector space spanned by its states,
A(.) : K→ A(st) as the linear transformation mapping the unit of K to the initial vector,
A(a) : A(st)→ A(st) as the linear transformation transition for the letter a ∈ A,
A(/) : A(st)→ K as the output linear transformation.

I Example 4 (Subsequential transducers). The aim is to represent what we call transductions
in this paper, which are partial maps from A∗ to B∗, where B is some fixed output alphabet.
Roughly, a subsequential transducer [11] is a deterministic automaton which, at each step,
while reading an input letter from A, either has no transition or has a unique transition
which changes deterministically the state and outputs a word from B∗. In this paper, we
define subsequential transducers as (Kl(T ), 1, 1)-automata [13], for a definition of Kl(T ) that
we give now.

The output category Kl(T ). Let T be the monad defined by T X = B∗ × X + 1
and let Kl(T ) denote the Kleisli category for T . Concretely, the objects of Kl(T ) are sets,
while its morphisms, denoted by negated arrows, are of the form f : X 9 Y for a function
f : X → T Y , that is, a partial function from X to B∗ × Y . We write ⊥ for the element of
the singleton 1 and think of it as the undefined element. Given f : X 9 Y and g : Y 9 Z,
their composite g ◦ f : X 9 Z is defined on x ∈ X by (uv, z), when f(x) = (u, y) ∈ B∗ × Y
and g(y) = (v, z) ∈ B∗ × Z (with uv denoting the concatenation of u and v in B∗) and
f(x) = ⊥ in all other cases. Note that with this definition, a transduction can be identified
in an obvious manner with a map from A∗ to arrows of the form 1 9 1.

We now recall that (Kl(T ), 1, 1)-automata are equivalent to subsequential transducers in
the sense of Choffrut’s definition [11]. Indeed, we can see a functor A : IA∗ → Kl(T ) with
A(in) = 1 and A(out) = 1 as a subsequential transducer by interpreting
A(st) as the set of states,
A(.) : 1 9 A(st) as either choosing an initial state together with an initial output in B∗
or having an undefined initial state,
A(a) : A(st) 9 A(st) as the transition map for the letter a which associates to a given
state either undefined or a pair consisting of an output word in B∗ and a successor state,
A(/) : A(st) 9 1 as the final map which associates to a state either its output in B∗ or
undefined when it is non-accepting.
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2.2 Minimization of automata
Now we describe what it means to be minimal in a category (Definition 5) together with an
abstract result of existence of such an object (Lemma 6). We then provide sufficient material
for our three running instantiations to be covered.

Let K be a category endowed with a factorization system (E ,M). We write
for arrows belonging to E and we will call them E-quotients; we write for arrows
belonging toM and we will call themM-subobjects.

I Definition 5. Consider two objects X,Y of K. We say that X (E ,M)-divides Y whenever
X is an E-quotient of anM-subobject of Y , that is, we have a span of the form:

X · Y .

An object Z in K is (E ,M)-minimal if it (E ,M)-divides all the objects in K.

As shown in the following lemma, having an initial and a final object turns out to be a
sufficient condition for the minimal object to exist and be unique up to isomorphism.

I Lemma 6. Let K be a category endowed with an initial object I, a final object F and a
factorization system (E ,M). Let Min be the factorization of the unique arrow from I to F :

I Min F.

Then Min is (E ,M)-minimal.

We apply this lemma when K is instantiated with a category of automata Auto(L).

I Corollary 7. If the category Auto(L) has an initial automaton Ainit(L), a final automaton
Afinal(L) and a factorization system, then the minimal automaton Min(L) for the language
L is obtained via the following factorization: Ainit(L) Min(L) Afinal(L).

Notice that this notion of minimization is parametric in the factorization system. In all
our examples, we obtain a suitable factorization system on Auto(L) from one on C, as follows.

I Lemma 8. If a category C has a factorization system (E ,M), then the category Auto(L)
has a factorization system (EAuto(L),MAuto(L)), where EAuto(L) consists of all natural trans-
formations with components in E andMAuto(L) consists of all natural transformations with
components inM.

I Example 9 (factorization systems). There exists a factorization system in our three running
examples. For Set, this is the well known factorization system (Surjections, Injections).
Similarly in Vec, (Surjective linear maps, Injective linear maps) is a factorization system.

