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Introduction

In the present paper we consider a one-dimensional infinite chain of harmonic oscillators, with a thermostat attached a point. The thermostat, maintained at a fixed temperature T , is usually modelled, at the microscopic level, by some stochastic process: e.g. by the Langevin stochastic dynamics, or by the renewal of velocities at random times with Gaussian distributed velocities of variance T . The latter represents the interaction with an infinitely extended reservoir of independent particles in equilibrium at temperature T and uniform density. A natural question arises to describe the effect of a thermostat on the wave energy density propagation in the system in a large space-time scale limit. In the paper we investigate this issue in the case of the kinetic (hyperbolic) space-time scaling. This question has been studied for a Langevin thermostat in the recent article [5]. The goal of this paper is to find out how other classes of thermostats, in particular of the Poisson type, influence the energy transport in the chain in the kinetic limit.

More specifically, consider an infinite one-dimensional chain of harmonic oscillators, where particles are labelled by the elements of the integer lattice Z. The chain is coupled with a thermostat acting on the particle labelled 0. The thermostat is modelled by a random mechanism depending on two parameters: γ > 0, describing its strength, and µ ≥ 1 2, whose role is more technical as it decribes an interpolation between Poisson and Gaussian mechanisms. At random times determined by a Poisson process of intensity γµ, the velocity p 0 of the particle 0 is changed to

p ′ 0 = 1 - 1 µ p 0 + √ 2µ -1 µ p,
where p is a centered Gaussian random variable with variance T (the temperature of the thermostat). The case µ = 1 2 corresponds to a velocity flip from p 0 ↦ -p 0 at Poisson random times, µ = 1 ensures complete renewal of p 0 , replacing it at those times by a N (0, T ) random variable p. Letting µ → ∞ the process described in the foregoing converges to the Langevin thermostat considered in [5](cf. (2.11)). In this sense the parameter µ allows to interpolate between various models of thermostats:
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starting from the random flip process (µ = 1 2), through the simple complete Poisson renewal (µ = 1) and ending up at the Langevin thermostat (µ = +∞).

In the case µ = 1 2 (the random velocity flip) the energy of the chain is conserved and there is no thermalization. On the other hand, when µ > 1 2 the Gaussian distribution N (0, T ) is the only stationary measure that is asymptotically stable for the process associated with the thermostat and the thermalization of the chain at temperature T occurs.

To describe the energy density distribution in the space and frequency domain we use the Wigner distribution. When there is no thermostat present, the limit of the Wigner distribution, under the hyperbolic scaling, is the solution of a simple transport equation. It describes the evolution of the density of phonons, travelling independently of each other, with the group velocity ω ′ (k) 2π corresponding to the phonon of wavenumber k. Here ω(k) is the dispersion relation of the harmonic chain and a wavenumber k belongs to T -the unit torus. Taking into account the presence of the thermostat the respective limit, see (2.53) below, can be decomposed into the parts that, besides the aforementioned free energy transport, correspond to the production, absorption, scattering, transmission and reflection of a phonon. More precisely, we show that when the dispersion relation is unimodal, see Section 2 for a precise definition, in the scaling limit, the thermostat at temperature T > 0 and corresponding to µ ≥ 1 2 enforces the following reflection-transmission (and production) conditions at x = 0: phonons of wavenumber are generated at the rate p abs ı ( )T and an incoming -phonon, arriving with velocity ω′ ( ), is transmitted with probability p + ( ), reflected with probability p -( ), scattered, as a k-phonon, with the outgoing velocity ω′ (k), according to the scattering kernel ı( )p sc (k), and absorbed with probability p abs ı ( ), see formulas (2.43) below. These coefficients are non-negative, depend on ω(⋅), the parameters γ > 0 and µ ≥ 1 2, and satisfy p + ( ) + p -( ) + p abs ı ( ) + ı( ) T p sc (k)dk = 1, ∈ T.

Coefficients p ± ( ), ı( ) do not depend on µ. The coefficient p abs is independent of and for µ → +∞, p abs → 1 and p sc (k) → 0. With such boundary conditions the thermal equilibrium Wigner function W (t, x, k) = T is a stationary solution of the transport equation for any µ > 1 2.

Our result covers also the random flip of sign of p 0 , i.e. µ = 1 2. In this case there is no absorbtion of phonons: p abs = 0, and ∫ T p sc (k)dk = 1, i.e. all the energy that is not transmitted or reflected at the same frequency is scattered at various frequencies.

The thermostat corresponding to a finite value of µ plays a role of a "scatterer" of time-varying strength. At the macroscopic scale a wave incident on the thermostat produces reflected and transmitted waves at all frequencies. This is in stark constrast with the case of the Langevin thermostat (µ = +∞) considered in [5], where, after the scaling limit, the reflected and transmitted waves are of the same frequency as the incident wave (p sc (k) = 0).

Similarly to [5] the presence of oscillatory integrals, responsible for the damping mechanism, presents the difficulty of the model and is dealt with using the Laplace transform of the Wigner distribution. An additional difficulty lies in the fact that, contrary to [5], the noise appearing in the dynamics (2.12) is multiplicative (rather than additive as in ibid.), which makes the computations much less explicit.

Introducing a rarefied random scattering in the bulk, in the same fashion as in [START_REF] Basile | Energy transport in stochastically perturbed lattice dynamics[END_REF], should lead to a similar transport equation with a linear scattering term, without modifying the conditions at the interface with the thermostat. Analogous case for the Langevin thermostat has been considered in [START_REF] Komorowski | Kinetic limit for a chain of harmonic oscillators with a point Langevin thermostat[END_REF].
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2. Preliminaries and formulation of the main result 2.1. Notation. We use the notation T a = [-a 2, a 2] for the torus of size a > 0, with identified endpoints. In particular for a = 1 we write T instead of T 1 . We shall also write

T + ∶= [k ∈ T ∶ 0 < k < 1 2] and T -∶= [k ∈ T ∶ -1 2 < k < 0].
The Fourier transform of a square integrable sequence (α x ) and the inverse Fourier transform of α ∈ L 2 (T) are defined as

α(k) = x∈Z α x exp{-2πixk}, α x = T α(k) exp{2πixk}dk, x ∈ Z, k ∈ T. (2.1) Suppose that f, g ∈ L 1 [0, +∞). Their convolution, also belonging to L 1 [0, +∞), is given by f ⋆ g(t) ∶= t 0 f (t -s)g(s)ds, t ∈ [0, +∞) By f ⋆,k we denote the k-times convolution of f with itself, i.e. f ⋆,1 ∶= f , f ⋆,k+1 ∶= f ⋆ f ⋆,k , k ≥ 1. We let f ⋆,0 ⋆ g ∶= g. We denote by f (λ) = +∞ 0 e -λt f (t)dt, Re λ > 0,
the Laplace transform of f . We also use the notation

(a ⋆ b) y = y ′ ∈Z a y-y ′ b y ′ , y ∈ Z (2.2)
for the convolution of two absolutely summable sequences (a y ) y∈Z , (b y ) y∈Z .

Given a function G(x, k), we denote by G

∶ R × Z → C, Ĝ ∶ R × T → C the Fourier transforms of G in the k and x variables, respectively, G(x, y) ∶= T e -2πiky G(x, k)dk, (x, y) ∈ R × Z, Ĝ(η, k) ∶= R e -2πiηx G(x, k)dx, (η, k) ∈ R × T.
(2.3) Let us denote by A the Banach space obtained as the completion of S(R × T) in the norm

G A ∶= R sup k∈T Ĝ(η, k) dη (2.4)
and by A ′ its dual.

Poisson type thermostat.

The stochastic process describing a thermostat is a jump process, whose generator is given by

L µ,γ f (p) ∶= γµ √ 2πT R f 1 - 1 µ p + ρ(µ)p -f (p) exp - p2 2T dp, f ∈ B b (R).
(2.5) Here B b (R) denotes the space of all bounded and Borel measurable functions, T, γ > 0, µ ≥ 1 2 and

ρ(µ) ∶= √ 2µ -1 µ . (2.6)
It is easy to verify that the Gaussian measure N (0, T ) is invariant under the dynamics of the process.

In the case µ = 1 2 Gaussian measure N (0, T ′ ) is invariant for each T ′ ≥ 0.

The process (p t ) t≥0 can be also described using the Itô stochastic differential equation, with a noise corresponding to a Poisson jump process, see e.g. [8, Chapter V],

dp(t) = p(t-) - 1 µ p(t-) dN (γµt), t ≥ 0, p(0) = p0 .
(2.7)

Here (N (t)) t≥0 is a Poisson process of intensity 1 defined over some probability space (Ω, F, P) and (p(t)) t≥0 is given by

p(t) ∶= ρ(µ)p N ′ (γµt) , (2.8)
where N ′ (t) = N (t)+1. We suppose that (p j ) j≥0 are i.i.d. N (0, T ) random variables over (Ω, F, P).

The process (p(t)) t≥0 is Levy stationary and

E p(t) = 0, E [p(t)p(t ′ )] = 2µ -1 µ 2 e -γµ t-t ′ T, t, t ′ ≥ 0.
(2.9)

From equation (2.7) we can see that in case µ = 1 we have p(t) = pN ′ (γt) , t ≥ 0. On the other hand, after a simple calculation, from (2.5), we conclude that for any

f ∈ C 2 (R) lim µ→+∞ L µ,γ f (p) = L ∞,γ f (p) ∶= γT exp p 2 2T d dp exp - p 2 2T df (p) dp .
(2.10)

The termostat correspong to µ = +∞ can be therefore identified with the Langevin thermostat at temperature T , whose dynamics is described by the Itô stochastic differential equation, with an additive Gaussian white noise dw(t):

dp(t) = -γp(t)dt + 2γT dw(t), t ≥ 0, p(0) = p0 . (2.11)
This case has been considered in [5].

