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Structuring and destructuring effects of bending and
gravity. An analytical approach to axisymmetric capillary

distortions.

Gérard Gagneux1 and Olivier Millet2

LaSIE, UMR-CNRS 7356, Université de La Rochelle, avenue Michel Crépeau,

17042 La Rochelle cedex 1, France.

Abstract This theoretical work for practical purposes presents an original ap-
proach to the problem of gravity distortions affecting axisymmetric cap-
illary bridges under local bending stress. From the zero-gravity case
knowledge (Delaunay surfaces), a forecasting method is developed for
evaluating successively the weak or strong axisymmetric capillary dis-
tortions and sagging effects in the lower part. The main tool is to high-
light exact first integrals for the classical or generalized Young-Laplace
equations. These relationships ( actually conservation laws) are taken
advantage of to obtain all at once the exact expression of the varying
inter-particle force, quantified effects of flexural strength, numerical iter-
ative predictor-corrector methods to describe the distorted profiles and
the values for various new parameters of capillary bridge behavior in
gravity field. The method allows to identify some criteria specific to
measure the relative importance of various causes of distortions. In the
case of only bending effects, the true shape of the static bridges surface
is described by parametric equations generalizing a Delaunay formula;
the related Young-Laplace boundary value system is then solved as an
inverse problem from experimental data.

Keywords: Distortion of capillary bridges · Mean and Gaussian curvatures impact ·
Generalized Young-Laplace equation · Bending and gravitational effects
· Sag behavior.
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1 Preliminaries, scope and focus chosen for the topic

This study proposes a resolutely theoretical approach to the problem of gravity distortions
affecting axisymmetric capillary bridges. Roughly speaking, from a certain volume of liquid

1Corresponding author. Email address : gerard.maryse.gagneux@gmail.com
2Email address : olivier.millet@univ-lr.fr
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at some critical size, the guiding principe is based on measuring the relative importance
of gravitational forces and rival surface tension forces, under local bending stress. The
goal is to model the structuring and destructuring effects of gravity, altering the constant
mean curvature surfaces [8] and modifying the boundaries with dynamic phenomena of
contact angle hysteresis. From then on, the profile of the distorted bridges is described
by a generalized Young-Laplace equation, involving both mean and Gaussian curvatures,
according to the work developed by J. Gaydos et al. [10]. We therefore consider some
non-constant mean curvature surfaces resulting from a sag behavior.

1.1 A review of concepts about classical framework

Among various criteria signaling an established gravity regime, the capillary length λc de-

fined as λc =

√
γ

∆ρ g
(∆ρ is the difference in density of the two phases, g the gravitational

acceleration, γ the surface tension) is a characteristic length scale for an interface beyond
which gravity becomes important [11] ( the capillary length is around 2, 7 mm for clean
water and air interfaces at thermodynamic standard conditions, when γ = 72, 86 mNm−1

at 20◦ C). This reference value can be estimated by equating the Laplace pressure
γ

λ
and

the hydrostatic pressure ρgλ at a depth λ in a liquid of density ρ submitted to earth’s
gravity g ([11], p. 33, Eq. 2.1).

This distance is generally of the order of a few mm, even for mercury-air interfaces (in fact,
∆ρ and γ = 486, 5 mNm−1 at 20◦ C are both large in this case3), except of course to be
able to use two immiscible fluids with similar densities in the way of [15]. We can also [6] use
water in a castor oil bath (density: 961 kg/m3) [20]. The value of γ is considered constant
for moderately curved interfaces at a given temperature, i.e. curvature-independent ([10],
p.9).

The Eötvös or Bond number given by B0 =
∆ρ g L2

γ
, i.e. B0 =

L2

λ2
c

, where L stands

for a characteristic length of the bridge, is a dimensionless variant. Consequently, the
B0 values greater than 1 indicate the growing importance of gravity [16]. However, as
a limitation on reliability, these criteria do not explicitly take into account the effect of
bridge volume and the shape of the bridge via a mean curvature scale [21]. For a finer
level of analysis, it is certainly necessary to establish a 3d map involving a concept for
dimensionless bridge volume, a mean curvature scale and the Bond number B0 in order to
represent the occurrence of the different capillary regimes [1]. That identifies the need to
increase our knowledge on experimental research of mechanisms triggering distortion: new
phenomenological behavior laws are perhaps to be established for lack of a well-consistent
theory about the gravitational distortion of liquid bridges. Simulations of shearing of
capillary bridges are studied in [29], see also [30]. Note, in order to study all aspects of

3”it is a matter of experience that a droplet of mercury, with a very high surface tension, will be more
nearly spherical than a drop a water of comparable size” [2], p.62.
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the matter from the theoretical or applicative point of views, that the bending phenomena
due to evaporation can have effects distorting the original constant mean curvature bridge
shape [7], [31], [32],

The presentation first introduces, in a sense to be specified, a study of small capillary
distortions under weak effects of gravity; we define, under restrictive conditions, a notion
of mathematical perturbation for the resulting quantitative evaluations. These restrictions
of use are not a crippling disadvantage because, as a matter of fact, the classical Young-
Laplace theory is restricted to moderately curved liquid-fluid interfaces [10], p.vi, 25.

1.2 The original aspects of this theoretical approach

The second aspect, in practice covering a wide area, concerns the strong distorsions for
which the bending effects4 are modeled by an additional curvature-related term: the in-
troduction of CK , a multiplier coefficient of the Gaussian curvature K, at the dimension of
a force and standing for the bending stress. Under appropriate boundary conditions, the
shape of an interface between two non-solid substances is then described by the so-called
generalized Young-Laplace equation, thus involving both mean and Gaussian curvatures.
Indeed structurally analogous to the Gullstrand equation of geometrical optics, the result-
ing equation, at the downward vertical measurement x linked to the value ∆p0 at x = 0,
comes in the following form [4], [10], [23] that will be detailed more specifically:

γ

(
1

ρc
+

1

N

)
+ CK

1

ρc N
= ∆p0 −∆ρ gx ,

where the force CK divided by the area ρcN stands for the bending stress, ρc and N for
the principal radii of curvature (evaluated algebraically, positively when the curvature is
turned into the interior of the capillary bridge) and the pressure deficiency is ∆p0 at x = 0.
Thenceforth, a major difficulty is to estimate the influence of CK on two determinant data:

the modified contact angles and the spontaneous curvature
∆p0

γ
at x = 0 after distortion.

It is also reported [27] that in electro-capillarity, at the nanoscale, the presence of electric
fields leads to an extra stress term to be added in the Young-Laplace equation.

As expected, the length
|CK |
γ

that occurs in the exact formulas that we will establish allows

in a certain way to assess the relative importance of bending effects. In particular, for

this purpose, the smallness or not of the dimensionless number
|CK |
2γY ∗

appears significant,

Y ∗ being the gorge radius of the distorted bridge. In the form
π |CK |
2πγY ∗

, this number

appears as the quotient of the contributions of the bending and liquid surface tension
forces at the distorted bridge neck. Strictly speaking, the formulas obtained retain the

4bending the interface, i.e. changing its curvature, in a first approach.
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value
π |CK |

2πγY ∗ −∆p0πY ∗
2 as the most accurate criterion, taking then into account the

contribution of the hydrostatic pressure.

It will also be noted that, in respect of certain theoretical issues, a capillary bridge may
be considered as an optic system because it is composed of two interfaces [23].

The main tool is to highlight, in both cases, an exact first integral for the Young-Laplace
equations, classical or generalized. These relationships, which are actually total energy
conservation laws, are taken advantage of to obtain the theoretical expression of the varying
inter-particle force, quantified effects of flexural strength. Numerical iterative predictor-
corrector methods are developed to get both the consistent assessment of distorted profiles
and values for various new parameters of capillary bridge behavior in gravity field. When
considering the only bending efffects, the method allows to easily obtain a parameteriza-
tion of the profile by generalizing together a Delaunay formula related to constant mean
curvature surfaces [5], p.313 and the resolution method of the Young-Laplace equation as
an inverse problem developed in [8].