In the case of Kl(T ), the factorization system does not follow from general arguments. We
define now the factorization system (EKl(T ),MKl(T )) for Kl(T ). Given a morphism f : X 9 Y

in Kl(T ), we write π1(f) : X → B∗ + {⊥} and π2(f) : X → Y + {⊥} for the projections:
if f(x) = ⊥ then π1(x) = π2(x) = ⊥, otherwise f(x) = (π1(f)(x), π2(f)(x)).

The class EKl(T ) consists of all the morphisms of the form e : X 9 Y such that π2(e) is
surjective (i.e. for every y ∈ Y there exists x ∈ X so that π2(e)(x) = y) and the classMKl(T )
consists of all the morphisms of the form m : X 9 Y such that π2(m) is injective and π1(m)
is the constant function mapping every x ∈ X to ε.

By [13, Lemma 4.8], (EKl(T ),MKl(T )) is a factorization system.

We specialize the result of Corollary 7 to the case of word automata IA∗ → C. Due to
the special shape of the category IA∗ , we can compute the initial and the final automata,
provided the output category satisfies some mild assumptions, recalled in Lemmas 10 and 12.

CSL 2021
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I Lemma 10. Fix a language L : OA∗ → C. If the category C has countable copowers of
L(in), the initial automaton Ainit(L) exists and is given by the following data:
Ainit(L)(st) =

∐
A∗

L(in);

Ainit(L)(.) : L(in)→
∐
A∗

L(in) is given by the coproduct injection corresponding to ε, for

this reason we will denote this map by ε;
Ainit(L)(a) :

∐
A∗

L(in) →
∐
A∗

L(in) is given on the w-component L(in) by the coproduct

injection corresponding to wa;
Ainit(L)(/) :

∐
A∗

L(in) → L(out) is the coproduct of the morphisms L(.w/) : L(in) →

L(out) with w ∈ A∗, that is, it computes the value of the language on a given word, for
this reason we will also denote this map by L?.

I Example 11. Since the categories Set, Vec and Kl(T ) have all copowers, the initial
automaton for a given language can be easily computed in these cases as an instance of the
above lemma. We recall the details for Set and Kl(T ).

1 A∗ 2ε

w 7→wa

L? 1 A∗ 1/
(ε,ε)

/w 7→(ε,wa)

/L?

Given a language L : OA∗ → Set, the initial deterministic automaton accepting L is
described above in the left diagram. Its state space is the set of all words, with ε being
the initial one. A word is accepted if and only if it belongs to the language.
For a language L : OA∗ → Kl(T ), the initial subsequential transducer accepting L is as
depicted in the right diagram. Its state space is A∗, the initial state is ε ∈ A∗ with initial
output ε ∈ B∗. For an input letter a ∈ A, the corresponding transition maps w to wa
and produces output ε ∈ B∗. Finally, the map L?, which is in fact a function from A∗ to
B∗+ 1, associates to a word w the value of the language at w, that is, the value computed
by L(.w/).

I Lemma 12. Fix a language L : OA∗ → C. If the category C has countable powers of L(out),
the final automaton Afinal(L) exists and is given by the following data:
Afinal(L)(st) =

∏
A∗

L(out);

Afinal(L)(.) : L(in)→
∏
A∗

L(out) is the product of the morphisms L(.w/) : L(in)→ L(out)

with w ∈ A∗, for this reason we will also denote this map by L;
Afinal(L)(a) :

∏
A∗

L(out) →
∏
A∗

L(out) is the product over w ∈ A∗ of the aw-projections∏
A∗

L(out)→ L(out);

Afinal(L)(/) :
∐
A∗

L(out) → L(out) is given by the ε-projection, for this reason we will

also denote this map by ε?.