2.3. Harmonic chain coupled with a point thermostat. We couple the particle with label y = 0 with a thermostat described in Section 2.2. Then the dynamics of the chain, with a stochastic source at y = 0, is governed by qy (t) = p y (t), (2.12)

dp y (t) = -(α ⋆ q(t)) y dt + δ 0,y ρ(µ)p N (γµt) - 1 µ p y (t-) dN (γµt), y ∈ Z.
The convolution operator ⋆ is defined in (2.2). The coupling constants (α y ) y∈Z are even α -y = α y for all y ∈ Z and real valued. In addition, we assume that they decay exponentially, i.e. there exists C > 0 so that 

α y ≤ Ce -y C ,
ψ(t, k) ∶= ω(k)q(t, k) + ip(t, k), k ∈ T.
(2.17)

We have

p (t, k) = 1 2i [ ψ(t, k) -ψ * (t, -k)] and p 0 (t) = T Im ψ(t, k)dk.
Using (2.12), it is easy to check that the wave function evolves according to

d ψ(t, k) = -iω(k) ψ(t, k)dt + i p(t-) - 1 µ p 0 (t-) dN (γµt).
(2.18) 2.3.3. The initial conditions. Assume that for a given (small) value of the parameter ε > 0, the initial wave function is distributed randomly, according to a Borel probability measure µ ε on the space of square summable configurations. We suppose that sup ε∈(0,1) y∈Z

ε⟨ ψ y 2 ⟩ µε = sup ε∈(0,1) ε⟨ ψ 2 L 2 (T) ⟩ µε < ∞. (2.19)
Here ⟨⋅⟩ µε denotes the expectation with respect to µ ε . Assumption (2.19) guarantees that the energy density per unit length on the macroscopic scale x ∼ εy stays finite, as ε → 0+.

In addition, to simplify somewhat our ensuing calculations, we will also assume that

⟨ ψ(k) ψ( )⟩ µε = 0, k, ∈ T, (2.20)
The above hypothesis is of purely technical nature. It can be replaced by somewhat more general assumption that ⟨ ψ(k) ψ( )⟩ µε ∼ 0, as ε → 0, with no significant change in the main line our argument. However the calculations would become more involved. Later on we shall also assume some additional hypothesis, see (2.27) below. 

⟨G, W (ε) ± (t)⟩ = T×R W ε,± (t, η, k) Ĝ * (η, k)dηdk, ⟨G, Y (ε) ± (t)⟩ = T×R Ŷε,± (t, η, k) Ĝ * (η, k)dηdk, (2.21)
where

W ε,± (t, η, k) ∶= ε 2 E ψ(ε) * t, ±k - εη 2 ψ(ε) t, ±k + εη 2 , Ŷε,+ (t, η, k) ∶= ε 2 E ψ(ε) t, k + εη 2 ψ(ε) t, -k + εη 2 , (2.22) Ŷε,-(t, η, k) ∶= ε 2 E ψ(ε) ⋆ t, k - εη 2 ψ(ε) ⋆ t, -k - εη 2 , (η, k) ∈ T 2 ε × T
are the respective Fourier-Wigner functions. Here, E is the expectation with respect to the product measure µ ε ⊗P. To simplify the notation we shall also write

W ε (t, η, k) instead of W ε,+ (t, η, k).
A straightforward calculation, using (2.18), shows that

d dt T E ψ(ε) (t, k) 2 dk = γ ε 2 - 1 µ T -E[p (ε) 0 (t)] 2 (2.23) with p (ε) 0 (t) ∶= p 0 (t ε). As a result we get ε T E ψ(ε) (t, k) 2 dk ≤ ε T E ψ(ε) (0, k) 2 dk + 2 - 1 µ γT t, t ≥ 0.
(2.24) Thus, we conclude from (2.24) that (see [2])

sup t∈[0,τ ] W (ε) (t) A ′ < ∞, for each τ > 0.
(2.25)

Hence W (ε) (⋅) is sequentially weak-⋆ compact over (L 1 ([0, τ ]; A)) ⋆ for any τ > 0.

The initial Wigner distribution

W ε (η, k) ∶= W ε (0, η, k), (η, k) ∈ T 2 ε × T (2.26)
is assumed to converge ⋆-weakly, as ε → 0, in A ′ to a non-negative function

W 0 ∈ L 1 (R × T) ∩ C(R × T).
In addition, we suppose that there exist

C, κ > 0 such that W ε (η, k) ≤ Cϕ(η), (η, k) ∈ T 2 ε × T, ε ∈ (0, 1], (2.27) 
where

ϕ(η) ∶= 1 (1 + η 2 ) 3 2+κ .
(2.28)

Define the Fourier-Laplace-Wigner functions

ŵ±,ε (λ, η, k) = ε +∞ 0 e -λεt W ±,ε (t, η, k)dt, (2.29) ŷ±,ε (λ, η, k) = ε +∞ 0 e -λεt Ŷ±,ε (t, η, k)dt,
where Re λ > 0, (η, k) ∈ T 2 ε × T. We shall also write ŵε (λ, η, k) instead of ŵ+,ε (λ, η, k).

2.4. Some additional notation. Define

J(t) = T cos (ω(k)t) dk, t ∈ R.
(2.30)

Its Laplace transform J(λ) ∶= ∞ 0 e -λt J(t)dt = T λ λ 2 + ω 2 (k) dk, Re λ > 0.
(2.31)

One can easily see that

J(λ) < 1 Re λ for Re λ > 0. (2.32) Let g(λ) ∶= (1 + γ J(λ)) -1 . (2.33) We have Re J(λ) > 0 for λ ∈ C + ∶= [λ ∈ C ∶ Re λ > 0], thus in consequence g(λ) ≤ 1, λ ∈ C + .
(2.34)

In addition, we have

(g J)(λ) = 1 γ (1 -g(λ))= J(λ) 1 + γ J(λ) = +∞ n=1 (-γ) n-1 J(λ) n . (2.35)
The first two equalities in (2.35) hold for all λ ∈ C + , while the last one for Re λ > γ (cf (2.32)).

Since J(t) ≤ 1 we have J ⋆,n (t) ≤ t n-1 (n -1)!, as the n-th convolution power involves the integration over an n -1-dimensional simplex of size t. Therefore the series

g * (t) ∶= +∞ n=1 (-γ) n J ⋆,n (t) (2.36)
defines a C ∞ class function on [0, +∞) that satisfies the following growth condition: there exists C > 0 such that g * (t) ≤ Ce γt , t > 0. In addition, comparing the Laplace transform of g * (t) with (1g(λ)) γ, as expressed by the utmost right hand side of (2.35), we conclude that

g * (λ) = g(λ) -1 = -γ(g J)(λ), Re λ > γ.
(2.37) Therefore g(λ), given by (2.33), is the Laplace transform of the signed measure g(dt) ∶= δ 0 (dt) + g * (t)dt. Combining (2.33), (2.36) and (2.37) we obtain

γJ ⋆ g(t) = +∞ n=1 (-1) n-1 γ n J ⋆,n (t) = -g * (t), t ≥ 0. (2.38) It turns out, see Lemma 2.1 below, that J ⋆ g ∈ L 2 (R) and supp J ⋆ g ⊂ [0, +∞).
This allows us to conclude the existence of g * -the Laplace transform of g * (⋅) -and equality (2.37) for all λ ∈ C + .

2.5. Functions g and J. Since the function g(⋅) is analytic on C + we conclude, by the Fatou theorem, see e.g. p. 107 of [START_REF] Koosis | Introduction to H p spaces[END_REF], that

g(iβ) ∶= lim ε→+0 g(ε + iβ), β ∈ R (2.39)
exists a.e. In Section 6.1 we show the following.

Lemma 2.1. The holomorphic function J g belongs to the Hardy space H p (C + ) for any p ∈ (1, +∞). The limit

( J g)(iβ) ∶= lim ε→+0 ( J g)(ε + iβ), β ∈ R (2.40)
exists both a.e. and in the L p (R) sense for p ∈ (1, +∞).

In addition, there exists

ν(k) ∶= lim ε→+0 g ε + iω(k) , k ∈ Ω * , (2.41)
where

Ω * ∶= [k ∈ T ∶ ω ′ (k) = 0, or ω(k) = 0].
The function is continuous on T ∖ Ω * . Moreover, for any δ > 0 there exists C > 0 such that

g ε + iω(k) -ν(k) ≤ Cε, dist k, Ω * ≥ δ. (2.42)
To state our main result we need some additional notation. Define the group velocity ω′ (k) ∶= ω ′ (k) (2π) and

℘(k) ∶= γν(k) 2 ω′ (k) , ı(k) ∶= γ ν(k) 2 ω′ (k) , p + (k) ∶= 1 -℘(k) 2 , p -(k) ∶= ℘(k) 2 . (2.43) It has been shown in Section 10 of [5] that Re ν(k) = 1 + γ 2 ω′ (k) ν(k) 2 (2.44) and p + (k) + p -(k) = 1 -ı(k) ≤ 1,
(2.45) so that, in particular, we have

0 ≤ ı(k) ≤ 1, k ∈ T.
(2.46)

In the model considered in In our present situation the absorption probability needs to be modified. In addition, the phonon can be also scattered at the interface with outgoing frequency with some scattering rate r(k, ). To be more precise we introduce the following notation

p abs ∶= 1 1 -Γ µ 1 - 1 2µ , p sc ( ) ∶= 1 2µ(1 -Γ µ) ν( ) 2 , (2.47) where Γ ∶= γ 2π R J g(iβ ′ ) 2 dβ ′ .
(2.48)

The following result holds.

Lemma 2.2. For any γ > 0 we have

Γ + 1 2 T ν( ) 2 d = 1 2 .
(2.49)

In addition, if µ ≥ 1 2, then p abs + T p sc ( )d = 1.
(2.50)

The proof of the lemma is contained in Section 6.2.

Remark 2.3. It turns out, see [3, Theorem 4. part iii)], that for any unimodal dispersion relation we have ν( ) > 0, except possibly = 0, or 1 2. Thanks to the identity (2.49) below, we have then

Γ < 1 2 ≤ µ. (2.51)
Therefore, in particular, the coefficients defined in (2.47) are strictly positive for µ > 1 2 and ∈ {0, 1 2}.

2.6. The main result. For brevity sake, we use the notation

[[0, a]] ∶= ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ [0, a], if a > 0 [a, 0], if a < 0.
The main result of the paper can be formulated as follows.

Theorem 2.4. Suppose that the initial conditions and the dispersion relation satisfy the above assumptions. Then, for any τ > 0 and G ∈ L 1 ([0, τ ]; A) we have

lim ε→0 τ 0 ⟨G(t), W ε (t)⟩dt = τ 0 dt R×T G * (t, x, k)W (t, x, k)dxdk, (2.52)
where

W (t, x, k) = W 0 (x -ω′ (k)t, k) 1 [[0,ω ′ (k)t]] c (x) + p + (k)W 0 (x -ω′ (k)t, k) 1 [[0,ω ′ (k)t]] (x) + p -(k)W 0 (-x + ω′ (k)t, -k) 1 [[0,ω ′ (k)t]] (x) + ı(k)1 [[0,ω ′ (k)t]] (x) T W 0 ω′ ( ) ω′ (k) x -ω′ (k)t , p sc ( )d + p abs ı (k)T 1 [[0,ω ′ (k)t]] (x).
(2.53)

The proof of this result is given in Section 5.4.

