
HAL Id: hal-03106955
https://hal.science/hal-03106955v1

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Low Power Tiny Binary Neural Network with improved
accuracy in Human Recognition Systems

A. de Vita, D. Pau, L. Di Benedetto, A. Rubino, Frédéric Pétrot, G.D.
Licciardo

To cite this version:
A. de Vita, D. Pau, L. Di Benedetto, A. Rubino, Frédéric Pétrot, et al.. Low Power Tiny Bi-
nary Neural Network with improved accuracy in Human Recognition Systems. Euromicro Con-
ference on Digital System Design (DSD 2020), Aug 2020, Kranj (virtual), Slovenia. pp.309-315,
�10.1109/DSD51259.2020.00057�. �hal-03106955�

https://hal.science/hal-03106955v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Low Power Tiny Binary Neural Network with improved accuracy in Human
Recognition Systems

Antonio De Vita*, Danilo Pau†, Luigi Di Benedetto*, Alfredo Rubino*, Fre´de´ric Pe´trot‡

and Gian Domenico Licciardo*
*Department of Industrial Engineering, University of Salerno, Fisciano (SA), Italy

Email: andevita@unisa.it, ldibenendetto@unisa.it, arubino@unisa.it, gdlicciardo@unisa.it
†System Research and Applications, STMicroelectronics, Agrate Brianza (MI), Italy

Email: danilo.pau@st.com
‡TIMA, Grenoble-INP, University of Grenoble Alpes, Grenoble, France

Email: frederic.petrot@univ-grenoble-alpes.fr

Abstract— Human Activity Recognition requires very high
accuracy to be effectively employed into practical applications,
ranging from elderly care to microsurgical devices. The highest
accuracies are achieved by Deep Learning models, but these
are not easily deployable in handheld or wearable devices with
very constrained resources. We therefore present a new HAR
system suitable for a compact FPGA implementation. A new
Binarized Neural Network (BNN) architecture achieves the
classification based on data from a single tri-axial
accelerometer. From our experiments, the effect of gravity and
the unknown orientation of the sensor cause a degradation of
the accuracy. In order to compensate for these issues, we
propose a HW-friendly algorithm to pre-process the raw
acceleration signal. Moreover, the very low power and
hardware friendly BNN has been trained and validated on the
PAMAP2 dataset, for which the pre-processing operations
increase the accuracy from 51% to 99% in the best case.
Aiming for a low-power design, we designed both a custom
circuit to perform the pre-processing operations and a
hardware accelerator for the BNN. The design on FPGA
features a power dissipation of 72 mW and occupies
6788 LUTs.

Keywords—binarized neural networks; FPGA; human
activity recognition; inertial sensors

I. INTRODUCTION

One of the most widespread features in modern handheld
and wearable devices is Human Activity Recognition
(HAR), which enables the automatic recognition of human
activities by analyzing data collected by sensors [1]. HAR is
employed in various application fields requiring a very high
accuracy level such as Parkinson’s disease monitoring [2],
rehabilitation [3], and assisted living [4]. Modern MEMS,
such as accelerometers, gyroscopes, and magnetometers [5],
are accurate enough to be effectively used in conjunction
with Deep Learning (DL) models in order to build HAR
systems with high accuracy requirements. However, we must
face the demands in physical resources required to
implement the high computational complexity of DL models
[6], [7]. In addition, in HAR systems, inertial sensors can
have an arbitrary and changeable orientation in space, with
the gravity acceleration providing a variable contribution to
each sample, which is related to the reference frame integral

to the sensor. As the orientation of the sensor is generally
unknown, this contribution needs some specific signal
processing techniques to be removed [8]. In this context, the
delay of the data transfer and the availability of connections
make cloud unusable when real-time operation is required
[9], let alone when privacy is at stake. Instead, processing “at
the edge”, namely locally on the device and close to the
sensors is highly desirable [10]. To enable this, many
reduced-precision DL models have been proposed, such as
Binarized Neural Networks (BNNs) [11] and Ternary Neural
Networks (TNNs) [12], which use only 1 or 2 bits,
respectively, to encode the network parameters. Compared to
a single precision Floating Point (FP) [13] model, the use of
the BNNs, for example, could lead to a reduction of the
memory requirements up to 32×, and to multiplier-less
designs with significant area and power reductions for the
derived HW implementations [14], [15]. Unfortunately, the
price of these benefits is a significant loss in accuracy, which
is an obstacle to the use of reduced precision DL models in
actual systems [11].

