
HAL Id: hal-03106897
https://hal.science/hal-03106897v1

Submitted on 13 Jan 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unambiguous Separators for Tropical Tree Automata
Thomas Colcombet, Sylvain Lombardy

To cite this version:
Thomas Colcombet, Sylvain Lombardy. Unambiguous Separators for Tropical Tree Automata. 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, Mar 2020, Mont-
pellier, France. pp.32:1-32:13, �10.4230/LIPIcs.STACS.2020.32�. �hal-03106897�

https://hal.science/hal-03106897v1
https://hal.archives-ouvertes.fr

Unambiguous Separators for Tropical Tree
Automata∗

Thomas Colcombet
IRIF, CNRS, Université de Paris, Paris, France
https://www.irif.fr/~colcombe/
thomas.colcombet@irif.fr

Sylvain Lombardy
LaBRI, Institut Polytechnique de Bordeaux – Université de Bordeaux – CNRS, France
https://www.labri.fr/perso/slombard/
sylvain.lombardy@labri.fr

Abstract
In this paper we show that given a max-plus automaton (over trees, and with real weights) computing
a function f and a min-plus automaton (similar) computing a function g such that f 6 g, there
exists effectively an unambiguous tropical automaton computing h such that f 6 h 6 g.

This generalizes a result of Lombardy and Mairesse of 2006 stating that series which are both
max-plus and min-plus rational are unambiguous. This generalization goes in two directions: trees
are considered instead of words, and separation is established instead of characterization (separation
implies characterization). The techniques in the two proofs are very different.

2012 ACM Subject Classification Theory of computation → Algebraic language theory; Theory of
computation → Quantitative automata; Theory of computation → Tree languages

Keywords and phrases Tree automata, Tropical semiring, Separation, Unambiguity

Digital Object Identifier 10.4230/LIPIcs.STACS.2020.32

Funding Thomas Colcombet: Supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No.670624),
and the DeLTA ANR project (ANR-16-CE40-0007).

Acknowledgements The authors are grateful to the anonymous referees whose remarks and comments
have allowed to improve this paper.

1 Introduction

Tropical automata is a nickname for weighted automata (automata parameterized by a
semiring as introduced by Schützenbgerger [17]) over a tropical semiring. This is a particularly
simple model of finite state automata that describe functions rather than languages. It exists
in two forms, max-plus and min-plus automata. Essentially, a tropical automaton A is a
non-deterministic automaton for which each transition is labelled by a real weight (or an
integer, or a natural number, depending on the variants). This weight is extended into a
weight for a run: the sum of the weights of the transitions involved. A max-plus automaton
computes the function [[A]] : A∗ → R] {⊥} which to an input word associates the maximum
weight of an accepting run over the input, or ⊥ if there is no accepting runs. If it is a
min-plus automaton, minimum is used instead of maximum.

The use of tropical automata arises naturally in different contexts: max-plus automata
have been used for modeling scheduling constraints (see for instance [4]) or worst case
behaviors (see for instance [3] for computing the asymptotic worst case execution time

∗ The authors are committed to making professional choices acknowledging the climate emergency. We
submitted this work to STACS for its excellence and because its location induces for us a low carbon
footprint.

© Thomas Colcombet and Sylvain Lombardy;
licensed under Creative Commons License CC-BY

37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020).
Editors: Christophe Paul and Markus Bläser; Article No. 32; pp. 32:1–32:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6529-6963
https://www.irif.fr/~colcombe/
mailto:thomas.colcombet@irif.fr
https://orcid.org/0000-0003-2738-8175
https://www.labri.fr/perso/slombard/
mailto:sylvain.lombardy@labri.fr
https://doi.org/10.4230/LIPIcs.STACS.2020.32
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Unambiguous Separators for Tropical Tree Automata

of loops under the size-change abstraction); min-plus automata are used for optimisation
questions (these are for instance used as a key tool in the decision of the star-height problem
[6]). In all these situations, non-trivial decision procedures are used ([5, 12, 2]).

The starting point of this work is a result from 2006 of Lombardy and Mairesse:

I Theorem 1 ([13, 14]). A map f : A∗ → R] {⊥} which is both definable by a min-plus and
by a max-plus automaton is definable by an unambiguous tropical automaton.

Recall that an automaton is unambiguous if there is at most one accepting run per input1.
Unambiguous automata form a very particular class of tropical automata. Most of the
problems which are open or undecidable for general tropical automata are easily decidable
for unambiguous automata: equivalence with another tropical automaton [9], bounded-
ness, existence of an equivalent deterministic automaton, description of the asymptotic
behaviour [1].

It is noteworthy that the decision algorithm to decide whether there exists an equivalent
automaton actually applies to unambiguous automata and that algorithms described for
larger classes (finitely or polynomially ambiguous), consist indeed in deciding first whether
the tropical automaton is equivalent to some unambiguous one [8, 7].

The above Theorem 1 belongs to a fascinating corpus of mathematical statements of the
form ‘if X belongs both to class C and to class D, then it belongs to class E’, where E is
structurally simpler than both C and D (often D is some form of dual of C). An archetypical
example arises in descriptive set theory: Suslin’s theorem states that

if a set is analytic and coanalytic, it is Borel.

