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Abstract— Human Activity Recognition requires very high
accuracy to be effectively employed into practical applications,
ranging from elderly care to microsurgical devices. The highest
accuracies are achieved by Deep Learning models,  but these
are not easily deployable in handheld or wearable devices with
very constrained resources. We therefore present a new HAR
system suitable for a compact FPGA implementation. A new
Binarized  Neural  Network  (BNN)  architecture  achieves  the
classification  based  on  data  from  a  single  tri-axial
accelerometer. From our experiments, the effect of gravity and
the unknown orientation of the sensor cause a degradation of
the  accuracy.  In  order  to  compensate  for  these  issues,  we
propose  a  HW-friendly  algorithm  to  pre-process  the  raw
acceleration  signal.  Moreover,  the  very  low  power  and
hardware friendly BNN has been trained and validated on the
PAMAP2  dataset,  for  which  the  pre-processing  operations
increase  the  accuracy  from  51%  to  99%  in  the  best  case.
Aiming for a low-power design,  we  designed both  a  custom
circuit  to  perform  the  pre-processing  operations  and  a
hardware  accelerator  for  the  BNN.  The  design  on  FPGA
features  a  power  dissipation  of  72 mW  and  occupies
6788 LUTs.

Keywords—binarized  neural  networks;  FPGA;  human
activity recognition; inertial sensors

I. INTRODUCTION

One of the most widespread features in modern handheld
and  wearable  devices  is  Human  Activity  Recognition
(HAR), which enables the automatic recognition of human
activities by analyzing data collected by sensors [1]. HAR is
employed in various application fields requiring a very high
accuracy level such as Parkinson’s disease monitoring [2],
rehabilitation [3],  and assisted living [4].  Modern MEMS,
such as accelerometers, gyroscopes, and magnetometers [5],
are  accurate  enough to be  effectively  used  in  conjunction
with  Deep  Learning  (DL)  models  in  order  to  build  HAR
systems with high accuracy requirements. However, we must
face  the  demands  in  physical  resources  required  to
implement the high computational complexity of DL models
[6],  [7].  In addition, in HAR systems, inertial  sensors can
have an arbitrary and changeable orientation in space, with
the gravity acceleration providing a variable contribution to
each sample, which is related to the reference frame integral

to the sensor. As the orientation of the sensor is generally
unknown,  this  contribution  needs  some  specific  signal
processing techniques to be removed [8]. In this context, the
delay of the data transfer and the availability of connections
make cloud unusable when real-time operation is required
[9], let alone when privacy is at stake. Instead, processing “at
the edge”,  namely  locally  on  the  device  and  close  to  the
sensors  is  highly  desirable  [10].  To  enable  this,  many
reduced-precision DL models have been proposed, such as
Binarized Neural Networks (BNNs) [11] and Ternary Neural
Networks  (TNNs)  [12],  which  use  only  1  or  2  bits,
respectively, to encode the network parameters. Compared to
a single precision Floating Point (FP) [13] model, the use of
the  BNNs,  for  example,  could  lead  to  a  reduction  of  the
memory  requirements  up  to  32×,  and  to  multiplier-less
designs with significant area and power reductions for the
derived HW implementations [14], [15]. Unfortunately, the
price of these benefits is a significant loss in accuracy, which
is an obstacle to the use of reduced precision DL models in
actual systems [11].

In  this  work,  the  performance  of  a  partially-binarized
hybrid neural  network (HNN) [16] is evaluated when it is
used to build a HAR system designed to overcome the above
limitations.  We evaluate  the  accuracy  of  the model  when
data is acquired from only one tri-axial accelerometer, along
with  the  amount  of  physical  resources  for  its  HW
implementation. Next,  we evaluate the accuracy advantage
of  a  custom  pre-processing  stage  considering  its  HW
resource requirements. Results show that the HAR system,
made  of  accelerometer,  pre-processing  stage,  and  HNN,
exhibits an average recall  up to 99% when trained on the
PAMAP2  dataset  [17].  Moreover,  the  modularity  of  the
calculation scheme and HNN model allows a very compact
design, which induces a total power consumption of 72 mW,
(mostly quiescent  power),  and maps on 6788 LUTs,  when
implemented on a Xilinx Artix-7 FPGA. We obtained these
results on an actual board that we developed to demo the real
time  operation  of  the  system  running  at  a  maximum
operating frequency of 41 MHz. The use of the FPGA allows
to  easily  adapt  the  architecture  to  different  classification
tasks.  In  fact,  our  design  can  be  reinitialized  with  new
weights  from  an  offline  training  phase.  Also,  we  can
straightforwardly  reprogram  our  FPGA  design  when  a



change in the topology of the model is needed. All the results
overcome the state of the art for this kind of systems.

