N

N
N

HAL

open science

Asymptotic Scattering by Poissonian Thermostats

Tomasz Komorowski, Stefano Olla

» To cite this version:

Tomasz Komorowski, Stefano Olla. Asymptotic Scattering by Poissonian Thermostats. 2021.

03106762v1

HAL Id: hal-03106762
https://hal.science/hal-03106762v1

Preprint submitted on 12 Jan 2021 (v1), last revised 2 Mar 2022 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

hal-


https://hal.science/hal-03106762v1
https://hal.archives-ouvertes.fr

ASYMPTOTIC SCATTERING BY POISSONIAN THERMOSTATS

TOMASZ KOMOROWSKI AND STEFANO OLLA

ABSTRACT. We consider an infinite chain of coupled harmonic oscillators with
a Poisson thermostat at the origin. In the high frequency limit, we establish
the reflection-transmission-scattering coefficients for the wave energy scattered
off the thermostat. Unlike the case of the Langevin thermostat [5], in the
macroscopic limit the Poissonian thermostat scattering generates a continuous
cloud of waves of frequencies different from that of the incident wave.

1. INTRODUCTION

Heat reservoirs at some temperature 7" are usually modelled at the microscopic
level by the Langevin stochastic dynamics, or by other random mechanisms such
as the renewal of velocities at random times with Gaussian distributed velocities
of variance T. The latter represents the interaction with an infinitely extended
reservoir of independent particles in equilibrium at temperature 7" and uniform
density.

When such reservoirs are in contact with the system boundary and if energy
diffuses or superdiffuse on the macroscopic space-time scale, then it is expected
that the thermostat enforces a local equilibrium at the boundary at the temperature
T. The situation is much less clear for the kinetic (hyperbolic) space-time scales.
For instance, if the bulk evolution is governed by a discrete nonlinear wave equation,
then in the kinetic (high frequency-small non-linearity) limit the wave energy density
is expected to be governed by a phonon Boltzmann equation [1, 8]. In this limit
the thermostat generates non-trivial boundary scattering conditions.

In the present paper we consider an infinite one-dimensional chain of harmonic
oscillators, where particles are labelled by the elements of the integer lattice Z,
characterized by its dispersion relation w(k) (cf. (2.12)). The chain is coupled with
a single thermostat acting on the particle labelled 0. The thermostat is modelled by
a random mechanism depending on two parameters: v >0, describing its strength,
and p > 1/2, whose role is more technical as it decribes an interpolation between
Poisson and Gaussian mechanisms. At random times determined by a Poisson
process of intensity yu, the velocity py of the particle 0 is changed to

Py = (1 - l)po VAR

H M
where p is a centered Gaussian random variable with variance T' (the temperature
of the thermostat). The case u = 1/2 corresponds to a velocity flip from pg — —po at
Poisson random times, pu =1 ensures complete renewal of pg, replacing it at those
times by a A'(0,7') random variable p. Letting pt — oo the process described in the
foregoing converges to the Langevin thermostat considered in [5](cf. (2.10)). In this
sense the parameter p allows to interpolate between various models of thermostats:
starting from the random flip process (u = 1/2), through the simple complete Poisson
renewal (1 =1) and ending up at the Langevin thermostat (u = +00).
1
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2 TOMASZ KOMOROWSKI AND STEFANO OLLA

In the case u = 1/2 (the random velocity flip) the energy of the chain is conserved
and there is no thermalization. On the other hand, when p > 1/2 the Gaussian
distribution N (0,T) is the only stationary measure that is asymptotically stable
for the process associated with the thermostat and the thermalization of the chain
at temperature T occurs.

An efficient way to localize the distribution of the energy both at the wave
number k, belonging to the unit torus T, and spatial location x is to use the
Wigner distribution. In the space-time hyperbolic scaling, ignoring at first the
thermostat, the Wigner distribution converges to the solution W (¢, z, k) of a simple
transport equation, namely phonons of wavenumber k travel independently with the
group velocity w’(k)/2m. Taking into account the presence of the thermostat the
respective limit, see (2.51) below, can be decomposed into the parts that, besides
the aforementioned free energy transport, correspond to the production, absorption,
scattering, transmission and reflection of a phonon. More precisely, we show that
when the dispersion relation is unimodal, see Section 2 for a precise definition,
in the scaling limit, the thermostat at temperature T'> 0 and corresponding to
1 > 1/2 enforces the following reflection-transmission (and production) conditions
at x = 0: phonons of wave number ¢ are generated at the rate paps g (¢)T and an
incoming ¢-phonon, arriving with velocity w’(¢), is transmitted with probability
p+(£), reflected with probability p_(£), scattered, as an k-phonon, with the outgoing
velocity @'(k) according to the scattering kernel g(£)ps.(k) and absorbed with
probability pansg(£), see formulas (2.41) below. These coefficients are non-negative,
depend on w(-), the parameters v > 0 and p > 1/2, and satisfy

p+(£)+p_(€)+pabsg(€)+g(€)Apsc(k)dk:1, €.

Coefficients p.(£),g(¢) do not depend on u. The coefficient paps is independent of
¢ and for p —> +00, paps = 1 and ps.(k) = 0. With such boundary conditions the
thermal equilibrium Wigner function W (t,z,k) = T is a stationary solution of the
transport equation for any p > 1/2.

Our result covers also the random flip of sign of pg, i.e. p =1/2. In this case
there is no absorbtion of phonons: p.ps = 0, and fT psc(k)dk =1, i.e. all the energy
that is not transmitted or reflected at the same frequency is scattered at various
frequencies.

The thermostat corresponding to a finite value of 1 can be therefore viewed as a
“scatterer" of a time-varying strength: at the macroscopic scale a wave incident on
the thermostat would produce reflected and transmitted waves at all frequencies.
This is in constrast with the case of the Langevin thermostat (4 = +00) considered
in [5], where, after the scaling limit, the reflected and transmitted waves are of the
same frequency as the incident wave (psc(k) = 0).

