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Coupled Tensor Decomposition for
Hyperspectral and Multispectral Image

Fusion with Inter-image Variability
Ricardo A. Borsoi, Clémence Prévost, Konstantin Usevich, David Brie, José C. M. Bermudez, Cédric Richard

Abstract—Coupled tensor approximation has recently emerged
as a promising approach for the fusion of hyperspectral and
multispectral images, reconciling state of the art performance
with strong theoretical guarantees. However, tensor-based
approaches previously proposed assume that the different
observed images are acquired under exactly the same conditions.
A recent work proposed to accommodate inter-image spectral
variability in the image fusion problem using a matrix
factorization-based formulation, but did not account for
spatially-localized variations. Moreover, it lacks theoretical
guarantees and has a high associated computational complexity.
In this paper, we consider the image fusion problem while
accounting for both spatially and spectrally localized changes in
an additive model. We first study how the general identifiability
of the model is impacted by the presence of such changes. Then,
assuming that the high-resolution image and the variation factors
admit a Tucker decomposition, two new algorithms are proposed
– one purely algebraic, and another based on an optimization
procedure. Theoretical guarantees for the exact recovery of
the high-resolution image are provided for both algorithms.
Experimental results show that the proposed method outperforms
state-of-the-art methods in the presence of spectral and spatial
variations between the images, at a smaller computational cost.

Index Terms—Hyperspectral data, multispectral data,
inter-image variability, super-resolution, image fusion, tensor
decomposition.

I. INTRODUCTION

Hyperspectral (HS) cameras are able to acquire images
with very high spectral resolution. However, the fundamental
compromise between signal-to-noise ratio, spatial resolution,
and spectral resolution means that their spatial resolution is
usually low [1]. Multispectral (MS) devices, on the other
hand, are able to achieve a much higher spatial resolution
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since they contain only a small number of spectral bands. An
approach that attempts to circumvent the physical limitations
of imaging sensors consists in combining HS and MS images
(MSI) of the same scene to obtain images with high spatial and
spectral resolution, in a multimodal image fusion problem [2],
commonly referred to as hyperspectral super resolution.

Different algorithms have been proposed to solve this
problem. Early approaches were based on component
substitution or on multiresolution analysis, which attempt
to extract high-frequency spatial details from the MSI and
combine them with the HS image (HSI) [3], [4]. Subspace-
based formulations have later received a significant amount
of interest as they explore the natural representation of the
pixels in an HSI as the linear combination of a small number
of spectral signatures [2], [5], [6]. Different algorithms have
been proposed following this approach using, e.g., Bayesian
formulations [7] or sparse representations on learned
dictionaries [8], and different kinds of matrix factorization
formulations employing sparse and spatial regularizations [9],
[10], or estimating both the basis vectors and their coefficients
blindly/unsupervisedly from the images [11].

The natural representation of HSIs and MSIs as 3-
dimensional tensors has been successfully exploited for
hyperspectral unmixing, denoising [12]–[15] and super-
resolution. Superior super-resolution performance and
exact recovery guarantees have been obtained using this
formulation [16], [17].

The image fusion problem was formulated in [16] as a
coupled tensor approximation problem. Assuming that the
high resolution (HR) image admits a low-rank canonical
polyadic decomposition (CPD), the problem was solved
using an alternating optimization strategy. The recovery of the
correct HR image (HRI) was shown to be guaranteed provided
that the CPD of the MSI is identifiable, and state of the
art performance was achieved. A recent work extended this
approach by assuming the high resolution images to follow
a block term decomposition (BTD), which shows a closer
connection to the physical mixing model when compared to
the CPD [18]. A simpler approach was later proposed in [19]
by requiring only the computation of one CPD of the MSI
and a singular value decomposition (SVD) of the HSI.

A Tucker decomposition-based approach was later
considered in [17], [20]. Closed form SVD-based algorithms
were proposed for the image fusion problem, achieving results
comparable to [16] at a very small computational complexity;
exact recovery guarantees were also provided. A coupled
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Tucker approximation was also considered in [21] using an
alternating optimization approach and employing a sparsity
regularization on the elements of the core tensor. This work
was later extended by incorporating the piecewise smoothness
of the reconstructed image tensor by using a Total Variation
regularization along each of its modes [22]. Another approach
considered the CPD of non-local similar patch tensors to
explore the non-local redundancy of the image [23]. A
different non-local approach was also proposed in [24] by
using a recent definition of the nuclear norm of order-3 tensors.

Most existing algorithms, however, share a common limita-
tion: they assume that the HSI and the MSI are acquired under
the same conditions. However, despite the short revisit cycles
provided by the increasing number of optical satellites orbiting
the Earth (e.g. Sentinel, Orbview, Landsat and Quickbird mis-
sions), the number of platforms carrying both HS and MS sen-
sors is still considerably limited [25], [26]. This makes com-
bining HS and MS observations acquired on board of different
satellites of great interest to obtain HRIs [27], [28]. Images
acquired at different time instants can be impacted by, e.g.,
illumination, atmospheric or seasonal changes. This may result
in significant variations between the HSI and the MSI [29],
negatively impacting traditional image fusion algorithms.

Recently, a method was proposed to combine HSIs
and MSIs accounting for seasonal (inter-image) spectral
variability [30]. Using a low-rank matrix formulation, the
set of spectral basis vectors of the HRIs underlying the
HS and the MS observations are allowed to be different
from each other, with variations introduced by a set of
multiplicative scaling factors [31]. This algorithm led to
significant performance improvements when the HSI and
MSI are subject to spatially uniform seasonal or acquisition
variations. However, it does not account for spatially localized
changes commonly seen in practical scenes [29]. Moreover,
the algorithm in [30] presented high computation times and
does not offer any theoretical guarantees.

In this paper, we propose a tensor-based image fusion
formulation that accounts for localized spatial and spectral
changes between the HSI and MSI. A general observation
model is considered, in which the HRI underlying the MSI
admits an additive variability term to account for changes
between the scenes. Studying the general identifiability of
this model, we show that this variability term can only be
identified in general up to its smooth structure (which is
defined according to the degradation operators). To introduce
additional a priori information and mitigate the ambiguity
associated with the proposed model, both the HRI and the
additive perturbations are assumed to have low multilinear
rank (i.e., to admit a Tucker decomposition). Two algorithms
are then proposed, one totally algebraic and another based
on an optimization procedure. Theoretical guarantees for
the exact recovery of the HRI are provided for both.
Simulation results show that the proposed optimization-based
algorithm yields superior performance at a considerably lower
computational cost when compared to [30], especially when
spatially localized variability is considered.

II. TENSORS – BACKGROUND

A. Notation and definitions
An order-3 tensor T P RN1ˆN2ˆN3 is an N1ˆN2ˆN3 array

whose elements are indexed by rT sn1,n2,n3
. Each dimension

of an order-3 tensor is called a mode. A mode-k fiber of tensor
T is the one-dimensional subset of T which is obtained by
fixing all but one of the three modes – the k-th dimension.
Similarly, a slab or slice of a tensor T is a matrix whose
elements are the two-dimensional subset of T obtained by
fixing all but two of its modes. Operator vecp¨q represents
the standard matrix column-major vectorization, or tensor
vectorization. The (left) pseudo-inverse of matrix X is denoted
by X:. We denote scalars by lowercase (x) or uppercase
(X) plain font, vectors and matrices by lowercase (x) and
uppercase (X) bold font, respectively, and order-3 tensors by
calligraphic plain font (T ) or using the blackboard Greek al-
phabet (�). In the following, we review some useful operations
of multilinear (tensor) algebra that will be used in the rest of
the manuscript (see, e.g., [32], [33] for more details).

Definition 1. The mode-k product between a tensor T
and a matrix B produces a tensor U that is evaluated
such that each mode-k fiber of T is multiplied by B. For
instance, the mode-2 product between T P RN1ˆN2ˆN3

and B P RM2ˆN2 produces a tensor U P RN1ˆM2ˆN3 ,
denoted by U “ T ˆ2 B. Its elements are accessed as
rUsn1,m2,n3

“
řN2

i“1rT sn1,i,n3
rBsm2,i , m2 “ 1, . . . ,M2.

Note that the mode-k product has the following properties:

T ˆi Aˆj B “ T ˆj B ˆi A , i ‰ j , (1)

T ˆk Aˆk B “ T ˆk
`

AB
˘

. (2)

Definition 2. The full multilinear product is denoted by
0

T ;B1,B2,B3

8

, and consists of a series of successive
mode-k products, for k P t1, 2, 3u, between a tensor T and
matrices B1, B2 and B3, respectively, and is expressed as
T ˆ1 B1 ˆ2 B2 ˆ3 B3.

Definition 3. The mode-k matricization of an order-3 tensor
T P RN1ˆN2ˆN3 , denoted by T pkq, arranges its mode-k fibers
to be the columns of the resulting matrix T pkq P RNkˆN`Nm ,
k, `,m P t1, 2, 3u, k ‰ ` ‰ m, where the nk-th row of T pkq
consists of the vectorization of the slice of T obtained by
fixing the index of the k-th mode of T as nk.

Definition 4. We define by tSVDRpXq the operator which
returns a matrix containing the R left singular vectors
associated with the largest singular values of the matrix X .

B. Tensor decompositions
The Tucker decomposition is able to represent an order-3

tensor T P RN1ˆN2ˆN3 compactly, using a set of factor
matrices given by Bi P RNiˆKi , i P t1, 2, 3u and a small
core tensor G P RK1ˆK2ˆK3 , as [33]

T “
0

G;B1,B2,B3

8

. (3)

The tuple pK1,K2,K3q is called the multilinear rank of
T . Each value Ki is also equal to the rank of the mode-i
unfolding of T [32].
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The Tucker decomposition allows the rank along each mode
of the tensor to be different (i.e., Ki ‰ Kj) [34]. This
property can be very useful since it allows one to set a
higher rank to specific modes of the decomposition in order
to adequately represent the data diversity while still keeping
the model low rank.