In this work, the performance of a partially-binarized
hybrid neural network (HNN) [16] is evaluated when it is
used to build a HAR system designed to overcome the above
limitations. We evaluate the accuracy of the model when
data is acquired from only one tri-axial accelerometer, along
with the amount of physical resources for its HW
implementation. Next, we evaluate the accuracy advantage
of a custom pre-processing stage considering its HW
resource requirements. Results show that the HAR system,
made of accelerometer, pre-processing stage, and HNN,
exhibits an average recall up to 99% when trained on the
PAMAP2 dataset [17]. Moreover, the modularity of the
calculation scheme and HNN model allows a very compact
design, which induces a total power consumption of 72 mW,
(mostly quiescent power), and maps on 6788 LUTs, when
implemented on a Xilinx Artix-7 FPGA. We obtained these
results on an actual board that we developed to demo the real
time operation of the system running at a maximum
operating frequency of 41 MHz. The use of the FPGA allows
to easily adapt the architecture to different classification
tasks. In fact, our design can be reinitialized with new
weights from an offline training phase. Also, we can
straightforwardly reprogram our FPGA design when a

change in the topology of the model is needed. All the results
overcome the state of the art for this kind of systems.

II. HYBRID NEURAL NETWORK

The HNN is similar to a BNN, but while all weights are
binarized, i.e. constrained to +1 and –1, the output
activations for some layers are not. In accordance with [16],
the HNN can classify between 5 different human activities.
To test, train, and validate the model, we used the PAMAP2
public dataset [17], selecting 5 standard activities. The HNN
model, as schematized in Fig. 1, has been built using
Lasagne [18].

A. Model Description

Four different stages can be identified. The first stage is
made up by a convolutional (CONV) layer and a
normalization (NORM) layer. The input to the model is a tri-
axis acceleration. An input window of 24 samples is required
to produce an output label, with each sample made up by the
3 components of the acceleration vector. The input samples
are not binarized, and 16 bits are used for their binary
representation. The CONV layer applies a set of 8 filter
kernels to each one of the 3 axes independently. The
dimension of each kernel is 5×1. After that, a NORM layer
implements the Batch Normalization [19]. To binarize the
output, we use the sign function as the activation function in
the fi rst stage: each value among the output activations thus
is constrained to +1 or −1 and can be represented with a
single bit. The second stage is made by a CONV layer,
which applies a set of 8 filter kernels with dimensions 5×8.
As shown in Table I, 60.6% of the total ADD/SUB
operations are performed in this layer. In this case, the ReLU
function is used as activation function, and no binarization
occurs. Then, a Max Pooling layer is applied independently
to each of the 3 axes, with dimensions 4×1. The third stage is
a Fully Connected (FC) layer with 64 neurons and a NORM
layer. As the input activations to the second stage are
binarized, 7 bits are needed to cover the whole range of
values for the output activations in the second and in the
third stage. It is worth noting that 77.0% of the total memory
requirement is due to the first FC layer. The fourth stage is
made up by a FC layer with 5 neurons, that are the number
of output classes. Finally, a SoftMax classifier returns the
probability associated to each class.

B. Training and Accuracy Results

The accuracy of the proposed HAR system has been
evaluated by using data from the PAMAP2 dataset. The
dataset provides data from 9 users performing 12 daily
human activities. Three Inertial Measurement Units (IMUs)
and a heart rate sensor are used to collect the data. Each IMU
was located in a different part of the body, thus 3 sensor
positions can be chosen: ankle, hand, and chest. In our
system, the input comes from a single accelerometer.
Therefore, only the samples from the accelerometers have
been considered. Also, for each position, two different
ranges can be selected for the accelerometer: ±16g, and ±6g,
but in both cases the sensor use 13 bits to represent the data.
Thus, a different sensitivity is related to the two ranges. In