Similarly to [5] the presence of oscillatory integrals, responsible for the damping
mechanism, presents the difficulty of the model and is dealt with using the Laplace
transform of the Wigner distribution. An additional difficulty lies in the fact that,
contrary to [5], the noise appearing in the dynamics (2.11) is multiplicative (rather
than additive as in ibid.), which makes the computations much less explicit.

Introducing a rarefied random scattering in the bulk, in the same fashion as in [1],
should lead to a similar transport equation with a linear scattering term, without
modifying the conditions at the interface with the thermostat. Analogous case for
the Langevin thermostat has been considered in [4].
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2. PRELIMINARIES AND FORMULATION OF THE MAIN RESULT

2.1. Notation. We use the notation T, = [-a/2,a/2] for the torus of size a > 0,
with identified endpoints. In particular for a = 1 we write T instead of T;.

The Fourier transform of a square integrable sequence (o) and the inverse
Fourier transform of & € L?(T) are defined as

a(k) = Y o exp{-2mizk}, o, :fTa(k)exp{zmxk}dk, weZ, keT. (2.1)
zel

Suppose that f,g e L'[0,+00). Their convolution, also belonging to L'[0, +c0), is
given by

frg(t):= Atf(t -5)g(s)ds, te[0,+00)

By f** we denote the k-times convolution of f with itself, i.e. f*!:= f, fk+l .=
fxfoF k>1. Welet f~°« g:=g. We denote by

fo) = [0+°° e Mf(t)dt, ReA>0,

the Laplace transform of f.

For a function G(z, k), we denote by G : Rx Z — C, G :RxT — C the Fourier
transforms of G in the k and x variables, respectively,

Ga,y) = [ MG, k)dk, () <R %2,
G(n, k) = /RG’QM"IG(;U, k)dz, (n,k)eRxT.

Let us denote by A the Banach space obtained as the completion of S(R x T) in
the norm

IGlLa= [ sup|Gn, k)ldn (2:2)
R keT

and by A" its dual.

2.2. The infinite chain of harmonic oscillators. We consider the evolution of
an infinite particle system governed by the Hamiltonian

1 1
H(p,q) = 9 Z pz + 9 Z Oy—y’ Qy qy’ - (2'3>

yeL y,y'€L

Here, the particle label is y € Z, (p,,q,) is the position and momentum of the y’s
particle, respectively, and (q,p) = {(py,qy), ¥ € Z} denotes the entire configuration of
which we assume that is real valued and square summable. The coupling coefficients
oy are assumed to have exponential decay and chosen such that the energy is
bounded from below.
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2.3. Poisson type thermostat. The stochastic process describing a thermostat
is a jump process, whose generator is given by

Lot =2 [[7((1- 1) 08) - s ]eso {2 b, s e muce)
(2.4)

Here B,(R) denotes the space of all bounded and Borel measurable functions,
T,v>0, u>1/2 and

2u—1
i) = Y (25
It is easy to verify that the Gaussian measure N(0,7T) is invariant under the
dynamics of the process. In the case pu = 1/2 Gaussian measure N(0,7") is

invariant for any 7" > 0.

The process (p¢)i»0 can be also described using the It stochastic differential
equation, with a noise corresponding to a Poisson jump process, see e.g. [7, Chapter
VI,

ap() = (5(t-) - i”“‘)) AN (yut), 20,
p(0) = Po.

Here (N(t)),s, is a Poisson process of intensity 1 defined over some probability
space (Q,F,P) and (p(t)),s, is given by

ﬁ(t) = p(ﬂ)ﬁN’('yp,t)a (27)
where N'(t) = N(t)+1. We suppose that (p;);s0 are i.i.d. N'(0,7) random variables
over (Q, F,P).

The process (p(t)),s, is Levy stationary and
Ep(t) =0,

(2.6)

NS 2u -1

E[p(t)p(t')] = —5—
1

From equation (2.6) we can see that in case =1 we have p(t) = Pnr(41), t 20. On

the other hand, after a simple calculation, from (2.4), we conclude that for any

feC*(R)
, p* d p° | df(p)
#lj{f}m Ly f(9) = Loo y f(p) = 7T exp {2T} dp (eXP {_2T} dp) : (2.9)

The termostat correspong to p = +oo can be therefore identified with the Langevin
thermostat at temperature T, whose dynamics is described by the Itd stochastic
differential equation, with an additive Gaussian white noise dw(t):

dp(t) = —yp(t)dt + \/2yTdw(t), t>0,
p(0) = po.

el s, (28)

(2.10)

2.4. Harmonic chain coupled with a point thermostat. We couple the parti-
cle with label y = 0 with a thermostat described in Section 2.3. Then the Hamiltonian
dynamics with stochastic source is governed by

qy(t) = py(t)a (2'11)
- 1
dpy (t) = —(a*q(t))ydt + do,y (p(u)pzv(wt) - ;py(t—)) dN(yut), yeZ.
We use the notation

(f*g)y= Z fy-y 9y

y'eZ
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for the convolution of two functions on Z. The coupling constants « = () are even
0y =y, Y € Z, decay exponentially and

a(k) =) ayexp{-2miky} >0, keT,:=T~{0}.
v

2.4.1. Assumptions on the dispersion relation and its basic properties. We assume,
as in [5], that a, is a real-valued even function of y € Z, and there exists C'> 0 so
that

| < CeVE for all y € Z,

thus & € C*°(T). Furthermore, we suppose that the dispersion relation

w(k) =\/a(k), keT, (2.12)

is a continuous function on T belonging to C%(T \ {0}), with two derivatives
possessing one sided limits at k£ =0. The typical examples are the acoustic chains
where w(k) ~ |k| for k ~ 0, and the optical chains where w'(k) ~ k for k ~ 0. In general,
we assume that w is unimodal, i.e. it is increasing on [0,1/2]. Denote its unique
minimum attained at k = 0 by wmin > 0, its unique maximum, attained at k = 1/2, by
Wmax, and the two branches of the inverse of w(-) as w- : [Wmin, Wmax] = [-1/2,0] and
Wyt [Wmin, Wmax] = [0,1/2]. They satisfy w_ = —w,, Wy (Wmin) = 0, wi(Wmax) = 1/2
and in the case w e C*(T):