The limit dynamics can be characterized as follows: W (t, x, k) describes the energy density in (x, k) at time t of the phonons initially distributed according to W 0 (x, k). The first term corresponds then to the ballistic transport of those phonons which did not cross {x = 0} up to time t. The second and third terms correspond, respectively, to the transmission and reflection of the phonons at the boundary point {x = 0} with probabilities p + (k) and p -(k), respectively. The fourth term describes the phonon scattering that occurs at the interface. The phonon with frequency , arriving at the interface with the velocity ω′ ( ) is scattered with frequency k at the rate ı( )p sc (k) and moves away from the interface with the velocity ω′ (k). Finally, the last term in the right side of (2.53) describes the k-phonon production of the thermostat at the rate p abs ı (k)T . From (2.45) and (2.50) we conclude that

1 -p + ( ) -p -( ) -ı( ) T p sc (k)dk = p abs ı ( ), ∈ T.
(2.54) Therefore, the -phonon is absorbed by the thermostat with probability p abs ı ( ).

Note that in the special case when the thermostat operates by the flip of the momentum, which happens when µ = 1 2, there is no absorption, as according to (2.47) we have p abs = 0. This is consistent with the fact that the total energy of the chain is then conserved, see (2.23).

Our result can be written as a boundary value problem. Note that W (t, x, k) solves the homogeneous transport equation

∂ t W (t, x, k) + ω′ (k)∂ x W (t, x, k) = 0, (2.55) away from the boundary point {x = 0}. Let W (t, 0 ± , k) ∶= lim x→±0 W (t, x, k). If k ∈ T + (k > 0), then W (t, 0 + , k) = p + (k)W (t, 0 -, k) + p -(k)W (t, 0 + , -k) + p abs ı (k)T (2.56) + ı(k) T+ W (t, 0 -, ) p sc ( )d + ı(k) T+ W (t, 0 + , -) p sc ( )d . If, on the other hand, k ∈ T -(k < 0), then W (t, 0 -, k) = p + (k)W (t, 0 + , k) + p -(k)W (t, 0 -, -k) + p abs ı (k)T + ı(k) T- W (t, 0 + , ) p sc ( )d + ı(k) T- W (t, 0 -, -) p sc ( )d .
3. The solution of (2.18) and its Laplace-Fourier-Wigner distribution

In this section, we obtain an explicit expression for the solution of the wave function (2.18). The mild formulation of the equation reads as follows

ψ(t, k) = e -iω(k)t ψ(k) - i µ t 0 e -iω(k)(t-s) p 0 (s-)dN (γµs) + i t 0 e -iω(k)(t-s) p(s-)dN (γµs), (3.1) 
where p(t) is given by (2.8). Letting

p 0 0 (t) ∶= Im T e -iω(k)t ψ(k)dk (3.2)
we conclude the following closed equation on the momentum at y = 0:

p 0 (t) = p 0 0 (t) - 1 µ t 0 J(t -s)p 0 (s-)dN (γµs) + t 0 J(t -s)p(s-)dN (γµs). (3.3) Equation (3.1
) is linear, so its solution can be written as the sum of the solution ψ1 (t, k) corresponding to the null initial data ψ(k) ≡ 0 and the solution ψ2 (t, k) of the homogeneous equation corresponding to p(t) ≡ 0.

More precisely, suppose that ψ1 (t, k) is the solution of

d ψ1 (t, k) = -iω(k) ψ1 (t, k)dt + i p(t-) - 1 µ p 0,1 (t-) dN (γµt), ψ1 (0, k) ≡ 0 (3.4)
and ψ2 (t, k) satifsies

d ψ2 (t, k) = -iω(k) ψ2 (t, k) - i µ p 0,2 (t-)dN (γµt), ψ2 (0, k) = ψ(k).
(3.5)

Here p 0,j (t) ∶= Im T ψj (t, k)dk, j = 1, 2. Then ψ(t, k) = ψ1 (t, k) + ψ2 (t, k).
(3.6) The respective Fourier-Wigner functions are defined as

W j1,j2 ε (t, η, k) ∶= ε 2 E ψ * j1 t ε , k - εη 2 ψj2 t ε , k + εη 2 , j 1 , j 2 ∈ {1, 2}.
Since the process p(t) t≥0 is independent of the initial data field ψ(k) k∈T we conclude easily that

W j1,j2 ε (t, η, k) ≡ 0, if j 1 = j 2 . Therefore, W ε (t, η, k) ∶= ε 2 E ψ * t ε , k - εη 2 ψ t ε , k + εη 2 = W 1,1 ε (t, η, k) + W 2,2 ε (t, η, k).
(3.7) Accordingly, the respective Laplace-Fourier-Wigner transforms satisfy

ŵε (λ, η, k) = ŵ1,1 ε (λ, η, k) + ŵ2,2 ε (λ, η, k), (3.8) where ŵε (λ, η, k) = +∞ 0 e -λt W ε (t, η, k)dt, (η, k) ∈ T 2 ε × T
and Re λ > 0. The definitions of ŵj,j ε , corresponding to W j,j ε (t, η, k), j = 1, 2 are analogous.

3.1. Solving (2.18) for the null initial data. We suppose that ψ(0, k) ≡ 0. Let

s 0 ∶= t, ∆ 1 (t) ∶= [0, t] and ∆ n (t) ∶= [(s 1 , . . . , s n ) ∶ t > s 1 > s 2 > . . . > s n > 0], n ≥ 2.
Iterating (3.3) and remembering that p 0 0 (t) ≡ 0 we can write

p 0,1 (t) = +∞ n=1 - 1 µ n-1 ∆n(t) n j=1 J(s j-1 -s j )p(s n -)dN (γµs 1 ) . . . dN (γµs n ), (3.9)
with s 0 ∶= t. Therefore, substituting for the momentum into the respective form of (3.1) we get

ψ1 (t, k) = i t 0 e -iω(k)(t-s) p(s) - 1 µ p 0 (s-) dN (γµs) = +∞ n=1 ψ1,n (t, k), (3.10) where ψ1,1 (t, k) ∶= i t 0 e -iω(k)(t-s) p(s-)dN (γµs), ψ1,n (t, k) ∶= - 1 µ n-1 i ∆n(t) e -iω(k)(t-s1) × n-1 j=1
J(s js j+1 )p(s n -)dN (γµs 1 ) . . . dN (γµs n ), n ≥ 2.

(3.11)

3.2. The case T = 0 and non-zero initial data. The mild formulation of (3.5) is as follows

ψ2 (t, k) = e -iω(k)t ψ(k) - i µ t 0
e -iω(k)(t-s) p 0,2 (s-)dN (γµs).

(3.12)

From here we conclude the following closed equation on the momentum at y = 0:

p 0,2 (t) = p 0 0 (t) - 1 µ t 0 J(t -s)p 0,2 (s-)dN (γµs), (3.13) 
where p 0 0 (t) is given by (3.2). The solution of (3.13) is given by

p 0,2 (t) = p 0 0 (t) + +∞ n=1 - 1 µ n ∆n(t) J(t -s 1 ) . . . J(s n-1 -s n ) × p 0 0 (s n )dN (γµs 1 ) . . . dN (γµs n ).
(3.14)

Substituting into (3.12) we get

ψ2 (t, k) = +∞ n=0 ψ2,n (t, k), (3.15) where ψ2,1 (t, k) ∶= - i µ t 0 e -iω(k)(t-s) p 0 0 (s)dN (γµs) ψ2,n (t, k) ∶= -i +∞ n=1 - 1 µ n+1 ∆n(t) e -iω(k)(t-s1) n-1 j=1 J(s j -s j+1 ) × p 0 0 (s n )dN (γµs 1 ) . . . dN (γµs n ), n ≥ 2.
(3.16)

The limit in case of null initial data -the phonon creation term

Consider first the case when the null initial data, i.e. ψ2 (t, k) ≡ 0. Then,

ŵε (λ, η, k) = ŵ(1,1) ε (λ, η, k). (4.1)
We wish to use the chaos expansion, corresponding to the Poisson process (N (t)) t≥0 to represent the Laplace-Fourier-Wigner function ŵε (λ, η, k).

Lemma 4.1. Suppose that µ > 1 2. The following formula holds

ŵε (λ, η, k) = εT γ λ 1 - 1 2µ +∞ 0 e -λεs E χ * s, k - εη 2 χ s, k + εη 2 ds (4.2)
for any λ ∈ C + , (η, k) ∈ T 2 ε × T and ε > 0.
Here

χ(t, k) ∶= exp {-iω (k) t} (4.
3)

+ +∞ n=1 - 1 µ n ∆n(t) exp {-iω (k) (t -s 1 )} n j=1 J(s j -s j+1 )dN (γµs 1 ) . . . dN (γµs n ),
with s n+1 ∶= 0.

If, on the other hand µ = 1 2 and ε, γ > 0, then

ŵε (λ, η, k) = 0, λ ∈ C + , (η, k) ∈ R × T. (4.4) 
Remark 4.2. Note that (4.4) is consistent with the physical interpretation of the model. Namely, we have assumed that initially the energy of the chain is null. On the other hand the momentum flip mechanism of the thermostat, that corresponds to the case µ = 1 2, conserves the total energy of the system.

Proof of Lemma 4.1. The series appearing on the right hand side of (4.3) converges in the L 1 sense. Indeed, since J(t) ≤ 1 its terms are dominated by the respective terms of the series

Θ(t) ∶= 1 + +∞ n=1 1 µ n ∆n(t)
dN (γµs 1 ) . . . dN (γµs n ).

(4.5)

The process Θ(t) is the unique solution of the stochastic differential equation dΘ(t) = Θ(t-) µ dN (γµt), θ(0) = 1 and is given by the stochastic exponential, see e.g. [8, Theorem II.8.37, p. 84],

Θ(t) = exp N (γµt) log 1 + 1 µ .
We have χ(t, k) ≤ Θ(t), therefore

E χ(t, k) 2 ≤ EΘ 2 (t) = exp γµt exp 2 log 1 + 1 µ - 1 
and the right hand side of (4.2) is well defined, as an element of A ′ (see (2.4)), at least for Re λ > 2γε - 1 . In what follows we show that equality (4.2) holds for this range of λ. Note that this implies the validity of (4.2) for all λ ∈ C + . Indeed, if µ = 1 2, then by the analytic continuation we conclude that ŵε (λ, η, k) = 0 for all Re λ > 0 and the formula (4.4) follows.