total, data from 6 different sensors can be considered,
namely: ankle16g, ankle6g, hand16g, hand6g, chest16g,
chest6g. The data have been down-sampled from 100 Hz to
25 Hz, considering the usual frequencies in HAR [20]. To be
compliant with the topology of the HNN model in [16], 5
human activities have been selected among the 12 standard
activities provided by the PAMAP2 dataset, namely:
standing, walking, running, biking, and rope jumping. The
method presented in [21] has been used to train the model,
by setting the number of epochs to 30 and the batch size to
500. For training and testing purposes, the dataset is split in
sets of consecutive samples that are associated to the same
activity. The number of samples in each set is called FL.
During training process, we sequentially feed the HNN with
these sets. As the batch size is 500, parameters are updated
every 500 sets during each epoch. The number of samples
used during training, testing, and validation are reported in
Table II for each FL. Note that the FL refers to the number
of samples before the down-sampling process. Thus, a FL
equal to 512 corresponds to a time window of 5.12 s.
Training results are summarized in Table III, where the
average recall is reported for each one of the 6 sensors and
considering 3 different Frame Lengths (FLs), namely 5120,
1024, and 512. The average recall tends to increase with the
FL in most cases. The HNN model has poor performance in
recognizing the human activities from the raw data provided
by the dataset. In fact, the average recall is lower than 90%
in 88.89% of the cases. Better results are achieved only when
the sensor position is chest and the FL is equal to 5120. This
can be explained by considering the effect of the sensor
orientation when performing human daily activities, such as
walking, running, and the like. In fact, while the sensors at
the hand and ankle positions are subject to rotational
movements, the ones at the chest position are not. Thus, in
the first case there is an issue related to the orientation of the
sensor, i.e. the orientation is different for each sample. We
can imagine that the unknown orientation of the sensors
behaves like a noise, that overlaps with the human motion
data, making it harder to achieve a correct classification
without increasing the model size.

III. PRE-PROCESSING OPERATIONS

To increase the accuracy of the HNN, we propose a pre-
processing scheme that removes the noise resulting from the
varying orientation of the sensor. Two sequential phases can
be distinguished, that are filtering and reference frame
rotation. The first one is used to separate the gravity
component from the measured acceleration. Then, gravity is
removed from the measured acceleration and used to define a
new fixed reference frame, which does not depend on the
sensor orientation. The filtering operation is based on the
idea that the gravity acceleration signal is located in the very
low frequency region of the measured acceleration spectrum,
whereas the human motion component is located in the high
frequency one. In fact, a trivial solution is to consider the
gravity as a DC component, and to compute the mean value
of the measured acceleration over an observation window
[22]. However, more accurate results can be obtained using a
Low-Pass (LP) filter to obtain gravity, and a High-Pass (HP)

filter to obtain the human motion component [4]. In this
work, we propose a 5th order IIR Butterworth filter, with a
cutoff frequency of 0.4 Hz. A Coupled All-Pass (CA)
structure [23] has been used to implement the filter, which
allows to obtain both the HP and the LP components
simultaneously. The scheme of the filter is shown in Fig. 2,
where A1 and A2 are the 2 all-pass filters, X(z), YLP(z), and
YHP(z) are the frequency-domain representations of the input
signal, the LP output signal, and the HP output signal
respectively. The CA structure has the advantage of being
highly regular, thus allowing to easily identify a fundamental
cell and being well suited to an iterative implementation.
From a HW point of view, this allows to save resources at
the expense of a multicycle mode of operation. Also, each
fundamental cell requires only one multiplier, which again is
a great benefit in terms of required HW resources. The
fundamental cells are highlighted by grey boxes in Fig. 2.
The advantage of the CA structure with respect to other well-
known filter structures is summarized in Table IV, in which
we show that the CA structure allows obtaining a saving of
roughly 50% in terms of number of multipliers and registers
under the same filter order. With a view to implement a
custom low-power and low-resources HW solution, a fixed-
point (FI) coding has been used, because this allows to
implement more compact arithmetic circuits with respect to
their FP counterpart [24]. We determined the optimal
wordlength, considering that the quantization of the filter
coefficients causes a change in the frequency response with
respect to the ideal one, with the possibility for the filter to
become unstable. We quantified the deviation in the cutoff
frequency by performing many tests using the “Fixed-Point
Designer” tool in the MATLAB environment. Three
different codelengths have been considered: 20 (8.12),
24 (8.16), and 28 (8.20) bits. The FP-64 bits frequency
response has been considered as reference. Results show a
change of the 13.75%, 0.90%, and 0.005% in the cutoff
frequency for the 20 bits, 24 bits, and 28 bits coding
respectively, and the stability was preserved for each case.
Thus, to limit the error under 1%, we selected the 24 bits
coding. During the second stage of pre-processing
operations, the HP component of the measured acceleration,
i.e. the human motion acceleration, is projected on a new
reference frame, which is independent from the orientation
of the sensor. Indeed, a tri-axial accelerometer measures the
3 components of the acceleration vector related to the
sensor-fixed reference frame, as shown in Fig. 3. Therefore,
the acceleration vector needs to be represented in the Earth-
fixed reference frame, which is obtained by using the
extracted gravity vector as reference. To this aim, the HW-
friendly algorithm proposed in [24] has been used. In fact,
the conventional methods for the reference frame
transformation, such as Euler angles, quaternions, and
Rodrigues’ rotation formula, require the computation of
complex mathematical functions (i.e. trigonometric
functions, square root, normalizations), which in turn require
an additional circuity to be efficiently computed [25]. On the
other hand, the method we use allows to perform the
reference frame transformation completely avoiding