Wi (w) = +(w — wmin) Y2 pe (W), W - wiin < 1, (2.13)
and

1/2

W (w) = £(Wmax —w) " Zp (W), Wmax —w < 1, (2.14)

with p.,p* € C=(T) that are strictly positive. When w is not differentiable at 0
(the acoustic case) instead of (2.13) we assume

wWi(w) = £p, (W), W= wWnin < 1, (2.15)

leaving condition (2.14) unchanged.

2.4.2. The wave-function. It is convenient to introduce the complex wave function

Py (t) = (@ * q(t))y +ipy (1) (2.16)

where {@,, y € Z} is the inverse Fourier transform of the dispersion relation w(k).

Hence |1, (¢)|* is the local energy of the chain at time ¢. The Fourier transform
of the wave function is given by

Dt k) = w(k)§(t, k) +ip(t, k), (2.17)

so that
_L
S92

Using (2.11), it is easy to check that the wave function evolves according to

B(LR) = [0t ) =07 (6, =0)], po(t) = [ Imb(t. k).

(k) = —ico(R)D(E, k) dt +i (ﬁ(t—) _ ipo(t—)) AN(yut). (218
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2.4.3. The initial conditions. For simplicity sake we restrict ourselves to initial
configurations of finite energy. In addition, we assume that the initial energy density
|1y |* is finite per unit length on the macroscopic scale = ~ ey, where € > 0 is the
scaling parameter. More precisely, given € > 0, the initial wave function is distributed
randomly, according to a probability measure p., and

sup 3 e(ly P = sup (191 Z20m) ). < 00, (2.19)
€€(0,1) yez €(0,1)

where (-),,. denotes the expectation with respect to .. We will also assume that

(D(k)D(0))y, =0, k,LeT, (2.20)

Condition (2.20) can be replaced by (zﬁ(k)zﬁ(ﬁ))#s ~ 0, as € = 0 at the expense of
some additional calculations that we prefer not to perform in this article.

An additional hypothesis concerning the distribution of the initial configuration
will be stated later on, see (2.26).

2.4.4. The Wigner distributions. To study the effect of the thermostat, we follow
the evolution of the chain on the macroscopic time scale t' ~ ¢t, and consider the

rescaled wave function w?(f)(t) = 1, (t/e), with its Fourier transform () (¢,k). A
convenient tool to analyse the energy density are the Wigner distributions Wf) (t)

and Yi(s)(t) defined by its action on a test function G € S(R x T) as
(GWOW) = [ Wt )G (1. k)dndk,

R X (2.21)

(@YOW) = [ Fealtn )G (nk)dndk, G eS@RxT).

Here, E is the expectation with respect to the product measure pu. ® P and
W...(t,n,k) = E]E [(z[}(”)* (t, +k - ﬂ) e (t, +k + %)] ,
Ve (tn, k) = fIE[w(E) (t e+ 2! )w@( ;7)] (2.22)
Y _(t,,k) = 5IE[(zz;@) (t k-3 )(W)) (t,—k— %’)] (n,k) € Toye x T.
are the (averaged) Fourier-Wigner functions.

To simplify the notation we shall also write W (¢, 7, k) instead of WE,+(t, n, k).

A straightforward calculation shows that the macroscopic energy grows at most
linearly in time. More precisely, using (2.18), we obtain

%[H‘E’J}(E)(t’k)de:g(Q_i)(T_E[ (a)(t)j| )

with p((f)(t) =po(t/e). As a result we get

N A 1
c fE\w(E)(u k)| dk < e /E\w)(o, )|k + (2 - 7) NTE t20.  (2.23)
T T 0
In particular, we conclude from (2.23) that (see [2])
sup |[WE (t)]a < o0, for each 7> 0. (2.24)
te[0,7]

Hence W) (.) is sequentially weak-+ compact over (L'([0,7];.4))* for any 7 > 0.
We will assume that the initial Wigner distribution

We(n,k) = Wo(0,n,k), (n,k)€eTayexT (2.25)
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is a family that converges weakly in A’ to a non-negative function Wy € L*(R x T) n
C(R x T). We will also assume that there exist C,x > 0 such that

[We(n, k)| < Co(n),  (n,k) € Toje x T, £ € (0,1], (226)
where
o(n) = (1+n;)3/2*" (2.27)
Define the Fourier-Laplace-Wigner functions
Wa e (N1, k) = ef()m e W (8, k)dt, (2.28)

+o00 -
TecOumk) = [Tt Ky,

where ReA > 0, (,k) € Ty. x T. We shall also write @.(A,n,k) instead of
717+,5()\a777k)'

2.5. Some additional notation. Define

J(t) = fT cos (w(k)t) dk, teR. (2.29)
Its Laplace transform
- oo A
A ::f At tdtzjidk, A 0. 2.
J(N) L J(t) N2 (E) ReA>0 (2.30)
Let
g\ = (L +yJ)) (2.31)
Note that Re J(A) >0 for A€ C, := [A € C: Re\ > 0], therefore
gV <1, XeC,. (2.32)
In addition, we have
z 1 N R 17
) = =(1=§(A)= —2 2 =SS )1 J (A, AeC,. 2.33
G =2 1-300)= 55 = S I NG @

Since |J(t)| < 1 we have |J*"™(¢)| <t""1/(n - 1)!, as the n-th convolution power
involves the integration over an n — 1-dimensional simplex of size . One can show
therefore, see [5, (3.12) and (3.13)], that the series