For µ > 1 2, the equality of the Laplace transforms, see (4.2), for Re λ > 2γε -1 implies in particular, when η = 0, that

T γ 1 - 1 2µ E χ t ε , k 2 = ε 2 d dt E ψ1 t ε , k 2 , t ≥ 0.
In light of (2.23), this allows us to extend the validity of (4.2) to all Re λ > 0.

Now we proceed with the proof of (4.2) for Re λ > 2γε -1 . Substituting from (3.11) we get

ŵε (λ, η, k) = +∞ n,m=1 ŵε,n,m (λ, η, k), ( 4.6) 
where

ŵε,n,m (λ, η, k) ∶= ε 2 +∞ 0 e -ελt E ψ⋆ 1,n t, k - εη 2 ψ1,m t, k + εη 2 dt n, m ≥ 1.
The convergence of the series follows by the comparison with the series defining the stochastic exponential, see (4.5). Note that for s

> s ′ E p(s-)p(s ′ -), N (γµs-) -N (γµs ′ ) ≥ 1 = 0.
The above implies that

ŵε,n,m (λ, η, k) = ε 2 2 - 1 µ n+m +∞ 0 e -λεt dt × E ∆n(t) dN (γµs 1 ) . . . dN (γµs n ) ∆m(t) dN (γµs ′ 1 ) . . . dN (γµs ′ m ) exp iω k - εη 2 (t -s 1 ) × exp -iω k + εη 2 (t -s ′ 1 ) n-1 j=1 J(s j -s j+1 ) m-1 j=1 J(s ′ j -s ′ j+1 )p(s n -)p(s ′ m -) ⎤ ⎥ ⎥ ⎥ ⎦ = ε 2 T γ 1 - 1 2µ - 1 µ n+m +∞ 0 e -λεt dt t 0 ds × E ∆n-1(t-s)
dN (γµs 1 ) . . . dN (γµs n-1 )

∆m-1(t-s)

dN (γµs ′ 1 ) . . . dN (γµs ′ m-1 ) × exp iω k - εη 2 (t -s -s 1 ) exp -iω k + εη 2 (t -s -s ′ 1 ) n-1 j=1 J(s j -s j+1 ) m-1 j=1 J(s ′ j -s ′ j+1 ) ⎤ ⎥ ⎥ ⎥ ⎦
.

Here s n = s ′ m ∶= 0. Integrating out the t variable we get

ŵε,n,m (λ, η, k) = εγT λ 1 - 1 2µ - 1 µ n+m +∞ 0 e -λεs exp i ω k - εη 2 -ω k + εη 2 s ds × E ∆n-1(s)
dN (γµs 1 ) . . . dN (γµs n-1 )

∆m-1(s)

dN (γµs ′ 1 ) . . . dN (γµs ′ m-1 ) × exp -iω k - εη 2 s 1 exp iω k + εη 2 s ′ 1 n-1 j=1 J(s j -s j+1 ) m-1 j=1 J(s ′ j -s ′ j+1 ) ⎤ ⎥ ⎥ ⎥ ⎦
for n, m ≥ 1. Summing out over n, m we conclude (4.2).

Next, we write the Poisson chaos decomposition of the random field χ(t, k). Let 

φ(t, k) ∶= t 0 e -iω(k)(t-s) g(ds). ( 4 
φ(t -s 1 , k) n j=1 J ⋆ g(s j -s j+1 ) (4.10) × d Ñ (γµs 1 ) . . . d Ñ (γµs n ), n ≥ 1.
Proof. Writing N (γµt) = Ñ (γµt) + γµt, where Ñ (γµt) t≥0 is a cadlag martingale we obtain

χ(t, k) = exp {-iω (k) t} + +∞ n=1 (-γ) n ∆n(t) exp {-iω (k) (t -s 1 )} n j=1 J(s j -s j+1 )ds 1 . . . ds n + +∞ n=1 - 1 µ n n-1 k=1 (γµ) k i∈I n k ∆n(t) exp {-iω (k) (t -s 1 )} n j=1 J(s j -s j+1 )ds i j ∈i d Ñ (γµs j ) + +∞ n=1 - 1 µ n ∆n(t) exp {-iω (k) (t -s 1 )} n j=1 J(s j -s j+1 )d Ñ (γµs 1 ) . . . d Ñ (γµs n ). (4.11) For 1 ≤ k ≤ n we denote by I n k the set of all ordered k-indices i ∶ 1 ≤ i 1 < . . . < i k ≤ n.
We shall also use the abbreviation ds i ∶= ∏ j∈i ds j .

Using (2.38) we can combine the first two terms in the right hand side of (4.11) and obtain that they are equal to φ(t, k) (cf (4.7))

Changing the order of summation in the remaining two expressions in the right hand side of (4.11) we conclude that their sum equals Using formula (2.38) the above expression can be rewritten in the form

+∞ n=1 - 1 µ n ∆n(t) t-s1 0 exp {-iω (k) (t -s 1 -σ)} g(dσ) × n j=1 J ⋆ g(s j -s j+1 )d Ñ (γµs 1 ) . . . d Ñ (γµs n ) = +∞ n=1 - 1 µ n ∆n(t) φ(t -s 1 , k) n j=1 J ⋆ g(s j -s j+1 )d Ñ (γµs 1 ) . . . d Ñ (γµs n )
and (4.9), with (4.10) follow.

Coming back to calculation of the asymptotics of ŵε (λ, η, k) given by (4.1) we have the following result. Proposition 4.4. For any γ > 0 the parameter Γ, defined by (2.48), belongs to (0, 1 2). In addition, for any µ > 1 2, γ > 0, λ ∈ C + and (η, k) ∈ R × T we have

lim ε→0+ ŵε (λ, η, k) = γT ν(k) 2 (1 -Γ µ)λ(λ + iω ′ (k)η) 1 - 1 2µ . ( 4 

.12)

Proof. We can use the L 2 (P) orthogonality of the terms of the expansion (4.9), with (4.10). For Re λ > 0 sufficiently large we get

ŵε (λ, η, k) = +∞ n=0 ŵ(n) ε (λ, η, k), ( 4.13) 
where

ŵ(0) ε (λ, η, k) ∶= εT γ λ 1 - 1 2µ +∞ 0 e -ελt φ ⋆ t, k - εη 2 φ t, k + εη 2 dt, ŵ(n) ε (λ, η, k) ∶= εT γ λ 1 - 1 2µ γ µ n +∞ 0 e -ελt dt ∆n(t) φ ⋆ t -s 1 , k - εη 2 φ t -s 1 , k + εη 2 (4.14) × n j=1 (J ⋆ g(s j -s j+1 )) 2 ds 1 . . . ds n , n ≥ 1
In what follows, see (4.23) below, we show that (4.13) in fact holds for all λ ∈ C + .

Computation of ŵ(0)

ε (λ, η, k). Thanks to (4.10) and (4.14) we have

ŵ(0) ε (λ, η, k) = εT γ λ 1 - 1 2µ +∞ 0 +∞ 0 dtdt ′ e -ελ(t+t ′ ) 2 δ(t-t ′ )φ ⋆ t, k - εη 2 φ t ′ , k + εη 2 (4.15) Using δ(t -t ′ ) = 1 2π R e iβ(t-t ′ ) dβ, (4.16) 
we can write

ŵ(0) ε (λ, η, k) = εT γ (2π)λ 1 - 1 2µ R dβ +∞ 0 e -(ελ 2-iβ)t dt t 0 exp iω k - εη 2 (t -s) g(ds)
(4.17)

× +∞ 0 e -(ελ 2+iβ)t ′ dt ′ t ′ 0 exp -iω k + εη 2 (t ′ -s ′ ) g(ds ′ ).
Remark 4.5. The use of formula (4.16) in derivation of (4.17) is a bit formal.

To justify (4.17) rigorously one can modify (4.15) as follows: δ(⋅) is replaced by its approximation, for example

N f * t -t ′ N = 1 2π R e iβ(t-t ′ ) exp - β 2 2N dβ, (4.18)
when N → +∞. Here f * (t) = (2π) -1 2 e -t 2 2 is the density of the standard normal distribution. Formula (4.17) is then a consequence of the passage with N to infinity and an application of the Lebesgue dominated convergence theorem.

Integrating out s, t and s ′ , t ′ variables we obtain

ŵ(0) ε (λ, η, k) = εT γ (2π)λ 1 - 1 2µ R ελ 2 -iω k - εη 2 -iβ -1 iω k + εη 2 + ελ 2 + iβ -1 × g(ελ 2 -iβ)g(ελ 2 + iβ)dβ.
Change variables εβ ′ ∶= β + ω k -εη 2 and obtain, cf (2.41),

ŵ(0) ε (λ, η, k) = T γ (2π)λ 1 - 1 2µ R λ 2 -iβ -1 iδ ε ω(k; η) + λ 2 + iβ -1 × g ελ 2 -iεβ + iω k - εη 2 g ελ 2 + iεβ -iω k + εη 2 dβ.
Here

δ ε ω(k; η) ∶= ε -1 ω k + εη 2 -ω k - εη 2 . (4.19) Therefore lim ε→0+ ŵ(0) ε (λ, η, k) = T γ ν(k) 2 (2π)λ 1 - 1 2µ R λ 2 -iβ -1 iω ′ (k)η + λ 2 + iβ -1
dβ.