Many other instances of this pattern exist. For instance in automata theory, if an infinite
tree language is Büchi and its complement is Büchi, it is weak (Rabin’s theorem [15]). This
extends to cost-functions over infinite trees: if a cost-function over infinite trees is both
B-Büchi and S-Büchi, it is quasi-weak ; over infinite words, it is even weak (Kuperberg and
Vanden Boom [10, 11]). For languages of infinite words beyond regular, if a language is ωB
and ωS definable, then it is ω-regular (Skrzypczak [18]). In language theory, a language
which is both Σ2 and Π2 definable is definable in the two variables fragment (Thérien and
Wilke [19]). Also, a language which is both the support and the complement of the support
of a rational series over a field is regular [16]. This list continues on and on.

In many situations such statements arise in fact from a more general result of ‘separation’
(or of ‘interpolation’ in the logical terminology). For instance, Lusin’s theorem is the
separation version of Suslin’s theorem: It states that

for X ⊆ Y with X analytic and Y coanalytic, then X ⊆ Z ⊆ Y for some Borel set Z.

Such separation results imply the characterization version. For instance, Suslin’s result
follows from Lusin’s theorem: take X = Y to be the set which is both analytic and coanalytic.
Then X ⊆ Z ⊆ Y = X for Z Borel; hence X is Borel. This relationship is general. The
results of Rabin, Vanden Boom and Kuperberg, and Skrzypczak, for instance, exist in a
‘separation variant’.

1 Note that when a tropical automaton is unambiguous, it makes no difference whether it is a max-plus
or a min-plus automaton: It computes the same function.

T. Colcombet and S. Lombardy 32:3

Contribution

The natural question that we answer in this work is thus:

Does there exist a separation version of Theorem 1 ?

In this paper, we provide a positive answer to this question. It takes the following form:

I Theorem 2 (separation for tropical tree automata). Given a max-plus automaton Amax and
a min-plus automaton Amin such that2

[[Amax]] 6 [[Amin]] ,

there exists effectively an unambiguous tropical automaton Asep such that

[[Amax]] 6 [[Asep]] 6 [[Amin]] .

Let us stress that the above theorem is established in the context of tropical automata
over trees. Theorem 1 is now a corollary. Indeed, (a) tropical word automata are a particular
case of tree automata over a ranked alphabet made of unary symbols only, plus a constant,
and (b) assuming that f is both accepted by a min-plus and by a max-plus automaton, then
by Theorem 2, there exists a function h accepted by an unambiguous tropical automaton
such that f 6 h 6 f . Thus f = h is accepted by an unambiguous tropical automaton.

Note that, though the result is a generalization, the proof of Theorem 2 is very different
from the original one of Theorem 1.

Let us finally emphasize that particular care has been taken in order to obtain the
result for real weights. Indeed, in the integer case (and as a consequence in the rational
case), simpler techniques can be used that involve keeping in the finitely many states of the
result automaton some explicit differences of partial weights up to a certain bound. Such a
technique (as far as we know) cannot be used in the real case. Our results are effective for
real weights as far as there exist an effective representation of the reals in the additive group
generated by weights of automata Amax and Amin, as well as algorithms that compute the
addition, the subtraction, and the comparison on these representations.

Other Related Work

The class of unambiguous tropical automata form an interesting subclass of tropical automata.
In particular, equivalence is decidable, while the problem for max-plus or min-plus automata
is undecidable [9]. Given a tropical automaton, deciding unambiguity is an open problem.
It has been solved when the input automaton is finitely ambiguous in [8], and when it is
polynomially ambiguous in [7].

The approach used in this paper is completely different from the original result of [14].
Crossing reachable and productive states refers to technics that have been used since
Hashiguchi’s papers on limitedness of tropical automata [5], but the basement of our proof is
the original pumping Lemma 11.

Structure of the Paper

This paper is organized as follows. In Section 2, we recall the standard definitions concerning
trees, automata over trees, and tropical automata. In Section 3, we establish our main
theorem of separation, Theorem 2. Section 4 concludes.

2 In this statement, we assume that ⊥ is incomparable with other elements, and thus [[Amax]] and [[Amin]]
are equal to ⊥ on the same words: they have same support.

STACS 2020

32:4 Unambiguous Separators for Tropical Tree Automata

2 Definitions

We review in this section classical notions concerning terms, automata, and tropical automata.

2.1 Terms and Contexts

A ranked alphabet is a set A, the elements of which are called letters, together with a map
rank from A to N. For n ∈ N, let Terms(n) be the set of terms of arity n over the alphabet
A ∪ {1, . . . , n} in which 1, . . . , n are seen as special letters of rank 0 that are used exactly
once in each term. We call simply terms the terms of arity 0, and the set of terms is simply
denoted Terms. We call context the terms of arity 1, and the set of contexts is simply
denoted Contexts. Note that each letter a of rank n can naturally be seen as a term of arity n
consisting solely of a root labelled a and children 1, . . . , n. The nodes of a term of arity n,
Nodes(t) is the set of positions of the letters in the term. The root node is denoted root. A
node labelled i for i = 1 . . . n is called the ith-hole. The nodes that are not holes are called
inner nodes. Given a node x ∈ Nodes(t), t(x) denotes the letter it carries. Given a letter
of rank n and terms t0, . . . , tn−1, we denote by a(t0, . . . , tn−1) the term that has a as root,
and as children from left to right t0, . . . , tn−1. The height of a term s, denoted height(s), is
the longest length of a branch, for the standard meaning of a branch. The size of a term s,
denoted size(t), is the number of nodes it has. Finally, given c a context and t a term (resp.
t another context), we denote c ◦ t the term (resp. the context) obtained by plugging the
root of t in the hole of c.