trigonometric functions and requiring only a square root and
three divisions.

IV. ACCURACY IMPROVEMENT WITH DATA PRE-PROCESSING

A. Training results on 5 classes from PAMAP2

We demonstrate the effectiveness of the proposed pre-
processing method in removing the noise deriving from the
sensor orientation, by training the HNN model using pre-
processed data from the PAMAP2 dataset according to the
scheme explained in the previous paragraph. The results are
summarized in Table V, when the 5 activities mentioned
above are classified. A significant improvement is obtained
thanks to the pre-processing operations when data come
from sensors in ankle or hand position. The best case is for
the sensor hand16g when the FL = 5120, where the average
recall increases from 51.32% to 99.92%, thus gaining the
huge value of 48.60 percentage points. On the other hand, no
improvement is obtained when the sensor is in the chest
position, and the average recall decreases from 98.28% to
89.17% in the worst case, that is when the sensor is chest6g
and the FL = 5120, thus losing 9.11 percentage points. As
mentioned before, this may be attributed to the absence of
rotational movements when the sensor is located at the chest.

B. Training Results on 5 classes from PAMAP 2 for
different Numbers of Neurons in the FC1 layer

Considering the very good results shown in Table V for
FL = 5120, we carried out some tests on a reduced version of
the HNN model. Some alternative models with a lower
number of neurons for the first FC layer has been built,
considering that most of the memory is required to store the
weights for this layer. Results are summarized in Table VI,
in which we consider 32, 16, and 8 neurons, which
corresponds to a saving of the 44.9%, 67.4%, and 78.6%
respectively in terms of memory requirements. Also, a
saving of the 12.2%, 18.4%, and 21.4% can be obtained in
terms of number of ADD/SUB operations for the 32, 16, and
8 neurons cases respectively. The saving in terms of
ADD/SUB operations is lower than the one in terms of
memory requirements, because the highest number of
operations is associated to the second CONV layer. Results
show that a high level of accuracy can be obtained with a
lower number of neurons as well, especially when the sensor
is located at the hand, and an average recall higher than 90%
is obtained in 62.5% of the cases. The best results are
obtained for the hand6g and hand16g sensors when the
number of neurons of the first FC layer is equal to 32. In
these two cases, an average recall of 99.99% is obtained.