I Example 13 (the final automata in Set, Vec and Kl(T )). Since the categories Set and Vec
have all products, the final automaton for a given language can be computed using Lemma 12.
We illustrate this for Set and Kl(T ).
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1 2A∗ 2L

K 7→a−1K

K 7→K(ε) 1 Irr(A∗, B∗) 1/
(lcp(L),red(L))

/K 7→(lcp(K),red(K))

/
K 7→K(ε)

Given a language L : OA∗ → Set, the final deterministic automaton accepting L is
described above in the left diagram. Its state space is the set of all languages over the
alphabet A. The initial state is the language L itself. A language is an accepting state if
and only if it contains ε. Given a language K, while reading letter a, the automaton goes
to the residual language a−1K = {u ∈ K | au ∈ K}.
Somewhat suprisingly, Kl(T )-automata also fit in the scope of Lemma 12, as we can
prove that the object Irr(A∗, B∗) (which we will define next) is the power of A∗-many
copies of 1 in Kl(T ). Define first, given a transduction K, lcp(K) to be undefined if K
is nowhere defined, and the longest common prefix of the words in {K(u) | u ∈ A∗}
otherwise. A transduction K is irreducible if lcp(K) = ε. We denote by Irr(A∗, B∗) the
set of irreducible transductions. For all K not nowhere defined, we put red(K) to be the
only irreducible transduction such that K(u) = lcp(K)red(K)(u), i.e. the transduction in
which the prefix lcp(K) has been stripped away from all outputs. For K nowhere defined,
let red(K) be also nowhere defined.
We can describe now the final automaton for a transduction L as an automaton that
has irreducible transductions as states. The initial map is the constant map equal
to (lcp(L), red(L)) (or undefined if L is nowhere defined). When reading the letter a from
state K, the automaton jumps to red(K(a−)) in which K(a−) is such that K(a−)(u) =
K(au) (or undefined if K(a−) is nowhere defined). The final map sends an irreducible
transduction to K(ε).

∐
A∗

L(in)

L(in) Min(L)(st) L(out)

∏
A∗

L(out)

emin

L?

L

ε

mmin

ε?

Combining Lemmas 8, 10 and 12 with Corollary 7, we obtain the following result.

I Theorem 14. Let C be a category with a factorization system (E ,M) and let L : OA∗ → C
be a language. Suppose C has all countable copowers of L(in) and all countable powers of
L(out). The minimal C-automaton Min(L) accepting L is obtained via the factorization in
the commuting diagram to the right.

3 The basic FunL∗ algorithm

In this section, we provide our generic FunL∗-algorithm for learning word automata. Just as
in Angluin’s algorithm, there are a teacher and a learner. Throughout this section we fix the
alphabet A, the output category C and its factorization systems (E ,M), all known to both
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teacher and learner. The teacher knows a language L : OA∗ → C, hereafter called the target
language. The learner wants to find this language, the output of the algorithm being the
minimal automaton Min(L) accepting L. The learner can ask two kinds of queries, which
can be thought as high-level generalizations of Angluin’s original ones in the special case of
deterministic automata (see [1]).

Evaluation queries: given a certain word w, what is L(.w/)?
Equivalence queries: does a certain automaton accept the target language? If it does not,
what is a counterexample for it not doing that?

Let A be an automaton which is incorrect, that is, such that A◦ i 6= L, L being the target
language; a word w is said to be a counterexample if A◦ i(.w/) 6= L(.w/). In other words, a
counterexample witnesses the incorrectness of a certain automaton proposed by the learner.

In order to formulate the generic algorithm, we still need to generalize the notions of
table and hypothesis automaton from Angluin’s original algorithm. We do this in Section 3.1.
We provide the generic algorithm and prove its correctness and termination in Section 3.2.

3.1 Hypothesis automata
Just as in Angluin’s L∗-algorithm, the learner keeps in memory a pair (Q,T ) of subsets of
A∗ such that Q is prefix-closed, i.e. it contains the prefixes of all its elements, while T is
suffix-closed, the same for the suffixes; in particular, ε ∈ Q∩ T . Using the evaluation queries,
the learner produces an approximation of Min(L), explicitly a hypothesis automaton, to be
introduced in Definition 22.

It turns out that the category Auto(L) does not suffice to capture the whole learning
process. At a given stage of the algorithm, the learner has access, via evaluation queries, only
to a part of L: specifically, he knows the values of L(.qt/) and L(.qat/), where q ∈ Q, t ∈ T
and a ∈ A. This leads us to consider a restriction of the language L to a subcategory of OA∗

whose arrows are of the form .qt/ or .qat/ as above. To produce a hypothesis automaton
consistent with this partial view of L, we would also need to adapt the input category. A
first attempt would be to discard some of the arrows of IA∗ from in to st, respectively from
st to out. Explicitly, we would like to keep only the arrows of the form .q : in→ st for the
state words q ∈ Q and, respectively, t/ : st → out for the test words t ∈ T . However, this
is not feasible: we would also need the transition maps a : st→ st, and via composition we
would generate, for example, all arrows .w : in→ st. The solution is to “dissociate” the state
object st in IA∗ and consider a four-state input category.