2.2 Automata

A non-deterministic (tree) automaton (or simply an automaton) has a finite set of states Q,
an input ranked alphabet A, a set of final states F , and a transition relation ∆ that consists of
tuples of the form (p0, . . . , pn−1, a, q) in which a ∈ A is a letter of rank n, and p0, . . . , pk−1, q

are states from Q.
A run of the automaton over a term t of arity n is a map ρ from Nodes(t) to Q such that

for all inner nodes x ∈ Nodes(t) of children x0, . . . , xn−1, (ρ(x0), . . . , ρ(xn−1), t(x), ρ(x)) ∈ ∆.
We shall write ρ̃(x) for this transition. An accepting run is a run of the automaton such
that ρ(root) ∈ F . Given a term t, t is accepted by the automaton if there exists an accepting
run of the automaton over t. The set of terms that are accepted is the language accepted
by the automaton. We slightly refine the terminology for easier use. Over a term, a run to
state q is a run that assumes state q at the root. Over a context, a run from state p to state q
signifies that the state assumed in the hole is p, and the one assumed at the root is q. An
accepting run from p is a run from p to q for a final state q.

An automaton is unambiguous if for all input terms t, there exists at most one accepting
run over it. Said differently, for all input terms t, either there are no accepting runs over it,
and the term is not accepted, or there is exactly one accepting run, and the term is accepted.

An automaton with weights3 A is a non-deterministic automaton together with a real
weight for all transitions and all final states, i.e. a map weight from ∆] F to R. Given a
run ρ of the automaton, the weight of the run weight(ρ) is the sum of the weights of ρ̃(x) for x

3 This is not a weighted automaton, which is parametrized by a semiring and not a monoid. This definition
serves here just for holding the structure of our tropical automata irrespective of whether these are
min-plus or max-plus.

T. Colcombet and S. Lombardy 32:5

ranging over the inner nodes of t. Given an accepting run ρ of the automaton, the weight of
the accepting run weightacc(ρ) is the sum of the weight of the run and weight(ρ(root)).

Tropical automata refer in this work to one of two forms of automata: min-plus automata
and max-plus automata defined as follows. A min-plus automaton A is an automaton with
weights that computes a function:

[[A]]min : Terms −→ R] {⊥}

t 7−→

{
⊥ if there are no accepting runs of A over t,
min{weightacc(ρ) | ρ accepting run of A over t} otherwise,

in which ⊥ is a symbol that we understand as ‘undefined’ (it appears classically as an
absorbing element for + which is larger than all x ∈ R, i.e., the zero of the tropical semiring).
A max-plus automaton is defined in an identical manner, but the semantics [[A]]max is now
defined using max instead of min. Since it is always clear from the context, we denote simply
by [[A]] either [[A]]min or [[A]]max depending on whether A has been declared as a min-plus or
as a max-plus automaton.

An unambiguous tropical automaton A is a tropical automaton that has an unambiguous
underlying automaton. Note that in this case, [[A]]max = [[A]]min, and hence we call it simply
tropical automaton and do not have to specify whether it is min-plus or max-plus.

3 Separating Tropical Automata

3.1 Statement and Structure of the Proof
The goal of this section is to prove our main theorem:

I Theorem 2 (separation for tropical tree automata). Given a max-plus automaton Amax and
a min-plus automaton Amin such that4

[[Amax]] 6 [[Amin]] ,

there exists effectively an unambiguous tropical automaton Asep such that

[[Amax]] 6 [[Asep]] 6 [[Amin]] .

From now on, we fix the ranked alphabet A, a max-plus automaton Amax and a min-plus
automaton Amin:

Amax = (Qmax, A, Fmax,∆max,weightmax) and Amin = (Qmin, A, Fmin,∆min,weightmin)

such that

[[Amax]] 6 [[Amin]] .

It will be convenient in what follows to consider a single automaton with weights constructed
as the disjoint union of Amax and Amin (of course, it should be neither seen as a min-plus

4 In this statement, we assume that ⊥ is incomparable with other elements, and thus [[Amax]] and [[Amin]]
are equal to ⊥ on the same words: they have same support.

STACS 2020

32:6 Unambiguous Separators for Tropical Tree Automata

automaton nor as a max-plus automaton). Formally, we assume without loss of generality
that Qmax and Qmin are disjoint, and we set this automaton A = (Q,A, F,∆,weight), with

Q = Qmin ∪Qmax, F = Fmax ∪ Fmin, ∆ = ∆max ∪∆min,

and weight(v) =
{

weightmax(v) for v ∈ ∆max] Fmax

weightmin(v) otherwise.