(4.20) To integrate out the β variable we use the Cauchy integral formula that in our context reads 

1 2π R f (iβ)dβ z -iβ = f (z), z ∈ C + . ( 4 
ŵ(0) ε (λ, η, k) = γT ν(k) 2 λ(λ + iω ′ (k)η) 1 - 1 2µ . (4.22) Computation of ŵ(n) ε (λ, η, k) for n ≥ 1. Change variables τ 0 ∶= t -s 1 , . . . , τ n ∶= s n -s n+1 (= s n ) in (4.14).
As a result we get

ŵ(n) ε (λ, η, k) = εT γ λ 1 - 1 2µ γ µ n +∞ 0 e -ελt 2 dt [0,+∞) n+1 dτ 0,n exp {-ελ (τ 0 + . . . + τ n ) 2} × δ (t -τ 0 -. . . -τ n ) φ ⋆ τ 0 , k - εη 2 φ τ 0 , k + εη 2 n j=1 (J ⋆ g(τ j )) 2 .
Here dτ 0,n ∶= dτ 0 . . . dτ n . Using (4.16) for each variable t and τ j , j = 0, . . . , n, we can further write

ŵ(n) ε (λ, η, k) = εT γ (2π) n+2 λ 1 - 1 2µ γ µ n R dβ R n+1 dβ 0,n [0,+∞) 2n+2 dτ 0,n dτ ′ 0,n × +∞ 0 e -(ελ 2-iβ)t dt n j=0 exp {-(ελ 4 + iβ 2 + iβ j )τ j } n j=0 exp -(ελ 4 + iβ 2 -iβ j )τ ′ j × φ ⋆ τ 0 , k - εη 2 φ τ ′ 0 , k + εη 2 n j=1 (J ⋆ g(τ j )) n j=1 J ⋆ g(τ ′ j ) .
To abbreviate we have used the notation dβ 0,n ∶= dβ 0 . . . dβ n and analogously for the remaining variables.

Integrating the t, τ variables and its primed counter-parts we get

ŵ(n) ε (λ, η, k) = εT γ (2π) n+2 λ 1 - 1 2µ γ µ n R dβ ελ 2 -iβ R n+1 dβ 0,n × g(ελ 4 + iβ 0 + iβ 2) ελ 4 + i β 0 + β 2 -ω k -εη 2 × g(ελ 4 -iβ 0 + iβ 2) ελ 4 + i β 2 -β 0 + ω k + εη 2 × n j=1 J g(ελ 4 + iβ 2 + iβ j ) n j=1 J g(ελ 4 + iβ 2 -iβ j ).
We integrate the β variable using the Cauchy integral formula (4.21) and get

ŵ(n) ε (λ, η, k) = εT γ (2π) n+1 λ 1 - 1 2µ γ µ n R n+1 dβ 0,n n j=1 J g(ελ 2 + iβ j ) n j=1 J g(ελ 2 -iβ j ) × g(ελ 2 + iβ 0 ) ελ 2 + i β 0 -ω k -εη 2 × g(ελ 2 -iβ 0 ) ελ 2 + i -β 0 + ω k + εη 2 . Change of variables εβ ′ 0 ∶= β 0 -ω k -εη 2 and obtain ŵ(n) ε (λ, η, k) = T γ (2π) n+1 λ 1 - 1 2µ γ µ n R n+1 dβ 0,n n j=1 J g(ελ 2 + iβ j ) n j=1 J g(ελ 2 -iβ j ) × g(ελ 2 + iεβ 0 + iω k -εη 2 ) λ 2 + iβ 0 × g(ελ 2 -iεβ 0 -iω k -εη 2 ) λ 2 + i (-β 0 + δ ε ω(k; η)) .
According to Lemma 2.1 we have J g ∈ H 2 (C + ), therefore, see e.g. [START_REF] Rudin | Real and complex analysis[END_REF]Theorem 19.2],

γ 2π R J g(λ + iβ) 2 dβ ≤ γ 2π R J g(iβ) 2 dβ = Γ < 1 2 ≤ µ, Re λ > 0.
The last estimate follows from (2.51). In particular, there exists a constant C > 0 such that

ŵ(n) ε (λ, η, k) ≤ C Γ µ n , n ≥ 0, ε > 0, λ ∈ C + and (η, k) ∈ R × T. (4.23)
This proves that the validity of (4.13) for all λ ∈ C + .

Furthermore,

ŵ(n) (λ, η, k) ∶= lim ε→0+ ŵ(n) ε (λ, η, k) = γT λ(2π) Γ µ n ν(k) 2 1 - 1 2µ R dβ 0 (λ 2 + iβ 0 ) λ 2 + i -β 0 + ω ′ (k)η .
Here Γ is given by (2.48). Integrating the β 0 variable out, using again (4.21), we get

ŵ(n) (λ, η, k) = γT ν(k) 2 λ(λ + iω ′ (k)η) Γ µ n 1 - 1 2µ .
Using (4.23), by the dominated convergence theorem, we conclude that

ŵ(λ, η, k) = +∞ n=0 ŵ(n) (λ, η, k) (4.24)
and formula (4.12) follows.

The case T = 0 and non-zero initial data

Here, as in Section 3.2, we assume that T = 0 and the initial data need not be null, and satisfies the assumptions made in Sections 2.3.3 and 2.3.4. The solution ψ(t, k) is then described by the expansion (3.14) and (3.16). Using the same argument as in the proof of Lemma 4.3 we obtain the following Poisson chaos expansion for the momentum at x = 0 and the Fourier transform of the wave function

p 0 (t) = g⋆p 0 0 (t)+ +∞ n=1 - 1 µ n ∆n(t) n j=1 J⋆g(s j-1 -s j )g⋆p 0 0 (s n )d Ñ (γµs 1 ) . . . d Ñ (γµs n ),
(5.1) and

ψ(t, k) = e -iω(k)t ψ(0, k) -iγ t 0 φ(t -s, k)p 0 0 (s)ds + i +∞ n=1 - 1 µ n ∆n(t) φ(t -s 1 , k) n-1 j=1 J ⋆ g(s j -s j+1 )g ⋆ p 0 0 (s n )d Ñ (γµs 1 ) . . . d Ñ (γµs n ),
(5.2) where p 0 0 (⋅) is given by (3.2). In light of (2.51) both of these expansions are valid for any µ ≥ 1 2.

On the other hand from (2.18), with p(t) ≡ 0, we obtain the following equation on the Fourier-Wigner function W ε (t, η, k)

∂ t W ε (t, η, k) + iδ ε ω(k; η) W ε (t, η, k) = γ 2µ E p 2 0 t ε (5.3) + iγ 2 E ψ t ε , k + εη 2 p 0 t ε -E ψ * t ε , k - εη 2 p 0 t ε
Taking the Laplace transform on both sides we arrive at

(λ + iδ ε ω(k; η)) ŵε (λ, η, k) = W ε (0, η, k) + γ µ e ε (λ) - γ 2 d ε λ, k - εη 2 + d ⋆ ε λ, k + εη 2 , (5.4)
where

e ε (λ) ∶= ε 2
+∞ 0 e -λεt E p 2 0 (t) dt and (5.5)

d ε (λ, k) ∶= iε +∞ 0 e -λεt E ψ * (t, k) p 0 (t) dt.
In the present section we show the following.

Proposition 5.1. For any G ∈ S(R × T) and Re λ > 0 we have

R T ŵ(λ, η, k)G * (η, k)dηdk = lim ε→0+ R T ŵε (λ, η, k)G * (η, k)dηdk, where ŵ(λ, η, k) = W (0, η, k) λ + iω ′ (k)η + γ ν(k) 2 2(1 -Γ µ)(λ + iω ′ (k)η) R T W (0, η, ) ν( ) 2 λ + iω ′ ( )η dηd - γRe[ν(k)] λ + iω ′ (k)η R×T W (0, η ′ , k) λ + iω ′ (k)η ′ dη ′ + γg(k) 4(λ + iω ′ (k)η) R×T W (0, η ′ , k)dη ′ λ + iω ′ (k)η ′ + γg(k) 4(λ + iω ′ (k)η) R×T W (0, η ′ , -k)dη ′ λ -iω ′ (k)η ′ . (5.6)
The proof of the proposition is carried out throughout Sections 5.1 -5.3.

5.1.

Asymptotics of e ε (λ).

Proposition 5.2. Under the assumption about the initial data made in Sections 2.3.3 and 2.3.4 we have

lim ε→0+ e ε (λ) = 1 2(1 -Γ µ) R T W (0, η, ) ν( ) 2 λ + iω ′ ( )η dηd .
(5.7)

Proof. From (5.1) we get

E p 2 0 (t) = E[g ⋆ p 0 0 (t)] 2 + +∞ n=1 γ µ n ∆n(t) n j=1 (J ⋆ g) 2 (s j-1 -s j )E[g ⋆ p 0 0 (s n )] 2 ds 1 . . . ds n .
(5.8)

Arguing as in the proof of Proposition 4.4 we conclude that for λ

∈ C + e ε (λ) = +∞ n=0 E (ε) n (λ)
, where

E (ε) 0 (λ) ∶= ε 2 +∞ 0 e -λεt E[g ⋆ p 0 0 (t)] 2 dt, E (ε) n (λ) ∶= ε 2 γ µ n +∞ 0 e -λεt dt ∆n(t) (J ⋆ g) 2 (t -s 1 ) n-1 j=1 (J ⋆ g) 2 (s j -s j+1 ) × E[g ⋆ p 0 0 (s n )] 2 ds 1 . . . ds n .
(5.9)

Asymtotics of E (ε) 0 (λ). Using (4.16) we can write

E (ε) 0 (λ) = - ε 2 4 π T 2 dkdk ′ +∞ 0 dt +∞ 0 dt ′ e -λε(t+t ′ ) 2 t 0 t ′ 0 g(dσ)g(dσ ′ ) R dβe iβ(t-t ′ ) × E e -iω(k)(t-σ) ψ(k) -e iω(k)(t-σ) ψ * (k) e -iω(k ′ )(t ′ -σ ′ ) ψ(k ′ ) -e iω(k ′ )(t ′ -σ ′ ) ψ * (k ′ ) .
Thanks to (2.20) we can write

E (ε) 0 (λ) = ε 2 3 π T 2 dkdk ′ +∞ 0 dt +∞ 0 dt ′ e -λε(t+t ′ ) 2 t 0 t ′ 0 g(dσ)g(dσ ′ ) R dβe iβ(t-t ′ ) × exp {iω(k ′ )(t ′ -σ ′ ) -iω(k)(t -σ)} E ψ(k) ψ * (k ′ ) .
Integrating out the t and t ′ variables we get

E (ε) 0 (λ) = ε 2 3 π T 2 R g(λε 2 -iβ) 2 λε 2 -iβ + iω(k) ⋅ E ψ(k) ψ * (k ′ ) λε 2 + iβ -iω(k ′ ) dkdk ′ dβ.
Next we change variables εβ ′ ∶= βω(k ′ ), which leads to

E (ε) 0 (λ) = 1 2 3 π T 2 R g(λε 2 -iεβ + iω(k)) 2 λ 2 -iβ + iε -1 [ω(k) -ω(k ′ )] ⋅ E ψ(k) ψ * (k ′ ) λ 2 + iβ dkdk ′ dβ.
(5.10)

Change variables (k, k ′ ) ↦ (η, ), by letting

k ∶= + εη 2 , k ′ ∶= - εη 2 .
(5.11)