I Definition 15. The input category IQ,T is the free category generated by the graph

in st1 st2 out.q a

ε

t/

for all q ∈ Q, a ∈ A, t ∈ T and with ε a fixed symbol (informally representing the empty
word) such that the following coherence diagrams commute for all a ∈ A, for all q ∈ Q such
that qa ∈ Q, and for all t ∈ T such that at ∈ T :

st1 st2

in st2; st1 out.
st1 st2

a t/.q

.qa

a

εε at/

Furthermore, let OQ,T denote the full subcategory of IQ,T on the objects in and out.
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The two coherence diagrams in the definition of IQ,T , as well as the prefix-closure of Q
and the suffix-closure of T , ensure that we have a functor

i∗ : IQ,T → IA∗

which merges st1 and st2 sending both of them to st, maps ε : st1 → st2 to the identity on st
and maps all the other morphisms of IQ,T to the homonymous ones in IA∗ .

I Lemma 16. The functor i∗ : IQ,T → IA∗ is well defined and, furthermore, OQ,T is a
subcategory of OA∗ . That is, we have the following commuting diagram:

OQ,T OA∗

IQ,T IA∗ .
i∗

The partial knowledge of the language L the learner has access to at this given stage of
the algorithm is captured by the restriction LQ,T of L to OQ,T :

LQ,T : OQ,T OA∗ C.L

Hence, to a pair (Q,T ) we can associate the category Auto(LQ,T ) obtained by instantiating
in Definition 1 the input category I with IQ,T and its observable behaviour subcategory
with OQ,T IQ,T .

I Definition 17. We call a functor B in Auto(LQ,T ) a (Q,T )-biautomaton B or a CQ,T -
biautomaton, if we want to underline the dependence on C. We say that B is consistent with
the C-language L.

In the L∗-algorithm, the learner constructs a table associated to each pair of subsets
(Q,T ). This is done essentially by computing the quotient of the state words in Q by an
approximation ∼T of the Myhill-Nerode equivalence for a language L given by: w ∼T v iff
for all t ∈ T we have wt ∈ L⇔ vt ∈ L. This leads us to consider as a generalization of the
notion of table the minimal biautomaton Min(LQ,T ) in the category Auto(LQ,T ). In order to
compute it, we use Corollary 7. To this end, we first exhibit explicitly the initial and the
final objects of Auto(LQ,T ), assuming that the output category C has got certain products
and coproducts.

We will use the following notation. Given two subsets R and S of A∗, let RS denote the
set {xy : x ∈ R, y ∈ S}.

I Lemma 18. Assume C has all countable copowers of L(in). The initial CQ,T -biautomaton
is the functor Ainit(LQ,T ) : IQ,T → C described in the next diagram

L(in)
∐
Q

L(in)
∐

Q∪QA

L(in) L(out),.qinit ainit

εinit

t/init

where, explicitly:
Ainit(LQ,T )(st1) =

∐
Q

L(in) and Ainit(LQ,T )(st2) =
∐

Q∪QA

L(in);

.qinit := Ainit(LQ,T )(.q) is the coproduct injection jq of L(in) into
∐
Q

L(in);

εinit := Ainit(LQ,T )(ε) is the canonical inclusion between the two coproducts;
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ainit := Ainit(LQ,T )(a) is obtained via the universal property as the coproduct over q ∈ Q
of the canonical injections jqa : L(in)→

∐
Q∪QA

L(in);

t/init := Ainit(LQ,T )(t/) is obtained via the universal property as the coproduct over
w ∈ Q ∪QA of the morphims L(.wt/) : L(in)→ L(out).

Dually, we can describe the final CQ,T -biautomaton as follows.