The matricizations and vectorization of a tensor T
following the Tucker decomposition (3) are given by [33]:

vecpT q “ pB3 bB2 bB1q vecpGq , (4)

T p1q “ B1Gp1qpB3 bB2q
J , (5)

T p2q “ B2Gp2qpB3 bB1q
J , (6)

T p3q “ B3Gp3qpB2 bB1q
J . (7)

The Tucker decomposition can be computed using fast
algorithms such as the high-order SVD [35].

Another classic tensor decomposition is the Canonical
Polyadic Decomposition (CPD) [33]. The CPD enjoys
uniqueness properties under very mild conditions, and its
rank can exceed the dimensions of the tensor. However, it is
also more difficult to compute, and the same rank value is
used to represent all modes of the tensor.

The Block Term Decomposition (BTD) generalizes CPD
and Tucker, and allows us to combine benefits from both
approaches [36]. Specifically, the BTD of an order-3 tensor T
is defined as a sum of rank-pK1,r,K2,r,K3,rq terms as [36]:

T “
R
ÿ

r“1

0

Gr;Br,1,Br,2,Br,3

8

, (8)

where Gr, Br,1, Br,2, and Br,3, for r “ 1, . . . , R, are
the core tensors and the factors corresponding to each mode
of T . Differently from the Tucker decomposition, the BTD
additionally requires the selection of parameter R (number
of blocks), and can be more costly to compute. However,
the BTD benefits from uniqueness results which, although
not as strong than those of the CPD, are still interesting for
many applications [36, Section 5]. These results will prove
very important to derive the recoverability guarantees for the
algorithm in Section V. Note that in the CPD can be viewed
as a special case of the BTD with R “ 1.

III. PROPOSED MODEL AND ITS UNDETERMINACIES

A. The imaging model

Let an HSI with high spectral resolution and low spatial res-
olution be represented as an order-3 tensor Yh P RN1ˆN2ˆLh ,
where N1 and N2 are the spatial and Lh the spectral dimen-
sions. Similarly, an MSI with high spatial and low spectral
resolution is denoted by an order-3 tensor Ym P RM1ˆM2ˆLm ,
where M1 ą N1 and M2 ą N2 are the spatial and Lm ă Lh
the spectral dimensions. Both the HSI and the MSI are
assumed to be degraded versions of a tensor Z P RM1ˆM2ˆLh

` ,
with high spectral and spatial resolutions. This degradation
process is commonly described as [16], [17], [20], [21]:

Yh “ Z ˆ1 P 1 ˆ2 P 2 ` Eh , (9)
Ym “ Z ˆ3 P 3 ` Em , (10)

where tensors Em P RM1ˆM2ˆLm and Eh P RN1ˆN2ˆLh

represent additive noise. The matrix P 3 P RLmˆLh contains

Figure 1. Proposed imaging model. The observed HSI and MSI are acquired
under different conditions or at different time instants. Their underlying HRIs,
represented by tensors Zh and Zm, respectively, can be different from each
other due to the effect of spectral and acquisition variations, as well as scenery
changes. The changes occurring between the HRIs Zh and Zm are repre-
sented using an additive tensor 	 which captures variability and changes, and
both the HRI and the variability tensors are assumed to have low Tucker rank.

the spectral response functions (SRF) of each band of
the multispectral sensor, and matrices P 1 P RN1ˆM1

and P 2 P RN2ˆM2 represent the spatial blurring and
downsampling in the hyperspectral sensor, which we assume
to be separable for each spatial dimension as previously done
in, e.g., [16], [17], [20], [21]. Note that since the mode-k
product obeys (1), the choice of the ordering of P 1 and
P 2 in (9) does not affect the result. To make notation more
convenient, we also denote the (linear) spatial and spectral
degradation operators more compactly as

P1,2pT q “ T ˆ1 P 1 ˆ2 P 2 , (11)
P3pT q “ T ˆ3 P 3 . (12)

Most previous works consider that Yh and Ym are ac-
quired under the same conditions, implicitly assuming that no
variability or changes occur between the images. However,
when the HSI and MSI are not acquired from the same
mission/instrument and at the same time, the scene which un-
derlies the (degraded) observations Yh and Ym can be subject
to significant changes, referred to as inter-image variability1,
which include spatial and spectral variations as illustrated in
Fig. 1. Spectral variations originate from different chemical,
atmospheric, illumination or seasonal conditions between the
scenes [29], [37], [38], and are typical even under short acqui-
sition time differences. Spatial variations, on the other hand,
occur due to, e.g., some regions of the scene being affected
unequally by seasonal effects (which are strongly material-
dependent [29]) or due to the sudden insertion/removal of an
object [39]. Spatial variations can be very prominent when
large acquisition time differences are considered. These effects
are not accounted for in the majority of the existing algorithms,
what motivates the development of more flexible models.

Recently, spatially uniform spectral variability has been
considered in [30]. The image fusion problem was formulated
as a matrix factorization problem, and the (multiplicative)
spectral variability as well as the spatial coefficients were

1Here, variability should not be confused with the spectral variability
considered in [29], which focuses on inter-pixel endmembers variations.
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estimated from the observed images. However, this work
still did not address two fundamental problems: 1) How to
account for both spatial and spectral variability and 2) what
theoretical guarantees can be offered for the recovery of the
HRI and (possibly) of the variability factors under these more
challenging conditions.

To address these issues, we adopt a more general approach
by considering two different HRIs Zh P RM1ˆM2ˆLh

` and
Zm P RM1ˆM2ˆLh

` , both with high spectral and spatial resolu-
tions, underlying the observed HSI and the MSI, respectively.
This leads to the following extension of model (9)–(10):

Yh “ P1,2pZhq ` Eh , (13)
Ym “ P3pZmq ` Em . (14)

The tensors Zh and Zm represent the underlying HRIs
of the observed scene under different acquisition conditions
and at possibly different times. To account for inter-image
variability, the HRIs are related to each other as follows:

Zm “ Zh ` 	, (15)

where 	 P RM1ˆM2ˆLh is an additive variability tensor
representing changes between the scenes. By introducing 	,
model (15) makes the inter-image variability between the HSI
and the MSI explicit.

Considering the variability model (15) along with (13)–
(14), we obtain the following observation model for the
acquired HSI and MSI:

Yh “ P1,2pZhq ` Eh , (16)
Ym “ P3pZh ` 	q ` Em. (17)

In the following, Zh and 	 will be referred to as the HRI
and the variability tensor, respectively.

B. The image fusion problem and its undeterminacies

The image fusion problem in this case consists in
recovering 	 and Zh from the observed images Yh and Ym.
More precisely,

#

find Zh P ΩZ and 	 P ΩΨ,

such that equations (16)–(17) are satisfied.
(18)

The sets ΩZ Ď RM1ˆM2ˆLh and ΩΨ Ď RM1ˆM2ˆLh denote
prior information about the HRI and the variability factor,
respectively.

Since the number of unknowns is significantly greater than
the number of observations, problem (18) is severely ill-posed
and additional a priori information about the structure of Zh
and 	 must be introduced through the sets ΩZ and ΩΨ in order
to obtain a stable recovery. Common information that has been
used to construct ΩZ includes spatial (piecewise-) smooth-
ness [10], low matrix (spectral) rank [11], [30], low tensor
rank [16], [17], [23], and non-local spatial information [21].

The choice of prior information in ΩZ and ΩΨ turns to the
question of whether assuming additional structure over the pair
pZh,	q makes these variables identifiable from the observa-
tions pYh,Ymq. Recent works in HS-MS image fusion advo-
cates for a low-rank tensor model [16], [17], [20]. However,
the case at hand is more challenging because of the additional
variability 	, which makes the model more ambiguous.

In many inverse problems such as matrix or tensor factor-
ization, dictionary learning and blind deconvolution, identifia-
bility of the underlying variables often can only be defined up
to some fundamental ambiguities. Transformation groups and
equivalence classes [40] can be used to precisely define which
sets of solutions can generate each possible observations.
These ideas can be leveraged to characterize some of the
fundamental ambiguities associated with the model (16)–(17),
and to provide insights into the development of efficient
algorithms. First, we will show that the presence of 	 makes
the model fundamentally ambiguous, as the content in Zh
cannot be easily distinguished from that of 	. Moreover, we
will define an equivalence class that characterizes the sets of
images Zh and factors 	 which are certain to result in different
observed HSI and MSI. This gives us insight into what kind of
structure from these variables can be recovered from pYh,Ymq.

To proceed, let us first denote by A : pZh,	q ÞÑ pYh,Ymq
the operator which describes the degradation
process in equations (16)–(17). By representing
operators P1,2, P3 and A in matrix form as
rP 1,2 P RN1N2LhˆM1M2Lh , rP 3 P RM1M2LmˆM1M2Lh

and A P RpN1N2Lh`M1M2Lmqˆ2M1M2Lh , respectively,
we can write the model (16)–(17) in the noiseless case
(Eh “ Em “ 0) equivalently as:

„

vecpYhq
vecpYmq



“

«

rP 1,2 0
rP 3

rP 3

ff

loooooomoooooon

A

„

vecpZhq
vecp	q



. (19)

Define also the equivalence relation „Z,Ψ based on
operator A as follows:

pZh,	q „Z,Ψ pZ 1h,	1q ðñ A pZh,	q ´A pZ 1h,	1q “ 0
(20)

and its associated equivalence class (EC) rpZh,	qs„Z,Ψ
as

rpZh,	qs„Z,Ψ
“
 

X P ΩZ ˆ ΩΨ : X „Z,Ψ pZh,	q
(

. (21)

Now, we are ready to present the following result.