The image of T 2 under this mapping is

T 2 ε ∶= (η, ) ∶ η ≤ 1 ε , ≤ 1 -ε η 2 ⊂ T 2 ε × T.
(5.12)

Then, cf (4.19), E (ε) 0 (λ) = 1 2 2 π T 2 ε W ε (0, η, )dηd R dβ g λε 2 -iεβ + iω( + εη 2 ) 2 (λ 2 -iβ + iδ ε ω( , η)) (λ 2 + iβ) .
Using estimates (2.27), (2.28) and the Cauchy formula (4.21), we obtain

lim ε→0+ E (ε) 0 (λ) = 1 2 2 π R dη T d R dβ ν( ) 2 W (0, η, ) (λ 2 -iβ + iω ′ ( )η) (λ 2 + iβ) = 1 2 R T W (0, η, ) ν( ) 2 λ + iω ′ ( )η dηd .
(5.13)

Asymptotics of E (ε)

n (λ) for n ≥ 1. Using (3.2) and (2.20) we get

E (ε) n (λ) = ε 2 2 γ µ n T dk T dk ′ E ψ(k) ψ * (k ′ ) +∞ 0 e -λεt dt ∆n(t) (J ⋆ g) 2 (t -s 1 )dt × n-1 j=1 (J ⋆ g) 2 (s j -s j+1 ) sn 0 sn 0 g(dσ 1 )g(dσ ′ 1 ) exp {iω(k ′ )(s n -σ ′ 1 ) -iω(k)(s n -σ 1 )} .
We substitute τ j ∶= s js j+1 , j = 0, . . . , n, with s 0 ∶= t and s n+1 ∶= 0, and then use (4.16) to double variables τ j and τ ′ j . In this way we obtain

E (ε) n (λ) = ε 2 2 (2π) n+3 γ µ n R 2 dβdβ ′ T 2 dkdk ′ (0,+∞) 2 dtdt ′ e -λε(t+t ′ ) 4 E ψ(k) ψ * (k ′ ) × (0,+∞) n+1 dτ 0,n (0,+∞) n+1 dτ ′ 0,n R n+1 dβ 0,n n j=0 e iβj (τj -τ ′ j ) × exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -λε ⎛ ⎝ n j=0 τ j ⎞ ⎠ 4 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -λε ⎛ ⎝ n j=0 τ ′ j ⎞ ⎠ 4 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ iβ ⎛ ⎝ t - n j=0 τ j ⎞ ⎠ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ iβ ′ ⎛ ⎝ t ′ - n j=0 τ ′ j ⎞ ⎠ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ × n-1 j=0 (J ⋆ g)(τ j ) n-1 j=0 (J ⋆ g)(τ ′ j ) τn 0 τ ′ n 0 g(dσ)g(dσ ′ ) exp {iω(k ′ )(τ ′ n -σ ′ ) -iω(k)(τ n -σ)} .
To abbreviate we have used the notation dτ 0,n = dτ 0 . . . dτ n , dβ 0,n = dβ 0 . . . dβ n and similarly for the prime variables. Integrating out the t, τ variables and their prime counterparts we get

E (ε) n (λ) = ε 2 2 (2π) n+3 γ µ n R 2 dβdβ ′ T 2 dkdk ′ R n+1 dβ 0,n E ψ(k) ψ * (k ′ ) × n-1 j=0 ( J g) (λε 4 -iβ j + iβ) n-1 j=0 ( J g) (λε 4 + iβ j + iβ ′ ) 1 λε 4 -iβ ⋅ 1 λε 4 -iβ ′ ⋅ g(λε 4 -iβ n + iβ) λε 4 -iβ n + iβ + iω(k) ⋅ g(λε 4 + iβ n + iβ ′ ) λε 4 + iβ n + iβ ′ -iω(k ′ ) . (5.14)
Change variables k, k ′ according to (5.11) and

εβ n ∶= β n -ω(k ′ ), εβ ∶= β, εβ ′ ∶= β ′
we obtain

E (ε) n (λ) = 1 2(2π) n+3 γ µ n R 2 dβdβ ′ (λ 4 -iβ)(λ 4 -iβ ′ ) T 2 ε W ε (0, η, )dηd × R n+1 dβ 0,n n-1 j=0 ( J g) (λε 4 -iβ j + iεβ) n-1 j=0 ( J g) (λε 4 + iβ j -iεβ ′ ) × g(λε 4 -iεβ n -iω( -εη 2) + iεβ) λ 4 -iβ n + iβ + iδ ε ω( , η) ⋅ g(λε 4 + iεβ n + iω( -εη 2) + iεβ ′ ) λ 4 + iβ n + iβ ′ . Hence lim ε→0+ E (ε) n (λ) = Γ n 2µ n R T W (0, η, ) ν( ) 2 λ + iω ′ ( )η dηd .
(5.15)

The conclusion of the proposition then follows from an application of the dominated convergence theorem to the series appearing in (5.9), as Γ µ ∈ (0, 1).

Asymptotics of the term involving d ε (λ)

. Invoking (5.4) we wish to calculate the limit lim ε→0+ L ε , where

L ε ∶= T R d ε λ, k - εη 2 + d ⋆ ε λ, k + εη 2 G ⋆ (η, k)dηdk λ + iδ ε ω(k; η) , ( 5.16) 
for any G ∈ S(R × T).

Taking into account (5.1) and (5.2) we get

d ε (λ, k) = +∞ n=0 D ε n (λ, k), ( 5.17) 
where

D ε 0 (λ, k) = D ε 0,1 (λ, k) + D ε 0,2 (λ, k) (5.18)
and

D ε 0,1 (λ, k) ∶= iε +∞ 0 e -λεt e iω(k)t E ψ⋆ (0, k)g ⋆ p 0 0 (t) dt, D ε 0,2 (λ, k) ∶= -εγ +∞ 0 e -λεt dt t 0 φ ⋆ (t -s, k)E p 0 0 (s)g ⋆ p 0 0 (t) ds, D ε n (λ, k) ∶= ε γ µ n +∞ 0 e -λt dt ∆n(t) φ * (t -s 1 , k)(J ⋆ g)(t -s 1 ) (5.19) × n-1 j=1 (J ⋆ g) 2 (s j -s j+1 )E g ⋆ p 0 0 (s n ) 2 ds 1 . . . ds n , n ≥ 1.
Accordingly we can write

L ε = ∑ +∞ n=0 L (n)
ε , where 

L (n) ε ∶= R T D ε n λ, k - εη 2 + (D ε n ) * λ, k + εη 2 G ⋆ (η, k) λ + iδ ε ω(k; η) dηdk. (5.20) 5.2.1. Computation of D ε 0,1 (λ, k). The term D ε 0,1 (λ, k) coincides with d 1 ε (λ, k) de- fined in [5,
- γ 2 lim ε→0+ R×T G * (η, k) λ + iδ ε ω(k, η) D ε 0,1 λ, k - εη 2 + D ε 0,1 * λ, k + εη 2 dηdk = -γ R×T Re[ν(k)] W (0, η ′ , k) λ + iω ′ (k)η ′ R G * (η, k) λ + iω ′ (k)η dη dkdη ′ .
(5.21) 5.2.2. Asymptotics of D ε 0,2 (λ, k). Using (4.7) we can write

D ε 0,2 (λ, k) = -εγ +∞ 0 e -λεt dt t 0 ds exp {iω(k)(t -s)} E g ⋆ p 0 0 (s)g ⋆ p 0 0 (t)
The expression for D ε 0,2 (λ, k) is therefore identical with d 2 ε (λ, k) defined by [5, formulas (5.6) and (5. 

- γ 2 lim ε→0 R×T D ε 0,2 λ, k - εη 2 + D ε 0,2 * λ, k + εη 2 Ĝ * (η, k)dηdk λ + iδ ε ω(k, η) = γ 4 R×T ı(k) W (0, η ′ , k)dη ′ dk λ + iω ′ (k)η ′ R Ĝ * (η, k)dη λ + iω ′ (k)η (5.22) + γ 4 R×T ı(k) W (0, η ′ , -k)dη ′ dk λ -iω ′ (k)η ′ R Ĝ * (η, k)dη λ + iω ′ (k)η .
Summarizing, taking into account definitions (2.43), we have

- γ 2 lim ε→0 L (0) ε = p + (k) -1 ω′ (k) λ + iω ′ (k)η R×T W (0, η ′ , k)dη ′ λ + iω ′ (k)η ′ + p -(k) ω′ (k) λ + iω ′ (k)η R W (0, η ′ , -k)dη ′ λ -iω ′ (k)η ′ . (5.23) 5.2.3. Asymptotics of ∑ +∞ n=1 D ε n (λ, k).
We prove the following. Lemma 5.5. For any λ > 0 we have

- γ 2 lim ε→0 +∞ n=1 R×T D ε n λ, k - εη 2 + (D ε n ) * λ, k + εη 2 Ĝ * (η, k)dηdk λ + iδ ε ω(k, η) (5.24) = - γ 2µ(1 -Γ µ) R×T G * (η, k)[1 -ν(k) 2 ]dηdk λ + iω ′ (k)η R×T ν( ) 2 W (0, η ′ , )dη ′ d λ + iω ′ ( )η ′ .
The proof of the lemma is presented in Section 5.2.5. It requires some auxiliary calculations that are done in Section 5.2.4. 5.2.4. Auxiliary calculations. We suppose that n ≥ 1. Using the change of variables τ j ∶= s js j+1 , j = 0, . . . , n, with s 0 ∶= t and s n+1 ∶= 0 in the last formula of (5.19) and then (4.16) we get

D ε n (λ, k) = ε 2π γ µ n +∞ 0 e -λεt 2 dt R dβ (0,+∞) n+1 dτ 0,n exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ iβ ⎛ ⎝ t - n j=0 τ j ⎞ ⎠ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ (5.25) × exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -λε ⎛ ⎝ n j=0 τ j ⎞ ⎠ 2 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ φ * (τ 0 , k)(J ⋆ g)(τ 0 ) n-1 j=1 (J ⋆ g) 2 (τ j )E g ⋆ p 0 0 (τ n ) 2 , n ≥ 1.
Doubling the τ j variables, via (4.16), we get