4. (1) = i(—w"rv”(t) (2.34)

defines a C* class function on [0, +00) that satisfies the following growth condition:
for any p > 0 there exists C' > 0 such that |g.(t)| < Ce”®, t > 0. In addition

g+(A) =g(\) - 1. (2.35)

Therefore g(A), given by (2.31), is the Laplace transform of the signed measure
g(dt) := dp(dt) + g« (t)dt. Combining (2.31), (2.34) and (2.35) we obtain

~J xg(t) = Jio(—l)"_lan*’"(t), t>0. (2.36)

n=1
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2.6. Properties of functions § and J. The function §(-) is analytic on C, so,
by the Fatou theorem, see e.g. p. 107 of [6], we know that

§(if) =lmg(c +if), BeR (2.37)
exists a.e. In Section 6.1 we show the following.

Lemma 2.1. The holomorphic function J§ belongs to the Hardy space HP(C,) for
any p € (1,+00). The limit

(J9)(iB) = lim (Jg)(e +iB), BeR (2.38)

exists both a.e. and in the LP(R) sense for p € (1,+00).

In addition, there exists
v(k) :=limg(e +iw(k)), ke, (2.39)
e—0

where Q, == [k e T: W' (k) =0, or w(k)=0]. The function is continuous on
T\ Q.. Moreover, for any § >0 there exists C >0 such that

6(= + iw(k)) - v(k)| < Ce,  dist (k,2.) 2 0. (2.40)

To state our main result we need some additional notation. Define the group
velocity

&' (k) = o' (k) (2m)

and
(k) RACE 2 2
p(k) = =%, g(k)=-—-5-, pu(k):=[1-pF)]", p-(k):=lp).
20w’ (k)| W k)T
(2.41)
It has been shown in Section 10 of [5] that
Rev(k) = (1 + 7) (k)2 (2.42)
2l (k)|
and
po(k) +p_(K) = 1-g(k) < 1, (2.43)
so that, in particular, we have
0<g(k)<l, keT. (2.44)

In the model considered in [5] the coefficients p. (k), p-(k) and g(k) have expressed,
see [5, Theorem 2.1], the probabilities of a phonon being transmitted, reflected and
absorbed at the interface [z = 0].

In our present situation the absorption probability needs to be modified. In
addition, the phonon can be also scattered at the interface with outgoing frequency
¢ with some scattering rate r(k,¢). To be more precise we introduce the following
notation

_ 1 _ 1 N S NG
v oy (17 an) . PO = g O (249)
where
r:z% [R 138" 2dB'. (2.46)

The following result holds.
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Lemma 2.2. For any v >0 we have

1 1
r ff O)Pde = = 2.47
+5 ) @l 5 (2.47)
In addition, if p > 1/2, then

Pabs + fT Pec()dl=1. (2.48)

The proof of the lemma is contained in Section 6.2.

Remark 2.3. It turns out, see [3, Theorem 4. part iii)], that for any unimodal
dispersion relation we have |v(£)| > 0, except possibly £ =0, or 1/2. Thanks to the
identity (2.47) below, we have then

1

Therefore, in particular, the coefficients defined in (2.45) are strictly positive for
w>1/2 and £ ¢{0,1/2}.

2.7. The main result. Our main result is as follows. For brevity, we use the
notation
[0,a], ifa>0
[[0,a]]:= :
[a,0], ifa<O.

Theorem 2.4. Suppose that the initial conditions and the dispersion relation satisfy
the above assumptions. Then, for any 7 >0 and G € L' ([0,7];.A) we have

lim fo (G(t), W.(t))dt = /0 dt fMG (t,z, k)W (t, 2, k)dzdk, (2.50)
where
w (t,.]?, k) = W() (Z‘ - (:J,(]{i)t, ]4?) 1[[0’@r(k)t]]c($) +p+(k)WQ (J? - (I),(k‘)t, k‘) 1[[0@/(]6),5]](1‘)

+p-(B)Wo (= + &' (k)t, =k) 110,00 (k)11 (2)

a0 @) [ W (S50 w00, )na(eri

+Pabs g (k)T 10,0 (k)¢ ().

(2.51)

The proof of this result is given in Section 5.4.

The limit dynamics has an obvious interpretation. Namely, W (¢, z, k) describes
the energy density in (z, k) at time ¢ of the phonons initially distributed according to
Wo(z, k). The first term corresponds then to the ballistic transport of those phonons
which did not cross {z = 0} up to time ¢. The second and third terms correspond,
respectively, to the transmission and reflection of the phonons at the boundary point
{z = 0} with probabilities p, (k) and p_(k), respectively. The fourth term describes
the phonon scattering that occurs at the interface. The phonon with frequency /,
arriving at the interface with the velocity w’(£) is scattered with frequency k at the
rate g(£)psc(k) and moves away from the interface with the velocity w’(k). Finally,
the last term in the right side of (2.51) describes the k-phonon production of the
thermostat at the rate paps g (k)7. From (2.43) and (2.48) we conclude that

1=p(0-p-(0 = [[gOpcR)dk=pung (0), LT (252)

Therefore, the ¢-phonon is absorbed by the thermostat with probability paps g (£).
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Our result can be written as a boundary value problem. Note that W (¢, z, k)
solves the homogeneous transport equation

oW (t,z, k) + @' (k)0 W (t,x,k) =0, (2.53)
away from the boundary point [z = 0].

At the boundary [z = 0] the outgoing phonons are related to the incoming
phonons as follows. Let

W (t,0%, k) = JLIEOW(t,x,k).
If k € T,, then
W (t,07,k) =p. (k)W (¢,07, k) + p_ (k)W (¢,0%, k) + paps g (k)T (2.54)
wq(k) [ W0 O POl g(k) [ W (1.0% -0 pec(O)dt.
If, on the other hand, k € T_, then
W (,07, k) = po (k)W (£,07, k) + p- (k)W (,07, =k) + pabs g (k)T

rg(k) [ W (0" Opc(O)dt+g(k) [ W (4070 (D).