I Lemma 19. Assume C has all countable powers of L(out). The final CQ,T -biautomaton is
the functor Afinal(LQ,T ) : IQ,T → C described in the next diagram

L(in)
∏

T∪AT

L(out)
∏
T

L(out) L(out),.qfinal
afinal

εfinal

t/final

where, explicitly:
Afinal(LQ,T )(st1) =

∏
T∪AT

L(out) and Ainit(LQ,T )(st2) =
∐
T

L(out);

.qfinal := Afinal(LQ,T )(.q) is obtained via the universal property as the product over
w ∈ T ∪AT of the morphisms L(.qw/) : L(in)→ L(out);
εfinal := Afinal(LQ,T )(ε) is the canonical restriction between the two products;
afinal := Afinal(LQ,T )(a) is obtained via the universal property of

∏
T

L(out) as the product

over t ∈ T of the canonical projections πat :
∏

T∪AT

L(out)→ L(out);

t/final := Afinal(LQ,T )(t/) is the projection πt :
∏
T

L(out)→ L(out).

Combining Corollary 7 with Lemmas 8, 18 and 19, we obtain the minimal biautomaton
Min(LQ,T ) in Auto(LQ,T ).

I Theorem 20. Assume that C is equipped with a factorization system (E ,M) and has
countable copowers of L(in) and countable powers of L(out). Then the minimal CQ,T -
biautomaton Min(LQ,T ) is obtained as the unique up to isomorphism factorization of the
unique morphism from Ainit(LQ,T ) to Afinal(LQ,T ).∐

Q

L(in)
∐

Q∪QA

L(in)

L(in) Min(LQ,T )(st1) Min(LQ,T )(st2) L(out)

∏
T∪AT

L(out)
∏
T

L(out)

e1
min

ainit

εinit

e2
min

t/init

.qmin

.qinit

.qfinal

m1
min

amin

εmin

t/min

m2
min

afinal

εfinal

t/final

Notice that the arrows .qmin , amin , εmin and t/min are obtained using the diagonal fill-in
property of the factorization system. Let us now see how this theorem instantiates in the
case of deterministic automata.

I Example 21. Assume the target language L is a (Set, 1, 2)-language, so the learner wants
to learn the minimal deterministic automaton accepting L. For a given couple (Q,T ), the
minimal biautomaton is obtained as the following factorization.
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Q Q ∪QA

1 Q/∼T∪AT (Q ∪QA)/∼T 2

2T∪AT 2T

e1
min

ainit

εinit
e2

min

t/init

.qmin

.qinit

.qfinal

m1
min

amin

εmin

t/min

m2
min

afinal

εfinal

t/final

Hence, the first set of states of the minimal biautomaton is the set Q quotiented by the
T ∪AT -approximation ∼T∪AT of the Myhill-Nerode equivalence. The second set of states
is the quotient of Q ∪QA by ∼T . These kinds of quotients are also needed in the classical
Angluin’s algorithm, when building the table corresponding to the couple (Q,T ).

Let us now understand when the map εmin is an isomorphism, that is, in this case, a
bijection. We can verify that εmin being a surjection is equivalent to the table in L∗-algorithm
being closed, that is, for all q ∈ Q and a ∈ A there exists q′ ∈ Q such that q′ ∼T qa. On
the other hand, εmin being an injection is equivalent to the consistency of the table from
Angluin’s L∗-algorithm. It means that if q and q′ are such that q ∼T q′ then q ∼T∪AT q′.

If the table from Angluin’s algorithm is generalized via the minimal biautomaton
Min(LQ,T ), the above example suggests that the conditions that make possible the gen-
eration of a hypothesis automaton from a table can be stated at this abstract level by
requiring the morphism εmin be an isomorphism. In this way, we can identify Min(L)(st1)
and Min(L)(st2) to obtain the state space of the hypothesis automaton.

I Definition 22. If the map εmin is an isomorphism, we say that (Q,T ) is L-automatable.
The hypothesis automaton H(Q,T ) associated to a L-automatable couple (Q,T ) is the
C-automaton with state space Min(LQ,T )(st1) described on the generator arrows of IA∗ by

L(in) Min(LQ,T )(st1) L(out)..εmin

εmin
−1◦amin

ε/min◦εmin

The uniqueness up to isomorphism of the hypothesis automaton H(Q,T ) is an easy
consequence of the uniqueness up to isomorphism of the minimal biautomaton in Auto(LQ,T ).

It is important to remark that, when passing from a biautomaton to an automaton, the
consistency with the language is preserved, in the sense of the lemma below.

I Lemma 23. Let (Q,T ) be an L-automatable couple and let H(Q,T ) be its associated
hypothesis automaton. Then the next diagram commutes:

OQ,T IA∗ C.