II. HYBRID NEURAL NETWORK

The HNN is similar to a BNN, but while all weights are
binarized,  i.e.  constrained  to  +1  and  –1,  the  output
activations for some layers are not. In accordance with [16],
the HNN can classify between 5 different human activities.
To test, train, and validate the model, we used the PAMAP2
public dataset [17], selecting 5 standard activities. The HNN
model,  as  schematized  in  Fig. 1,  has  been  built  using
Lasagne [18].

A. Model Description

Four different stages can be identified. The first stage is
made  up  by  a  convolutional  (CONV)  layer  and  a
normalization (NORM) layer. The input to the model is a tri-
axis acceleration. An input window of 24 samples is required
to produce an output label, with each sample made up by the
3 components of the acceleration vector. The input samples
are  not  binarized,  and  16 bits  are  used  for  their  binary
representation.  The  CONV  layer  applies  a  set  of  8  filter
kernels  to  each  one  of  the  3  axes  independently.  The
dimension of each kernel is 5×1. After that, a NORM layer
implements the Batch Normalization [19].  To binarize  the
output, we use the sign function as the activation function in
the fi rst stage: each value among the output activations thus
is constrained to  +1 or −1 and can  be represented  with a
single  bit.  The  second  stage  is  made  by  a  CONV  layer,
which applies a set of 8 filter kernels with dimensions 5×8.
As  shown  in  Table I,  60.6%  of  the  total  ADD/SUB
operations are performed in this layer. In this case, the ReLU
function is used as activation function, and no binarization
occurs. Then, a Max Pooling layer is applied independently
to each of the 3 axes, with dimensions 4×1. The third stage is
a Fully Connected (FC) layer with 64 neurons and a NORM
layer.  As  the  input  activations  to  the  second  stage  are
binarized,  7 bits  are  needed  to  cover  the  whole  range  of
values  for  the output activations in  the second and in the
third stage. It is worth noting that 77.0% of the total memory
requirement is due to the first FC layer. The fourth stage is
made up by a FC layer with 5 neurons, that are the number
of output classes.  Finally,  a SoftMax classifier  returns the
probability associated to each class.

B. Training and Accuracy Results

The  accuracy  of  the  proposed  HAR  system  has  been
evaluated  by  using  data  from  the  PAMAP2  dataset.  The
dataset  provides  data  from  9  users  performing  12  daily
human activities. Three Inertial Measurement Units (IMUs)
and a heart rate sensor are used to collect the data. Each IMU
was located in a different  part  of the body, thus 3 sensor
positions  can  be  chosen:  ankle,  hand,  and  chest.  In  our
system,  the  input  comes  from  a  single  accelerometer.
Therefore,  only the samples  from the accelerometers  have
been  considered.  Also,  for  each  position,  two  different
ranges can be selected for the accelerometer: ±16g, and ±6g,
but in both cases the sensor use 13 bits to represent the data.
Thus, a different sensitivity is related to the two ranges. In