3. THE SOLUTION OF (2.18) AND ITS LAPLACE-FOURIER- WIGNER DISTRIBUTION

In this section, we obtain an explicit expression for the solution of the wave
function (2.18). The mild formulation of the equation reads as follows

1E(t’ k) — e_iw(k)t’(z(k) _ 1 ft e_iw(k)(t—s)po(s_)dN(,yuS)
pJ0 (3.1)

t
+i[ e WM 55 VAN (yus),
0

where p(t) is given by (2.7). Letting
pO(t) := Im([Te-M’f)fz/?(k)dk) (3.2)

we conclude the following closed equation on the momentum at y = 0:

po(t) =830 = [ Tt Ipo(s)aN Gus) + [Tt )i(s-)aN Gus). (33

Equatlon (3.1) is hnear so its solution can be written as the sum of the solution
U1 (t, k) corresponding to the null initial data ¢)(k) = 0 and the solution ¢ (¢, k) of
the homogeneous equation corresponding to p(t) = 0.

More precisely, suppose that 1), (t,k) is the solution of

i (k) = —iwo (k)b (¢, k) dt + (ﬁ(t—) - ipo,l(t—)) dN (yut),

(3.4)
01(0,k) =0
and 15 (t, k) satifsies
dipy(t, k) = ~iw(k)a(t, k) = —po2(t=)dN (ypt),
) ) p (3.5)
1#2(0, k) = 1/)(/‘5)
Here .
poi (t) = Im[ij(t, K)dk, j=1,2.
Then

D(t, k) =i (t, k) + o (t, k). (3.6)
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The respective Fourier-Wigner functions are defined as

. 5 ~o T eny » t en ..
Wb (t,n, k) = iE[wﬁ (g,k - 3)% (g,k+ 5)] Jr g2 € {1,2}.
Since the process (]5(25))t>0 is independent of the initial data field (ﬁ(k‘))keﬂ, we

conclude easily that
W29 (t,n,k) =0, if ji # ja.

Therefore,
— N t ~ft — —
W(tonk) = SB[ (L6 T) (Lo )] =W o) + W22 (e ).
2 € 2 € 2
(3.7)
Accordingly, the respective Laplace-Fourier-Wigner transforms satisfy
DA, k) = @ (A, k) + @22 (A0, ), (3.8)

where
+00 .
T k) = [Nt k)t (k) € Tae x T
0

and Re\ > 0. The definitions of @g’j7 corresponding to Ws“ (t,m, k), 7 =1,2 are
analogous.
3.1. Solving (2.18) for the null initial data. We suppose that 1(0, k) = 0. Let
S0 :=t, A1(t) :=[0,t] and

Ap(t)=[(s1,---y8n): t>81>82>...>58,>0], nx2.

Iterating (3.3) and remembering that pJ(t) = 0 we can write

+00 1 n-1 n ~

poa (=3 (-2 [T (i1 = 5,)B(50=)dN (ypst) ... AN (ypisa), (3.9)
n=1\ M An(t) j21

with sg := t. Therefore, substituting for the momentum into the respective form of

(3.1) we get

1/;1(15, K= fot o iw (k) (1) (]5(3) - ipo(s—)) dN (yus) = Jrzo:o z@l’n(t, k), (3.10)

n=1
where
A t :
bra(t k) =i [ O0Ip(sm)aN (),
; N i (k) (t-s1)
¢1,n(tak) = (_p) Z~[A”(t) € ! (3.11)

n-1
x [T J(sj = 8j41)p(8n=)dN (yus1) ... dN(yusn), n>2.
j=1

3.2. The case T =0 and non-zero initial data. The mild formulation of (3.5)
is as follows

~ . ~ 1 t
wz(t,k)=e*w<’“>tw(k)—i /0 e M) o (s=)dN (yps). (3.12)

From here we conclude the following closed equation on the momentum at y = 0:

02(t) =030~ [T~ 5)po(s)AN (o), (313)
wJo



12 TOMASZ KOMOROWSKI AND STEFANO OLLA

where pJ(t) is given by (3.2). The solution of (3.13) is given by

+0o 1 n
t) =p2(t) + (—7) J(t=-51)...J(Sp_1 — Sn
pa(® =0+ 3 () [, I s
x po(sn)dAN (yps1) ... dN (vpsn).-
Substituting into (3.12) we get
~ too ~
Va(t k) = ) Yo (t, k), (3.15)
n=0

where

n i ¢ —iw -s
Nl A OT(CTD

R +o0 1 n+l ) n-1 3 ]_6)
Dot k) = i (_,) f i) TT J(s0 — s (3.
an(tB= i () An(t) ]Hl (57 = 551)

X p9(8,)AN (yus1) ... dN(yusy,), n>2.

4. THE PHONON CREATION TERM
Consider first the case when the null initial data, i.e. 1,22(75, k) =0. Then,
@ (A, 1, k) = @D (A0, k). (4.1)

We wish to use the chaos expansion, corresponding to the Poisson process (N(t))s0
to represent the Laplace-Fourier-Wigner function @, (\,n, k).

Lemma 4.1. The following formula holds

. eT 1 t s o € R €
We(A\,n, k) = T’y(l_ﬂ)/o e e IE[X (s,k—g)x(s,k-k?n)]ds (4.2)
for any XeCy, (n,k) € Ty)e xT and € >0. Here

X(t, k) = exp {~iw (k) t}

+o00o 1 n ) n

+ > (——) / exp {—iw (k) (t = s1)} [ J(sj = sj+1)dN (yps1) ... dN (ypsy),
n=1\ M An(t) j=1

with s,41 :=0.