LQ,T

H(Q,T )

3.2 The learning algorithm
We now have all the necessary ingredients to state the FunL∗-algorithm. Our algorithm
takes as input a target language L and outputs its minimal automaton, provided some
mild assumptions listed in Theorem 26 are satisfied. We start by instantianting the couple
(Q,T ) by (ε, ε). As long as this couple is not L-automatable, further words are added to the
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subsets Q and T to force εmin to become an isomorphism. Once this is achieved, we obtain
a hypothesis automaton. If this automaton does not recognize the target language, then the
provided counterexample and its prefixes are added to Q, in order to let the learner progress
in learning.

While the role played by equivalence queries is self-evident, notice that evaluation queries
are necessary in order to build up the category Auto(LQ,T ) and analyse its minimal automaton.

Algorithm 1 The basic FunL∗learning algorithm.
input :minimally adequate teacher of the target language L
output : Min(L)

1 Q := T := {ε}
2 repeat
3 while (Q,T ) is not L-automatable do
4 if εmin /∈ E then
5 add QA to Q
6 end
7 if εmin /∈M then
8 add AT to T
9 end

10 end
11 ask an equivalence query for the hypothesis automaton H(Q,T )
12 if the answer is no then
13 add the provided counterexample and all its prefixes to Q
14 end
15 until the answer is yes;
16 return H(Q,T )

In order for this generic algorithm to work, we need several mild assumptions on the
output category C and on the target language. First, in order to compute the hypothesis
automaton we need the existence of the minimal automaton in the category Auto(LQ,T ). For
this reason, we will assume the hypothesis of Theorem 20, pertaining to the existence of
certain powers, certain copowers and a factorization system. Furthermore, in order to ensure
the termination of our algorithm, a noetherianity condition is required on the language L,
akin to the regularity of the language in the L∗-algorithm. This notion, also used in [21], can
be understood as a finiteness assumption as shown in Example 25.

I Definition 24. An object X of C is called (E ,M)-noetherian when the following conditions
hold.

There does not exist an infinite co-chain of E-quotients of X as in the left commutative
diagram below and such that the arrows e1, e2 . . . ∈ E are not isomorphisms.
There does not exist an infinite chain ofM-subobjects of X as in the right commutative
diagram below and such that the arrows m1,m2 . . . ∈M are not isomorphisms.

X X

· · . . . · · . . .

...

e1 e2

m1 m2

...

I Example 25. Let us see now what noetherianity means for the factorization systems
of our running instantiations (Example 9). It is easy to see that in Set, an object X is
(Surjections, Injections)-noetherian if and only if it is finite in the usual sense. Similarly,
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an object of Vec is (Surjective linear maps, Injective linear maps)-noetherian if and only if
it is a finite dimension vector space. With a bit more thoughts, one can establish that an
object X of Kl(T ) is (EKl(T ),MKl(T ))-noetherian if and only if it is finite.

In order to guarantee the termination of our algorithm, we require the (E ,M)-noetherianity
of the state space of the minimal automaton of the target language. This is a natural condition,
generalizing the regularity of the target language in the L∗-algorithm. If (E ,M)-noetherian
objects are closed under E-quotients andM-subobjects – as it is the case in all our examples
– we could also replace this hypothesis by assuming the existence of an automaton with
(E ,M)-noetherian state space which accepts the target language.

I Theorem 26. We consider a target language L : OA∗ → C such that:
the output category C is endowed with a factorization system (E ,M);
C has all copowers of L(in) and all powers of L(out);
the state space Min(L)(st) of the minimal automaton for L is (E ,M)-noetherian.

Then the FunL∗-algorithm terminates, eventually producing the minimal automaton Min(L)
accepting the target language.

The proof of this theorem relies on a careful analysis of the factorizations∐
Q L(in) =Q,T

∏
T L(out)

of the canonical maps
∐

Q L(in)→
∏

T L(out) obtained by taking the coproduct over q ∈ Q
of the product over t ∈ T of L(.qt/). We can prove that the state spaces of the biautomata
featured while running the algorithm are precisely of the form =Q,T , while the state space of
the minimal automaton accepting L is =A∗,A∗ .

We prove that the while loop terminates in [14, Proposition 35]. In [14, Lemma 36] we
show that only finitely many counterexamples can be added, hence the algorithm terminates.
Finally, the fact that the outcome automaton is minimal is shown in [14, Lemma 38].

