

Flexibility enhancement to ensure European islands decarbonisation

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 824410

02/07/2020

Giulia Grazioli, Sandrine Selosse, Nadia Maïzi

Summary

New challenges for the electric grid

Electricity production limiting GHG emissions

BUT

Intermittent energy sources

Ensure the balance between demand and supply at all time

Grid flexibility

Ability of a power system to **reliably and cost-effectively** manage the **variability and uncertainty** of **demand and supply** across **all relevant timescales** Flexibility needs for the electric grid

Additional limits:

- Limited energy production possibilities
- Space constraints
- Limited interconnection with mainland

have to **rely more on flexibility options** to ensure the secure and cost-efficient operation of their energy system

The GIFT project (H2020)

Decarbonise the energy mix of the European islands

-50% fossil fuels use+100% renewable energy penetration

Development of innovative solutions for the integration of large amounts of renewable energy

Focus on Procida

Small island in the Gulf of Naples

- European island with the highest population density ٠
- Connected to a close island (Ischia) by a 30 kV submarine cable ۲
- *Limited energy production possibilities: energy supply mostly provided by import (99%)* ۲
- Popular turistic location during summer ۲
- Important share of electric bikes on the island ٠

Simplified model structure

At the reference year (2018):

Supply side

02/07/2020

Need to ensure the security of

Flexibility assessment in TIMES

VREs share increases (variability of production increases)

Possible modelling approach to integrate flexibility needs:

- Integration of flexibility parameters and constraints to ensure secure grid operations as variable renewables share increases
 - Definition of capacity margins and inertia needs?
- Possible use of refined time-slices to study phenomena at different timescales
- Use of technologies that increase system flexibility

Supply

Grid operation

At all timescales

Technologies to increase flexibility

ADDITIONAL SOLUTIONS

GIFT PROJECT SOLUTIONS

Scenarios

Reference timeline:

Possible scenarios:

CASE	Flexibility	Renewables	Efficiency	Emissions	Imports	
FLEX	With flexibility requirements					Energy system when flexibility constraints are set
TARGETS	With flexibility requirements	Min renewable share	Energy efficiency improvements	Limits on emissions		To achieve national and European goals
IMPLIM	With flexibility requirements	Min renewable share	Energy efficiency improvements	Limits on emissions	Limits on imports	To study the possible energy independence of the island

Conclusions and prospective

PRELIMINARY CONCLUSIONS

• The **integration of flexibility solutions** is essential to ensure the long-term decarbonisation of the island

CURRENT MODEL LIMITATIONS

- The currently available **data** is not detailed enough to properly define the electricity demand in the island
- Need to better define the **flexibility requirements** in the model

PROSPECTIVE

- Full integration of flexibility in the long-term assessment of the island
- Estimation of the contribution of flexible solutions to the island decarbonisation

Thank you for the attention

Annex

Regulatory framework

-40% greenhouse gas emissions (from 1990 levels)
32% share for renewable energy
+32.5% improvement in energy efficiency

2030

-33% greenhouse gas emissions (from 2005 levels)
+30% renewable energy in end-use consumptions (+22% in transportation)

By promoting:

- self-consumption in residential and industrial sector
- electrification of energy consumptions (mainly in residential and transportation sector)
- energy efficiency in all sectors
- renewable energy deployment

Energy efficiency improvement in public and residential sector

Sustainable mobility plans

(Currently no objectives for 2030)

Forecast of electricity production from renewable energy

Source: PNIEC – Italy (2020)

Storage technologies

Storage benefits for renewable energy integration

Туре	Electricity storage technologies		Bulk energy	Ancillary	Transmission	Distribution	Customer energy	Off-arid	Transport
Electro- chemical	Electro-chemical capacitor		services	services	services	services	management services	Un-gnu	sector
	Flow battery Vanadium redox flow battery Lead-acid battery		Electric energy time shift (arbitrage)	Regulation	Transmission upgrade deferral	Distribution upgrade deferral	Power quality	Solar home systems	Electric 2/3 wheelers, buses, cars and commercial vehicles
	Metal air battery Sodium-ion battery		Electric supply capacity	Spinning, non- spinning and supplemental	Transmission congestion relief	Voltage support	Power rellability	Mini-grids: System stability	
Electro-mechanical	Compressed air storage (CAES)			reserves	···· j ·····			services	
Chemical	Hydrogen storage Liquid air energy storage			Voltage support			Retail electric energy time shift	Mini-grids: Facilitating high share of VRE	
Pumped hydro storage	Closed-loop pumped hydroelectricity storage Open-loop pumped hydroelectricity storage			Black start			Demand charge management		
Thermal storage	Thermal storage Concrete thermal storage Heat thermal storage Ice thermal storage Molten salt thermal storage		Boxes in red: Energy storage services directly supporting the integration of variable renewable energy						

Source: based on US DOE, 2017

Source: IRENA (2017)

Choice of the most suitable storage

For stationary applications

Figure 13: Suitability of storage technologies for different applications

Grid services Behind the meter Off grid Levelling Increased Power Quality Frequency Containment requency Restoration Energy Shifting / Load L. L. L. Village Electrification Enhanced Frequency Community Storage residential Self-consumption L. L. Nano Off-Grid L. Peak Shaving Grid Response VP (small I Island (La La Time. ese Rese (C) LT. 1 **Pumped Hydro** 1 1 1 1 1 1 1 CAES di la 1 1 di. di la 1 1 1 Flywheel Flooded LA 1 đ. VRLA 1 4 Li-ion (NMC) 1 1 Li-ion (NCA) 1 1 1 1 1 1 Li-ion (LFP) 1 1 Li-ion (LTO) 1 1 1 1 1 NaNiCl 1 1 di la NaS 1 1 1 1 VRFB 1 4 ZBFB

Source: International Renewable Energy Agency.

Note: CAES = compressed air energy storage; LA = lead-acid; VRLA = valve-regulated lead-acid; NMC = nickel manganese cobalt oxide; NCA = nickel cobalt aluminium oxide; LFP = lithium iron phosphate; LTO = lithium titanate; NaNiCI = sodium nickel chloride; NaS = sodium sulphur; VRFB = vanadium redox flow battery; ZBFB = zinc bromine flow battery. Figure 11: Positioning of diverse energy storage technologies per their power rating and discharge times at rated power

Source: US DOE/EPRI, 2015.

Note: Zn-Cl = zinc chlorine flow battery; Zn-Air = zinc air flow battery; ZBFB = zinc bromine flow battery; VRFB = vanadium redox flow battery; PSB= polysulfide bromine flow battery; NaS = sodium sulphur; NaNiCl = sodium nickel chloride; NiCd = nickel cadmium; NiMH = nickel-metal hydride; SMES = superconducting magnetic energy storage.

Model time structure

Flexibility enhancement to ensure European islands decarbonisation