C. Training Results on the 12 PAMAP2 classes

Considering that up to 12 standard activities can be
selected from the PAMAP2 dataset, we also made a version
of the HNN with 12 neurons in the last FC layer. In this case,
the memory required to store the weights for this layer
increases from 40 bytes to 96 bytes, with a total increase in
the memory requirement of 5.6%. Also, the number of ADD
operations increases from 320 to 768, with a total increase in
the ADD/SUB operations of 1.8%. Results are summarized

in Table VII for FL = 1024, with and without pre-processing
data. The number of neurons of the first FC layer is equal to
64. The HNN shows poor performance in recognizing the 12
activities from the dataset, with a reduction of roughly 50%
with respect to the 5 classes case. This can be explained
considering that only one accelerometer is used as input
sensor in our system, and some classes cannot be
distinguished with such a configuration. For instance, the
activities lying, sitting, and standing (which are included in
the PAMAP2 dataset) can only be classified by evaluating
the relative position of more sensors in different parts of the
body. Nevertheless, again an improvement can be observed
with the use of data pre-processing when the sensor position
is ankle or hand.

V. HW ARCHITECTURE AND IMPLEMENTATION RESULTS

We designed a custom HW architecture to investigate the
possibility to implement the proposed HAR system on
resource-constrained devices. Two different modules
implement the operations explained above, namely the pre-
processing module and the HNN accelerator.

A. Pre-Processing Module

To minimize the amount of required resources, the
datapath has been carefully managed to allow the
implementation of the filtering operation and the reference
frame transformation by using a shared circuitry. The input
of the pre-processing module is the 3-axis acceleration from
the sensor. The pre-processing module corresponds to the
circuitry proposed in [24], which is made up of 3 parallel FI-
24 Booth multipliers, and 2 FI-24 cascaded adders. This
allows to perform the transformation of the reference frame
by means of an iterative processing, storing the intermediate
results in 500 bytes register bank. To avoid the use of
additional resources, we also mapped the filtering operation
on this circuitry. Considering the calculation scheme in
Fig. 2, 1 multiplication and 3 sums are required to implement
each fundamental cell. Consequently, this can be
implemented by running 2 iterations with the pre-processing
module.

B. HNN Accelerator

The HNN accelerator has been designed to reduce the
amount of resources by exploiting the advantages of the
HNN model. Firstly, the compactness of the model allows to
strongly limit the need to access to higher levels of the
memory hierarchy, which is a major issue in neural networks
accelerators [26]. Local data reuse has been enhanced in the
proposed architecture by an intensive use of FIFO memories.
Moreover, weight binarization allows to reduce the MAC
operations to ADD/SUB operations, with a significant
reduction of mapped resources [27]-[29]. The block diagram
of the HNN accelerator is shown in Fig. 4, where we
suppose 64 neurons for the first FC layer and 5 output
classes. The architecture exploits 3 cores, since this is the
minimum number of cores which allows to process in
parallel the 3 components of the pre-processed acceleration.
A RAM is instantiated to store weights and biases of the
model. As the weights are binarized, only 1 bit per weight is

required. On the other hand, biases are not binarized, and
16 bits are used for their representation. The RAM
dimensions are 31×696 bits, that is 2.63 KB. The most
significant 15 bits of each word of the RAM are used to store
the weights, therefore each core receives 5 binarized weights
at each cycle. The remaining 16 bits are used for the biases.
In Fig. 5 the block diagram of each core is shown. Thanks to
the weight binarization, the Processing Element (PE) is a 3-
levels adder tree which uses 16-bits FI arithmetic. The first
level of the adder tree is made up by 3 adders, so that a dot
product between vectors of length 5 can be performed in one
cycle, and a bias or a result from the previous cycle can be
summed up as well. “FIFO_o” stores the output activations
of each layer. Each “FIFO_o” is divided in up to 5 blocks, in
order to provide up to 5 different output activations in
parallel to the PE. In detail, the 3 “FIFO_o” memories store
the output activations of the first stage, the second CONV
layer and the Max-Pool layer, respectively. Each axis is
processed separately in the CONV layers, thus the memory
for the output activations is locally associated to each core.
As shown in Fig. 4, an external FIFO memory is also used to
store the output activations of the first FC layer, since all the
input activations from the previous layer cannot be separated
in this case.