2 Analytical evaluation of small capillary distortions by weak
gravity effects

Consider, first in the classical theory, an axisymmetric vertical liquid bridge (i.e. the
x− axis is vertical and ∆p0 is the pressure difference through the interface at the neck
level x = 0). I is an open interval on which we can define by Cartesian representation,
say x → y (x), a portion of the Delaunay roulette strictly containing the convex profile
of the bridge considered without taking into account the gravity (a zero or low gravity
environment) [8]. So the shear stress is zero in the y direction and at first, we place
ourselves in the relevant cases in which y” (0) > 0.
Taking then, if necessary [9], [11], [18] into account the effects of gravity, via an over-
pressure, results conventionally in the modified nonlinear differential equation for the
distorted profile x → Y (x), according to the volumic mass densities difference between
the liquid and the surrounding fluid

∆ρ = ρint − ρext

a quantitated balance between the surface tension and gravity forces:

Y
′′

(x)

(1 + Y ′2 (x))3/2
− 1

Y (x)
√

1 + Y ′2 (x)
= −∆p0

γ
+
g ∆ρ

γ
x(1)

=: H +Bx , x ∈ I.

As the only parameter of the disturbance, such an apparent density formula ∆ρ = ρint −
ρext can be discussed but, as a first approximation, remains conventional although the
bridge fluid is not completely embedded in the surrounding fluid as for a wall-bound
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pendant drop without frictional contact constraints on the low boundary, possibly strongly
distorting 5. In continuum mechanics, this equation is obtained in the absence of motion
when gravity is the only body force present. It is counterintuitive that the sign and the
order of magnitude of the Gaussian curvature do not come into consideration for defining
the distorted shape of the free capillary surface. This implicitly assumes that bending
effects are neglected and that we are de facto limited here to studying rather moderate
distortions. It is presumably a question of finding a balance between what is too simple
and therefore necessarily false and the too complicated, unusable in the context of an
experimental validation. By repeating the terms of [10], p. 33, ”it is apparent that the free
energy representation appropriate for nonmoderately curved capillary systems produces a
modified form of the Laplace equation, containing the bending moment and the Gaussian
curvature”. The question of bending and its impact on the deformation will be thoroughly
discussed below.

Obviously, predicting the shape of a bridge after distortion is more complicated than mod-
eling the shape of a distorted bridge when observing in situ [24], [25], except at ignoring
dynamic phenomena of contact angle hysteresis or at reporting a reliable theoretical model
about this subject; the discrepancy (but not its sign) between the contact angles before
and after the distortion is difficult to predict. Let us observe in a preliminary way a rather
simplified situation: an adherent drop to a vertical wall under non-slip condition without
bending effects; when the free capillary surface is representable via a function η = η (x, y),
(x, y) ∈ D ⊂ R2, the doubled mean curvature is expressed using the outward-pointing unit
normal; the mathematician is immediately confronted with a stationary nonlinear prob-
lem of the following divergential type (a second order elliptic partial differential equation
involving a monotone operator in Banach space [12]; the ”natural” framework is the space
of functions of bounded variation (the weak first partial derivatives are Radon measures)
and the Caccioppoli sets [13], i.e. the BV functions and sets of finite perimeter):

−div

 ∇η√
1 + |∇η|2

 = H +Bx, η = η (x, y) , (x, y) ∈ D ⊂ R2,

an inverse problem, H being here an unknown spontaneous value to be identified by
the data of an additional boundary condition as in [8] (see also the notion of sentinel
introduced by J.-L. Lions [14] and [17] for mean curvature estimation methods).

The appropriate strengthened boundary conditions to determine the pair (H, η) are of the
following type with varying contact angles δ, δ = δ (x, y) along the triple line ∂D [28]:

Dirichlet: η = 0 on ∂D and Neumann:
∇η.n√

1 + |∇η|2
= cos δ on ∂D.

5See in [6], p.780, figure 15, a stable pendent water drop in a bath of castor oil exhibiting inflection on
the profile, also neck and bulge (artificial low gravity: ∆ρ = 39 kg/m3).
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The purpose of this study is to predict the evolution of a liquid bridge under the gravity
effect. The parameter H to recognize plays a rather important role because knowing it
allows to formulate mathematically a well-posed problem and physically or geometrically,
to obtain the value of the mean curvature of the distorted bridge at the level of reference
x = 0. The essential difficulty of the recognition problem which one considers here resides
in the fact that the usual boundary conditions (contact points, contact angles) are not
known a priori but result from the final equilibrium, with possible canthotaxis effects.

Given this theoretical difficulty and the improbable hope of getting explicit solutions (see
[3] for new recent perspectives: the Plateau problem from the perspective of optimal
transport), we define by pragmatism in a first approach, under restrictive conditions, a
notion of local mathematical perturbation.

Let us note from the outset that the method used here can only have a strictly local
character (in a restricted neighborhood of the neck, under strong conditions, for the
further developments of the text in order to evaluate the position of the moved bridge
neck).The method cannot be iterated to cover a given domain, due to the local nature of
the condition . About that, reporting a fine remark from one of the reviewers, we indicate
that the method cannot have a global character by the fact that the equation is not
autonomous (i.e. here, by taking into account the gravity effects, the resulting nonlinear
differential equation presents an explicit x dependence after nondimensionalizing the
lengths).

We then use a two-steps splitting method.

The splitting method separates the original differential equation into two parts, each part
having a specific role to play alternately by expressing different physics (here, H and B),
in such a way that each sub-problem is simpler to deal with.

We first examine the influence of gravity on the mean curvature of the free surface at the
level x = 0 i.e. on H, H = H (B).This instantaneous mean curvature of the distorted
bridge at level x = 0 is an implicit unknown of the problem; so, in a first step, we
need to know the link between gravity effect and modification of the mean curvature at the
location of the neck without gravity. Consequently, in a well-posed problem, there must
be an additional constraint which ties the two quantities together so that the perturbed
shape can be defined uniquely. For this, we could use theoretically a first integral of
the (H,B))-Young-Laplace differential equation whose exact formulation in order to get a
matematically closed problem is proved independently (section 3) and which constitutes
a principle of conservation. However, this procedure turns out to be complicated to carry
out in practice, what remains subjective....

So, in the present approach; we first examine the resulting local distortion effect at the
level x = 0 of the profile, H being transiently considered invariant: all the details are
provided in section 4 on moving the bridge neck (X∗, Y ∗), explicit determination of the
radius RS (0) of the osculating circle at level x = 0.
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This makes it possible to estimate geometrically the unknown value H (B) via a recog-
nition problem; we obtain then a value of the spontaneous value of H in equation (1)
under the following formulation (details in section 6):

Hg = H (B) ≈ 1

RS (0)
− 1

Y ∗
−BX∗.

Secondly, we take into account the local resulting perturbation created by this new value.

The result then is stated as follows:

To get a more accurate assessment of the distortion effects are introduced the representa-
tive quantities of the profiles, with or without gravitational effect,

Yg = YHg ,B , y = YH,0 ,

where Hg is the readjusted spontaneous mean curvature, observed after distortion effect
at the level x = 0, to be introduced in differential equation (1).

