

Modelling the energy transition of the south-east region of France: the role of hydrogen for the integration of variable renewables

Carlos ANDRADE

Supervisors: Sandrine Selosse, Nadia Maïzi

MINES ParisTech, PSL Research University Center for Applied Mathematics, Sophia Antipolis

Energy demand

Final energy production by department of the SUD PACA Region in 2017

- Low energy production compared to consumption (17 % of the demand)
- Energy production mainly comes from fossil fuels (46 %)
- Production concentrated in the BDR1 (54 %)

PSL**★**

The TIMES-SUD_{PACA} model

PSL₩

TIMES-SUD_{PACA} model : Electric system

TIMES-SUD_{PACA} model – Hydrogen production

PSL★

$\mathsf{TIMES}\text{-}\mathsf{SUD}_{\mathsf{PACA}}$ – biogaz production

The scenarios

1. Reference (RF): What is the optimal solution found by the model based on local energy potentials. No new technologies allowed

Demand follows past trends

2. SRADDET (SR): Integrates the main strategies proposed by the region in terms of energy production

The region targeted a 30 % demand reduction for 2050

3. New technologies (NT): How the use of hydrogen and other power-to-gas technologies can transform the energy system

Production (MW)		2012	2020	2025	2030	2050
Electricity	Hydroelectricity	3 073	3 756	3 929	3 956	4 100
	Wind	45	557	1068	1597	3305
	Solar	596	6912	9779	11730	46852
	Biomass	0	141	172	172	172
Thermal	Heat recovery	1199	2 749	3 611	4 300	6546
	Solar thermal	20	509	781	998	2065
	Biomass	80	352	514	650	1283
	Methanisation	14	71	162	267	570
	Gasification	0	55	153	267	586
TOTAL		5 027	12 353	16 558	19 637	65 479

Intermittent renewables represent around 75 % of the stablished electricity capacity in 2050

PSL

Possible pathways - Power production

- In 2050, renewable energies represent 75 % of the total power production in the RF, while in the SR there is no power production comming from fossil fuels.
- Bioenergies are used to produce 23 % of the electricity in the RF, and just 6 % in the SR.
- Solar energy represents 68 % in the SR, and 23 % in the RF.
- Production in the SR is 30 % higher than in the RF

PSL*

Possible pathways - Power production

New technologies scenario

Hydrogen consumption in 2050

Around 20 PJ consumed in 2050

- Habitat: Heating 68 %
- Industry steam production 31 %
 - Chemical
 - Food & beverages
 - Other industries
- Transport 1 %
 - Buses
 - Private vehicles

Conclusion

- The region is in the path towards the decarbonization of its energy system, with the decrease of fossil fuels consumption and the development of clean technologies
- Further efforts are needed in order to increase the part of cleaner technologies in final consumption, and reach the objectives stablished by the region
- The integration of power-to-gas technologies seems to be a key factor in the path towards an energy transition of the energy system of the SUD PACA region

THANKS FOR YOUR ATTENTION

Carlos ANDRADE

carlos.andrade@mines-paristech.fr

PhD student

MINES Paris Tech, PSL Research University, Center for Applied Mathematics, Sophia Antipolis
Project co-financed by the ADEME and the Région SUD Provence-Alpes-Côte d'Azur in partnership with Schneider Electric

Carlos ANDRADE

MINES ParisTech, PSL Research University Center for Applied Mathematics, Sophia Antipolis