C. Flexible HW Design

Our design easily adapts to changes in the topology of
the model, such as a change in the number of neurons of a
FC layer or the number of output classes. In the first case,
what changes is the RAM size, the size of the “FIFO_o”
memories, and the way the Control Unit (CU) manages the
architecture. Let us assume that we want to change the
number of neurons of the first FC layers from 64 to 32,
which leads to a lower memory requirement. In particular,
the RAM size will be reduced from 31×696 to 31×395, that
is from 2.6 KB to 1.5 KB. Also, the number of output
activations of the third stage will be reduced from 64 to 32,
thus a consequent reduction of the FIFO in Fig. 4 is required.
Finally, the model will require a lower number of cycles to
be computed. However, the FSM-based CU manages the
transitions between layers by checking the value of a
program counter. Thus, we require a slight modification in
the logic of the CU to change the number of cycles
associated to each layer. Another option is the change of the
number of output classes. In this case, again we need to
modify the number of neurons of a FC layer, namely the last
FC layer. Thus, similar changes apply to this case but no
change in the FIFO memory is required.

D. HW Implementation Results

We implemented this design on a Xilinx Artix-7 FPGA
by using the Xilinx Vivado environment. We also realized a
demo-board to prove the actual functioning of the proposed
system. We deployed our design on the Digilent CMOD A7-
35T [30], while the STM32F411RE [31] microcontroller is
used to manage the data transfer between the sensor and the
FPGA, and to display the processed results [32]. In
Table VIII the results of the FPGA implementation and a
comparison with the state of the art for HW HAR solutions is

provided. Results refers to an HNN configuration with 64
neurons in the first FC layer and 5 output classes. The
operating frequency (OpFreq) is the minimum frequency that
allows real-time operations. Since the number of cycles
required to obtain a class prediction is 12600, and the Output
Data Rate (ODR) of the sensor is equal to 25 Hz, OpFreq is
12600×25 Hz = 315 kHz. The power consumption has been
estimated by using the Vivado power tool. To obtain a high
level of confidence, we generated Switching Activity
Interchange Format (SAIF) files from post-implementation
simulations. At the OpFreq, the total power consumption is
72.04 mW, which mostly corresponds to the static power
consumption of the FPGA. A power reduction of 37.9% and
70.1% can be observed with respect to [33] and [34]
respectively. The maximum operating frequency is 41 MHz,
which allows to set a maximum ODR for the sensor of
3.2 kHz. This bodes well for the use of our system in
applications where a higher throughput is required, such as
fault diagnosis [35]. 5988 LUTs, 4299 FFs and 1 BRAM are
required to implement the design. The number of LUTs and
FFs is higher than the ones in [33] and [34]. However,
3 DSPs and 14 BRAMs are used in [33], whereas 81 DSPs
are used in [34], and we need none.

VI. CONCLUSIONS

In this work, a pre-processing scheme enhances the
accuracy of a reduced-precision neural network. We propose
a HW implementation of the system, which suits real-time
operation and provides very high accuracy. Results show a
very low use of resources and a low power consumption.
Thus, future works will be aimed to silicon implementation,
which can bring down the power consumption to μW and
enable the integration in wearable or portable devices.

REFERENCES

[1] O. D. Lara and M. A. Labrador, "A Survey on Human Activity
Recognition using Wearable Sensors," in IEEE Communications
Surveys & Tutorials, vol. 15, no. 3, pp. 1192-1209, Third Quarter
2013.

[2] B. M. Eskofier et al., "Recent machine learning advancements in
sensor-based mobility analysis: Deep learning for Parkinson's disease
assessment," 2016 38th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), Orlando, FL,
2016, pp. 655-658.

[3] I. Bisio, A. Delfino, F. Lavagetto and A. Sciarrone, "Enabling IoT for
In-Home Rehabilitation: Accelerometer Signals Classification
Methods for Activity and Movement Recognition," in IEEE Internet
of Things Journal, vol. 4, no. 1, pp. 135-146, Feb. 2017.

[4] T. R. Bennett, J. Wu, N. Kehtarnavaz and R. Jafari, "Inertial
Measurement Unit-Based Wearable Computers for Assisted Living
Applications: A signal processing perspective," in IEEE Signal
Processing Magazine, vol. 33, no. 2, pp. 28-35, March 2016.

[5] H. Yu, S. Cang, and Y. Wang, "A review of sensor selection, sensor
devices and sensor deployment for wearable sensor-based human
activity recognition systems," 2016 10th International Conference on
Software, Knowledge, Information Management & Applications
(SKIMA), Chengdu, 2016, pp. 250-257.