The rest of this section is devoted to the proof of Theorem 2, and is organized as follows. In
Section 3.2, we use some classical automata constructions for accessing in an unambiguous
manner the reachable and productive states (Lemma 3). The combinatorial core of the proof
is contained in Section 3.3 in which we study how the values of the automata may evolve
in a context (Lemma 9), and use it for showing how terms can be substituted for smaller
ones while preserving separability (Corollary 12). We finally provide the construction of the
automaton Asep in Section 3.4, and establish its correctness (Lemma 15). This concludes the
proof of Theorem 2.

3.2 Reachable and Productive States
An ingredient which is necessary in the proof is that the automaton we construct is always
‘aware’ of what are the states that may lead to an accepting run to the root. This section
is concerned with this aspect, and involves only completely standard techniques for tree
automata.

Given a term t, set Reach(t) ⊆ Q to be the set of states p such that there is a run over t
to p. We call such states reachable in t. Given a context c, set Prod(c) ⊆ Q to be the set of
states p such that there is an accepting run from p. We call such states productive in c. We
finally set

Reachable = {Reach(t) | t ∈ Terms} and Productive = {Prod(c) | c ∈ Contexts}.

We describe the construction of an automaton Apro = (Qpro, A, Fpro,∆pro) that computes
the productive states at each node of a term. The states are Qpro = Reachable×Productive.
The final states Fpro = Reachable× {F}, and for all letters a of rank n, the automaton has
a transition of the form

((R0, P0), . . . , (Rn−1, Pn−1), a, (R,P)) ∈ ∆pro

whenever
R = {r ∈ Q | (r0, . . . , rn−1, a, r) ∈ ∆, rj ∈ Rj for all j}, and
Pi = {ri ∈ Q | (r0, . . . , rn−1, a, p) ∈ ∆, rj ∈ Rj for j 6= i, p ∈ P} for all i = 0 . . . n− 1.

In the above definition, the constraint on R induces the computation in a bottom-up
deterministic way of the set of states that are reachable from the term below. The constraint
on Pi computes similarly in a top-down deterministic way the set of states that are productive
in the context above. We do not prove the correctness of this construction further. The
important aspects of this construction are summarized in the following lemma.

I Lemma 3. For all P ∈ Productive and all terms t, there exists one and one only run
of Apro over t to a state of the form (R,P) for some R ∈ Reachable. And furthermore,
R = Reach(t).

For all R ∈ Reachable and all contexts c, there exists one and only one accepting run
of Apro over c from a state of the form (R,P) for some P ∈ Productive. And furthermore,
P = Prod(c).

T. Colcombet and S. Lombardy 32:7

3.3 The Central Pumping Lemma
In this section, we establish the key Corollary 12. The central concept here is to understand
what it does for the value computed by Amax and by Amin to substitute a subtree for another
subtree. And more precisely, we devise sufficient conditions such that, after performing the
substitution, the values of the two automata gets closer one to the other, up to some shifting.
This property is expressed in Lemma 5.

The key definition involved is the one of refinement with shift as defined now.

I Definition 4. Given two terms s, t, some set P ⊆ Q, and some real number x, then t

refines s for P with shift x if
Reach(s) = Reach(t),
for all runs ρ of Amax over s to a state p ∈ P , there is a run ρ′ over t to state p such that

weight(ρ) 6 weight(ρ′) + x

and
for all runs τ of Amin over s to a state q ∈ P , there is a run τ ′ over t to state q such that

weight(τ ′) + x 6 weight(τ)

The justification of this definition is given by the following lemma. It shows how
substituting s for t in a context when t refines s with some shift is done while ‘staying in the
separation interval’.

I Lemma 5. Let c be a context, and s, t be terms such that t refines s for Prod(c) with
shift x, then

[[Amax]](c ◦ s) 6 [[Amax]](c ◦ t) + x 6 [[Amin]](c ◦ t) + x 6 [[Amin]](c ◦ s) .

Proof. Let ρ be an accepting run of Amax over c ◦ s. It can be decomposed as an accepting
run ρc over c from some state p and a run ρs over s to state p. The run ρc is a witness
that p ∈ Prod(c) ∩Qmax. Hence, since t refines s for Prod(c) with shift x, there exists a run
ρt over t to state p such that weight(ρs) 6 weight(ρt) + x. By gluing ρt with ρc, we obtain a
new accepting run ρ′ of Amax over c ◦ t, furthermore,

weightacc(ρ) = weightacc(ρc) + weight(ρs)
6 weightacc(ρc) + weight(ρt) + x = weightacc(ρ′) + x .

Since for all ρ there exists such a ρ′, we obtain

[[Amax]](c ◦ s) 6 [[Amax]](c ◦ t) + x .

The middle inequality simply comes from the key assumption [[Amax]] 6 [[Amin]] in
Theorem 2.

The third inequality is established as the first one (it is symmetric). J

The two following facts are straightforward to verify.

I Fact 6 (reflexivity of refinement with shift). For all terms s, and all P ⊆ Q, s refines s
for P with shift 0.

I Fact 7 (transitivity of refinement with shift). If t refines s for P with shift x, and u refines t
for P with shift y, then u refines s for P with shift x+ y.

STACS 2020

32:8 Unambiguous Separators for Tropical Tree Automata

The next lemma is also purely mechanical.