Theorem 1. Suppose that the observation noise is zero
(i.e., Eh “ Em “ 0) and that ΩZ “ RM1ˆM2ˆLh

` and
ΩΨ “ RM1ˆM2ˆLh . Then, given a set of HSI and MSI
observations pYh,Ymq, the following is verified:

a) If operator A has nontrivial nullspace (e.g., if Lm ă Lh
or if N1N2 ă M1M2), then the pair pZh,	q cannot be
uniquely identified from the observations pYh,Ymq.

b) There is only one (unique) equivalence class
rpZ0,	0qs„Z,Ψ

containing HR images and scaling
factors pZh,	q that can generate pYh,Ymq according
to model (16)–(17). In other words, pZh,	q can be
identified uniquely up to rpZ0,	0qs„Z,Ψ

.

Proof. Proof of a): Due to the special structure of matrix A
in (19), is is clear that rankpAq “ rankprP 1,2q` rankprP 3q ď

2M1M2Lh. Thus, if A has nontrivial nullspace then either
P1,2 or P3 have nontrivial nullspace. If the operator P1,2

has nontrivial nullspace, then we can find Zh, Z 1h, different
from one another, such that

P1,2pZhq “P1,2pZ 1hq , (22)
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implying that Yh “ Y 1h. Now, we can always find 	 and 	1

satisfying

Zh ` 	 “ Z 1h ` 	1, (23)

which implies that Ym “ Y 1m (i.e., the model is not
identifiable).

Similarly, if operator P3 has nontrivial nullspace, then
suppose we select Zh “ Z 1h. This makes Yh “ Y 1h. Then, we
can select 	 and 	1, distinct from one another, satisfying

P3p	q ´P3p	
1q “ 0 , (24)

where 0 is the tensor of zeros. Since Zh “ Z 1h, this leads to:

P3pZhq “P3pZ 1hq
“ P3pZ 1hq `P3p	q ´P3p	

1q , (25)

which also implies that Ym “ Y 1m (i.e., the model is not
identifiable).

Proof of b): Note that since there is no additive noise, A
is a linear operator and, thus, satisfies the following relation:

A pZh,	q ´A pZ 1h,	1q “ A pZh ´ Z 1h,	´ 	1q . (26)

By inspecting the definition of the equivalence relation in (20),
it can be seen that the equivalence class in (21) is characterized
by the kernel of the operator A , and can also be written as:

rpZh,	qs„Z,Ψ
“
 

pZh,	q ` X : X P kerpA q
(

. (27)

Now, suppose that we have two sets of HR images
and variability factors belonging to different ECs, i.e.,
pZh,	q P rpZ0,	0qs„Z,Ψ

, pZ 1h,	1q P rpZ 10,	10qs„Z,Ψ
,

with rpZ0,	0qs„Z,Ψ
‰ rpZ 10,	10qs„Z,Ψ

. Comparing the
observations pYh,Ymq and pY 1h,Y 1mq generated by elements
of each EC, we have:

pYh,Ymq “ A ppZh,	q ` X q
‰ A ppZ 1h,	1q ` X 1q “ pY 1h,Y 1mq , (28)

for all X ,X 1 P kerpA q. Thus, elements selected from
different ECs will always lead to different observations,
ensuring that the EC is identifiable.

Intuitively, item a) shows that variations in 	 that occur in
the nullspace of operators P1,2 and P3 are not reflected in
the corresponding observations pYh,Ymq in such a way that
they can be differentiated from possible changes in Zh. More
generally, changes of 	 and Zh that occur in the nullspace of
matrix A do not affect pYh,Ymq, which is clear from (19).
This notion can be further extended by noting that changes
occurring in the column space of A will certainly lead to
different observations, which is made precise in item b).

Item b) in Theorem 1 allows us to characterize the ambi-
guities in the model in more detail. However, it is important
to consider the characteristics of kerpA q in our problem to
better understand the recoverability of the variability factor 	.
Let us consider the model in (19), and two sets of variables
pZh,	q „Z,Ψ pZ 1h,	1q, belonging to the same EC. It can be
seen that to generate the same observations, the HR images
need to satisfy Zh ´ Z 1h P kerpP1,2q, while the variability
factors have to satisfy P3pZh ´ Z 1hq “ ´P3p	 ´ 	1q.
Therefore, the general form of the difference between the

variability factors inside each equivalence class is of the form:

	´ 	1 “ ´pZh ´ Z 1hq
looooomooooon

PkerpP1,2q

` X
loomoon

PkerpP3q

. (29)

The set of all possible 	 ´ 	1 satisfying (29) is the sum of
kerpP3q and kerpP1,2q, which is given by kerpP3 ˝P1,2q.
We can readily see that 	 cannot be recovered from the
observations. Only the spectrally degraded variability factors
P3p	q can be uniquely recovered (which comes “for
free” with the recovery of Zh since it can be computed as
P3p	q “ Ym´P3pZhq). This makes it sufficient to study the
capability of an algorithm to recover Zh in our model. Since
the matrices P i, i P t1, 2, 3u are essentially low-pass filtering
and downsampling operators, their nullspaces intuitively
encode high-frequency information along each tensor mode.
Thus, only the smooth structure of 	 can be identified
uniquely from observations pYh,Ymq, since otherwise we
cannot separate the effects of 	 from Zh.

We also note that each EC in (21), which contains all
factors 	 whose difference lies in the nullspace of the
combined operator P1,2 ˝ P3, is strictly larger than if we
considered changes that occur in the nullspace of each of
these operators individually (i.e., P1,2 and P3).

Theorem 1 guarantees that tensors belonging to different
ECs will result in different observations, which is the minimal
requirement for having identifiable Zh and P3p	q. However,
the coresponding inverse problem still remains ill-posed
as the number of unknowns is greater than the number
of observations. Thus, stronger identifiability conditions
cannot be obtained unless we provide stricter a priori
characterizations of the sets ΩZ and ΩΨ.

C. A Low-Multilinear-Rank Model

One possible condition that can be imposed on the structures
of both ΩΨ and ΩZ is the low-rank tensor model. This kind
of structure makes it possible to obtain identifiability and
exact recovery guarantees for problem (18), where spatial and
spectral variabilities are present. Moreover, it also makes the
problem well-posed and easier to solve since the number of
unknowns becomes smaller than the amount of available data.

Suppose that Zh and 	 have multilinear ranks
pKZ,1,KZ,2,KZ,3q and pKΨ,1,KΨ,2,KΨ,3q, respectively.
This means that they can be represented as

Zh “
0

GZ ;BZ,1,BZ,2,BZ,3

8

, (30)

	 “
0

GΨ;BΨ,1,BΨ,2,BΨ,3

8

, (31)

where BZ,i P RMiˆKZ,i , BΨ,i P RMiˆKΨ,i , i P t1, 2u,
BZ,3 P RLhˆKZ,3 , BΨ,3 P RLhˆKΨ,3 are the factor matrices
and GZ P RKZ,1ˆKZ,2ˆKZ,3 , GΨ P RKΨ,1ˆKΨ,2ˆKΨ,3 are the
core tensors.

Our objective is to study the identifiability and exact
recovery of these variables given the observation model
in (16)–(17). Using this model, and applying the definition
of the multilinear product and the properties of the mode-k
product defined in Section II-A, the noiseless case of the
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degradation model (16)–(17) can be written as

Yh “
0

GZ ;P 1BZ,1,P 2BZ,2,BZ,3

8

, (32)

Ym “
0

GZ ;BZ,1,BZ,2,P 3BZ,3

8

`
0

GΨ;BΨ,1,BΨ,2,P 3BΨ,3

8

. (33)

Note that we can represent the multispectral image model
in (33) equivalently using a standard Tucker model as:

Ym “
0

Cm;Cm,1,Cm,2,P 3Cm,3

8

, (34)

where Cm,i, i P t1, 2, 3u and Cm are the factor matrices and
the core tensor of the MSI, which satisfy:

Cm “ GZ ‘ GΨ , (35)

Cm,i “
“

BZ,iBΨ,i

‰

, i P t1, 2, 3u , (36)

where for two tensors A and B, the binary operation A ‘ B
returns a block-diagonal tensor whose diagonal blocks are A
and B.

The model in equations (30)–(36) will be subsequently
used in Sections IV and V to develop two image fusion
algorithms, one algebraic (faster, but with stringent rank
constraints) and another based on an optimization procedure
(which allows for higher rank values). In each case, a new
algorithm will be presented followed by its recoverability
guarantees. It should be noted that in practice, the HRI Zh
and the variability tensor 	 can have high rank. Nevertheless,
we will perform only a coupled tensor approximation, with
which we are able to capture most of the energy of the data
even with insufficient ranks. In practice, however, higher rank
models will be preferred to ensure the data is well represented
and to avoid the presence artifacts in the reconstructed HRI
(which will be achieved with the method of Section V).