[6] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol.
521, no. 7553, pp. 436–444, May 2015.

[7] J. Wang, Y. Chen, S. Hao, X. Peng, L. Hu, "Deep learning for sensor-
based activity recognition: A Survey," Pattern Recognition Letters,
2018, ISSN 0167-8655.

[8] A. De Vita et al., "Low-Power Integrated Circuit for Orientation
Independent Acquisitions from Smart Accelerometers," in Lecture
Notes in Electrical Engineering, , vol. 629, pp. 35-41, Feb. 2020.

[9] J. Pagán et al., "Toward Ultra-Low-Power Remote Health
Monitoring: An Optimal and Adaptive Compressed Sensing
Framework for Activity Recognition," in IEEE Transactions on
Mobile Computing, vol. 18, no. 3, pp. 658-673, 1 March 2019.

[10] Z. Zou, Y. Jin, P. Nevalainen, Y. Huan, J. Heikkonen and T.
Westerlund, "Edge and Fog Computing Enabled AI for IoT-An
Overview," 2019 IEEE International Conference on Artificial
Intelligence Circuits and Systems (AICAS), Hsinchu, Taiwan, 2019,
pp. 51-56.

[11] T. Simons, and D. J. Lee, “A Review of Binarized Neural Networks,”
in MDPI Electronics, vol. 8, no. 6, pp. 661-686, June 2019.

[12] H. Alemdar, V. Leroy, A. Prost-Boucle and F. Pétrot, "Ternary neural
networks for resource-efficient AI applications," 2017 International
Joint Conference on Neural Networks (IJCNN), Anchorage, AK,
2017, pp. 2547-2554.

[13] IEEE Standard for Floating-Point Arithmetic," in IEEE Std 754-
2008 , vol., no., pp.1-70, 29 Aug. 2008.

[14] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” arXiv preprint
arXiv: 1602.02830 (2016).

[15] A. Prost-Boucle, A. Bourge, and F. Pétrot. 2018. “High-Efficiency
Convolutional Ternary Neural Networks with Custom Adder Trees
and Weight Compression,” in ACM Transactions on Reconfigurable
Technology and Systems, vol. 11, no. 3, art. 15, December 2018.

[16] D.P. Pau, E. Plebani, F.G. De Ambroggi, F. Guido, A.
Bosco “Recognition method, corresponding system and
computer program product,” - US Patent App.
16/189,264, 2019.

[17] A. Reiss and D. Stricker, “Introducing a new benchmarked dataset for
activity monitoring,” in Proc. 16th Int. Symp. Wearable Comput.
(ISWC), Jun. 2012, pp. 108–109.

[18] “Welcome to Lasagne”, 2015. [Online]. Available:
https://lasagne.readthedocs.io/en/latest/index.html#

[19] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep
network training by reducing internal covariate shift,” in ICML’15:
Proceedings of the 32nd International Conference on Machine
Learning¸vol. 37, Lille, 2015, pp. 448-456.

[20] A. Bulling, U. Blanke, and B. Schiele, "A tutorial on human activity
recognition using body-worn inertial sensors," in ACM Computing
Surveys, vol. 46, no. 3, Article no. 33 , Jan. 2014.

[21] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized Neural Networks: Training Deep Neural Networks with
Weights and Activations Constrained to +1 or -1,” arXiv preprint
arXiv: 1602.02830 (2016).

[22] D. Mizell, "Using gravity to estimate accelerometer
orientation," Seventh IEEE International Symposium on
Wearable Computers, 2003. Proceedings., White Plains,
NY, USA, 2003, pp. 252-253.

[23] P. Vaidyanathan, S. Mitra and Y. Neuvo, "A new approach to the
realization of low-sensitivity IIR digital filters," in IEEE Transactions
on Acoustics, Speech, and Signal Processing, vol. 34, no. 2, pp. 350-
361, April 1986.

[24] A. De Vita, G. D. Licciardo, A. Femia, L. Di Benedetto and D. Pau,
"µW Pre-processing Unit for Virtual Sensors Based on Tri-axial
Smart Accelerometers," 2019 17th IEEE International New Circuits
and Systems Conference (NEWCAS), Munich, Germany, 2019, pp. 1-
4.