It is then easily verified that we obtain, more precisely in this modeling, repeating the
previous calculations for step 1, the correcting term for the asymmetrical distorted profile
on an appropriate open I restricted around the level x = 0:

Yg (x) ' y (x) + (Hg −H +Bx) y2 (x) |cosφ (x)| , x ∈ I,

= y (x) + (Hg −H +Bx)
2ay3 (x)

|y2 (x) + εb2|
, ε = ±1,

where, by estimate, Hg =
1

RS (0)
− 1

Y ∗
−BX∗,

Yg (0) ' y∗ + (Hg −H) y∗2 , Y ′g (0) ' By∗2.

mathematical form where, more precisely,

Y = YH,B, y = YH,0 (profile curve of a Delaunay free suface),

φ (x) is the angle made at zero gravity by the tangent vector to the meniscus with the
x−axis at (x, y (x)),

the case ε = 1, a > b > 0 (semi-axis of the associated conic) corresponds in zero gravity to
an arc of Delaunay elliptic roulette (meridian of onduloid) whereas the case ε = −1, a >
0, b > 0 corresponds to an arc of hyperbolic roulette (i.e. a meridian of nodoid) with
specifically:

y∗ =
√
a2 + b2 − a ≤ y (x) < b, x ∈ I, (cf. [8] for explicit details, classification of the

meridians and formulas).
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These corrective formulas under restrictive conditions linking the validity interval I around
the level x = 0 and the value of B, are valid if (this concept necessarily refers to a
justification a posteriori):

(2) ‖η‖L∞(I) � y∗ ,
∥∥η′∥∥2

L∞(I)
� 1,

∥∥∥η′′∥∥∥
L∞(I)

� H +
1

y∗
= y

′′
(0)

which is always locally possible for B small enough since the corrective term of distortion
is the product of B by a function of class C2 on a compact set I, independent of B. That
creates a compatible specific reference set {(B, I) , I = IB,y∗ } for a local study of the
gravity distortion, here therefore weak, in the neighbourhood of the neck. This partial
information is also useful for what follows to obtain very technical a priori estimates in
the immediate neighbourhood of the level x = 0.

However, the requirement η′ (0)2 = B2 y∗4 � 1, i.e.

(
y∗

λc

)4

� 1, shows the limits

of this perturbation method and the need to change the paradigm to reach the general
case. The exceptions are the liquid bridges with relatively large volumes and immersed in
a second immiscible fluid with almost the same density (as liquid bridges of a di-n-butyl
phthalate/liquid paraffin mixture suspended in water [15], silicone oil, castor oil and water
[20]).

The proof of step 1 is given in the sections ”Details on moving the capillary bridge
neck” and ”On the use of predictor–corrector schemes to describe capillary distortions by
gravity effects” without there being a vicious circle.

Principle of the proof for step 2

Setting Y = y + η, it comes from differential equation (1), for x ∈ I,

y
′′

(x) + η
′′

(x)(
1 + (y′ (x) + η′ (x))2

)3/2
− 1

(y (x) + η (x))
√

1 + (y′ (x) + η′ (x))2
= Hg +Bx.

Assumptions on validity of the approximation argument (2) will afford to neglect certain
terms and approximate as follows:

y
′′

(x)(
1 + (y′ (x))2

)3/2
− 1

(y (x) + η (x))
√

1 + (y′ (x))2
= Hg +Bx.

According to (2), we may as well assume

1

(y (x) + η (x))
' 1

y (x)
− η (x)

y2 (x)

hence, for x ∈ I,
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y
′′

(x)(
1 + (y′ (x))2

)3/2
− 1

y (x)
√

1 + (y′ (x))2
+

η (x)

y2 (x)
√

1 + (y′ (x))2
= H +Bx.

Using the Young–Laplace equation corresponding to x→ y (x) on I, we observe that

η (x) = (Hg −H +Bx) y2 (x)

√
1 + (y′ (x))2 , x ∈ I.

The canonical nonlinear first order differential relationship (first integral) characterizing
the Delaunay surfaces obtained by rotating the roulettes of the conics implies that [8], [9]
:

1 +
(
y′ (x)

)2
=

4a2y2 (x)

(y2 (x) + εb2)2 , x ∈ I.

N.B. The object of the splitting method is also to be iterated and therefore, from the
first estimated value of H(B), we can reevaluate the position of the distorted neck and the
local curvature of the distorted profile via the osculating circle at x = 0 and so deduce by
a new iteration on the Young-Laplace equation a refined value of H(B).

As an example of a somewhat academic illustration, it is argued that, around the neck,
the distortion of a catenoidal minimal surface whose equation for the meridian is

y (x) = y∗ cosh
x

y∗
, the x-axis being vertical, H = 0 by definition,

is then given by the formula6, on a suitable interval I, with an asymmetric corrective term:

Yg (x) ' y∗ cosh
x

y∗
(1 + y∗ (Hg +Bx)) , x ∈ I.

We used the specific property that in this case

y (x) cosφ (x) = y∗ at any point (x, y (x)) .

Indeed, in more detail, we get successively, by easy calculations,

RS (0) ≈ y∗
√

1 +B2y∗4

X∗ ≈ −By∗2RS (0) , Y ∗ ≈ y∗ − 1

2
RS (0)B2y∗4,

hence the readjusted values after the splitting method :

6As expected, note that if B = 0, then Hg = H = 0.
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Hg = H (B) ≈ 1

RS (0)
− 1

Y ∗
−BX∗

Yg (x) ' y∗ cosh
x

y∗
+ (Hg +Bx) y2 (x) |cosφ (x)| , x ∈ I,

On the volume preservation condition. When considering, for simplicity, such
axisymmetric liquid bridges between two parallel identical plates, the axis being vertical,
we note that, by this method, the difference in volumes induced by the approximation is
controlled by the relationship, where Y = YH,B, y = YH,0

0 ≤ Vol (Y )− Vol (y) = O
(
B2

0

)
, (Bachmann-Landau notation)

when the dimensionless Bond number B0 (also called the Eötvös number), here defined
by B0 = L2B, is such that7 B2

0 � 1 , so this concerns a static equilibrium rather weakly
dependent on gravitational forces.

2.1 Remark on the impact of the mean curvature variations

From a practical point of view, the mean curvature recognition in situ at the distorted
neck, i.e.Hg , will be the subject of a subsequent paragraph; by taking advantage of an
exact first integral for the modified Young-Laplace equation that we will explain, we will
provide an expression usable by the observer (parameter identification).

Various numerical adaptative refinements to evaluate and predict the deformation
behavior can be easily obtained in the neighborhood of the neck which would be observable
and measurable without distortion effect (bridges exhibiting strictly negative Gaussian
curvature).

The following example given serves as illustration only and is not intended to be exhaustive:

we consider locally at the theoretical neck without gravity (at x = 0) that a distortion
occurred, represented as

Yg (x) ' y∗ +
x2

2
y” (0) + η (x) for sufficiently small values of x,

where y” (0) =
1

y∗
+H , y” (0) > 0.

Note that solving the equation : xy” (0) + η′ (x) = 0 would provide an estimate of the
abscissa for the moved neck.

It follows, by taking up and deepening the previous steps, that

η” (x) +
1

y∗2
η (x) = (Hg −H +Bx) in a near vicinity of x = 0,

7Where L is a characteristic length
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ordinary differential equation whose general solution, depending on two arbitrary scalars
measuring lengths, is given by

η (x) = y∗2 (Hg −H +Bx) + κ sin
x

y∗
+ ρ cos

x

y∗
,

and so are introduced, for possible numerical readjustments, two corrective parameters κ
and ρ dimensioned to a length such that

Yg (0) ' y∗ + (Hg −H) y∗2 + ρ , ρ = ρ (y∗, B) ,

Y ′g (0) ' By∗2 +
κ

y∗
, κ = κ (y∗, B) .

The validity of the method is based on the (rather small) value of the neck radius y∗; the
proposed result is physically relevant under the conditions:

By∗2 +
κ

y∗
> 0,

(
By∗2 +

κ (y∗, B)

y∗

)2

� 1.

3 An exact energy invariant related to distorted bridges
with neck, influenced by Earth gravity

3.1 A first integral of the (H,B) −Young-Laplace equation

We still find ourselves in the framework and notations of the previous subsection, con-
cerning essentially any bridge with strictly negative Gaussian curvature K (the product
of the two principal curvatures). The free surface is then saddle shaped.
It is particularly proposed to provide a theoretical justification for an extension of the
conventional gorge method in order to evaluate the interparticle capillary force under
gravitational perturbation at the neck level as a special case of an energy conservation
principle. Unlike the situation of axisymmetric bridges with constant mean curvature, the
capillary force is no longer constant at all points of the distorted profile. The analytic
expression of the interparticle force Fcap (x) is given with exactness at the generic level
x; it can be used by direct calculation from observed data and takes into account the
gravitational forces versus the upward buoyancy forces.
For other approaches, we can consult the Russian authors Myshkis, A. D., Babskii, V. G.,
Kopachevskii, N. D., Slobozhanin, L. A., and Tyuptsov, A. D. (2012). about low-gravity
fluid mechanics.[19].