Proof. Substituting from (3.11) we get

+00
(N1, k) = Y, Wenm(An,k), (4.3)

n,m=1

where
+o00o ~ ~
DenmOm k) =5 [ eNE [¢;n (t,k - ’i”)wl ” (t,k . i”)]dt nm> 1.
” 2 Jo ’ 2 ’ 2
Note that for s > s’

E[#(s-)i(s'-). N(aps=) = N(yps') 2 1] =0,
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The above implies that

R 52 1 n+m +oo et
wenm(/\ﬂ%k):i - € dt
Y 2 " 0

xE[[An(t)dN(’y,usl)...dN(’Y/LSn)f

dN(yus)...dN(yus,,) exp {iw (k - E—n) (t- 51)}
A (1) 2

w exp i (k+ 1) (2 - n}"HlJ(sj sﬁl)tr:]:J(s;—s;ﬂ)za(sn—)za(s;l—)]

1 1\ntm +00 t
= 2T (1 - —) (—7) f e eldt f ds
2u 7 0 0

XE[f dN(’Vﬂsl)"'dN(’Y,Ufsn—l)f AN (ypsy) - AN (Ysp, 1)
Ap_1(t-s) Ap-1(t-s)
] en ) en , n—1 m—
x exp{zw(k’— 5)(t—s—sl)}exp{—zw (k+ ?) (t—s—sl)} [T 7(s;-sj+1) H J(sh—=s5) |-
j=1 =1

Here s, = s, := 0. Integrating out the ¢ variable we get

n+m +oo
We nm (A, n,k)—ﬂ(l—i)(—l) f e_)‘“exp{i[w(k—@) (k+€n)] }ds
2u n 0 2 2

XE[fA © dN(wwl)~--dN(wsn-l)fA “ dN (ypst) ... dN(ypsp, 1)

n-1 m-
Xexp{_iw(k;_%)sl}exp{iw(k+%7)5’1}HJ(Sj—Sj+1 H j = 5541 ]
3=1 '

for n,m > 1. Summing out over n,m we conclude (4.2). O

Next, we write the Poisson chaos decomposition of the random field x(¢,k). Let

t
d(t k) = f i@ (B)(E5) g (1) (4.4)
0
Define, the cadlag martingale
N(t):=N(t)-t, t>0. (4.5)

Lemma 4.2. The following expansion holds
+00
(k) =) Xt k), (4.6)
n=0

where

XO(tvk) = ¢(t7 k)a

() = (—i)n fAn(t) 3t - s1.k) f[lJ wg(s; = 5;01) (4.7)

x AN (yus1) ...dN(yus,), n>1.
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Proof. Writing N (yut) = N (yut) +yut, where (Z\Nf(v,ut))po is a cadlag martingale
we obtain )

;QU,k)=exp{—¢w(k)t}+—Ei(—q)"\/;n“)exp{—iw(k)(t—sl)}fiJ(sj—sjﬂ)dsln.dsn

+00 nn-1 n ~
() o' 3 S i 0 @50} [T o5 = sje0)ds TN Gy
+ HZZ (—i) fAn(t) exp {—iw (k) (t - 51)}j1:11 J(sj—s541)dN (yus1) ... AN (yusy).
(4.8)

For 1 <k <n we denote by Z;' the set of all ordered k-indices i: 1<i; <... < <n.
We shall also use the abbreviation ds; := []¢; ds;.

Using (2.36) we can combine the first two terms in the right hand side of (4.8)
and obtain that they are equal to ¢(t, k) (cf (4.4))

Changing the order of summation in the remaining two expressions in the right
hand side of (4.8) we conclude that their sum equals

() % 8 [ ewliet -

r1=072,...,rn=1

< [T(=7)"" 71T (55 = s501)dN (yps1) . .. dN (ypsy)
i=1

Using formula (2.36) the above expression can be rewritten in the form

z (_;) fAnm (./o T exp (i (B) (61 - a)}g(da))

n=1
x [TJ * g(s; = sj1)dN (yus1) ... AN (ypsn,)
j=1
+ 00 1 n n - ~
= (—7) f d(t—s1,k) [ * g(s;j = sj41)dN (yps1) ... dN (yusn)
n=l\ M An(t) i=1
and (4.6), with (4.7) follow. O

Coming back to calculation of the asymptotics of @.(\,n, k) given by (4.1) we
have the following result. Recall that I" is defined by (2.46).

Proposition 4.3. For any v > 0 the parameter T, defined by (2.46), belongs to
(0,1/2]. In addition, for any pu>1/2, v>0, Ae C, and (n,k) e Rx T we have

VT (k)P (1 ! ), (4.9)

lim @.(\, 7, k) = .
lim @=(A,m, k) A-T/AA+iw (B \ 2p

Proof. We can use the L?(IP) orthogonality of the terms of the expansion (4.6), with
(4.7). We get

+00
-\ k) = Y @ (A, k), (4.10)
n=0
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where

T 1y [+
@O (N, k) ::577(1-5)[) e > (t k——)¢(t,k+ %")dt,

T 1 oo € €
@™ (A n, k ::u(l——)(l) f =M gy *(t— ——77) (t— k —77)
wa ( s 1, ) )\ 2# ILL 0 € An(t)¢ 51, 2 ¢ S1, + 2

(4.11)

X H (J*g(s; - 8j+1))2 dsi...ds,, mn>1
j=1

Computation of "(0)()\ 1, k). Thanks to (4.7) and (4.11) we have

+o00
DO\ n, k) = 5?( Qﬂ)f / dtdt' e NEHOI25 (147 o (t k——)¢(t’,k+%n)

Using
1 . ’
6(t—t'):ZfReZB(t‘t)dﬁ, (4.12)

we can write

@éo)(/\,n,k;) = (;Z;/\ ( - —) f dg f e~ (EA12-iB)t gy Atexp {iw (k; - %7) (t- s)}g(ds)
x A+w e~ (EN2HBY gy '/0 exp {—iw (k; + ?) (t' - s')} g(ds').