[25] A. De Vita, G. D. Licciardo, A. Femia, L. Di Benedetto, A. Rubino
and D. Pau, "Embeddable Circuit for Orientation Independent
Processing in Ultra Low-Power Tri-Axial Inertial Sensors," in IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no.
6, pp. 1124-1128, June 2020.

[26] V. Sze, Y. Chen, T. Yang and J. S. Emer, "Efficient Processing of
Deep Neural Networks: A Tutorial and Survey," in Proceedings of the
IEEE, vol. 105, no. 12, pp. 2295-2329, Dec. 2017.

[27] G. D. Licciardo, C. Cappetta, L. Di Benedetto, A. Rubino
and R. Liguori, "Multiplier-Less Stream Processor for 2D
Filtering in Visual Search Applications," in IEEE
Transactions on Circuits and Systems for Video
Technology, vol. 28, no. 1, pp. 267-272, Jan. 2018

[28] G. D. Licciardo, C. Cappetta, L. Di Benedetto and M.
Vigliar, "Weighted Partitioning for Fast Multiplierless
Multiple-Constant Convolution Circuit," in IEEE
Transactions on Circuits and Systems II: Express Briefs,
vol. 64, no. 1, pp. 66-70, Jan. 2017.

[29] G. D. Licciardo, C. Cappetta and L. Di Benedetto, "FPGA
optimization of convolution-based 2D filtering processor for image
processing," 2016 8th Computer Science and Electronic Engineering
(CEEC), Colchester, 2016, pp. 180-185, doi:
10.1109/CEEC.2016.7835910.

[30] Xilinx, “7 Series FPGAs Data Sheet: Overview,”
XC7A35T-1CPG236C datasheet, Feb. 2018. [Online].
Available:
https://www.xilinx.com/support/documentation/data_sh
eets/ds180_7Series_Overview.pdf.

[31] STMicroelectronics, “STM32F411xC STM32F411xE,” Dec. 2017.
[Online].Available:
ttps://www.st.com/resource/en/datasheet/stm32f411re.pdf

[32] A. D. Vita, D. Pau, C. Parrella, L. D. Benedetto, A. Rubino and G. D.
Licciardo, "Low-Power HWAccelerator for AI Edge-Computing in
Human Activity Recognition Systems," 2020 2nd IEEE International
Conference on Artificial Intelligence Circuits and Systems (AICAS),
Genova, Italy, 2020, pp. 291-295,

[33] A. Jafari, A. Ganesan, C. S. K. Thalisetty, V. Sivasubramanian, T.
Oates and T. Mohsenin, "SensorNet: A Scalable and Low-Power
Deep Convolutional Neural Network for Multimodal Data
Classification," in IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 66, no. 1, pp. 274-287, Jan. 2019.

[34] N. B. Gaikwad, V. Tiwari, A. Keskar and N. C. Shivaprakash,
"Efficient FPGA Implementation of Multilayer Perceptron for Real-
Time Human Activity Classification," in IEEE Access, vol. 7, pp.
26696-26706, 2019.

[35] S. Zhang, S. Zhang, B. Wang and T. G. Habetler, "Deep Learning
Algorithms for Bearing Fault Diagnostics - A Review," 2019 IEEE
12th International Symposium on Diagnostics for Electrical
Machines, Power Electronics and Drives (SDEMPED), Toulouse,
France, 2019, pp. 257-263.

.

https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf

	I. Introduction
	II. Hybrid Neural Network
	A. Model Description
	B. Training and Accuracy Results

	III. Pre-Processing Operations
	IV. Accuracy Improvement with Data Pre-Processing
	A. Training results on 5 classes from PAMAP2
	B. Training Results on 5 classes from PAMAP 2 for different Numbers of Neurons in the FC1 layer
	C. Training Results on the 12 PAMAP2 classes

	V. HW Architecture and Implementation Results
	A. Pre-Processing Module
	B. HNN Accelerator
	C. Flexible HW Design
	D. HW Implementation Results

	VI. Conclusions
	References