First, we introduce (X∗, Y ∗) the coordinates of the moved neck (i.e. the point such that
Y (X∗) = Y ∗, Y ′ (X∗) = 0) and the two branches x+ and x− of Y −1 in the set-theoretical
sense, respectively defined on {x ≥ X∗} and {x ≤ X∗}, subsets of the vertical x− axis,
with the convention that x+ (Y ) ≥ 0 if Y ≥ Y ∗, x+ (Y ∗) = 0 in the Cartesian coordinate
system linked to the neck level of the distorted bridge.
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Keep in mind that the capillary bridge profile loses its symmetry: the gravitational per-
turbation modifies the localization of the contact points and hence, also the domain of
definition for the modified nonlinear differential Young-Laplace equation; the associated
boundary value problem does not admit locally symmetric solutions that are physically
relevant.
According to the previous results, the mass of water is displaced toward the lower solid
and in consequence, the real gorge radius is lower, i.e. more precisely,

X∗ < 0, Y ∗ < y∗ since Y ′ (0) ≈ B y∗2 is strictly positive.

Moreover, the upper boundary of the liquid thus slides over a wetted part of the solid, while
the lower part spreads over a dry part, which should substantially affect the resulting values
of the wetting angles; as is well known, the observed contact angle hysteresis depends on
whether the liquid is advancing or receding on the surface. Let us add that the capillary
phenomena are known to be highly sensitive to all types of microscopic non-uniformity
(canthotaxis effects).

The main result is stated as follows:

Whatever the shape taken by the distorted axisymmetric bridge, we have in relation to
the case where the effects of gravity are neglected, the following relationship which is a
generalization of an energy conservation principle:

along each concerned branch of the profile, the two following functional expressions are
constant and equal, at the dimension of a force,
for any x ≥ X∗, H being rigorously evaluated as the mean curvature at the neck of the
distorted bridge:

F+ = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy

)
and, if x ≤ X∗,

F− = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x− (y) ydy

)
.

Moreover, the common value is

F+ = F− = 2πγY ∗ + πγHY
∗2

= −π∆p0Y
∗2 + 2πγY ∗,

∆p0 being evaluated, strictly speaking, at the neck of the distorted bridge.

The demonstration will be established at the end of the next subsection, after highlighting
the important practical consequences of this abstract result.
These analytical exressions are generalizations of formulas obtained in [8], equation 14.
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3.2 The general expression of the interparticle capillary force

The previous relationship opens the way for an extension of the conventional gorge
method in order to evaluate the interparticle capillary force at the neck level. This result
accurately quantifies the effect of gravitational forces only by the impact of the reduced
neck diameter. These formulas are independent of the experimental device (horizontal
plates, spheres, etc.) insofar as the distorted bridge keeps a saddle-shaped free capillary
surface.
Indeed, the general analytical expression of the interparticle capillary force at the level x
on {x ≥ X∗} for illustration, H being rigorously evaluated as the mean curvature at the
neck of the distorted bridge,,is

Fcap (x) = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x)

)

+ 2πg∆ρ

(∫ Y (x)

Y ∗
x+ (y) ydy − x−X∗

2
Y 2 (x)

)
and therefore, conjugate with the expression of the first integral, becomes in practice
immediately usable, by the various mathematical relationships:

Fcap (x) = 2πγY ∗ + πγHY
∗2 − πg∆ρ (x−X∗)Y 2 (x) .

In other words, on {x ≥ X∗}, at the generic abscissa x, the influence of gravity is thus
explicitly reflected by the weight of the right cylindrical column of radius Y (x), height
(x−X∗) and apparent density ∆ρ, but also implicitly by the modified profile representa-
tion x→ Y (x). Consequently,

Fcap (X∗) = 2πγY ∗ + πγHY
∗2,

Fcap (x) = Fcap (X∗)− πg∆ρ (x−X∗)Y 2 (x) , x ≥ X∗,
Fcap (0) = Fcap (X∗) + πγBX∗Y 2 (0) , X∗ < 0,

≈ Fcap (X∗) + πγBX∗y∗2.

In addition to affecting the lateral surface area of the bridge (denoted by |Σ (d)|, d as
distorted by gravity) and the corresponding capillary energy, distortion causes a surface
energy interchange by the wetting modifications of the solids boundaries:
the contact lines are subject to a frictional force generating a dissipation mechanism;
hence, quantities |Λi| (d)i=1,2 , the area of the wetted region on solid Si, are among the
unknown of the problem and the capillary surface energy functional at prescribed volume,
taking into account the free boundaries contribution, is to be transcribed in the following
revised formulation:

13



Efrictional (d) = −γ (cos δ1 (d) |Λ1 (d)|+ cos δ2 (d) |Λ2| (d)) , δi (d) ∈ [0, π] ,

Ecap (d) = γ (|Σ (d)| − cos δ1 (d) |Λ1| (d)− cos δ2 (d) |Λ2| (d)) ,

where δi (d) are the contact angles values, after distortion effects.

The marked distortion of a capillary bridge significantly alters its shape, its geometry and
stability properties (varying main curvature ) and its resulting capillary force.

Limiting us to the interesting case of the distortion of a nodoid with a convex meridian in
{y ≥ 0} (i.e. intrinsically, with negative Gaussian curvature) and assuming that H varies
very little, we observe that the positive capillary force decreases weakly at the moved neck
under the effect of gravity, due to the decrease of the gorge radius. At the level x, on
{x ≥ X∗}, the force decreases continuously under the effect of the apparent weight of the
cylindrical liquid column with radius Y (x) and height (x−X∗).
The integral involved in the expression of F+ and F− is linked to the external volume of
the figure of revolution generated by the rotation about the x− axis of a profile arc from
the moved neck, preparatory term to transcribe the Archimedes’ principle. Note that this
would be the internal volume, counted negatively, for the observation of a hypothetical
convex bridge.
Despite appearances, this last expression of F+ and F− = 2πγY ∗ + πγHY

∗2 depends on
B since (X∗, Y ∗), the coordinates of the neck, depend on B.

The key to understanding how to get this first integral is to rewrite locally the (H,B)-
modified nonlinear differential Young-Laplace equation in the following local form, sep-
arately in the two branches related to {x ≥ X∗} and {x ≤ X∗}, H being rigorously
evaluated as the mean curvature at the neck of the distorted bridge:

− 1

Y

d

dY

Y√
1 + Y ′2

= H +B x± (Y ) .

Hence, by quadrature, quantities F+ and F− are constant respectively on {x ≥ X∗} and
{x ≤ X∗}; write F+ = C+ and F− = C−.
A continuity argument at (X∗, Y ∗) implies

C+ = C− = 2πγY ∗ + πγHY
∗2.

The demonstration lends itself to various easy generalizations, especially when a surface
inflection exists and the Gaussian curvature changes sign.

3.3 The mean curvature recognition in situ at the distorted neck

The visual observation of a distorted capillary bridge allows by some geometric measure-
ments to calculate analytically, at any point, the expression of the mean curvature (here
varying, a priori unknown according to the formulaH+Bx in the Young-Laplace equation,
H being a spontaneous value and not a known data).

14



For this purpose, we will take advantage of the exact first integral.

It is assumed that by a photographic process on the meridian profile, we could measure
the coordinates of the neck (X∗, Y ∗), of the lower point (Xl, Yl) and of the midpoint whose
ordinate is 1

2 (Y ∗ + Yl), more precisely the point
(
x+
(

1
2 (Y ∗ + Yl)

)
, 1

2 (Y ∗ + Yl)
)

and φl ,
the angle made by the tangent vector to the meniscus with the x−axis at the lower point.
According to the exact first integral applied on the interval [Y ∗, Yl], we note that

Yl cosφl +
H

2
Y 2
l +B

∫ Yl

Y ∗
x+ (y) ydy = Y ∗ +

H

2
Y
∗2.

Therefore

H = 2

Y ∗ − Yl cosφl −B
∫ Yl

Y ∗
x+ (y) ydy

Y 2
l − Y

∗2
.