Integrating out s,t and s’,t’ variables we obtain

—(0) _ €T’Y _i f . _Eﬂ o -1 . Sj . -1
Wy (N, k) = @A (1 2,u) R{sA/? iw |k 5 Zﬂ} {zw k+ 5 +€/\/2+zﬁ}
x g(er/2-1iB)g(eA/2 +iB)dp.

Change variables €8" := 8 + w (k -5 ) and obtain, cf (2.39),

700k = o (1-50) [ {vz-9) } {ibeothm) M2 i)

x g(s)\/Q —ief +iw (k - 377)) (5)\/2 +1ief —iw (k + ?))dﬂ

Here

dew(k;n) = E_I[w (k+%)—w(k—%)]. (4.13)

Therefore

Db WE () L

. (0) _
Jim @7 (A, k) (2m)A 25

. -1 .y . -1
) fR {)\/2 - 26} {zw (K)yn+ A2+ zﬁ} ds.
(4.14)
To integrate out the § variable we use the Cauchy integral formula that in our
context reads
f (Zﬁ)dﬁ

o IR 2-

= f(z), =zeC,. (4.15)
It is valid for any holomorphic functlon f on the right half-plane C, that belongs to
the Hardy class HP(C,) for some p > 1, see e.g. [6, p. 113]. Applying the formula
we get

o Tl (k)2 1
lim @ (\, 7, k :7—(1——). 4.16
i @7 (A, k) A +iw (k) " 2u (4.16)
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Computation of w(n)()\ n,k) for n > 1. Change variables

70 ;:t—sl,...,Tn = Sn_anrl(: Sn)

n (4.11). As a result we get

() Ty o Ly (Y / T gmexf2 _
o (N, k) = S 1 2) e dt S dronexp{—eX (o +...+7,)[2}
N € en\ &
x0(t—To—...=Tp) @ (T(),k'—?’r])(ﬁ(ﬁ),k-f- ?n)H(J*g(Tj))Q.
j=1
Here dry p, := d1g ... d7,. Using (4.12) for each variable ¢ and 75, j =0,...,n, we can

further write

na 1) o
We ()‘anvk) (271_)n+2/\ 1 2,U dﬁ Rnﬂdﬂo,n O+°o)2n+2d7-0,nd70’n

xf0+ e~ (EN2- Zﬁ)tdtnexp{ sA/4+zB/2+zﬂJ)TJ}HeXp{ (eN4+ip)2- zﬂj)T}

7=0

xqﬁ*(ro,k—g)qb( oJH;)H(J*g(TJ ﬁ(J*g(T ))-

j=1 j=1

To abbreviate we have used the notation dfy, = dfy ...dS, and analogously for
the remaining variables.

Integrating the ¢, 7 variables and its primed counter-parts we get

am eTy IEAYAAY dp
(k) = (2m)+2A (1 2u)(u) fR&)\/Q—iﬁ s W0
y g(eN/4 +iBo +1ip/2) y g(eN/4-iBo +1iB/2)
5>\/4+Z(ﬂ0+3/2 w(k 82")) 8)\/4+i(6/2—ﬂo+w(k+%’))

< [T TaeN4+i8/2+i8,) [T Ja(eN4 + iB/2 — iB,).
=1 j=1

We integrate the § variable using the Cauchy integral formula (4.15) and get
T 1 n n - n -
o0k = ST (1= ) (2) [ dson TTTaGeNz2 + i) TTTatN2 - i6)
(2m)n+i) 20 ) \ R+ ’ JI:Il J le J
« §(€A/2+Zﬂo) « g(é‘)\/Q—Zﬂo)
eM2+i(Bo-w(k-F)) er2+i(-Borw(k+F))

Change of variables e := By —w (k - %) and obtain

T O, k) = (2571”(1_1)(7)71 [.as ﬁ (6)\/2+Z,BJ)HJ9(5/\/2—Z@)

2 \ p j=
G(eN2+iefy +iw (k- L))  g(er/2—iefy —iw (k- )
N2 +iBo C N2+ i (<Bo + 0w (ki )
Thus,

@™ (N, k) = lim m§">(A7n,k)
e—=0

=St () 0 (1-,) /. (/\/2+ZBo){/\/2d50[ B+ (k)n]}

Here T is given by (2.46). Integrating the (5 variable out, using again (4.15), we get
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To prove that T € (0,1/2] note first that for n = 0 the terms of the expansion
(4.10) are non-negative for each € >0 and A > 0. Thanks to (2.23) and the Fatou
lemma (applied in the context of series) we can write

+00 T 2 1
+ 00 > liminf @, (X, 0,k)> > liminfﬂ?én)()\,(),k) Z 2 |V(k)| ( ) (1— *)’
e—0+ n=o €0+ n=0 1% 2#
(4.17)
which proves that I' < p for any > 1/2. This in turn implies that T' < 1/2.

Since the function J§ belongs to H?(C,), see Lemma 2.1, we can write
~ 1 0 . —_
Joe+iB) = o= [T, e>0, B eR,
T J—o00

where J§j is the Fourier transform of J§(if), that is supported in (-o0,0).
particular, we obtain then

% fR 1Jg(eN/2 +iB)2dB < T,

Therefore, by the dominated convergence theorem, we conclude that
+0oo
U = 1 0. = 1 A(n)
w()\7 77’ k) Ell)%l+ ws()\’ 777 k) 7;)Ell>%l+ws ()\7 77’ k) (4']‘8)

and formula (4.10) follows. U

In the case = 1/2 we can use identity (2.47), whose proof (presented in Section
6.2) uses the conclusion of Proposition 4.3 for u = 1. We obtain then I' < 1/2 = p.
Therefore, we have the following extension of the proposition.