I Lemma 8 (refinement with shift is a congruence). Let ((P0, R0), . . . , (Pn−1, Rn−1), a, (P,R))
be in ∆pro, and for all i = 0 . . . n− 1, let ti, si be terms such that

Reach(ti) = Ri, and
ti refines si for Pi with shift xi,

then a(t0, . . . , tn−1) refines a(s0, . . . , sn−1) for P with shift x0 + · · ·+ xn−1.

Proof. Let ρ be a run of Amax over a(t0, . . . , tn−1) to state p ∈ P . The run ρ can be
decomposed into a transition (p0, . . . , pn−1, a, p) of weight x at the root, and a run ρi of Amax
over ti to pi for all i = 0 . . . n − 1. For all i = 0 . . . n − 1, pi ∈ Reach(ti) = Ri. Since
furthermore p ∈ P and ((P0, R0), . . . , (Pn−1, Rn−1), a, (P,R)) ∈ ∆pro, we obtain that pi ∈ Pi

for all i = 0 . . . n− 1 (second item of the definition of ∆pro). Thus, since ti refines si for Pi

with shift xi, there exists a run ρ′i of Amax over ti to pi such that weight(ρi) 6 weight(ρ′i)+xi.
We can combine all these runs ρ′i together with the transition (p0, . . . , pn−1, a, p) and obtain
a new run ρ′ of Amax over a(t0, . . . , tn−1) to p such that

weight(ρ) = weight(ρ0) + · · ·+ weight(ρn−1) + x

6 weight(ρ′0) + x0 + · · ·+ weight(ρ′n−1) + xn−1 + x

= weight(ρ′) + x0 + · · ·+ xn−1 .

This shows half of the fact that a(t0, . . . , tn−1) refines a(s0, . . . , sn−1) for P with shift x0 +
· · ·+ xn−1. The other half is symmetric. J

We aim now at proving Corollary 12 which states that all sufficiently large term is ‘shift
refined’ by another one of smaller size. Beforehand, we need a pumping argument to establish:

I Lemma 9. Let P ∈ Productive, R ∈ Reachable and m be a context, then there exists a
real number x such that

for every p in Qmax ∩ P ∩R, for all runs ρ of Amax over m from p to p, weight(ρ) 6 x,
and
for every q in Qmin ∩ P ∩R, for all runs τ of Amin over m from q to q, x 6 weight(τ).

Proof. Let t be a term such that Reach(t) = R, and c be a context such that Prod(c) = P .

B Claim 10. We claim first that for all runs ρ of Amax over m from p to p with p ∈ P ∩R
and all runs τ of Amin over m from q to q with q ∈ P ∩R, weight(ρ) 6 weight(τ).
Otherwise, there would exist some runs ρ, τ as above such that weight(ρ) > weight(τ). I.e.

weight(τ)− weight(ρ) < 0 . (?)

Consider now for all n > 0 the term:

un = c ◦
n-times︷ ︸︸ ︷

m ◦ · · · ◦ m ◦ t .

Let ρ′ be some accepting run over c from p (this is possible since p ∈ P = Prod(c)). Let τ ′
be some accepting run over c from q (this is possible since q ∈ P = Prod(c)). Let ρ′′ be some
run over t to p (this is possible since p ∈ R = Reach(t)). Let τ ′′ be some run over t to q (this
is possible since q ∈ R = Reach(t)).

T. Colcombet and S. Lombardy 32:9

By concatenating ρ′, n-times ρ, and ρ′′, we obtain an accepting run ρn over un of
weight weightacc(ρn) = weightacc(ρ′) + nweight(ρ) + weight(ρ′′). Similarly, by concatenat-
ing τ ′, n-times τ , and τ ′′, we obtain an accepting run τn over un of weight weightacc(τn) =
weightacc(τ ′) + nweight(τ) + weight(τ ′′).

Furthermore, since [[Amax]](un) 6 [[Amin]](un), weightacc(ρn) 6 weightacc(τn). We obtain

0 6 weightacc(τn)− weightacc(ρn)
= weightacc(τ ′) + nweight(τ) + weight(τ ′′)− weightacc(ρ′)− nweight(ρ)− weight(ρ′′)
= weightacc(τ ′) + weight(τ ′′)− weightacc(ρ′)− weight(ρ′′) + n(weight(τ)− weight(ρ)).

However, using (?), this last quantity tends to −∞ when n tends to ∞. It contradicts its
non-negativeness. The claim is established.

We can now establish the lemma. Let Y be the set of weights weight(ρ) for ρ ranging
over the runs of Amax over m from p to p with p ∈ P ∩ R. Similarly, let Z be the set of
weights weight(τ) for τ ranging over the runs of Amin over m from q to q with q ∈ P ∩ R.
The above claim states that for all y ∈ Y and all z ∈ Z, y 6 z. This implies the existence
of some real number x such that for all y ∈ Y , y 6 x, and for all z ∈ Z, x 6 z (note that
proving it requires to treat the case of Y and/or Z being empty, and thus requires a case
distinction). This is exactly the statement of the lemma. J

Notice that a fixed context m admits only a finite number of runs; hence, the weights of
paths involved in Lemma 9 can be enumerated and the value x be effectively computed.