Simpson’s rule will provide an adequate approximation to the exact integral. This is valid
for very small ”discretizations”; namely, when the distance between the neck and the
”lower point” |Y− (I)− Y ∗| � 1. In this case, it comes more precisely, so immediately
usable: ∫ Yl

Y ∗
x+ (y) ydy ≈ Yl − Y ∗

6

(
X∗Y ∗ + 2 (Y ∗ + Yl) x+

(
Y ∗ + Yl

2

)
+XlYl

)
.

Note here that the method is easily generalized when subsequently, bending effects will
also be considered. The corresponding relationships are then written:

Yl cosφl +
H

2
Y 2
l −

CK
2γ

cos2 φl +B

∫ Yl

Y ∗
x+ (y) ydy = Y ∗ +

H

2
Y
∗2 − CK

2γ
.

H = 2

Y ∗ − Yl cosφl −
CK
2γ

sin2 φl −B
∫ Yl

Y ∗
x+ (y) ydy

Y 2
l − Y

∗2
.

4 Details on moving the capillary bridge neck

A question of both practical and theoretical nature is interesting (generalized gorge method,
initialization of a numerical scheme) for any bridge with strictly negative Gaussian curva-
ture: can we give a fine estimate for the position of the moved neck ? In particular,
for the different differential problems related to the determination of the two disym-
metric branches of the distorted meridian, two boundary conditions are then available:
Y (X∗) = Y ∗, Y ′ (X∗) = 0.
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It suffices for this to consider the osculating circle to the disturbed profile at the point
(0, Y (0)) for which we have fairly accurate information:

Y (0) ≈ y (0) = y∗ (the gorge radius without gravitational perturbation), Y ′ (0) ≈ B y∗2

and a fine value of the radius of curvature, as will be shown. Let us also observe that the
point (0, Y (0)) is certainly a point very close to the moved neck as soon as the slope B
y∗2 is there very weak (a slenderness criterium).

Indeed, concerning the osculating circle, the radius of curvature RS (0) is(
1 + Y ′2 (0)

)3/2
Y ” (0)

i.e. via the modified nonlinear differential Young-Laplace equation (1)

RS (0) =

(
1

Y (0)
√

1 + Y ′2 (0)
− ∆p0

γ

)−1

'

(
1

y∗
√

1 +B2y∗4
+H

)−1

.

Taking here as a first approximation8 the known value of H at zero gravity, it is then easy
to evaluate the coordinates of the center of curvature

C (0) = (xC (0) , yC (0))

in the quadrant {x < 0, y > 0}, on the normal line at (0, Y (0)) (the slope is then − 1

By∗2
);

consequently, by considering the point of this osculating circle with vertical tangent and
smallest ordinate, (X∗, Y ∗) the coordinates of the moved neck become

X∗ ≈ xC (0) = − By∗2RS (0)√
1 +B2y∗4

,

Y ∗ ≈ yC (0)−RS (0) = y∗ −RS (0)

(
1− 1√

1 +B2y∗4

)
.

Moreover, if B2y∗4 � 1 (dimensionless relationship), it can therefore be considered that

X∗ ≈ −By∗2RS (0) ,

Y ∗ ≈ y∗ − 1

2
RS (0)B2y∗4.

8a subsequent iteration will clarify the spontaneous value in gravity field
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The displacement of the bridge neck can therefore then be evaluated by the following
elementary relationships in a first approach:

X∗ < 0, Y ∗ < y∗,
Y ∗ − y∗

X∗
≈ 1

2
By∗2 ≈ 1

2
Y ′ (0) , Y ′ (X∗) = 0.

5 Remarks on distortions of cylindrical liquid bridges

In the rather theoretical case of a right cylindrical bridge (surface of zero Gaussian cur-
vature), the same methods lead to considering the perturbed profile according to the
formula:

Y (x) ' − 1

H
+

B

H2
x+ κ sinHx+ ρ cosHx, x ∈ I,

where

H < 0, y∗ = − 1

H
, ρ 6= 0,

the relationship between κ and ρ (both dimensioned to a length) and the data H, B being
partly specified by the two realistic conditions that the liquid volume is constant and the
mass of water is displaced toward the lower solid; this last constraint would imply that

Y ′ (0) ≈ B

H2
+ κH > 0.

To fix ideas, assume (stability criterion) that the height h is less than one-half of the bridge
circumference (i.e. h |H| < π).

This result is obtained by linearizing the modified differential Young-Laplace equation in

the following form, where Y (x) = − 1

H
+ η (x):

η” (x)− 1

− 1

H
+ η (x)

= H +Bx, if
∥∥η′2∥∥

L∞(I)
� 1,

and then, if furthermore, |H| ‖η‖L∞(I) � 1,
it follows that

η” (x) +H2η (x) = Bx, x ∈ I,

equation whose general solution is given by

η (x) =
B

H2
x+ κ sinHx+ ρ cosHx,
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It nevertheless remains that there is a free boundary problem to solve when developing a
predictive approach, with strong sensitivity to boundary conditions!

The complete calculations are particularly simple in the case of a stable cylindrical bridge
stretched between horizontal parallel plates.Thenceforward

|x| ≤ h

2
<

π

2 |H|
.

Some methodological elements are developed to determine the parameters κ and ρ. Several
scenarios are possible depending on the evolution of the contact angles in the forward and
backward movements.

The relationship traducting the fact that the enclosed liquid volume is constant implies
that ρ is necessarily non-zero (profile without any symmetry) and the point (ρ, κ) lies on
an ellipse, in the explicit form; therefore the coefficient ρ marks the actual shifting from
the point

(
0,− 1

H

)
to the point

(
0,− 1

H + ρ
)
. It will be seen below that this is a receding

point.

The modified profile has an inflection point at x =
1

|H|
arctan

ρ

κ
if κ 6= 0 (under this

condition, a surface inflection exists and the Gaussian curvature changes sign). The value
κ = 0 does not give rise to a possible point of inflection due to the prior criterion of
stability h |H| < π.

Roughly speaking, the perturbed profile then vaguely resembles that of a suitable unduloid
surface portion with one inflection point but here, the deformed surface of revolution does
not have a constant mean curvature. Gaussian curvature changes from zero to strictly
positive values under the inflection point and strictly negative above, due to gravity effects.
Therefore, the bending effects can be considered within the general framework that will
be developed later.

It is also possible to choose the parameters κ and ρ so that the equilibrium configuration
satisfies the boundary condition of 90◦ contact angle with the lower plate (homogeneous
Neumann boundary condition). This gives

B

H3
+ κ cosH

h

2
− ρ sinH

h

2
= 0.

The same contact angle with the upper plate can then no longer be imposed a priori since

the value of Y ′
(
−h

2

)
is then necessarily

Y ′
(
−h

2

)
= 2ρH sinH

h

2
6= 0 as ρ 6= 0 and 0 < h |H| < π

according to the stability criterion for the right circular cylinder.
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The advancing contact angle would increase in moving and the receding contact angle

would decrease. The observation of a receding contact angle at x = −h
2

should realistically

impose that

Y ′
(
−h

2

)
< 0

and in consequence, ρ < 0, which would lead to the existence of a local neck in the upper
half of the distorted bridge, according to the theorem of the intermediate value applied to
Y ′ on

[
−h

2 , 0
]
.

According to the second Pappus’s centroid theorem, the geometric centroid ordinate of
the bridge cross-section under gravitational perturbation, i.e.{

(x, y) , −h
2
≤ x ≤ h

2
, 0 ≤ y ≤ Y (x)

}
can be expressed as

YG =
h

2 |H|
(
h− 2ρ sinH

h

2

)

(instead of yG =
1

2 |H|
in the absence of gravity),

while the abscissa is given without computational difficulties by the formula

xG =

∫ h

2

0

(
B

H2
x2 + κx sinHx

)
dx

∫ h

2

0

(
− 1
H + ρ cosHx

)
dx

.