IV. AN ALGEBRAIC ALGORITHM

Considering the model in Section III-C, the image fusion
problem consists in estimating the factors and core tensor
GZ , BZ,i, i P t1, 2, 3u. However, if the values composing the
multilinear rank of Zh are sufficiently low, those variables
can be computed by solving the following coupled system of
equations:

$

’

’

’

&

’

’

’

%

Yh “
0

GZ ;Ch,1,Ch,2,BZ,3

8

Ym “
0

Cm;Cm,1,Cm,2,P 3Cm,3

8

Ch,i “ P iBZ,i, i P t1, 2u

Cm,i “
“

BZ,i,BΨ,i

‰

, i P t1, 2, 3u

, (37)

where Ch,i, i P t1, 2u denote the spatial factor matrices of
the HSI, and the HRI is obtained from the solution of (37)
as Zh “ vGZ ;BZ,1,BZ,2,BZ,3w.

If we suppose that KZ,i ` KΨ,i ď Ni, i P t1, 2u, (37)
can be solved using an efficient, algebraic approach detailed
in Alg. 1, which we call CT-STAR (Coupled Tucker
decompositions for hyperspectral Super-resoluTion with
vARiability). The basic intuition behind this algorithm is
to use the correspondence between the mode-1 and mode-2
matricizations of the HSI and MSI in order to separate the
HRI from the variability tensor when computing its factor
matrices. More details will be provided in the following.

It is important to note that CT-STAR does not enforce
the block diagonal structure of the core tensor of the

Algorithm 1: Algebraic image fusion method (CT-STAR)
Input : Images Yh, Ym ranks KZ,i, KΨ,i, i P t1, 2, 3u
Output: HRI pZh, spectrally degraded variability factors P3pp	q

1 Check if KZ,i `KΨ,i ď Ni, i P t1, 2u ;
2 Compute pCh,3 “ tSVDKZ,3

pYhp3qq ;
3 Compute pCm,i “ tSVDKZ,i`KΨ,i

pYmpiqq for i P t1, 2u ;
4 Compute

rQi, for i P t1, 2u, as rQi “
`

P i
pCm,i

˘:
tSVDKZ,i

pYhpiqq;
5 Compute rCm,i “ pCm,i

rQi, for i P t1, 2u ;
6 Compute pGZ

by solving p pCh,3 b P 2
rCm,2 b P 1

rCm,1q vecpGZq “ vecpYhq;
7 Compute pZh “ v

pGZ ; rCm,1, rCm,2, pCh,3w ;
8 Compute P3pp	q “ Ym ´ pZh ˆ3 P 3 ;

MSI (described in (35)). The following theorem gives a
constructive proof of exact recovery conditions from which
Alg. 1 is derived.

Theorem 2. Suppose that the HRI Zh and the variability
tensor 	 have multilinear ranks pKZ,1,KZ,2,KZ,3q and
pKΨ,1,KΨ,2,KΨ,3q, respectively, that Yh and Ym admit
Tucker decompositions as denoted in (37), that the observation
noise is zero (i.e. Eh “ 0, Em “ 0), and that

rankpP iBZ,iq “ KZ,i , i P t1, 2u (38)
rankpP iBΨ,iq ď KΨ,i , i P t1, 2u (39)
rankpYhpiqq “ KZ,i , i P t1, 2, 3u (40)

rankpYmpiqq “ KZ,i `KΨ,i ď Ni , i P t1, 2u (41)

Then, if all columns in P iBZ,i are linearly independent from
those in P iBΨ,i, for i P t1, 2u, Algorithm 1 exactly recovers
Zh from the observations.

Proof. Let us compute matrices pCm,i, i P t1, 2u, and pCh,i,
i P t1, 2, 3u as the left-singular vectors associated with the
non-zero singular values of Ympiq, i P t1, 2u and Yhpiq, i P
t1, 2, 3u, respectively. Then, due to (40)–(41) and to the non-
uniqueness of matrix decomposition, these matrices satisfy:

pCh,i “ P iBZ,iQh,i, i P t1, 2u (42)
pCh,3 “ BZ,3Qh,3 (43)
pCm,i “ Cm,iQm,i, i P t1, 2u (44)

for invertible matrices Qh,i P RKZ,iˆKZ,i , i P t1, 2, 3u and
Qm,i P RpKZ,i`KΨ,iqˆpKZ,i`KΨ,iq, i P t1, 2u.

Now, the main problem caused by the presence of
variability is that matrices Qm,1 and Qm,2 preclude us
from distinguishing the factors BZ,1 and BZ,2, associated
with Zh, from BΨ,1 and BΨ,2, associated with 	, using
only information available in the MSI. These two become
mixed in the spatial factors pCm,i. Nonetheless, consider
the relationship between spatial degradation of the factors
estimated from the MSI and the spatial factors of the HSI:

P i
pCm,i “ P iCm,iQm,i (45)

“
“

P iBZ,i, P iBΨ,i

‰

Qm,i . (46)

Now, let us compute matrices rQi P RpKZ,i`KΨ,iqˆKZ,i ,
i P t1, 2u such that

pCh,i “ P i
pCm,i

rQi . (47)

By partitioning the following matrix product as
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Qm,i
rQi “ rQ

J

Z,i,Q
J

Ψ,is
J, (47) can be represented as

pCh,i “ P iBZ,iQh,i

“ P iBZ,iQZ,i ` P iBΨ,iQΨ,i . (48)

Since all columns in P iBZ,i are linearly independent
from those in P iBΨ,i, equality (47) will be satisfied if
and only if the result of the product pCm,i

rQi (i.e., the right
hand side of (48)) does not contain any nontrivial linear
combination of the columns of P iBΨ,i. Thus, QΨ,i “ 0

and QZ,i “ Qh,i due to (38) and (40). This allows us to
“separate” the variability and image factors as

rCm,i “ pCm,i
rQi

“ BZ,iQh,i , (49)

for i P t1, 2u. Now, consider the vectorization of the HSI as:

ppCh,3 b P 2
rCm,2 b P 1

rCm,1q vecpGZq “ vecpYhq . (50)

Since the matrix in the left hand side of (50) has full column
rank, pGZ can be uniquely recovered from this equation, and
will satisfy pGZ “ GZ ˆ1 Q´1

h,1 ˆ2 Q´1
h,2 ˆ3 Q´1

h,3. The HRI
and the spectrally degraded scaling factors are then finally
recovered as:

pZh “ vpGZ ; rCm,1, rCm,2, pCh,3w

“ vGZ ;BZ,1,BZ,2,BZ,3w “ Z
(51)

and
{	ˆ3 P 3 “ Ym ´ pZh ˆ3 P 3 , (52)

which completes the proof.

Note that CT-STAR does not use the spectral degradation
operation P 3 to recover the HRI Zh, what makes it a
spectrally “blind” algorithm. The CT-STAR algorithm is also
fast (see Section VI), but only works for the cases where
the ranks of the spatial modes of Zh are smaller than the
dimensions of the HSI, which is quite restrictive. This can
make CT-STAR unsuited to process real images which can
have high rank values, and motivates the search for a method
with more flexibility in the selection of the ranks. Moreover,
both Alg. 1 and Theorem 2, in considering model (37), made
no assumptions about the (block diagonal) structure of the
core tensor of the MSI. Although this led to more freedom
from a modeling perspective, the recoverability conditions
turned out to be restrictive. In the following section, we
will explore the block diagonal structure of Cm using an
optimization-based algorithm to address these limitations.

V. AN OPTIMIZATION-BASED ALGORITHM

In this section, we pursue a different approach. Assume
that model (32)–(33) holds and that the values forming the
multilinear ranks of both Zh and 	 are sufficiently low so that
Ym admits a block term decomposition (BTD) in the noiseless
case [36]. We can then use uniqueness results thereof to guar-
antee the identifiability of Zh under less restrictive conditions.

Let us consider the image fusion problem as the solution
to the following optimization problem:

min
Θ

JpΘq fi

›

›

›
Yh ´

0

GZ ;P 1BZ,1,P 2BZ,2,BZ,3

8

›

›

›

2

F

` λ

›

›

›

›

Ym ´
ÿ

ιPtZ,Ψu

0

Gι;Bι,1,Bι,2,P 3Bι,3

8

›

›

›

›

2

F

(53)

where Θ “ tGι,Bι,i : ι P tZ,Ψu, i P t1, 2, 3uu and λ P R`
is a fixed parameter which balances the contribution of each
term in the cost function. In the following, we first describe
a procedure to solve problem (53) in Section V-A, and later
provide exact recovery guarantees in Section V-B.

Algorithm 2: Optimization-based image fusion (CB-STAR)
Input : Images Yh,Ym ranks KZ,i,KΨ,i, i P t1, 2, 3u, iterations F

Output: HRI pZh, spectrally degraded variability factors P3pp	q
1 Initialize Θp0q according to Section V-A3;
2 while Stopping criteria is not satisfied do
3 Compute GZ and BZ,i, i P t1, 2, 3u by solving (54)

with Algorithm 3 in Appendix A, using F iterations;
4 Compute BΨ,1, BΨ,2, P 3BΨ,3 and GΨ by solving (55)

using the high-order SVD with rank pKΨ,1,KΨ,2,KΨ,3q;
5 end
6 Compute pZh “ v

pGZ ; pBZ,1, pBZ,2, pBZ,3w ;
7 Compute P3pp	q “ Ym ´ pZh ˆ3 P 3 ;

A. Optimization
In order to minimize the cost function in (53), we consider

a block coordinate descent strategy, which successively
minimizes J w.r.t. Zh (i.e., GZ and BZ,i, i P t1, 2, 3u) and
w.r.t. 	 (i.e., GΨ and BΨ,i, i P t1, 2, 3u), while keeping
the remaining variables fixed. The optimization procedure is
detailed in Alg. 2, which we call CB-STAR (Coupled Block
term decompositions for hyperspectral Super-resoluTion with
vARiability).