I Lemma 11. There exists a computable k ∈ N such that for all P0 ∈ Reachable and all
terms s of height more than k, there exists effectively a term t such that t refines s for P0
with some shift and size(t) < size(s).

Proof. Let k be (4|Q|)|Q|. Let us fix a context d such that Prod(d) = P0.
Consider now a term s of height larger than k and some P0 ∈ Reachable. We aim at

removing some piece of this term while achieving the conclusions of the lemma.
For all states p ∈ P0, set ρp to be an optimal run of A over s to p, i.e.,
if p ∈ Qmax, then for all runs τ of Amax over s to p, weight(τ) 6 weight(ρp), and
if p ∈ Qmin, then for all runs τ of Amin over s to p, weight(ρp) 6 weight(τ).

Since the longest branch of s has length greater than 2|Q|2|Q||Q||Q|, we can apply the
pigeonhole principle to the various ways to split this branch in two, and get a factorisation
of s into

s = c ◦m ◦ s′ ,

in which c is a context, m is a non-empty context, and s′ is a term such that
Reach(s′) = Reach(m ◦ s′); let R be this set;
Prod(d ◦ c) = Prod(d ◦ c ◦ m); let P be this set;
for all p ∈ P0, there exists a state qp ∈ Q such that ρp is decomposed into a run τp over s′
to qp, a run τ ′p over m from qp to qp, and a run τ ′′p over c from qp to p.

Let us define now our term t as:

t = c ◦ s′ .

Since s = c ◦ m ◦ s′, our new term t is nothing but s in which the non-empty part
corresponding to m has been removed. Hence size(t) < size(s).

STACS 2020

32:10 Unambiguous Separators for Tropical Tree Automata

We shall prove now that t refines s for P0 with shift x where x is obtained by applying
Lemma 9 to P,R and m.

Let ρ be a run of Amax over s to state p for some p ∈ P0. We know that the run ρp as
defined above is such that weight(ρ) 6 weight(ρp). Finally, let ρ′ be the run over t = c ◦ s′
to p obtained by gluing τp and τ ′′p together. We have:

weight(ρ) 6 weight(ρp) (by optimality of ρp)
6 weight(τp) + weight(τ ′p) + weight(τ ′′p) (decomposion of ρp)
6 weight(τp) + x+ weight(τ ′′p) (by choice of x and Lemma 9)
6 weight(ρ′) + x . (definition of ρ′)

Hence, we have proved the first half of the definition of ‘t refines s for P0 with shift x’.
The second half is symmetric. Overall, we conclude that t refines s for P0 with shift x. J

Using iteratively the above Lemma 11, as long as the height of the term is larger than k,
together with Fact 6 and 7, we obtain the following corollary.

I Corollary 12. There exists a computable k ∈ N such that for all P ∈ Reachable and all
terms s there exists effectively a term t of height at most k which refines s for P with some
shift.

3.4 The Construction
We are now ready to construct our separating automaton Asep. It is defined as follows:

Asep = (Qsep, A, Fsep,∆sep,weightsep) ,

in which the set of states is

Qsep = {(R,P, t) | R ∈ Reachable, P ∈ Productive,
t ∈ Terms, Reach(t) = R, height(t) 6 k} ,

(where k is the constant from Corollary 12), the final states, together with their weight, are

Fsep = {(R,P, t) ∈ Qsep | P = F , R ∩ F 6= ∅} with weightsep(R,F , t) = [[Amax]](t) ,

and the transition relation and the weights are defined as follows. For a letter a of rank n,
there is a transition of the form

δ = ((R0, P0, t0), . . . , (Rn−1, Pn−1, tn−1), a, (R,P, t)) ∈ ∆sep with weightsep(δ) = x ,

whenever
((R0, P0), . . . , (Rn−1, Pn−1), a, (R,P)) is a transition of ∆pro.
(t, x) = srP (a(t0, . . . , tn−1)), where sr is a map of the following form:

srP : Terms −→ Terms× R
s 7−→ (t, x) such that t refines s for P with shift x.

(Such a map exists thanks to Corollary 12.)

T. Colcombet and S. Lombardy 32:11

Notice first that R is a redondant information in the state (R,P, t), since R = Reach(t).
The set P in the state ensures that the weights which are considered are really contributing
to the run. If the constraint height(t) 6 k was removed from the definition of Qsep and
srP was defined as srP (s) = (s, 0), the automaton Asep would be an infinite unambiguous
automaton equivalent to Amax. Thanks to Lemma 11, one can bound the height of t in order
to obtain an automaton that realizes a function which is larger than [[Amax]] but smaller
than [[Amin]]. The automaton is finite: the number of states is bounded by 2|Q|ack , where
a is the size of the alphabet, c is the maximal rank of letters, and k is the constant of
Lemma 11, which is smaller than (4|Q|)|Q|. This bound is obviously crude. In a practical
implementation, an improvement can easily be made. It is not necessary to use all terms t of
height up to k in Qsep: it is sufficient to keep minimal ones for the shift refine relation for
each P ∈ Productive.

Let us first note:

I Lemma 13. For all P ∈ Productive and all terms s, there exists exactly one run of Asep
over s to a state of the form (R,P, t).