The lateral surface area of the perturbed bridge is, within this framework,

A =2π

∫ h

2

−
h

2

Y (x)
√

1 + Y ′2 (x) dx

instead of
2πh

|H|
in the absence of gravity.

Yet note for example that the noteworthy relationship, generalization of an energy con-
servation principle, is valid :
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for any x ≥ 0, the following functional expression is constant, expressed at the dimension
of a force:

FB = 2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y (0)
Y −1 (y) ydy

)
and its value is

FB = 2πγ


− 1

H
+ ρ√

1 +

(
B

H2
+ κH

)2
+
H

2

(
− 1

H
+ ρ

)2

 .

(instead of F0 =
πγ

|H|
in the absence of gravity)).

It follows that the general expression of the interparticle capillary force at the level x, on
{x ≥ 0} for illustration where the force weakens, is explicitly given by:

Fcap (x) = FB − πγBxY 2 (x) .

The formula does not remain valid on the interval {x ≤ 0}.
It should not be forgotten that distortion causes a surface energy interchange by the

wetting of the plates when the contact angles are different from
π

2
.

Note that, obviously, the Vogel’s stability criterion at fixed contact lines does not ap-
ply here; actually, as is well known, the bridge becomes unstable from the limit case

h |H| =
h

y∗
= π, critical aspect ratio and lower bound for the instability of right cylin-

drical bridges. Such a capillary bridge is unstable if its volume is smaller than
h3

π
, which

leads to highlighting again the critical value h |H| = π.

6 On the use of predictor–corrector schemes to describe
capillary distortions by gravity effects

The preceding results propose both an approximate predictive analytical expression of the
profile distorted by the gravitational effects and an exact invariant in the form of a first
integral for the modified nonlinear differential Young-Laplace equation. This opens the
way to build different numerical schemes of the predictor-corrector type generalizable with
great flexibility of use to any bridge with strictly negative Gaussian curvature. The first
iteration of the process provides a new predictor, a priori more accurate, and so on for an
iterative numerical method.
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Recall briefly with previous notations that for B small enough, it comes on an appropriate
open I, predictively:

Ypred (x) = y (x) + (Hg −H +Bx) y2 (x) |cosφ (x)| , x ∈ I,

= y (x) + (Hg −H +Bx)
2ay3 (x)

|y2 (x) + εb2|
, ε = ±1,

where, more precisely, Ypred is a predictor for Y = YH,B, y = YH,0 and φ (x) is the angle
made by the tangent vector to the meniscus with the x−axis at (x, y (x)).

Otherwise, along each concerned branch of the distorted profile, the two following func-
tional expressions are constant and equal to 2πγY ∗ + πγHY

∗2:

2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy

)
for any x ≥ X∗,

2πγ

(
Y (x)√

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x− (y) ydy

)
if x ≤ X∗.

Let’s develop, as an illustration, the general method by limiting ourselves to the distorted
branch {x ≥ X∗} .
Considering axisymmetric volumes, let us first note that

2π

∫ Y (x)

Y ∗
x+ (y) ydy = π (x−X∗)Y 2 (x)− π

∫ x

X∗
Y 2 (u) du , for any x ≥ X∗,

and consequently, the exact relation on the first integral is rewritten, for any x ≥ X∗,

Y (x)√
1 + Y ′2 (x)

+
H

2
Y 2 (x) +

B

2

(
(x−X∗)Y 2 (x)−

∫ x

X∗
Y 2 (u) du

)
= Y ∗ +

1

2
HY

∗2, for any x ≥ X∗.

We restrict ourselves for the approximation of the following implicit integral problem to
explicit discretization with a uniform space increment h > 0 on the subdivision xk =
X∗ + kh, k = 1, 2, ... (one could also use intervals of varying length ):

Y (xk)√
1 + Y ′2 (xk)

+
H

2
Y 2 (xk) +

B

2

(
(xk −X∗)Y 2 (xk)−

∫ xk

X∗
Y 2 (u) du

)
= Y ∗ +

1

2
HY

∗2, for any k = 1, 2, ....
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(X∗, Y ∗) the coordinates of the moved neck having been evaluated precisely in a previous
paragraph or observed and measured in situ. By performing a simple iteration from the
Young-Laplace equation, we obtain an estimate of the spontaneous value of H under the
formulation:

(3) H = H (B) ≈ 1

RS (0)
− 1

Y ∗
−BX∗.

Consequently, if Yk denotes an appropriate approximation of the exact solution Y (xk), we
can consider, in order to anticipate the expected inflection of the profile, that

Y (xk)√
1 + Y ′2 (xk)

≈ Yk |cos Ψ (xk+1)|

where Ψ (xk) is the easily calculable angle made by the tangent vector to the meniscus
predictor with the x−axis at (xk, Ypred (xk)), the curve x → Ypred (x) being explicitly
defined and drawn exactly.

Let’s comment on the numerical method to implement. It is then a question of interpo-
lating the function x → Y 2 (x) via the points

{
xk, Y

2 (xk)
}
k

in order to evaluate finely
the volume integral.

The problem of obtaining stable methods of numerical integration is to be considered.

In that case therefore, the composite trapezoidal rule is an approximation by strong excess
accordingly with the strictly negative Gaussian curvature of the bridge; it would be a
source of numerical instability by overestimating progressively the gravity effects via the
coefficient B.

Consequently, we will use the composite Simpson’s rule; this method whose literal formu-
lation depends on the parity of k must be explicitly applied alternately to k even and k
odd. Specifically, this can be here stated as, if k is an even number:

∫ xk

X∗
Y 2 (u) du ≈ h

3

Y ∗2 + 2
∑

j=1,...,
k

2
−1

Y 2
2j + 4

∑
j=1,...,

k

2

Y 2
2j−1 + Y 2

k

 .

where Y1 = Ypred (X∗ + h) to initialize the numerical process.

We are therefore led to successively solve the following quadratic equations in the unknown
Yk, for k = 2, 4, ..., the sequence of positive ordinates {Yk}k≥1 to be realistically increasing
(sagging effects in the lower part):
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(
H

2
+
B

2
h

(
k − 1

3

))
Y 2
k + Yk |cos Ψ (xk+1)|

−hB
6

Y ∗2 + 2
∑

j=1,...,
k

2
−1

Y 2
2j + 4

∑
j=1,...,

k

2

Y 2
2j−1


= Y ∗ +

1

2
HY

∗2.

If k is an odd number, we use the following strategy by writing

∫ xk

X∗
Y 2 (u) du =

∫ xk−1

X∗
Y 2 (u) du+

∫ xk

xk−1

Y 2 (u) du.

The treatment of the integral
∫ xk−1

X∗ Y 2 (u) du falls under the previous case and for the
other term, we use the adaptive Simpson’s rule:

∫ xk

xk−1

Y 2 (u) du ≈ h
(
− 1

12
Y 2
k−2 +

2

3
Y 2
k−1 +

5

12
Y 2
k

)
approximation exact for all quadratic polynomials, taking really into account the convexity
of the profile.

We are therefore again led to successively solve quadratic equations in the unknown Yk,
for k = 3, 5, ...

Discretized determination of the distorted profile on the interval {x ≤ X∗} is accomplished
in the same way by this predictor-corrector method, with minor adjustments.

To improve the accuracy, it goes without saying that general integration methods such
as adaptative Runge-Kutta methods can be applied to the recognition problem of the
distorted profile ((associated to Lagrange or Hermite interpolation) and thus be used to
evaluate finely the volume integral at{(
xk, Y

2 (xk)
)}

k
.

For exemple, in this context, Hermite interpolation matches the unknow function x →
Y 2 (x) in the values of parameters set

{
Y 2 (xk) ,

(
Y 2
)′

(xk)
}

at {xk}k=1,2,..., evaluated

by
{
xk, Y

2
k , 2Yk tan Ψ (xk+1)

}
and to be identified by the first integral of the modified

nonlinear differential Young-Laplace equation taking into account the effects of gravity...
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7 On the generalized Young–Laplace equation. Effects of
the Gaussian curvature at strong distortions

We set out here, for the convenience of the reader and in order to point out various
directions of research, a generalization of the Young-Laplace equation presented in 1996
and which may be of particular interest in the case of strong capillary distortions.