1) Optimizing w.r.t. Zh: The optimization problem w.r.t.
Zh can be written as:

min
GZ ,BZ,i

›

›

›
Yh ´

0

GZ ;P 1BZ,1,P 2BZ,2,BZ,3

8

›

›

›

2

F

`λ
›

›

›
Y0 ´

0

GZ ;BZ,1,BZ,2,P 3BZ,3

8

›

›

›

2

F
, (54)

where Y0 “ Ym ´
0

GΨ;BΨ,1,BΨ,2,P 3BΨ,3

8

. This is
a variability-free, Tucker-based image fusion problem. We
propose to solve (54) using a block coordinate descent strategy
w.r.t. GZ and BZ,i, i P t1, 2, 3u, with a small number of
iterations F . This procedure is detailed in Alg. 3 and in
Appendix A. An approximate closed form solution to (54) can
also be computed efficiently using the SCOTT algorithm [17].

2) Optimizing w.r.t. 	: This optimization problem can be
written equivalently as

min
GΨ,BΨ,i,X2

›

›

›
Y1 ´

0

GΨ;BΨ,1,BΨ,2,X2

8

›

›

›

2

F
, (55)

where Y1 “ Ym ´ vGZ ;BZ,1,BZ,2,P 3BZ,3w and
X2 “ P 3BΨ,3. This problem can be solved by computing
the high-order SVD of Y1 with rank pKΨ,1,KΨ,2,KΨ,3q [35].
Note that problem (55) only returns X2 “ P 3BΨ,3 instead
of BΨ,3. This is not a problem since the variations of BΨ,3

in the nullspace of P 3 are not identifiable.
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3) Initialization: Since this optimization problem is
non-convex, the choice of initialization can have a significant
impact on the performance of the algorithm. This can be
particularly prominent in this algorithm since the model
considered in (16)–(17) allows for a significant amount of
ambiguity. Fortunately, for practical scenes, we can consider a
simple strategy to provide a reasonably accurate initial guess.

In the noiseless case, the following relation is satisfied:

P1,2pYmq “P1,2

`

P3pZh ` 	q
˘

(56)

“ P3pYhq `P1,2

`

P3p	q
˘

.

Thus, we can obtain a spatially and spectrally degraded
version of 	 directly from the HSI and MSI simply as:

r	 “ P1,2pYmq ´P3pYhq
“ P1,2

`

P3p	q
˘

. (57)

Then, if 	 is smooth, we can spatially upscale r	 using some
form of interpolation (e.g., bicubic), leading to P3p	p0qq.
Finally, we can use the Tucker decomposition of P3p	p0qq to
initialize GΨ, BΨ,i, i P t1, 2, 3u. We call this the interpolation
initialization.

Another option is to try to invert (57) using the
pseudoinverse of operator P1,2, which can be computed using
properties of the tensor vectorization and Kronecker product:

`

P1,2

˘:
“ p¨q ˆ1 P

:
1 ˆ2 P

:
2 , (58)

where X: denotes the pseudoinverse of X . the initialization
can be then computed as P3p	p0qq “ r	 ˆ1 P :1 ˆ2 P :2. We
call this the pseudoinverse initialization.

The initialization of BZ,i, i P t1, 2, 3u can then be
performed as BZ,3 “ tSVDKZ,3

pYhp3qq and BZ,i “

tSVDKZ,i
pXpiqq for i P t1, 2u, where X “ Ym ´P3p	p0qq.

B. Exact Recovery

Suppose that KZ,i “ KΨ,i, i P t1, 2, 3u, without loss
of generality, so that the MSI follows a standard BTD
as considered in [36]. Then we have the following result
regarding the identifiability of the proposed algorithm.

Theorem 3. Suppose that Ki ” KZ,i “ KΨ,i, i P t1, 2, 3u,
that the observations are noise free (i.e., Eh “ 0, Em “ 0),
that tGι,Bι,i : ι P tZ,Ψu, i P t1, 2, 3uu are drawn from
some joint absolutely continuous distribution, and that the
following conditions on the dimensions hold:

M1 ě 2K1 and M2 ě 2K2 (59)

KZ,3 ď min
 

N1N2, KZ,1KZ,2

(

(60)

and either one of the following:
$

’

&

’

%

#

K3 ą K1 `K2 ´ 2 , or
|K1 ´K2| ą K3 ´ 2 ,

and Lm ě 2K3

(61)

or

K1 “ K2 , K3 ě 3 and K3 ă Lm , (62)

is satisfied. Then, the solution to optimization problem (53)
satisfies pZh “ Zh almost surely.

Proof. Since there is no additive noise, the optimal solution
to optimization problem (53) will necessarily make both
terms in the cost function equal to zero. This implies that

Yh “ vpGZ ;P 1
pBZ,1,P 2

pBZ,2, pBZ,3w , (63)

Ym “
ÿ

ιPtZ,Ψu

vpGι; pBι,1, pBι,2,P 3
pBι,3w , (64)

where tpGι, pBι,i : ι P tZ,Ψu, i P t1, 2, 3uu denotes a solution
to (53).

Since the dimension conditions (59) and either (61) or (62)
are satisfied and the core tensor and factor matrices are
drawn from joint absolutely continuous distributions, the
BTD decomposition of the MSI in (64) is essentially unique
according to Theorems 5.1 and 5.5 in [36]. This means that
the following conditions are satisfied:

pBZ,i “ Bι1,iQι1,i, i P t1, 2u (65)
pBΨ,i “ Bι2,iQι2,i, i P t1, 2u (66)

P 3
pBZ,3 “ P 3Bι1,3Qι1,3 (67)

P 3
pBΨ,3 “ P 3Bι2,3Qι2,3 (68)
pGZ “ Gι1 ˆ1 Q

´1
ι1,1 ˆ2 Q

´1
ι1,2 ˆ3 Q

´1
ι1,3 (69)

pGΨ “ Gι2 ˆ1 Q
´1
ι2,1 ˆ2 Q

´1
ι2,2 ˆ3 Q

´1
ι2,3 (70)

To account for the possible permutation of the two BTD
terms, indexes ι1 and ι2 can be either pι1, ι2q “ pZ,Ψq or
pι1, ι2q “ pΨ, Zq, and QZ,i, QΨ,i, i P t1, 2, 3u are invertible
matrices of appropriate size, which account for rotational and
scaling ambiguities of the model.

Let us consider the mode-3 unfolding of the spectrally
degraded HSI:

P 3Yhp3q “ P 3
pBZ,3

pGZ p3q

`

P 2
pBZ,2 b P 1

pBZ,1

˘J

loooooooooooooooooomoooooooooooooooooon

pX

“ P 3BZ,3 GZ p3q

`

P 2BZ,2 b P 1BZ,1

˘J

loooooooooooooooooomoooooooooooooooooon

X

,

where pX and X are generically full row rank by the
assumption (60) on the ranks and on the dimensions.
Therefore, we have

span
`

P 3
pBZ,3

˘

“ span
`

P 3BZ,3

˘

. (71)

However, since K3 ă Lm and due to the distributional
assumptions on the factor matrices, we have that, generically,
matrices P 3BZ,3 and P 3BΨ,3 both have rank K3, and
matrix

“

P 3BZ,3 P 3BΨ,3

‰

is full column rank (i.e., it has
rank greater than K3). Therefore, the subspaces spanned by
P 3BZ,3 and P 3BΨ,3 are different, and it is not possible to
have P 3BZ,3 “ P 3BΨ,3S, for any matrix S. Thus, (71)
implies that the equation P 3

pBZ,3 “ P 3BΨ,3QΨ,3 is not
possible (i.e., it cannot be satisfied for any matrix QΨ,3).
This ensures, due to (67) (and to the essential uniqueness
of the MSI BTD), that we must have ι1 “ Z in (65), (67)
and (69), (i.e., the factor matrices related to 	 can not fit the
HSI), which shows that the correct permutation of the BTD
terms is selected.

Finally, since pX is generically full row rank, (or since
Yhp3q has rank K3), we have that pBZ,3 “ BZ,3S for
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some S, and (67) ensures that S “ QZ,3. This means that
pBZ,3 “ BZ,3QZ,3 (almost surely), and, using (65) and (69)
and ι1 “ Z, the reconstructed image consequently satisfies

pZh “
0

pGZ ; pBZ,1, pBZ,2, pBZ,3

8

“
0

GZ ;BZ,1,BZ,2,BZ,3

8

“ Zh, (72)

(almost surely), which concludes the proof.

By taking the block diagonal structure of Cm into
account, Theorem 3 obtains generally less restrictive recovery
conditions. Comparing Theorems 2 and 3, we can see that:
1) conditions (40) and (60) are equivalent; 2) the conditions
for the spectral ranks are not directly comparable but are
similarly restrictive for both theorems; and, most notably, 3)
The constraint (41) on spatial ranks is much more restrictive
when compared to the one in (59), required by Theorem 3.
This shows that, although computationally more demanding,
CB-STAR has more flexibility and may be able to deliver
better performance when compared to CT-STAR for images
with complex spatial content.

VI. COMPUTATIONAL COMPLEXITY

The computational complexity of the algorithms is given
as follows. The total cost involved with the main operations
in CT-STAR (Alg. 1) are the following: 1) computation
of the truncated SVDs in steps 2 and 3, which requires
OpmaxtKZ,1,KZ,2uM1M2Lm ` KZ,3N1N2Lhq flops,
2) computation of the equations in steps 4 and 5, which
requires OpmaxtKZ,1,KZ,2uN1N2Lh ` M1N1KZ,1 `

M2N2KZ,2q flops, and solution of the linear equation in
step 6, which requires O

`

LhN1N2pKZ,1KZ,2KZ,3q
2
˘

flops.
For CB-STAR (Alg. 2), the total cost involved in

each iteration is 1) solving problem (54) in step 3
using Alg. 3, whose main costs are based on the
solution to Sylvester equations, and are given by
O
`

F pM3
1 `M3

2 ` L3
h ` pKZ,2KZ,3q

3q
˘

(where we assume
KZ,1 ě KZ,3 for simplicity), and 2) computing the high-order
SVD in step 4, which costs O

`

maxitKΨ,iuM1M2Lm
˘

flops.