Proof. Indeed, we have seen in Lemma 3 thatAsep is unambiguous on its first two components.
Then the third component is computed in a bottom-up deterministic manner. Furthermore,
it is easy to show by induction that on every input term there is an accepting run. J

I Lemma 14. Let ρ be a run of Asep over s to (R,P, t), then t refines s for P with
shift weightsep(ρ).

Proof. The proof is by induction on height(s). Assume s of the form a(s0, . . . , sn−1). Let ρ
be the run of Asep over s to (R,P, t), let δ = ((R0, P0, t0), . . . , (R1, P1, t1), a, (R,P, t)) be the
transition assumed by ρ at the root. Let ρi be the run ρ restricted to the subterm si. By
induction hypothesis, ti refines si for Pi with shift weightsep(ρi). By Fact 7, a(t0, . . . , tn−1)
refines s for P with shift weightsep(ρ0) + · · ·+ weightsep(ρn−1). By definition of weightsep,
t refines a(t0, . . . , tn−1) with shift weightsep(δ). By Fact 7, we obtain that t refines s with
shift weightsep(ρ0) + · · ·+ weightsep(ρn−1) + weightsep(δ) = weightsep(ρ). J

We can now provide the concluding lemma of the proof of Theorem 2.

I Lemma 15. [[Amax]] 6 [[Asep]] 6 [[Amin]] .

Proof. Let s be a term. By Lemma 13, there exists one and exactly one run ρsep of Asep over s
to a state of the form (R,F , t). By Lemma 14, t refines s for F with shift weightsep(ρsep).
Note that in this case R = Reach(s) = Reach(t).

Two cases can occur. If (R,F , t) is not final. In this case, there is no accepting run
of Asep over s, and [[Asep]](s) = ⊥. However, (R,F , t) 6∈ Fsep means Reach(t) ∩ F = ∅,
hence Reach(s) ∩ F = ∅. Thus [[Amax]](s) = [[Amin]](s) = ⊥. We indeed have [[Amax]](s) 6
[[Asep]](s) 6 [[Amin]](s).

Otherwise, (R,F , t) is final, i.e. R∩F 6= ∅. Assume for instance that there is some R∩F ∩
Qmax 6= ∅ (it would be the same for Qmin). This means that [[Amax]](s) 6= ⊥. Since [[Amin]] >
[[Amax]], this implies also [[Amin]](s) 6= ⊥.

Let now ρ be an accepting run of Amax over s of maximal value, and let p be its root
state. Since t refines s for F with shift weightsep(ρsep), and p ∈ F , there exists a run ρ′

STACS 2020

32:12 Unambiguous Separators for Tropical Tree Automata

over t to state p such that weight(ρ) 6 weight(ρ′) + weightsep(ρsep). Hence,

[[Amax]](s) = weightacc(ρ)
= weight(ρ) + weightmax(p)
6 weight(ρ′) + weightmax(p) + weight(ρsep)
6 [[Amax]](t) + weight(ρsep)
= [[Asep]](s)

In a symmetrical way, we obtain:

[[Asep]](s) = [[Amax]](t) + weight(ρsep)
6 [[Amin]](t) + weight(ρsep) (assumption [[Amax]] 6 [[Amin]])
6 [[Amin]](s) . (as for the other inequality)

Hence, we have established the expected [[Amax]](s) 6 [[Asep]](s) 6 [[Amin]](s). J

4 Conclusion

We have established a separation result for tropical automata over trees.
All the results of this paper directly applies to automata on words. The proofs can be

restated in this frameworks and are slightly easier, but their complexity actually comes from
the fact that we want to encompass automata with (computable) real weights.

Our result is under the assumption that [[Amax]] 6 [[Amin]]. A natural variant is to
invert the inequality and ask whether separation is possible when [[Amin]] 6 [[Amax]]. Some
separation results exist in both variants (like interpolation results in logic), while some
do not (separation of Büchi automata, or Lusin’s theorem). For tropical automata, the
assumption [[Amin]] 6 [[Amax]] would be more complicated than the one in our theorem: it
can be witnessed for instance by the fact that it is not decidable anymore [9].

Another interesting question is whether similar results hold for weights other than reals.
For instance here, our proof requires for the weights of our automata to be equipped with a
monoid structure, that it is commutative (otherwise weighted tree automata are not well
defined), a total order (for the hypotheses of Theorem 2 to be meaningful), that the product
be compatible with the order, and archimedianity (for the pumping argument in Lemma 9
to hold). The usefulness of each of these assumption could be studied. What if the monoid
is not commutative (over words)? What if the order is not total (and be, for instance a
lattice)? What if the operation is not archimedian (and what does it mean in these more
general cases)? And in all these situations, do we capture interesting forms of automata?

More generally, these results of separation are fascinating, and it would be interesting
to understand at high level what kind of abstract arguments may explain them, or at least
some of them, uniformly.

References
1 Thomas Colcombet and Laure Daviaud. Approximate comparison of functions com-

puted by distance automata. Theory Comput. Syst., 58(4):579–613, 2016. doi:10.1007/
s00224-015-9643-3.