The chapter 1 of the book ”Applied Surface Thermodynamics” presents a generalized
theory of capillarity [10]. The approach is entirely Gibbsian [4], based on the concept
of the dividing surface, according to the statement of the authors, John Gaydos, Yehuda
Rotenberg, Ladislav Boruvka, Pu Chen, and A. W. Neumann. However, it extends and
differs from the classical theory in that it is not restricted to moderately curved liquid-fluid
interfaces by taking into account the bending stress via mechanical curvature potentials
along the interface (see also [2], p. 63-64, [22], [26]).

Various independent approaches lead to the generalized Young-Laplace equation involving
both the mean curvature and the Gaussian curvature K, two intrinsic curvature measures
of the free surface (in particular, bulk thermodynamics, minimization of an appropriate
free energy function).

The shape of an interface between two non-solid substances is then described in the zero-
gravity case by the generalized Young–Laplace equation:

γ

(
1

ρc
+

1

N

)
+ CK

1

ρc N
= ∆p

where CK , at the dimension of a force, stands for the account taken for the bending stress,
ρc and N for the principal radii of curvature (evaluated algebraically). The new bending
term discriminates the saddle-shaped interfaces (Gaussian curvature K = 1

ρc N
is every-

where negative) and the synclastic interfaces on which Gaussian curvature is everywhere
positive (locally convex axisymmetric bridges). A meridional profile of revolution with
an inflection point juxtaposes the opposing effects of bending. It must be borne in mind
that for very distorted profiles, the surface tension γ may be surface temperature and
curvature-dependent, which severely complicates the mathematical treatment. It follows
the specified formulation, with suitably dimensioned coefficients cT and cJ , cK ([10], p.9,
eq. 27; here, interfacial tension equals local Gibbs free energy per non-planar surface area
for chemically pure fluids):

γ = γ0 + cTT + cJ

(
1

ρc
+

1

N

)
+ cK

1

ρc N
.

Taking then into account simultaneously the combined effects of gravity and flexure results
in the generalized highly nonlinear differential equation for the distorted profile x→ Y (x)
of axisymmetric capillary systems:
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Y ” (x)

(1 + Y ′2 (x))3/2
− 1

Y (x)
√

1 + Y ′2 (x)
− CK

γ

Y ” (x)

Y (x) (1 + Y ′2 (x))2

= −∆p0

γ
+
g ∆ρ

γ
x =: H +Bx , x ∈ I.

Mathematically isomorphic but with different variables and physical units, this differential
equation has the same structure as the Gullstrand equation of geometrical optics, which
relates the optic power P ′op of a thick lens (in dioptres, the reciprocal of the equivalent
focal length) to its geometry and the properties of the media. For example, the superficial

tension γ is equivalent to the refractivity
n1

n2
− 1, where ni is a refractive index, CK is

analogous to the expression −
(
n1

n2
− 1

)2 n2

n1
d, d the lens thickness and ∆p corresponds

to P ′op.
Such an analogy is the subject of a thorough analysis in the publication of Rodriguez-
Valverde, M. A., Cabrerizo-Vilchez, M. A. and Hidalgo-Alvarez,[23]. whose title is en-
lightening: The Young–Laplace equation links capillarity with geometrical optics.

8 A generalization of an exact energy invariant related to
strongly distorted bridges with neck

The qualitative results elaborated in the framework of the constant mean curvature theory
are essentially based on the existence of an exact invariant (in fact, a first integral for the
second order nonlinear differential equation which reveals the conservation of the total
energy of the free surface). With minor adaptations, they are immediately applicable to
the situation where the Gaussian curvature and bending effects are taken into account.
Indeed, as we will see, we still highlight in this case a first integral for the generalized
Young-Laplace equation by limiting ourselves to a presentation concerning essentially any
bridge with strictly negative Gaussian curvature.

For the spontaneous but a priori unknown value of H, H = HB , the generalized equation
can be rewritten, with the previous notations, in the differential form:

− 1

Y

d

dY

(
Y√

1 + Y ′2
− CK

2γ

1

1 + Y ′2

)
= H +Bx± (Y ) .

Hence, along each concerned branch of the strongly distorted profile, the two following
functional expressions are constant and equal, at the dimension of a force:
for any x ≥ X∗, (X∗, Y ∗) being the coordinates of the moved neck,

F+
CK

= 2πγ(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy)
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and, if x < X∗,

F−CK = 2πγ(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x− (y) ydy).

Moreover, by highlighting a continuous connection at the neck, the common value is

F+
CK

= F−CK = 2πγY ∗ − πCK + πγHY
∗2

= −π∆p0Y
∗2 − πCK + 2πγY ∗,

∆p0 being evaluated, strictly speaking, at the neck of the distorted bridge.

8.1 The special case of only bending effects

It is interesting to note that when considering the only bending effects (i.e. CK 6= 0,
B = 0), then for any axisymmetric capillary bridge, the interparticle capillary force

(4) FcapCK
= 2πγ

(
Y√

1 + Y ′2
− CK

2γ

1

1 + Y ′2
+
H

2
Y 2

)
is constant at all points of the profile (generalization of the proposition 1 in [8] on the
conservation of the total energy of the liquid bridge free surface).
The evaluation of FcapCK

at the gorge radius Y ∗ leads to, rather than the ”gorge method” :

FcapCK
= 2πγY ∗ − πCK + πγHY

∗2.

As explicited at the beginning of the paper, this exact formula allows to assess the relative
importance of bending effects.
Of course equivalently, this expression may be evaluated at one or the other triple line.
More generally, in fact

FcapCK
= 2πγY (x) cos Θ (x)− πCK cos2 Θ (x) + πγHY 2 (x)

where Θ (x) is the easily calculable angle made by the tangent vector to the meniscus with
the x−axis at the generic point (x, Y (x)) .

8.2 Parameterization of the profile

This latter relationship is interesting because it allows to easily obtain a parameterization
of the profile via Θ by generalizing formulas established in an other way by C.H. Delaunay
in 1841 [5], p.313. By a direct calculation and solving a quadratic equation if H 6= 0, we
get at H > 0, for example:
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Y (Θ) = Y

(
Θ,

CK
γ

)
, the positive root such that Y

(
0,
CK
γ

)
= Y ∗,

i.e.

Y (Θ) =
1

H

(
− cos Θ +

√
(HY ∗ + 1)2 −

(
1 +H

CK
γ

)
sin2 Θ

)
,

x (Θ) = X∗ +

∫ Θ

0
dY (θ) cot (θ) dθ, i.e.,

x (Θ) = X∗ +
1

H

sin Θ +
(

1 +H CK
γ

)∫ Θ

0

cos2 θ dθ√
(HY ∗+1)2−

(
1+H

CK
γ

)
sin2 θ

 .

It should be kept in mind that the value of the gorge radius Y ∗measured by observation
in situ, and the same goes for H, depends on CK

γ . As a practical observation, for the
experimenter, the value of the capillary pressure H is a priori an implicit unknown of the
problem (a spontaneous value) whose mode of identification will be detailed below.
Note in particular that

Y

(
Θ,

CK
γ

)
=

2Y ∗ − CK
γ sin2 Θ

2 cos Θ
if H = 0.

(bending effects on a catenoid; if, moreover, CK = 0, then the quantity Y (Θ) cos Θ is
proved to be constant, a well-known geometrical property for catenaries).

8.3 Missing data recovery using the first integral

When the three dimensioned constant terms FcapCK
, CK , H are considered as missing

values to be restored (a priori unknowns of the problem as spontaneous values resulting
a posteriori from a static equilibrium), the relation (4) makes it possible to obtain the
result by solving a linear system. To do this via an inverse problem, it suffices to apply
the specific invariance relation at three points of the profile (experimental data), taking
care to verify that the corresponding determinant of the 3× 3 matrix is not close to zero
(numerical stability condition). For this purpose, considering, for example, the observation
of three distinct points Y (0) = Y ∗, Y (Θ1) = Y1, Y (Θ2) = Y2, we note that the explicit
determinant of the involved system is expressed, in absolute value, by∣∣sin2 Θ1

(
Y ∗2 − Y 2

2

)
− sin2 Θ2

(
Y ∗2 − Y 2

1

)∣∣ .
So, in that case, are generalized the analytical calculation methods of distorted capillary
bridges properties deduced as an inverse problem from experimental data, developed in
[8].
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8.4 Gravity and bending effects on the interparticle capillary force

Renewing with the same principles the previous procedures by minor adaptations leads to
the general analytical expression of the interparticle capillary force at any level .