total,  data  from  6  different  sensors  can  be  considered,
namely:  ankle16g,  ankle6g,  hand16g,  hand6g,  chest16g,
chest6g. The data have been down-sampled from 100 Hz to
25 Hz, considering the usual frequencies in HAR [20]. To be
compliant with the topology of the HNN model in [16], 5
human activities have been selected among the 12 standard
activities  provided  by  the  PAMAP2  dataset,  namely:
standing,  walking,  running,  biking,  and  rope jumping.  The
method presented in [21] has been used to train the model,
by setting the number of epochs to 30 and the batch size to
500. For training and testing purposes, the dataset is split in
sets of consecutive samples that are associated to the same
activity.  The number of samples in each set  is  called FL.
During training process, we sequentially feed the HNN with
these sets. As the batch size is 500, parameters are updated
every 500 sets during each epoch. The number of samples
used during training, testing, and validation are reported in
Table II for each FL. Note that the FL refers to the number
of samples before the down-sampling process.  Thus, a FL
equal  to  512  corresponds  to  a  time  window  of  5.12 s.
Training  results  are  summarized  in  Table III,  where  the
average recall is reported for each one of the 6 sensors and
considering 3 different Frame Lengths (FLs), namely 5120,
1024, and 512. The average recall tends to increase with the
FL in most cases. The HNN model has poor performance in
recognizing the human activities from the raw data provided
by the dataset. In fact, the average recall is lower than 90%
in 88.89% of the cases. Better results are achieved only when
the sensor position is chest and the FL is equal to 5120. This
can  be  explained  by  considering  the  effect  of  the  sensor
orientation when performing human daily activities, such as
walking, running, and the like. In fact, while the sensors at
the  hand  and  ankle  positions  are  subject  to  rotational
movements, the ones at the chest position are not. Thus, in
the first case there is an issue related to the orientation of the
sensor, i.e. the orientation is different for each sample. We
can  imagine  that  the  unknown  orientation  of  the  sensors
behaves like a noise, that overlaps with the human motion
data,  making  it  harder  to  achieve  a  correct  classification
without increasing the model size.

III. PRE-PROCESSING OPERATIONS

To increase the accuracy of the HNN, we propose a pre-
processing scheme that removes the noise resulting from the
varying orientation of the sensor. Two sequential phases can
be  distinguished,  that  are  filtering and  reference  frame
rotation.  The  first  one  is  used  to  separate  the  gravity
component from the measured acceleration. Then, gravity is
removed from the measured acceleration and used to define a
new fixed reference frame, which does not depend on the
sensor  orientation.  The filtering  operation  is  based  on the
idea that the gravity acceleration signal is located in the very
low frequency region of the measured acceleration spectrum,
whereas the human motion component is located in the high
frequency one. In fact,  a trivial  solution is to consider the
gravity as a DC component, and to compute the mean value
of  the  measured  acceleration  over an observation  window
[22]. However, more accurate results can be obtained using a
Low-Pass (LP) filter to obtain gravity, and a High-Pass (HP)



filter  to  obtain  the  human  motion  component  [4].  In  this
work, we propose a 5th order IIR Butterworth filter, with a
cutoff  frequency  of  0.4 Hz.  A  Coupled  All-Pass  (CA)
structure [23] has been used to implement the filter, which
allows  to  obtain  both  the  HP  and  the  LP  components
simultaneously. The scheme of the filter is shown in Fig. 2,
where A1 and A2 are the 2 all-pass filters, X(z), YLP(z), and
YHP(z) are the frequency-domain representations of the input
signal,  the  LP  output  signal,  and  the  HP  output  signal
respectively.  The CA structure has the advantage of being
highly regular, thus allowing to easily identify a fundamental
cell  and  being  well  suited  to  an  iterative  implementation.
From a HW point of view, this allows to save resources at
the expense of a multicycle mode of operation. Also, each
fundamental cell requires only one multiplier, which again is
a  great  benefit  in  terms  of  required  HW  resources.  The
fundamental  cells  are highlighted by grey boxes in Fig. 2.
The advantage of the CA structure with respect to other well-
known filter structures is summarized in Table IV, in which
we show that the CA structure allows obtaining a saving of
roughly 50% in terms of number of multipliers and registers
under  the  same filter  order. With a  view to implement  a
custom low-power and low-resources HW solution, a fixed-
point  (FI)  coding  has  been  used,  because  this  allows  to
implement more compact arithmetic circuits with respect to
their  FP  counterpart  [24].  We  determined  the  optimal
wordlength,  considering  that  the  quantization  of  the  filter
coefficients causes a change in the frequency response with
respect to the ideal one, with the possibility for the filter to
become unstable. We quantified the deviation in the cutoff
frequency by performing many tests using the “Fixed-Point
Designer”  tool  in  the  MATLAB  environment.  Three
different  codelengths  have  been  considered:  20 (8.12),
24 (8.16),  and  28 (8.20) bits.  The  FP-64 bits  frequency
response has been considered as reference. Results show a
change  of  the  13.75%,  0.90%,  and  0.005% in  the  cutoff
frequency  for  the  20 bits,  24 bits,  and  28  bits  coding
respectively, and the stability was preserved for each case.
Thus, to limit the error  under 1%, we selected the 24 bits
coding.  During  the  second  stage  of  pre-processing
operations, the HP component of the measured acceleration,
i.e.  the human motion acceleration,  is  projected on a new
reference frame, which is independent from the orientation
of the sensor. Indeed, a tri-axial accelerometer measures the
3  components  of  the  acceleration  vector  related  to  the
sensor-fixed reference frame, as shown in Fig. 3. Therefore,
the acceleration vector needs to be represented in the Earth-
fixed  reference  frame,  which  is  obtained  by  using  the
extracted gravity vector as reference. To this aim, the HW-
friendly algorithm proposed in [24] has been used. In fact,
the  conventional  methods  for  the  reference  frame
transformation,  such  as  Euler  angles,  quaternions,  and
Rodrigues’  rotation  formula,  require  the  computation  of
complex  mathematical  functions  (i.e.  trigonometric
functions, square root, normalizations), which in turn require
an additional circuity to be efficiently computed [25]. On the
other  hand,  the  method  we  use  allows  to  perform  the
reference  frame  transformation  completely  avoiding