2 Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Size-change abstraction and max-
plus automata. In Mathematical Foundations of Computer Science 2014 - 39th International
Symposium, MFCS 2014, Budapest, Hungary, August 25-29, 2014. Proceedings, Part I, pages
208–219, 2014. doi:10.1007/978-3-662-44522-8_18.

https://doi.org/10.1007/s00224-015-9643-3
https://doi.org/10.1007/s00224-015-9643-3
https://doi.org/10.1007/978-3-662-44522-8_18

T. Colcombet and S. Lombardy 32:13

3 Thomas Colcombet, Laure Daviaud, and Florian Zuleger. Automata and program ana-
lysis. In Fundamentals of Computation Theory - 21st International Symposium, FCT
2017, Bordeaux, France, September 11-13, 2017, Proceedings, pages 3–10, 2017. doi:
10.1007/978-3-662-55751-8_1.

4 Stéphane Gaubert and Jean Mairesse. Idempotency. In Jeremy Gunawardena, editor, Idem-
potency, volume 11 of Publications of the Newton Institute, chapter Task resource models and
(max,+) automata, pages 133–144. Cambridge University Press, 1998.

5 Kosaburo Hashiguchi. Limitedness theorem on finite automata with distance functions. J.
Comput. Syst. Sci., 24(2):233–244, 1982. doi:10.1016/0022-0000(82)90051-4.

6 Kosaburo Hashiguchi. Algorithms for determining relative star height and star height. Inf.
Comput., 78(2):124–169, 1988. doi:10.1016/0890-5401(88)90033-8.

7 Daniel Kirsten and Sylvain Lombardy. Deciding unambiguity and sequentiality of polynomially
ambiguous min-plus automata. In 26th International Symposium on Theoretical Aspects of
Computer Science, STACS 2009, pages 589–600, 2009. doi:10.4230/LIPIcs.STACS.2009.
1850.

8 Ines Klimann, Sylvain Lombardy, Jean Mairesse, and Christophe Prieur. Deciding unambiguity
and sequentiality from a finitely ambiguous max-plus automaton. Theor. Comput. Sci.,
327(3):349–373, 2004. doi:10.1016/j.tcs.2004.02.049.

9 Daniel Krob. The equality problem for rational series with multiplicities in the tropical
semiring is undecidable. IJAC, 4(3):405–426, 1994. doi:10.1142/S0218196794000063.

10 Denis Kuperberg and Michael Vanden Boom. Quasi-weak cost automata: A new variant of
weakness. In IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2011, pages 66–77, 2011. doi:10.4230/LIPIcs.FSTTCS.2011.66.

11 Denis Kuperberg and Michael Vanden Boom. On the expressive power of cost logics over
infinite words. In Automata, Languages, and Programming - 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part II, pages 287–298, 2012.
doi:10.1007/978-3-642-31585-5_28.

12 Hing Leung. Limitedness theorem on finite automata with distance functions: An algebraic
proof. Theor. Comput. Sci., 81(1):137–145, 1991. doi:10.1016/0304-3975(91)90321-R.

13 Sylvain Lombardy and Jean Mairesse. Series which are both max-plus and min-plus rational
are unambiguous. ITA, 40(1):1–14, 2006. doi:10.1051/ita:2005042.

14 Sylvain Lombardy and Jean Mairesse. Series which are both max-plus and min-plus rational
are unambiguous. arXiv e-prints, page arXiv:0709.3257, September 2007. arXiv:0709.3257.

15 Michael O. Rabin. Weakly definable relations and special automata. Mathematical Logic and
Foundations of Set Theory, pages 1–23, 1970.

16 Antonio Restivo and Christophe Reutenauer. On cancellation properties of languages which
are support of rational series. Journal of Computer System Sciences, 29:153–159, 1984.

17 Marcel Paul Schützenberger. On the definition of a family of automata. Information and
Control, 4(2-3):245–270, 1961. doi:10.1016/S0019-9958(61)80020-X.

18 Michał Skrzypczak. Separation property for wb- and ws-regular languages. Logical Methods
in Computer Science, 10(1), 2014. doi:10.2168/LMCS-10(1:8)2014.

19 Denis Thérien and Thomas Wilke. Nesting until and since in linear temporal logic. Theory
Comput. Syst., 37(1):111–131, 2004. doi:10.1007/s00224-003-1109-3.

STACS 2020

https://doi.org/10.1007/978-3-662-55751-8_1
https://doi.org/10.1007/978-3-662-55751-8_1
https://doi.org/10.1016/0022-0000(82)90051-4
https://doi.org/10.1016/0890-5401(88)90033-8
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.4230/LIPIcs.STACS.2009.1850
https://doi.org/10.1016/j.tcs.2004.02.049
https://doi.org/10.1142/S0218196794000063
https://doi.org/10.4230/LIPIcs.FSTTCS.2011.66
https://doi.org/10.1007/978-3-642-31585-5_28
https://doi.org/10.1016/0304-3975(91)90321-R
https://doi.org/10.1051/ita:2005042
http://arxiv.org/abs/0709.3257
https://doi.org/10.1016/S0019-9958(61)80020-X
https://doi.org/10.2168/LMCS-10(1:8)2014
https://doi.org/10.1007/s00224-003-1109-3

	Introduction
	Definitions
	Terms and Contexts
	Automata

	Separating *Tropical Automata
	Statement and Structure of the Proof
	Reachable and Productive States
	The Central Pumping Lemma
	The Construction

	Conclusion