Indeed, the interparticle capillary force at the level x, on {x ≥ X∗} for illustration, can
be evaluated as follows:

Fcap,CK ,B (x) = 2πγ

(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x)

)

+ 2πγB

(∫ Y (x)

Y ∗
x+ (y) ydy − x−X∗

2
Y 2 (x)

)

and therefore, conjugate with the expression of the first integral of the generalized Young-
Laplace equation, becomes in practice immediately usable, by the mathematical relation-
ships:

Fcap,CK ,B (x) = 2πγY ∗ − πCK + πγHY
∗2 − πγB (x−X∗)Y 2 (x) ,

and, in other words, rather than the ”gorge method”,

Fcap,CK ,B (X∗) = 2πγY ∗ − πCK + πγHY
∗2.

It follows then that concisely, by referring to the moved gorge point,

Fcap,CK ,B (x) = Fcap,CK ,B (X∗)− πg∆ρ (x−X∗)Y 2 (x) , x ≥ X∗.

These formulas remain valid on {x ≤ X∗} insofar as the distorted bridge keeps a saddle-
shaped free capillary surface and thus, x → Fcap,CK ,B (x) is everywhere a decreasing
function. They are independent of the experimental device (horizontal plates, spheres,
etc.).

It must be kept in mind that the values Y ∗, Y (x) on {x ≥ X∗} and H depend henceforth
on the value of the force CK , besides B and the contact parameters.

This also opens the way to build different numerical schemes of the predictor-corrector
type with great flexibility of use for any strongly distorted bridge with strictly negative
Gaussian curvature.

8.5 Gravity and bending effects on the strongly distorted profiles

For principal information, it should be noted that the numerical predictor-corrector scheme,
previously presented out of the bending context (in the H−B Young-Laplace framework)
and corresponding to this more general situation, reveals a new term involving CK as:
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(
H

2
+Bh

(
k − 1

2

))
Y 2
k + Yk cos Ψ (xk)− hB

1

2
Y ∗2 +

∑
j=1,...,k−1.

Y 2
j


= Y ∗ +

1

2
HY

∗2 − CK
2γ

sin2 Ψ (xk) , xk ≥ X∗,

(X∗, Y ∗) the coordinates of the moved neck having been observed and measured in situ
in the simplified case of a direct experience.

In situation of a behavior prediction from the zero-gravity case, the evaluation of the
coordinates (X∗, Y ∗) as initialization value is more complicated on the basis of the previ-
ously developed considerations, reconstructing the shape of the local curvature. We can
again approximate (X∗, Y ∗) by the coordinates of the point with smallest ordinate on the
osculating circle at (0, Y (0)) whose radius RS (0) is given by the following relationship,
according to the generalized Young–Laplace equation:

RS (0) =

Y (0)
√

1 + Y ′2 (0)− CK
γ

HY (0)
√

1 + Y ′2 (0) + 1
.

The point (0, y (0)) can be in first approximation considered as an invariant point of the
distortion and therefore (0, y (0)) = (0, y∗) = (0, Y (0)); at this point, only vary the local
profile shape and the angle formed by the tangent to the distorted meniscus and the
x−axis, from value 0 to α0, α0 > 0. We can use a successive approximations method
(each new approximation is calculated on the basis of the preceding approximation) and
the choice of the initial approximation for α0 is, to some contextual extent, arbitrary but
rather to underestimate: it is interesting to build ordered profiles approximations for the
sake of convergence of the method (the value α0 such as tanα0 = B y∗2 if B2y∗4 � 1
corresponds to a really weak distorsion).
Therefore, taking here as a first approximation the value of H at zero gravity,

RS (0) ≈
y∗ cosα0 −

CK
γ

Hy∗ cosα0 + 1

X∗ ≈ −RS (0) sinα0

Y ∗ ≈ y∗ −RS (0) (1− cosα0) .

By performing then a simple iteration from the generalized Young-Laplace equation, we
obtain an estimate of the spontaneous value of H under the formulation:

H = H

(
B,

CK
γ

)
≈ 1

RS (0)

(
1− CK

γY ∗

)
− 1

Y ∗
−BX∗.
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So, for the profile of the lower part of the distorted bridge, we have just to successively
solve quadratic equations in the unknown Yk, for k = 1, 2, ..., the sequence of positive
ordinates {Yk}k≥1 to be realistically increasing. The sequence {Yk} obtained at the first
iteration of the process can serve as a new predictor and so on, which then defines an
iterative numerical method by.successive approximations and readjustment of the neck
position and the H−value at each iteration.

Failing to know a first approximation of the distortion, the configuration of the bridge by
neglecting both gravity and flexion effects, when it is known (by a microgravity experiment
in parabolic flight for example) can be used to initialize the iterative algorithm, with
readjustment of the neck position and the H−value at each iteration.

9 Adaptations to the case of strictly positive Gaussian cur-
vature bridges

Taking again the previous argument by adapting to the case of strictly positive Gaussian
curvatures, it shows that formally, the expression of the interparticle capillary force, a
priori repulsive, formally keeps the same expression at any level x, on {x ≥ X∗}:

Fcap,CK ,B (x) = 2πγY ∗ − πCK + πγHY
∗2 − πg∆ρ (x−X∗)Y 2 (x) .

However, it must be kept in mind that the spontaneous and a priori unknown values X∗,
Y ∗, Y (x) on {x ≥ X∗} and H (negative) depend on the value of the force CK , on B and on
the Gaussian curvature sign, besides the contact parameters. The physical interpretation
of this relationship reminds us of the Pascal’s experiment, known as ”crève-tonneau” (
barrel-buster).
The sign of variations of the interparticle capillary force depends on the expression:

sign
dFcap,CK ,B

dx
(x) = −sign (Y (x) + 2 (x−X∗)Y ′ (x)) .

In addition, one can still take advantage of the first integral on {x ≥ X∗}, to fix ideas,
still valid if B = 0,

2πγ(
Y (x)√

1 + Y ′2 (x)
− CK

2γ

1

1 + Y ′2 (x)
+
H

2
Y 2 (x) +B

∫ Y (x)

Y ∗
x+ (y) ydy)

= 2πγY ∗ − πCK + πγHY
∗2.

This again opens the way to implement different numerical schemes of the predictor-
corrector type with great flexibility of use for any strongly distorted bridge with strictly
positive Gaussian curvature.
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10 Conclusions

In summary of the key aspects, we have presented a forecasting method for evaluating
the axisymmetric capillary distortions, from the zero-gravity case assumed to be known
precisely. We took advantage of the knowledge of an exact first integral for the generalized
Young-Laplace equation with missing data values and a double estimate of the position
of the moved neck and the spontaneous value H after gravity and bending effects. It
must of course be kept in mind that conduct such a predictive modeling for the motion
of the contact lines by gravity and flexure effects is a problem considerably more difficult
than to model the static distorted case, observed in situ. The isomorphic structure be-
tween the Gullstrand and generalized Young-Laplace equations may be thought to allow
experimenters to consider a capillary bridge as an optical system; although the two phys-
ical phenomena seem a priori disjoined but intellectually close, it could be deduced new
practices for curvature measurements and fast, effective parameters identification. Nev-
ertheless, the combined effect of volume, bending and axial gravity on the axisymmetric
liquid bridge stability is a broad research subject to explore. The considerations on the
numerical treatment of the distortion problem are given here as an indication of a research
direction necessary to the advancement of the topic; this rather new subject could be of
interest to specialists in finite elements or spline functions techniques.
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