D ε n (λ, k) = ε (2π) n+2 γ µ n +∞ 0 dt R n+2 dβ 0,n dβ (0,+∞) n+1 dτ 0,n (0,+∞) n+1 dτ ′ 0,n × e -λεt 2 n j=0 exp iβ j (τ j -τ ′ j ) exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ iβ ⎛ ⎝ t - 1 2 n j=0 τ j - 1 2 n j=0 τ ′ j ⎞ ⎠ ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ × exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -λε ⎛ ⎝ n j=0 τ j ⎞ ⎠ 4 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ exp ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ -λε ⎛ ⎝ n j=0 τ ′ j ⎞ ⎠ 4 ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ × φ * (τ ′ 0 , k)(J ⋆ g)(τ 0 ) n-1 j=1 (J ⋆ g)(τ j ) n-1 j=1 (J ⋆ g)(τ ′ j )E g ⋆ p 0 0 (τ n ) g ⋆ p 0 0 (τ ′ n ) .
Integrating out the t, τ and τ ′ variables we get

D ε n (λ, k) = ε (2π) n+2 γ µ n R dβ λε 2 -iβ R n+1 dβ 0,n ( J g) (λε 4 -iβ 0 + iβ 2) φ * (λε 4 -iβ 0 -iβ 2, k) × n-1 j=1 ( J g) (λε 4 -iβ j + iβ 2) n-1 j=1 ( J g) (λε 4 + iβ j + iβ 2) g(λε 4 -iβ n + iβ 2)g(λε 4 + iβ n + iβ 2) (5.26) × E p0 0 (λε 4 -iβ n + iβ 2)p 0 0 (λε 4 + iβ n + iβ 2) . Here φ(λ, k) = g(λ) λ + iω(k) and p0 0 (λ) = 1 2i T ψ( ) λ + iω( ) - ψ * ( ) λ -iω( ) d
are the Laplace transforms of φ(t, k) and p 0 0 (t), respectively.

Thanks to (2.20) we have

E p0 0 (λ 1 )p 0 0 (λ 2 ) = 1 2 2 T d T d ′ ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ E ψ( ) ψ * ( ′ ) λ 1 + iω( ) λ 2 -iω( ′ ) + E ψ( ′ ) ψ * ( ) λ 1 -iω( ) λ 2 + iω( ′ ) ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭
Substituting into (5.26) we get

D ε n (λ, k) = ε 2 2 (2π) n+2 γ µ n T 2 d d ′ R dβ λε 2 -iβ R n+1 dβ 0,n ( J g) (λε 4 -iβ 0 + iβ 2) × g(λε 4 + iβ 0 + iβ 2) λε 4 + iβ 0 + iβ 2 -iω(k) g(λε 4 -iβ n + iβ 2)g(λε 4 + iβ n + iβ 2) × n-1 j=1 ( J g) (λε 4 -iβ j + iβ 2) n-1 j=1 ( J g) (λε 4 + iβ j + iβ 2) × ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ E ψ( ) ψ * ( ′ ) [λε 4 -iβ n + iβ 2 + iω( )][λε 4 + iβ n + iβ 2 -iω( ′ )] + E ψ * ( ) ψ( ′ ) [λε 4 -iβ n + iβ 2 -iω( )][λε 4 + iβ n + iβ 2 + iω( ′ )] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ .
Change variables β ′ j ∶= β j + β 2, j = 0, . . . , n and integrate out the β variable, using (4.21). We can write then

D ε n (λ, k) = 1 4µ n γ 2π n-1 I ε II ε R n dβ 1,n n-1 j=1 ( J g) (3λε 4 -iβ j ) n-1 j=1 ( J g) (λε 4 + iβ j ) ,
(5.27) where

I ε ∶= γ 2π R ( J g) (3λε 4 -iβ 0 ) g(λε 4 + iβ 0 ) λε 4 + iβ 0 -iω(k) dβ 0 (5.28)
and

II ε ∶= ε 2π T 2 d d ′ R g(3λε 4 -iβ n )g(λε 4 + iβ n ) × ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ E ψ( ) ψ * ( ′ ) [3λε 4 -iβ n + iω( )][λε 4 + iβ n -iω( ′ )]
(5.29)

+ E ψ * ( ) ψ( ′ ) [3λε 4 -iβ n -iω( )][λε 4 + iβ n + iω( ′ )] ⎫ ⎪ ⎪ ⎬ ⎪ ⎪ ⎭ dβ n .
5.2.5. The end of the proof of Lemma 5.5. Using formula (5.27) we conclude, cf (5.20) and (2.48), that

lim ε→0+ L (n) ε = lim ε→0+ L(n) ε , (5.30)
where

L(n) ε ∶= 2 R T Re Dε n (λ, k) G ⋆ (η, k) λ + iω ′ (k)η dηdk.
(5.31)

Here Dε n (λ, k) ∶= Γ n-1
4µ n I ε II ε . The calculation of the limit (5.30) reduces therefore to computing the limits of I ε and II ε .

Computation of lim ε→0+ I ε . Since g(λ) = 1γ J g(λ) we can write I ε = I 1 ε + I 2 ε , where

I 1 ε ∶= γ 2π R ( J g) (3λε 4 -iβ 0 ) λε 4 + iβ 0 -iω(k) dβ 0 I 2 ε ∶= - γ 2 2π R ( J g) (3λε 4 -iβ 0 ) ( J g)(λε 4 + iβ 0 ) λε 4 + iβ 0 -iω(k) dβ 0 .
Using (4.21) we get

I 1 ε = γ 2π R ( J g) (3λε 4 -iβ 0 ) λε 4 + iβ 0 -iω(k) dβ 0 = γ( J g) (λε -iω(k)) .
Therefore lim

ε→0+ I 1 ε = 1 -ν(k).
(5.32)

On the other hand lim ε→0

( J g) (3λε 4 -iβ 0 ) ( J g)(λε 4 + iβ 0 ) = ( J g) 2 (iβ 0 )
in any L p (R), p ∈ (1, +∞) and pointwise. Therefore, is the Fourier transform of j.

lim ε→0+ I 2 ε = - γ 2 2π lim ε→0+ R ( J g) (iβ 0 ) 2 dβ 0 λε 4 + iβ 0 -iω(k) . Since j(β 0 ) ∶= ( J g) (iβ 0 ) 2 belongs to any L p (R) for p ∈ [1, +∞),
We have ω -1 + (ω min ) = 0, ω -1 + (ω max ) = 1 2. In the case ω ∈ C ∞ (T):

ω -1 ± ′ (w) = ±(w -ω min ) -1 2 ρ * (w), w -ω min ≪ 1,
(5.33) and ω -1 ± ′ (w) = ±(ω maxw) -1 2 ρ * (w), ω maxw ≪ 1, (5.34) with ρ * , ρ * ∈ C ∞ (T) that are strictly positive. When ω is not differentiable at 0 (the acoustic case) condition (5.34) does not change but then

ω -1 ± ′ (w) = ±ρ * (w), w -ω min ≪ 1.
(5. [START_REF] Komorowski | High frequency limit for a chain of harmonic oscillators with a point Langevin thermostat[END_REF] In consequence,

lim ε→0+ I 2 ε = - γ 2 2π j(ω(k)) (5.36)
in the L p (T) sense for any p ∈ [1, 2). We have shown therefore that

lim ε→0+ I ε = I ∶= 1 -ν(k) - γ 2 2π j(ω(k)) (5.37) in the L p (T) sense for any p ∈ [1, 2). Since j is real valued we have 1 2π Re j(β) = 1 2 j(β) (5.38) and 1 2π Re j(ω(k)) = 1 2 ( J g) (iω(k)) 2 .
Thus, using the relation

γ( J g)(λ) = 1 -g(λ), we conclude that Re I ∶= 1 -Re ν(k) - γ 2 2 ( J g) (iω(k)) 2 = 1 -Re ν(k) - 1 2 1 -ν(k) 2 = 1 2 1 -ν(k) 2 .
(5.39)

Computation of lim ε→0+ II ε . We have

II ε = II 1 ε + II 2 ε ,
where

II 1 ε ∶= ε 2π T 2 d d ′ R dβ n g(3λε 4 -iβ n )g(λε 4 + iβ n )E ψ( ) ψ * ( ′ ) [3λε 4 -iβ n + iω( )][λε 4 + iβ n -iω( ′ )] II 2 ε ∶= ε 2π T 2 d d ′ R dβ n g(3λε 4 -iβ n )g(λε 4 + iβ n )E ψ * ( ) ψ( ′ ) [3λε 4 -iβ n -iω( )][λε 4 + iβ n + iω( ′ )] .
Changing variables εβ ′ n ∶= β nω( ′ ) we obtain

II 1 ε ∶= 1 2π T 2 d d ′ R dβ n g(3λε 4 -iεβ n -iω( ))g(λε 4 + iεβ n + iω( ))E ψ( ) ψ * ( ′ ) [3λ 4 -iβ n + iε -1 ω( ) -ω( ′ ) ][λ 4 + iβ n ] . Therefore lim ε→0+ II 1 ε = 1 2π lim ε→0+ T 2 ν( ) 2 E ψ( ) ψ * ( ′ ) λ + iε -1 ω( ) -ω( ′ ) d d ′ .
Changing again variables

= ˜ + εη 2 , ′ = ˜ - εη 2 we conclude that lim ε→0+ II 1 ε = 2 R×T ν( ) 2 W (0, η, ) λ + iω ′ ( )η dηd .
(5.40)

A similar calculation proves that also lim ε→0+

II 2 ε = 2 R×T ν( ) 2 W (0, η, ) λ + iω ′ ( )η dηd .
(5.41)

We conclude therefore

II = lim ε→0+ II ε = 4 R×T ν( ) 2 W (0, η, ) λ + iω ′ ( )η dηd .
(5.42)

The right hand side of (5.42) is real valued. Gathering all the facts proven above we conclude that

lim ε→0+ L(n) ε = Γ n-1 2µ n R×T IIRe I G ⋆ (η, k) λ + iω ′ (k)η dηdk (5.43) = Γ n-1 µ n R×T 1 -ν(k) 2 G ⋆ (η, k) λ + iω ′ (k)η dηdk R×T ν( ) 2 W (0, η ′ , ) λ + iω ′ ( )η ′ dη ′ d .
Combining this with formula (5.31) we conclude the proof of Lemma 5.5. 