VII. EXPERIMENTS

In this section, the performance of the proposed approach
is illustrated through numerical experiments considering
both synthetic and real data containing spatial and spectral
variability. All simulations were coded in MATLAB and run
on a desktop with a 4.2 GHz Intel Core i7 and 16GB RAM.

A. Experimental Setup
We compared CT-STAR and CB-STAR to both matrix

and tensor factorization-based algorithms. Among the matrix
factorization-based methods, we considered the HySure [10]
and CNMF [11] methods, the FuVar [30] method, which
accounts for spectral variability, and the multiresolution
analysis-based GLP-HS algorithm [41]. We also considered
the LTMR [24], STEREO [16] and SCOTT [17] algorithms,
which are tensor-based image fusion methods.

The real HRIs and MSIs, which were acquired at different
time instants but at the same spatial resolution, were pre-
processed as described in [10]. This consisted in the manual

removal of water absorption and low-SNR bands, followed by
the normalization of all bands of the HRIs and MSIs such
that the 0.999 intensity quantile corresponded to a value of 1.
Afterwards, the HRIs were denoised (as described in [42])
to yield the high-SNR reference image Zh [2]. The observed
HSIs Yh were then generated from Zh by applying a separable
degradation operator, with P 1 “ P 2 (a Gaussian filter with
unity variance followed by a subsampling with a decimation
factor of two2). Gaussian noise was also added to obtain an
SNR of 30dB. The observed MSIs Ym were generated by
adding noise to the reference MSI to obtain an SNR of 40dB.
The spectral response function P 3 was obtained from calibra-
tion measurements and known a priori3. Note that the HRI Zh
is not known by the algorithms, and is just used to assess their
performance during the experiments using quantitative metrics.

The parameters of the algorithms were selected as follows.
We selected the ranks and regularization parameters for
HySure, CNMF, FuVar and LTMR according to the original
works [10], [11], [24], [30]. For STEREO, we selected the
rank in the interval r5, 80s which led to the best reconstruction
results. Similarly, for SCOTT and for the proposed algorithms,
we selected the spatial ranks in the intervals r10, 80s and the
spectral ranks in the interval r2, 30s, which led to the best
reconstruction results. For simplicity, we also set λ “ 1 for
CB-STAR. The spatial and spectral degradation operators
(or, equivalently, the blurring kernels for HySure, CNMF and
FuVar) were assumed to be known a priori for all methods.
The BCD procedure in Alg. 2 was performed until the
relative change in the objective function value was smaller
than 10´3. At each iteration of Alg. 2, we ran Alg. 3 for one
single inner iteration (i.e., F “ 1), which resulted in good
experimental performance with moderate execution times.
Both the interpolation and the pseudoinverse initializations
described in Section V-A3 were considered, but only the first
one (which performed better) is shown in the visual results.

To evaluate the quality of the reconstructed images pZh, we
considered four quantitative metrics, which were previously
used in [2], [10], [30]. The first metric is the peak signal to
noise ratio (PSNR), defined as

PSNR “
10

L

L
ÿ

`“1

log10

˜

M1M2 E
 

max
`

rZhs:,:,`
˘(

›

›rZhs:,:,` ´ r pZhs:,:,`
›

›

2

F

¸

,

where Et¨u denotes the expectation operator.
The second metric is the Spectral Angle Mapper (SAM):

SAM “
1

M1M2

ÿ

n,m

arccos

˜

rZhsJ:,n,mr pZhs:,n,m
›

›rZhs:,n,m
›

›

2

›

›r pZhs:,n,m
›

›

2

¸

.

The ERGAS [43] metric provides a global statistical
measure of the quality of the fused data, and is defined as:

ERGAS “
M1M2

N1N2

g

f

f

e

104

Lh

Lh
ÿ

`“1

›

›rZhs:,:,` ´ r pZhs:,:,`
›

›

2

F

p1JrZhs:,:,`1{pM1M2qq
2
.

The last metric is the average of the bandwise UIQI [44],
which evaluates image distortions caused by loss of

2Details on how to construct P 1 and P 2 can be found in [17].
3Available for download here.

https://earth.esa.int/web/sentinel/user-guides/sentinel-2-msi/document-library/-/asset_publisher/Wk0TKajiISaR/content/sentinel-2a-spectral-responses
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correlation and by luminance and contrast distortion, with
value approaching one as pZh approaches Zh.

We also evaluate the reconstructed images visually, by
displaying true- and pseudo-color representations of the visual
and infrared spectra of pZh (corresponding to the wavelengths
0.45, 0.56 and 0.66 µm, and 0.80, 1.50 and 2.20 µm,
respectively). Due to space limitations, we only display the
results of FuVar, LTMR, STEREO, SCOTT, CT-STAR and
CB-STAR, since these are the methods which performed best,
and the ones which were conceptually closest to our approach.
The spectrally degraded additive factors P3pp	q estimated by
CT-STAR and CB-STAR are also evaluated visually, through
pseudo-color representations of its visible and infrared
spectra, and by the norm (over all bands) of each of its pixels.

Table I
RESULTS - SYNTHETIC EXAMPLE (“RK” STANDS FOR “RANKS”)

Algorithm SAM ERGAS PSNR UIQI time
HySure 0.61 19.64 10.85 0.61 5.79

CNMF 0.92 9.03 21.52 0.74 16.3

GLPHS 0.77 4.54 27.44 0.93 7.09

FuVar 0.98 7.85 22.68 0.82 134.2

LTMR 5.69 12.29 18.35 0.71 30.51

STEREO 2.59 12.01 18.44 0.72 0.29

SCOTT 0.58 7.42 22.19 0.89 0.04

CT-STAR, rk:p3, 3, 2q, p2, 2, 1q 0.59 0.73 43.89 1 0.05

CT-STAR, rk:p5, 5, 3q, p3, 3, 2q 0.54 0.63 45.12 1 0.07

CT-STAR, rk:p10, 10, 5q, p5, 5, 3q 0.5 0.59 45.66 1 0.11

CT-STAR, rk:p20, 20, 7q, p7, 7, 3q 1.19 1.29 39.22 1 0.25

CB-STAR, rk:p3, 3, 2q, p2, 2, 1q 0.62 0.78 43.35 1 0.26

CB-STAR, rk:p5, 5, 3q, p3, 3, 2q 0.54 0.63 45.34 1 0.28

CB-STAR, rk:p10, 10, 5q, p5, 5, 3q 0.5 0.55 46.58 1 0.42

CB-STAR, rk:p20, 20, 7q, p7, 7, 3q 1.4 1.47 38.46 0.99 1.08

B. Examples – Synthetic data

To evaluate the proposed algorithms in a controlled scenario,
we first considered a simulation with synthetic data. The
tensors Zh and 	, of dimensions 100ˆ 100ˆ 200, were gen-
erated following the Tucker model, with uniformly distributed
entries on the interval r0, 1s and ranks p10, 10, 5q and p5, 5, 3q,
respectively. The spectral response function P 3 P R10ˆ200 was
constructed by uniformly averaging groups of 20 bands, and
the rest of the simulation setup was the same as described in
Section VII-A. For this experiment, we initialized CB-STAR
with the results of CT-STAR. We considered two examples.
First, we compared the proposed method to other state-of-
the-art algorithms, for different choices of rank. Afterwards,
we evaluated the sensitivity of CT-STAR and CB-STAR to the
presence of additive noise. In both cases, we report average re-
sults of a Monte Carlo simulation with 100 noise realizations.

1) Comparison to other algorithms: For this comparison,
we set the ranks of STEREO and SCOTT were 50 and
p60, 60, 5q, respectively. We also ran the proposed methods
with four different rank values (smaller, equal, and larger
than the true data ranks), indicated in Table I. The results in
Table I show that the proposed methods yielded significant
improvements when compared to the other algorithms, which
is expected since this dataset was generated according to the
model (16)–(17). Moreover, the performance of both CT-STAR

and CB-STAR as a function of the ranks was similar, with
the best results observed when the rank was the same as the
ground truth, but with similar performance when the rank was
underestimated. This indicates that CT-STAR and CB-STAR
can still perform well when the data rank is higher than the
one specified for the model. When the selected rank was over-
estimated, the performance of the proposed methods degraded
more sharply (with a more prominent decrease for CB-STAR),
indicating that the ranks should not be much greater than the
true values in order to obtain the best performance.

2) Effect of noise: The exact recovery results obtained
in Theorems 2 and 3 assume a noiseless observation model,
which is not the case in real applications. To illustrate how
the performance of the proposed methods is affected by
the presence of additive noise Eh and Em, we evaluated
the quantitative reconstruction metrics for different SNRs,
varying from 0dB up to the noiseless case (SNR = 8). For
simplicity, we set KZ and KΨ as the correct ranks of Zh and
	, respectively. The results are shown in Table II. It can be
seen that the performance of both CT-STAR and CB-STAR
decreased for low SNRs. Moreover, CB-STAR achieved
better results for high SNRs (ě40dB), but was surpassed by
CT-STAR for low SNR scenarios (ď30dB), whose results
were considerably better for extremely noisy scenarios
(0dB). Moreover, for SNRs found in typical scenes (ě20dB),
these results indicate that both methods are able to obtain
satisfactory results. Finally, we note that since the ranks of Zh
and 	 satisfied the requirements of Theorems 2 and 3, exact
reconstruction was obtained for SNR = 8 (i.e., the original
and reconstructed images were equal up to machine precision).