Next, we see how the FunL∗-algorithm instantiates to the case of subsequential transducers.
We need to understand what it means for εmin to be an isomorphism.

I Example 27 (Learning algorithm for subsequential transducers). Assume the target language L
is a (Kl(T ), 1, 1)-language, so the learner wants to learn the minimal subsequential transducer
accepting L. We need to extend the notions of lcp and red to a generic partial map g whose
domain is T ⊆ A∗ and whose codomain is B∗ as follows: lcp(g) is undefined if g is nowhere
defined, and denotes the longest common prefix of the words in {g(u) | u ∈ T} otherwise;
analogously, red(g) : T → B∗ ∪{⊥} is nowhere defined if g is nowhere defined, and is the only
partial map such that g(u) = lcp(g)red(g)(u) otherwise. Thinking of the language to learn
as a transduction f : A∗ → B∗ + {⊥}, let’s define the following equivalence relation for all
q1, q2 ∈ Q: q1 ∼T q2 if and only if red(f(q1−)|T )(t) = red(f(q2−)|T )(t) for all t ∈ T , f(q−)|T
being the restriction of f(q−) to T . For a couple (Q,T ), εmin in Auto(LQ,T ) turns out to be
the map Q/∼T∪AT 9 (Q ∪ QA)/∼T , [q] 7→ (lcp(f(q−)|T∪AT )−1lcp(f(q−)|T ), [q]), the first
set of states being Q quotiented by ∼T∪AT , the second set of states being the quotient of
Q ∪QA by ∼T . Let’s understand the word a class [q] is mapped to: with lcp(f(q−)|T ), we
mean the lcp of the function f(q−) restricted to the domain T , that is, the longest common
prefix of the subset {f(qt)|t ∈ T}; with lcp(f(q−)|T∪AT )−1lcp(f(q−)|T ), we mean the word
lcp(f(q−)|T ) from which lcp(f(q−)|T∪AT ) (one of its prefixes, as it is the longest common
prefix of a bigger set of words) has been stripped away; when one of the lcps is undefined, [q]
is mapped to undefined.
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εmin is an isomorphism if and only if π2(εmin) is a bijection and π1(εmin) is the constant
function mapping every x ∈ X to ε. We can verify that π2(εmin) being a surjection is
equivalent to the condition that for all q ∈ Q and a ∈ A there exists q′ ∈ Q such that
q′ ∼T qa, whereas π2(εmin) being an injection is equivalent to the condition that if q and q′
are such that q ∼T q′, then q ∼T∪AT q′. Finally, the condition on π1(εmin) is true if and only
if lcp(f(q−)|T∪AT ) = lcp(f(q−)|T ). Remarkably, these three naturally arising conditions
turn out to be equivalent to the ones required in Vilar’s learning algorithm for subsequential
transducers (see [24]).

Every time the while cycle runs, our algorithm adds either all words QA to Q or all
words AT to T : this is not strictly necessary. We show next that it is sufficient to add
just one properly chosen single word qa ∈ QA or at ∈ AT , preserving the correctness of
the algorithm. The canonical inclusion

∐
Q L(in) →

∐
Q∪{qa} L(in) induces a canonical

morphism between the factorizations =Q,T � =Q∪{qa},T . Similarly, the canonical restriction∏
T∪{at} L(out) →

∏
T L(out) induces a canonical morphism between the factorizations

=Q,T � =Q,T∪{at}, which will be featured in the optimized algorithm.

I Theorem 28. Algorithm 1 can be optimized by replacing lines 5 and 8 respectively by:
add to Q a qa ∈ QA s.t. =Q,T � =Q∪{qa},T is not an isomorphism;
add to T an at ∈ AT s.t. =Q,T � =Q,T∪{at} is not an isomorphism.

4 Conclusion and future work

In this paper, we described the abstract algorithm FunL∗, a categorical version of Angluin’s
L∗-algorithm for learning word automata. The focus was on providing a minimalistic category
theoretic framework for learning, with as few assumptions as possible, emphasizing along the
way the deep connection between learning and minimization.

So far, FunL∗ does not cover instances of the L∗-like algorithms such as nominal automata,
or automata/transducers over trees. A natural continuation is to develop these generalizations.
Another aspect to understand abstractly is the complexity of this algorithm in terms of
number of evaluation and equivalence queries.
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