W (ε) 1 ∶= R×T W ε (0, η, k)G * (η, k) λ + iδ ε ω(k; η) dηdk W (ε) 2 ∶= γe ε (λ) µ R×T G * (η, k) λ + iδ ε ω(k; η) dηdk W (ε) 3 ∶= - γ 2 R×T G * (η, k) λ + iδ ε ω(k; η) d ε λ, k - εη 2 + d ⋆ ε λ, k + εη 2 dηdk.
(5.44)

It is easy to see that the limit of W (ε)

1 , as ε → 0+, corresponds to the first term in the right hand side of (5.6). Using Proposition 5.2 we conclude that the limit of W (ε) 2 matches the second term there. Finally W

(ε) 3 = -γ 2 ∑ +∞ n=0 L (n) ε
and the respective limit is a consequence of Lemmas 5.3, 5.4 and 5.5. This ends the proof of the proposition. 5.4. The end of the proof of Theorem 2.4. Using the equality (3.8) and the results of Proposition 4.4 (for µ > 1 2), Lemma 4.1 (for µ = 1 2) and Proposition 4.4, together with formula (5.6) we conclude that for any λ ∈ C + the Laplace-Fourier-Wigner functions ŵε (λ, η, k) converge, as ε → 0+, in A ′ , in the ⋆-weak topology to

ŵ(λ, η, k) = W (0, η, k) λ + iω ′ (k)η + γT ν(k) 2 (1 -Γ µ)λ(λ + iω ′ (k)η) 1 - 1 2µ 
(5.45)

+ γ ν(k) 2 2µ[λ + iω ′ (k)η](1 -Γ µ) R×T ν( ) 2 W (0, η ′ , ) λ + iω ′ ( )η ′ dη ′ d - γRe[ν(k)] λ + iω ′ (k)η R W (0, η ′ , k) λ + iω ′ (k)η ′ dη ′ + γ ı (k) 4(λ + iω ′ (k)η) R W (0, η ′ , k)dη ′ λ + iω ′ (k)η ′ + γ ı (k) 4(λ + iω ′ (k)η) R W (0, η ′ , -k)dη ′ λ -iω ′ (k)η ′ .
Inverting both the Laplace transform in t and Fourier transform in x we obtain (2.53), which ends the proof of the theorem. As a result g J ∈ H p (C + ) for any p ∈ (1, +∞). The limits in (2.40) and (2.41) can be substantiated by the results of Sections A and B of Chapter 6 of [START_REF] Koosis | Introduction to H p spaces[END_REF].

Recall that ω -1 + (⋅) is the inverse of the restriction ω [0,1 2] . From (6.2) we get 

G(ε + iω(k)) = 1 
H(iω(k)) ∶= lim ε→0+ H(ε + iω(k)) = 1 2ω ′ (k) π + i log ω max -ω(k) ω(k) -ω min + i 2 ωmax ωmin [ω ′ (k) -ω ′ (ω -1 + (v))]dv ω ′ (ω -1 + (v))ω ′ (k)(ω(k) -v)
.

Since ω ′ (⋅) is Lipschitz the integral in the right hand side makes sense. A straightforward calculation implies the existence of C > 0 such that

H(ε + iω(k)) -H(iω(k)) ≤ Cε, k ∈ Ω (δ) * . ( 6.6) 
From (6.5) and (6.6) we conclude (2.42). In addition we infer also the continuity of ν on T ∖ Ω * . 

where

H[f ](β) ∶= lim ρ→0+ R (β + α)f (α)dα ρ 2 + (β + α) 2 , β ∈ R, (6.10) 
and the limits in (6.9) and (6.10) are understood in the L p sense.

We shall prove the following result. Proposition 6.1. Suppose that f ∈ L 1 (R) ∩ L p (R) for some p > 1 and f ≥ 0 a.e. Then, for any γ > 0 the following identity holds .11) Before proving the proposition, which we are going to do momentarily, let us first apply it to show how, with its help, to finish the proof of Lemma 2.2. 

γ 2π R M + (β) 2 dβ 1 + γM + (β) 2 + 1 2 R f (-β)dβ 1 + γM + (β) 2 = 1 2 R f (β)dβ. ( 6 
ω ′ ω -1 + ( v )
, v ∈ R. (6.13)

Recalling that ω ′ ω -1 + (v) ∼ (ω maxv) 1 2 , ω maxv ≪ 1, see (5.33), and

ω ′ ω -1
+ (v) ∼ (vω min ) 1 2 , vω min ≪ 1 in the optical case (see (5.34)), and ω ′ ω -1 + (v) ∼ 1, v ≪ 1 in the acoustic one we conclude that f * ∈ L p (R) for any p ∈ [1, 2) and ∫ R f * (v)dv = 1. It is easy to see from (6.12) and (6.13) that J ⋆ (λ) = J(λ ⋆ ), λ ∈ C + . (6.14)

Recall that J(iω(k)) = lim ε→0+ J(ε + iω(k)), cf (2.40), therefore

T ν( ) 2 d = T d 1 + γ J(iω( )) 2 = 1 2 0 d 1 + γ J(iω( )) 2 + 1 2 0 d 1 + γ J⋆ (iω( )) 2 = 1 2 0 d 1 + γ J(iω( )) 2 + 1 2 0 d 1 + γ J(-iω( )) 2 = R f * (v)dv 1 + γ J(iv) 2 .
Formula (2.49) is then a direct consequence of (6.11). Equality (2.49) is in fact equivalent with 

±

  (t) are defined by their action on a test function G ∈ S(R × T):

  [5] the coefficients p + (k), p -(k) and ı(k) have expressed, see [5, Theorem 2.1], the probabilities of a phonon being transmitted, reflected and absorbed at the interface [x = 0].

  ) rj -1 J ⋆,rj (s js j+1 )d Ñ (γµs 1 ) . . . d Ñ (γµs n )

  formulas (5.6) and (5.7)]. Therefore, see [5, Lemma 5.1], we have the following result. Lemma 5.3. For any test function G ∈ S(R × T) and λ > 0 we have

. 4 .

 4 7)]. We have therefore, see [5, Lemma 5.2]. Lemma 5For any λ > 0 and G ∈ S(R × T) we have

  by the multiplier theorem, see e.g. [11, Corollary of Theorem 3, p. 96] lim ε→0+ R j(β 0 )dβ 0 λε 4 + iβ 0iβ = j(β) ∶= 2π 0 -∞ e 2πiηβ ĵ(η)dη, in the L p (R) sense, for any p ∈ (1, +∞). Here ĵ(η) ∶= R e -2πiηβ j(β)dβ

5. 3 . 1 .

 31 Proof of Proposition 5.According to (5.4) for any we have R×T ŵε (λ, η, k)G * (η, k)dηdk =

1 +

 1 (v))[ε + i(v + ω(k))] To simplify assume that k ∈ [0, 1 2]. It is clear that lim ε→0+ G(ε + iω(k)) = G(iω(k)) = -i 2 ωmax ωmin dv ω ′ (ω -1 + (v))(v + ω(k)) and there exists C > 0 such that G(ε + iω(k)) -G(iω(k)) ≤ Cε, k ∈ Ω * ∶= [k ∈ T ∶ dist k, Ω * ≥ δ]. Concerning H(⋅) we have H(ε + iω(k)) = 1 2 ωmax ωmin dv ω ′ (ω -1 + (v))[ε + i(ω(k)v)] A simple calculation leads to

6. 2 .

 2 Proof of Lemma 2.2. For a given f ∈ L 1 (R) such that f ≥ 0 a.e. we letM (z) ∶= R f (α)dα z + iα , z ∈ C + . (6.7)The function is holomorphic and Re M (z) > 0 for z ∈ C + . In addition, for any ρ > 0 we haveM (ρ + iβ) ∶= R ρf (α)dα ρ 2 + (β + α) 2i R (β + α)f (α)dα ρ 2 + (β + α) 2 , β ∈ R. (6.8)Suppose also that f ∈ L p (R) for some p > 1. By [11, Corollary of Theorem 3, p. 96] we conclude thatM + (β) ∶= lim ρ→0+ M (ρ + iβ) = πf (-β) -iH[f ](β), β ∈ R,
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 111 Figure 1. Contour of integration

( 6 .

 6 20)This ends the proof of the proposition.

  Here ωy y∈Z is the inverse Fourier transform of the dispersion relation ω(k). The square of the wave function ψ y (t) 2 describes the local energy of the chain at time t. The Fourier transform of ψ y (t) y∈Z is given by

	a unique (mild) cadlag solution taking values in the space of square summable
	sequences (q, p), see e.g. [7, Section 9.4].	
	2.3.1. The dispersion relation and its basic properties. Define the dispersion relation
			ω(k) ∶= α(k), k ∈ T.	(2.15)
	In light of (2.14), it is C ∞ regular when α(0) > 0. If, on the other hand α(0) = 0,
	the dispersion relation is a continuous function on T belonging to C ∞ (T * ), with
	the derivatives possessing one sided limits at k = 0. The typical examples are
	provided by the acoustic chains, where ω(k) ∼ k for k ∼ 0, and the optical chains
	where ω ′ (k) ∼ k for k ∼ 0. We assume also that ω is unimodal, i.e. it is increasing on
	[0, 1 2]. Denote its unique minimum, attained at k = 0, by ω min ≥ 0 and its unique
	maximum, attained at k = 1 2, by ω max . The two branches of the inverse of ω(⋅)
	are denoted by ω + ∶ [ω min , ω max ] → [0, 1 2] and ω -= -ω + .	
	2.3.2. The wave-function. Define the complex valued wave function	
			ψ y (t) ∶= (ω ⋆ q(t)) y + ip y (t).	(2.16)
			for all y ∈ Z,	(2.13)
	and			
	α(k) ∶=	y	α y exp {-2πiky} > 0, k ∈ T * ∶= T ∖ {0}.	(2.14)
	Estimate (2.13) in particular implies that α ∈ C ∞ (T). By (q, p) = p y , q y y∈Z we
	denote the entire momentum-position configuration. Equation (2.12) possesses

  2.3.4. The Wigner distributions. Denote the rescaled wave function ψ

	(ε) y (t) = ψ y (t ε)
	and its Fourier transform ψ(ε) (t, k). The (averaged) Wigner distributions W	(ε) ± (t)
	and Y	

  .21) It is valid for any holomorphic function f on the right half-plane C + that belongs to the Hardy class H p (C + ) for some p ≥ 1, see e.g. [6, p. 113].

	Applying the formula
	we get
	lim ε→0+

  6.2.1. Proof of Lemma 2.2. From (2.31) we get J(λ) =

	0	1 2	dk λ + iω(k)	+	0	1 2	dk λ -iω(k)	=	R	f * (v)dv λ + iv	,	(6.12)
	where											
		f * (v) ∶=	1 [ωmin,ωmax] ( v )				
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