trigonometric functions and requiring only a square root and
three divisions.

IV. ACCURACY IMPROVEMENT WITH DATA PRE-PROCESSING

A. Training results on 5 classes from PAMAP2

We demonstrate  the effectiveness  of the proposed pre-
processing method in removing the noise deriving from the
sensor orientation,  by training the HNN model  using pre-
processed data from the PAMAP2 dataset according to the
scheme explained in the previous paragraph. The results are
summarized  in  Table V,  when  the  5  activities  mentioned
above are classified. A significant improvement is obtained
thanks  to  the  pre-processing  operations  when  data  come
from sensors in ankle or hand position. The best case is for
the sensor hand16g when the FL = 5120, where the average
recall  increases  from 51.32% to 99.92%, thus gaining the
huge value of 48.60 percentage points. On the other hand, no
improvement  is  obtained  when  the  sensor  is  in  the  chest
position, and the average recall  decreases  from 98.28% to
89.17% in the worst case, that is when the sensor is chest6g
and the FL = 5120, thus losing 9.11 percentage points. As
mentioned before, this may be attributed to the absence of
rotational movements when the sensor is located at the chest.

B. Training Results on 5 classes from PAMAP 2 for 
different Numbers of Neurons in the FC1 layer

Considering the very good results shown in Table V for
FL = 5120, we carried out some tests on a reduced version of
the  HNN  model.  Some  alternative  models  with  a  lower
number  of  neurons  for  the  first  FC  layer  has  been  built,
considering that most of the memory is required to store the
weights for this layer. Results are summarized in Table VI,
in  which  we  consider  32,  16,  and  8  neurons,  which
corresponds  to  a  saving of  the 44.9%, 67.4%, and 78.6%
respectively  in  terms  of  memory  requirements.  Also,  a
saving of the 12.2%, 18.4%, and 21.4% can be obtained in
terms of number of ADD/SUB operations for the 32, 16, and
8  neurons  cases  respectively.  The  saving  in  terms  of
ADD/SUB  operations  is  lower  than  the  one  in  terms  of
memory  requirements,  because  the  highest  number  of
operations is associated to the second CONV layer. Results
show that a high level of accuracy can be obtained with a
lower number of neurons as well, especially when the sensor
is located at the hand, and an average recall higher than 90%
is  obtained  in  62.5%  of  the  cases.  The  best  results  are
obtained  for  the  hand6g and  hand16g sensors  when  the
number of neurons of the first FC layer is equal to 32. In
these two cases, an average recall of 99.99% is obtained.