The theoretical results presented in this work made use
of two hypotheses to guarantee the recovery of the HRI,
namely, that the image and variability factors have low
multilinear rank, and that there is no observation noise.
However, those hypotheses are often not strictly satisfied in
practice. Nonetheless, CT-STAR and CB-STAR only perform
a low-rank approximation of the data. Thus, they can still
perform well when the true rank of the image is larger than
the one specified to the algorithm and under the presence
of noise, as illustrated in the previous simulations (even
though exact recovery is not guaranteed in those cases). In
the following section, we will evaluate the performance of
the proposed methods with real HSIs and MSIs, which do
not necessarily come from the specified low-rank models.

Table II
PERFORMANCE OF THE PROPOSED METHODS FOR DIFFERENT SNRS

CT-STAR
SNR 0 10 20 30 40 60 80 100 8

SAM 9.622 3.191 1.197 0.647 0.370 0.033 0.003 0 0

ERGAS 15.33 6.948 2.005 0.887 0.436 0.040 0.004 0 0

PSNR 17.18 23.76 34.59 41.72 48.35 69.23 89.35 109.4 297.4

UIQI 0.501 0.856 0.987 0.998 0.999 1 1 1 1

CB-STAR
SNR 0 10 20 30 40 60 80 100 8

SAM 36.89 14.47 4.567 1.272 0.295 0.023 0.002 0 0

ERGAS 52.83 17.26 5.130 1.433 0.342 0.028 0.003 0 0

PSNR 7.74 17.32 27.66 38.17 50.54 71.99 91.95 111.9 265.9

UIQI 0.157 0.590 0.927 0.994 1 1 1 1 1
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Lake Isabella Lockwood
Figure 2. Hyperspectral and multispectral images with a small acquisition
time difference used in the experiments.

Ivanpah Playa Lake Tahoe A Lake Tahoe B
Figure 3. Hyperspectral and multispectral images with a large acquisition
time difference used in the experiments.

C. Example – Real data
In this example, we evaluated the algorithms using real

HS and MS images acquired at different time instants, thus
presenting different acquisition and seasonal conditions. The
reference hyperspectral and multispectral images, with a pixel
size of 20 m, acquired by the AVIRIS and by the Sentinel-2A
instruments, respectively, were originally considered in [30].
Four sets of image pairs were available. Two of which
contained images acquired less than three months apart (thus
containing moderate variability). The other two contained
images acquired with a time difference of more than one year
(thus containing more significant variability). The HSI and
MSI contained Lh “ 173 and Lm “ 10 bands, respectively.
The selected ranks for the tensor-based methods are shown
in Table III. Although the ranks of CB-STAR satisfied
Theorem 3 only for the Ivanpah Playa image pair, this did
not have a negative impact on its performance, as will be
shown in the following.

1) Rank sensitivity analysis: Before proceeding, we eval-
uate how sensitive the performance of the proposed methods
is to the selection of the ranks by plotting the PSNR as a
function of each of the ranks KZ,i and KΨ,i, while keeping
the others fixed. For simplicity, we kept the spatial ranks
equal to each other (i.e., KZ,1 “ KZ,2 and KΨ,1 “ KΨ,2),
and only show the results for the Lockwood image (to be
described in Section VII-C2) due to space limitations4. The
results, shown in Fig. 4, indicate that CT-STAR performs well
when KΨ,1 “ KΨ,2 are small, and performs well for values
of KZ,3 which are not small. The optimal KZ,1 “ KZ,2

were relatively large, but a drop in performance was observed
when they approach their upper limit Ni ´KΨ,i, i P t1, 2, u.
The performance of CB-STAR increased steadily with
KZ,1 “ KZ,2 and for small values of KZ,3, but decreased
more sharply when all values KZ,i, i P t1, 2, 3u were large.
The variability ranks KΨ,i, on the other hand, did not affect the
results too much when KΨ,1 “ KΨ,2 were sufficiently large.

2) Moderate variability: The first pair of images considered
in this example contained 80 ˆ 80 pixels and were acquired
over the region surrounding Lake Isabella, on 2018-06-27 and
on 2018-08-27. The second pair of images contained 80ˆ100

4Additional results are available on the supplemental material.
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Figure 4. Sensitivity analysis of the proposed methods Lockwood image. Top:
PSNR of CT-STAR as a function of the ranks of Zh (left) and 	 (right). Bot-
tom: PSNR of CB-STAR as a function of the ranks of Zh (left) and 	 (right)

Table III
RANKS OF THE TENSOR-BASED ALGORITHMS USED IN THE EXPERIMENTS

CT-STAR: CB-STAR: SCOTT: STEREO:
KZ ,KΨ KZ ,KΨ K K

Lockwood p30, 30, 8q,
p3, 3, 2q

p70, 70, 5q,
p40, 40, 3q

p60, 60, 5q 50

Lake Isabella p30, 30, 8q,
p3, 3, 2q

p50, 50, 5q,
p40, 40, 3q

p60, 60, 5q 50

Lake Tahoe p30, 30, 10q,
p3, 3, 1q

p35, 35, 9q,
p50, 50, 4q

p40, 40, 7q 30

Ivanpah Playa p16, 16, 8q,
p3, 3, 2q

p40, 40, 4q,
p40, 40, 5q

p30, 30, 30q 10

pixels and was acquired near Lockwood, on 2018-08-20 and
on 2018-10-19. A true color representation of the HSI and
MSI for this example can be seen in Fig. 2. Due to the
relatively small difference between the acquisition dates of
both images, the HSI and MSI look similar. However, there
are slight differences between them, as seen in the overall
color hue of the images and in the upper right part of the
Lake Isabella HSI. The quantitative performance metrics
of all algorithms are shown in Tables IV and V, while the
reconstructed images are presented in Figs. 5 and 6.

Table IV
RESULTS - LOCKWOOD

Algorithm SAM ERGAS PSNR UIQI time
HySure 3.38 7.79 23.65 0.88 4.63

CNMF 2.57 5.64 27.6 0.89 8.83

GLPHS 2.57 5.32 28.39 0.91 4.74

FuVar 2.37 4.29 30.59 0.95 218

LTMR 3.47 5.01 29.16 0.94 26.22

STEREO 3.49 5.51 28.72 0.93 1.14

SCOTT 2.52 4.91 29.93 0.95 0.18

CT-STAR 2.96 5.25 28.36 0.92 1.82

CB-STAR, init=interp 2.19 4.35 31.47 0.96 18.8

CB-STAR, init=pseudoinv 2.22 4.34 31.41 0.96 17.98

The quantitative results show that CB-STAR achieved the
overall best results for this example, outperforming the other
methods in all metrics except in ERGAS, where it performed
very similarly to FuVar (which yielded the best results for this
metric). CT-STAR, on the other hand, performed similarly to
STEREO and SCOTT, being limited by the more stringent
constraints on the image ranks. The visual inspection of
the results indicates that CB-STAR provides reconstructions
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Table V
RESULTS - ISABELLA LAKE

Algorithm SAM ERGAS PSNR UIQI time
HySure 2.41 8.97 21.19 0.73 3.52

CNMF 1.85 6.02 26.36 0.84 6.72

GLPHS 2 4.69 29.33 0.92 3.83

FuVar 1.73 3.65 32.28 0.97 197.95

LTMR 3.59 5.8 29.29 0.93 23.44

STEREO 3.22 4.85 30.86 0.95 1.02

SCOTT 2.36 4.68 30.76 0.96 0.16

CT-STAR 1.83 4.47 30.56 0.94 1.83

CB-STAR, init=interp 1.38 3.72 34.42 0.98 3.25

CB-STAR, init=pseudoinv 1.51 3.9 33.86 0.97 3.25

closest to the ground truth when compared to the remaining
methods. Although FuVar also provided good results, it
yielded a slightly worse representation of the road in the left
part of the Lockwood HSI, as well as more aberrations in the
color of the light-brown regions in the middle of the Isabella
Lake scene (which are not seen in the results of CB-STAR).
LTMR, STEREO and SCOTT, not being able to account for
variability, yielded slight color aberrations in the reconstruc-
tions, which are most clearly seen in the central part of the
Isabella Lake image, while CT-STAR produced significant
artifacts due to the stringent rank constraints. The estimated
factors P3pp	q are in agreement with the localized changes
observed in Fig. 2, particularly in the upper-central area of the
Isabella Lake image pair, which is subject to local illumination
changes. The computation times of the algorithms show a
large difference between that of FuVar and those of the other
algorithms, which indicates that CB-STAR achieves better
results at a significantly smaller computational complexity.

3) Significant variability: The remaining image pairs used
in this example were acquired over the Ivanpah Playa and over
Lake Tahoe area. The Ivanpah Playa image pair contained 80ˆ
128 pixels and was acquired on 2015-10-26 and on 2017-12-
17. For the Lake Tahoe region, we considered two different im-
age pairs (“A” and “B”), both with 100ˆ80 pixels, the first one
acquired on 2014-10-04 and on 2017-10-24, and the second
one acquired on 2014-09-19 and on 2017-10-24. A true color
representation of the HSI and MSI for this example can be seen
in Fig. 3. Due to the considerable difference between the ac-
quisition date/time of the HSI and MSI, significant differences
can be found between them. For the Ivanpah Playa images,
there are large variations between the sand colors in the central
part of the image. For the Lake Tahoe region, significant
differences are observed in both image pairs, with differences
in the color hues of the ground and of the crop circles for the
image pair A, and also a large change in the water level of the
lake in the image pair B. The quantitative performance metrics
of all algorithms are shown in Tables VI, VII, and VIII, while
the reconstructed images are presented in Figs. 7, 8 and 9.