C. Training Results on the 12 PAMAP2 classes

Considering  that  up  to  12  standard  activities  can  be
selected from the PAMAP2 dataset, we also made a version
of the HNN with 12 neurons in the last FC layer. In this case,
the  memory  required  to  store  the  weights  for  this  layer
increases from 40 bytes to 96 bytes, with a total increase in
the memory requirement of 5.6%. Also, the number of ADD
operations increases from 320 to 768, with a total increase in
the ADD/SUB operations of 1.8%. Results are summarized



in Table VII for FL = 1024, with and without pre-processing
data. The number of neurons of the first FC layer is equal to
64. The HNN shows poor performance in recognizing the 12
activities from the dataset, with a reduction of roughly 50%
with  respect  to  the  5 classes  case.  This  can  be  explained
considering  that  only  one  accelerometer  is  used  as  input
sensor  in  our  system,  and  some  classes  cannot  be
distinguished  with  such  a  configuration.  For  instance,  the
activities  lying, sitting, and standing (which are included in
the PAMAP2 dataset) can only be classified by evaluating
the relative position of more sensors in different parts of the
body. Nevertheless, again an improvement can be observed
with the use of data pre-processing when the sensor position
is ankle or hand.

V. HW ARCHITECTURE AND IMPLEMENTATION RESULTS

We designed a custom HW architecture to investigate the
possibility  to  implement  the  proposed  HAR  system  on
resource-constrained  devices.  Two  different  modules
implement the operations explained above, namely the pre-
processing module and the HNN accelerator.

A. Pre-Processing Module

To  minimize  the  amount  of  required  resources,  the
datapath  has  been  carefully  managed  to  allow  the
implementation of the filtering operation and the reference
frame transformation by using a shared circuitry. The input
of the pre-processing module is the 3-axis acceleration from
the sensor.  The pre-processing  module  corresponds  to  the
circuitry proposed in [24], which is made up of 3 parallel FI-
24  Booth  multipliers,  and  2  FI-24  cascaded  adders.  This
allows to perform the transformation of the reference frame
by means of an iterative processing, storing the intermediate
results  in  500 bytes  register  bank.  To  avoid  the  use  of
additional resources, we also mapped the filtering operation
on  this  circuitry.  Considering  the  calculation  scheme  in
Fig. 2, 1 multiplication and 3 sums are required to implement
each  fundamental  cell.  Consequently,  this  can  be
implemented by running 2 iterations with the pre-processing
module.

B. HNN Accelerator

The HNN accelerator  has  been designed to reduce the
amount  of  resources  by  exploiting  the  advantages  of  the
HNN model. Firstly, the compactness of the model allows to
strongly  limit  the  need  to  access  to  higher  levels  of  the
memory hierarchy, which is a major issue in neural networks
accelerators [26]. Local data reuse has been enhanced in the
proposed architecture by an intensive use of FIFO memories.
Moreover,  weight  binarization  allows  to  reduce  the  MAC
operations  to  ADD/SUB  operations,  with  a  significant
reduction of mapped resources [27]-[29]. The block diagram
of  the  HNN  accelerator  is  shown  in  Fig. 4,  where  we
suppose  64  neurons  for  the  first  FC  layer  and  5  output
classes.  The architecture exploits 3 cores,  since this is  the
minimum  number  of  cores  which  allows  to  process  in
parallel the 3 components of the pre-processed acceleration.
A RAM is  instantiated to store  weights  and biases  of  the
model. As the weights are binarized, only 1 bit per weight is

required.  On the other hand, biases are not binarized,  and
16 bits  are  used  for  their  representation.  The  RAM
dimensions  are  31×696 bits,  that  is  2.63 KB.  The  most
significant 15 bits of each word of the RAM are used to store
the weights, therefore each core receives 5 binarized weights
at each cycle. The remaining 16 bits are used for the biases.
In Fig. 5 the block diagram of each core is shown. Thanks to
the weight binarization, the Processing Element (PE) is a 3-
levels adder tree which uses 16-bits FI arithmetic. The first
level of the adder tree is made up by 3 adders, so that a dot
product between vectors of length 5 can be performed in one
cycle, and a bias or a result from the previous cycle can be
summed up as well. “FIFO_o” stores the output activations
of each layer. Each “FIFO_o” is divided in up to 5 blocks, in
order  to  provide  up  to  5  different  output  activations  in
parallel to the PE. In detail, the 3 “FIFO_o” memories store
the output activations of the first stage, the second CONV
layer  and  the  Max-Pool  layer,  respectively.  Each  axis  is
processed separately in the CONV layers, thus the memory
for the output activations is locally associated to each core.
As shown in Fig. 4, an external FIFO memory is also used to
store the output activations of the first FC layer, since all the
input activations from the previous layer cannot be separated
in this case.

C. Flexible HW Design

Our design easily adapts to changes in the topology of
the model, such as a change in the number of neurons of a
FC layer or the number of output classes. In the first case,
what  changes is  the RAM size,  the size of  the “FIFO_o”
memories, and the way the Control Unit (CU) manages the
architecture.  Let  us  assume  that  we  want  to  change  the
number  of  neurons  of  the  first  FC layers  from 64 to  32,
which leads to a lower memory requirement.  In particular,
the RAM size will be reduced from 31×696 to 31×395, that
is  from  2.6 KB  to  1.5 KB.  Also,  the  number  of  output
activations of the third stage will be reduced from 64 to 32,
thus a consequent reduction of the FIFO in Fig. 4 is required.
Finally, the model will require a lower number of cycles to
be  computed.  However,  the  FSM-based  CU manages  the
transitions  between  layers  by  checking  the  value  of  a
program counter. Thus, we require a slight modification in
the  logic  of  the  CU  to  change  the  number  of  cycles
associated to each layer. Another option is the change of the
number  of  output  classes.  In  this  case,  again  we  need  to
modify the number of neurons of a FC layer, namely the last
FC layer.  Thus, similar  changes apply to this case but no
change in the FIFO memory is required.

D. HW Implementation Results

We implemented this design on a Xilinx Artix-7 FPGA
by using the Xilinx Vivado environment. We also realized a
demo-board to prove the actual functioning of the proposed
system. We deployed our design on the Digilent CMOD A7-
35T [30], while the STM32F411RE [31] microcontroller is
used to manage the data transfer between the sensor and the
FPGA,  and  to  display  the  processed  results  [32].  In
Table VIII  the results  of  the FPGA implementation and  a
comparison with the state of the art for HW HAR solutions is



provided. Results refers to an HNN configuration with 64
neurons  in  the  first  FC  layer  and  5  output  classes.  The
operating frequency (OpFreq) is the minimum frequency that
allows  real-time  operations.  Since  the  number  of  cycles
required to obtain a class prediction is 12600, and the Output
Data Rate (ODR) of the sensor is equal to 25 Hz, OpFreq is
12600×25 Hz = 315 kHz. The power consumption has been
estimated by using the Vivado power tool. To obtain a high
level  of  confidence,  we  generated  Switching  Activity
Interchange Format (SAIF) files from post-implementation
simulations. At the OpFreq, the total power consumption is
72.04 mW, which  mostly  corresponds  to  the  static  power
consumption of the FPGA. A power reduction of 37.9% and
70.1%  can  be  observed  with  respect  to  [33]  and  [34]
respectively. The maximum operating frequency is 41 MHz,
which  allows  to  set  a  maximum  ODR  for  the  sensor  of
3.2 kHz.  This  bodes  well  for  the  use  of  our  system  in
applications where a higher throughput is required, such as
fault diagnosis [35]. 5988 LUTs, 4299 FFs and 1 BRAM are
required to implement the design. The number of LUTs and
FFs  is  higher  than  the  ones  in  [33]  and  [34].  However,
3 DSPs and 14 BRAMs are used in [33], whereas 81 DSPs
are used in [34], and we need none.

VI. CONCLUSIONS

In  this  work,  a  pre-processing  scheme  enhances  the
accuracy of a reduced-precision neural network. We propose
a HW implementation of the system, which suits real-time
operation and provides very high accuracy. Results show a
very low use of  resources  and a low power consumption.
Thus, future works will be aimed to silicon implementation,
which can bring down the power consumption to μW and
enable the integration in wearable or portable devices.
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