The quantitative results show that CB-STAR achieved again
the overall best results for this example, outperforming the
remaining algorithms in most metrics, except in the SAM and
UIQI for the Ivanpah Playa HRI and in the SAM of the Lake
Tahoe A HRI. Moreover, there was a stronger gap between the
performance of the methods that consider variability and the
remaining algorithms. CT-STAR, although better than LTMR,

Table VI
RESULTS - IVANPAH PLAYA

Algorithm SAM ERGAS PSNR UIQI time
HySure 1.78 4.53 23.35 0.57 6.19

CNMF 1.24 3.22 26.65 0.78 16.36

GLPHS 1.59 3.17 26.84 0.82 5.97

FuVar 1.06 2.04 30.6 0.96 254.97

LTMR 37.25 1,951.53 10.97 0.46 30.53

STEREO 28.17 9,840 20.43 0.61 0.74

SCOTT 35.74 385.28 11.4 0.44 0.21

CT-STAR 1.49 3.44 26.09 0.71 0.18

CB-STAR, init=interp 1.22 1.84 31.56 0.95 71.47

CB-STAR, init=pseudoinv 1.51 2.14 30.3 0.92 48.94

Table VII
RESULTS - LAKE TAHOE A

Algorithm SAM ERGAS PSNR UIQI time
HySure 11.3 13.99 17.37 0.71 4.5

CNMF 8.79 14.59 18.37 0.71 12.1

GLPHS 5.65 7.45 24.08 0.91 4.65

FuVar 3.91 4.73 27.98 0.97 270.91

LTMR 34.45 1,357.42 13.8 0.52 24.94

STEREO 27.07 1,540 20.19 0.68 0.92

SCOTT 33.17 43,100 11.21 0.39 1.47

CT-STAR 5.41 5.25 27.25 0.96 2.88

CB-STAR, init=interp 4.25 3.78 30.1 0.98 63.71

CB-STAR, init=pseudoinv 4.7 3.94 29.67 0.98 31.6

Table VIII
RESULTS - LAKE TAHOE B

Algorithm SAM ERGAS PSNR UIQI time
HySure 7.17 19.08 13.62 0.35 4.36

CNMF 8.08 14.7 16.16 0.42 12.42

GLPHS 3.61 5.58 24.57 0.86 4.53

FuVar 2.58 3.38 28.86 0.96 342.39

LTMR 38.08 1,206.54 12.03 0.46 24.46

STEREO 28.18 6,220 19.99 0.63 0.75

SCOTT 38.45 2,960 10.87 0.31 1.42

CT-STAR 3.07 4.3 26.82 0.92 2.88

CB-STAR, init=interp 2.17 2.64 31.19 0.97 46.46

CB-STAR, init=pseudoinv 2.34 2.73 30.74 0.96 30.08

STEREO and SCOTT, performed significantly worse than CB-
STAR due to its stringent constraints on the image ranks. The
visual inspection of the results again indicates that CB-STAR
provides reconstructions closest to the ground truth when
compared to the remaining methods. Although FuVar also
provided good results (as it accounts for spectral variability),
the reconstructions by CB-STAR were closer to the ground
truth, as can be observed in the color shades of the upper part
of the Ivanpah Playa image and of the crop circles of the Lake
Tahoe A image, and especially in the overall colors in the
more uniform regions containing soil and water and vegetation
in the Lake Tahoe B image. However, FuVar results showed
slightly sharper edges in some regions (e.g., around the crop
circles in the Lake Tahoe images), which occurs due to the
use of a Total Variation spatial regularization. Nonetheless,
a spatial regularization can also be incorporated to the CB-
STAR cost function in (53) to achieve a similar effect. LTMR,
STEREO and SCOTT, on the other hand, produced significant
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artifacts in all reconstructed images. CT-STAR also produced
significant artifacts, which as in the previous example are due
to the stringent rank constraints, with reconstructions visually
worse than those of CB-STAR and FuVar. The estimated
factors P3pp	q were in close agreement with the variability
seen in the scenes, notably in the sand region of the central part
of the Ivanpah Playa image (which lies at the botton of a hill),
and in the regions near the lake in the Lake Tahoe A and B
images, which undergo variations in the water level. Moreover,
the overall amplitude of the variables was significantly larger
than in the previous example, in which the differences
between the images were more moderate. The computation
times of all algorithms were similar to those observed in the
previous example, except for that of CB-STAR, which was
higher since it underwent a larger number of iterations for the
data in this example. Nonetheless, the computation times of
CB-STAR were still considerably smaller than those of FuVar.

VIII. CONCLUSIONS

In this paper, we proposed a novel framework for
multimodal (hyperspectral and multispectral) image fusion
accounting for spatially and spectrally localized changes.
We first studied the general identifiability of the considered
model, which becomes more ambiguous due to the presence
of changes. Then, assuming that the high resolution image and
the variation factors admit a Tucker decomposition, two new
algorithms were proposed – one being purely algebraic (which
was computationally more efficient), and another based on
an optimization procedure (which allowed for more relaxed
specification of the multilinear ranks). Theoretical guarantees
for the exact recovery of the high resolution image were
provided for both algorithms. The proposed optimization-
based algorithm achieved superior experimental performance
in the presence of spectral and spatial variations between the
images, while also exhibiting a smaller computational cost.

APPENDIX A
OPTIMIZATION OF COST FUNCTION (54)

To solve (54), we consider a block coordinate descent
strategy (as in, e.g., [45]), which successively minimizes the
cost function in (54) with respect to each of the variables
GZ , BZ,i, i P t1, 2, 3u, while keeping the remaining ones
fixed. Let us denote by J

`

X |ΘztXu

˘

the cost function J in
which all variables but X are fixed. Note that we apply the
QR factorization after computing each of the factor matrices
Bι,j to constrain them to be unitary at all the iterations, as
performed in [45]. This normalization prevents convergence
issues by avoiding under/over-flow and keeping these matrices
well-conditioned. Starting from an initialization GZ , BZ,i,
i P t1, 2, 3u, this procedure is repeated for F inner iterations.

1) Optimizing w.r.t. BZ,i, i P t1, 2, 3u: To save space,
we present only the case where i “ 1. The extension to
i P t2, 3u is straightforward. Note that the cost function
J
`

BZ,1 |ΘztBZ,1u

˘

can be equivalently reformulated using
the mode-1 matricization as

J
`

BZ,1 |ΘztBZ,1u

˘

“
›

›Yh
J
p1q ´X2B

J
Z,1P

J
1

›

›

2

F

` λ
›

›Ym
J
p1q ´X3 ´X1B

J
Z,1

›

›

2

F
, (73)

Algorithm 3: Block coordinate descent to solve (54)
Input : Tensors Yh, X0, GZ matrices BZ,i,i P t1, 2, 3u, iterations F
Output: GZ matrices BZ,i,i P t1, 2, 3u

1 for i “ 1, . . . , F do
2 Minimize JpGZ |Θ

piq
ztGZu

q w.r.t. GZ ;

3 Minimize JpBZ,1|Θ
piq
ztBZ,1u

q w.r.t. BZ,1;

4 Minimize JpBZ,2|Θ
piq
ztBZ,2u

q w.r.t. BZ,2;

5 Minimize JpBZ,3|Θ
piq
ztBZ,3u

q w.r.t. BZ,3;
6 end

where matrices X1, X2 and X3 are given by

X1 “
`

BZ,3 b P 3BZ,2

˘

GZ
J
p1q , (74)

X2 “
`

P 2BZ,3 bBZ,2

˘

GZ
J
p1q , (75)

X3 “
`

P 3BΨ,3 bBΨ,2

˘

GΨ
J
p1qB

J
Ψ,1 . (76)

Computing the derivative of (73) and setting it equal to
zero results in the following expression:

λXJ
1 X1B

J
Z,1 `XJ

2 X2B
J
Z,1P

J
1 P 1

“ λXJ
1 pYm

J
p1q ´X3q `XJ

2 Yh
J
p1qP 1 .

(77)

This is a Sylvester equation that can be directly solved using
existing software with, e.g., the Hessenberg-Schur or the
Bartels-Stewart algorithms (see [46] and references therein).

2) Optimizing w.r.t. GZ: Cost function J
`

GZ |ΘztGZu

˘

can
be equivalently reformulated using the tensor vectorization as

J
`

GZ |ΘztGZu

˘

“
›

› vecpYhq ´X2 gZ
›

›

2

F

` λ
›

› vecpYmq ´ x3 ´X1 gZ
›

›

2

F
, (78)

where gZ “ vecpGZq is the vectorization of the core tensor,
and X1, X2 and x3 are given by

X1 “
`

P 3BZ,3 bBZ,2 bBZ,1

˘

, (79)

X2 “
`

BZ,3 b P 2BZ,2 b P 1BZ,1

˘

, (80)

x3 “
`

P 3BΨ,3 bBΨ,2 bBΨ,1

˘

vecpGΨq . (81)

The solution that minimizes (78) can be computed through
the normal equations, which can be written as

pλXJ
1 X1 `XJ

2 X2qgZ “ λXJ
1 pvecpYmq ´ x3q

`XJ
2 vecpYhq . (82)

As shown in [17], this set of equations can be alternatively
interpreted as a generalized Sylvester equation, for which
efficient solvers can be used.
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