Proposition 4.4. For any v>0, p=1/2, A€ C, and (n,k) e Rx T we have
lim @. (A, 7, k) = 0. (4.19)
e—=0+

5. THE CASE T =0 AND NON-ZERO INITIAL DATA

Here, as in Section 3.2, we assume that 7" = 0 and the initial data need not be null,
and satisfies the assumptions made in Sections 2.4.3 and 2.4.4. The solution 7,ZAJ(t7 k)
is then described by the expansion (3.14) and (3.16). Using the same argument as
in the proof of Lemma 4.2 we obtain the following Poisson chaos expansion for the
momentum at =0 and the Fourier transform of the wave function

po(t) = g*po(t>++°°(—f) [T 7%9(s51-57)g=50(5.) AN (yps1) .. AN (11150,

An(t) j=1
(5.1)
and

Bt k) = OG0, k) iy [ (15 K)pY(s)ds
”g (‘%) /An( o P51 k) H T % g(s; = 5501)9 * po(50)AN (ys1) ... AN (ypsn),
(5.2)

where p)(+) is given by (3.2). In light of (2.49) both of these expansions are valid
for any p > 1/2.
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On the other hand from (2.18), with p(¢) = 0, we obtain the following equation
on the Fourier-Wigner function We(t, 7, k)

O (1.1 k) + i )T (4. ) = 5L 8] (5.3)

e (Lo ) ()] (L ) (2)])

Taking the Laplace transform on both sides we arrive at

(A +idw(k;n)) @ (N, m, k) = W(0,n,k)
54
+1e5()\)—Z[OE(A,k—g—n)JrD;(/\,kJrg—n)], (5-4)
I 2 2 2

where

ec(N\) = %/OM e ME[pg (t)]dt  and
(5.5)

+o00 N
0.\ k) =iz [ e NE G (¢ k) o ()] dt
0
In the present section we show the following.

Proposition 5.1. For any G € S(RxT) and Re\ >0 we have

[ fatnme @ rydndk = tim [ [ @.00n.0G" (. k)dnd,

where

. W (0,7, k) (k)P W (0,7, 0)[v(0)?
DA k) = )\+zw’(k)77+2(1 F//L)()\-FZ(M'(]{))??)./-/- A +iw’ (£)n dndt

TRe[v(k)] W(O,7', k)
S A+iw (k) [Rxﬂr A+ z'cu’(k:)n’d77

v9(k) WO, k)dn' _ ~yg(k) W0, ~k)dn’
4(A+iw'(k)n) Jrxt A+’ (k)y 4N+’ (k)n) JrRxT A —iw!(k)n’

The proof of the proposition is carried out throughout Sections 5.1 - 5.3.

5.1. Asymptotics of e.()\).

Proposition 5.2. Under the assumption about the initial data made in Sections
2.4.3 and 2.4.4 we have

VV(0 77»€)|V(€)|2

Proof. From (5.1) we get

B (0] = Blo s + 3% (1) [ TI0 00 = 5Bl ()Pl .

no (5.8)
5.8

ds,,.
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Accordingly, we have
()= 3 EOQ), where
EOO) =5 [T e By« w0
B =5 (2) [ -*Etdt[ =) [T (e = s50)

E[g * po(sn)] d81 ...dsy,

(5.9)

Asymtotics of Eég)()\), Using (4.12) we can write

(e) ___¢ f rf+oo f+oo 1 —Xe(t+t')/2 ftft’ ’ f iB(t-t")
Ey7(A)=-——— dkdk dt dt d d d

o M 247 Jt2 0 0 ¢ 0o Jo 9(do)g(do) R pe

< {{e—iw(k)(t—a)qﬁ(k) _ €iw(k)(t_a)’§2*(k)} {e_iw(k,)(tl_ol)qﬁ(k‘,) _ eiw(k’)(tl_gl)’&*(kl)}} )

Thanks to (2.20) we can write

CYIIEE P T ey [P : B
EP N = 55 fT dkdk fo dtfo dt' e et fo fo g(da)g(da)fRdBe
x exp {iw(k') (' - 0") - iw (k) (t - o) E {D (k)" ()}

Integrating out the ¢t and ¢’ variables we get

() - _© gOe/2=ip)P E{d(R) (KD}
Byt = 557 [T fR Xef2—if+iw(k) Aef2+if - m(k')dkdk ap.

Next we change variables €3’ := 8 —w(k'), which leads to

)y L GOe/2 —ieBriwR)P  E{S®R) R}
Fo (A)‘szm/A/z_wmg—l[w(k)—w(kf)]' A2 +if didk'dp.

(5.10)
Change variables (k, k') — (n,£), by letting
ki=t+ 20 g=g- 2L (5.11)
2 2
The image of T? under this mapping is
1 1-¢
[o0sts Ls 2 emy (.12
Then, cf (4.13),
G(Ne/2—ieB +iw(L+ 87’))|
E(E))\— f Odnde [ d o
o () We(Om,0dndt | A5y oty (V2 + 18)
Using estimates (2.26), (2.27) and the Cauchy formula (4.15), we obtain
S
lim B, (\) = d dﬂ d
Jim B (A = g [, 2 O ZiB + i (0)m) (N2 +35)
W(0,1,0) |V(£)|
— = dndf. 5.13
) f ./ A+iw'(0)n (5.13)
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Asymptotics of E(E)()\) forn>1. Using (3.2) and (2.20) we get

E© () = 252 ( ) [dk:/dk’]E (D) (K }f eetg [ IRCAD RGN
n—1 "

< T1C (s =s500) [ [ g(do)g(dot) exp (i) (s - 01) = (k) (50 = 1))
j=1

We substitute 7; := s; — 5541, j = 0,...,n, with sp := ¢ and 5,1 := 0, and then use
(4.12) to double variables 7; and 7;. In this way we obtain

€ € Y " / ’ 1 _—Xe(t+t') /4 I N
Eé)(A):722(2w)n+3 (;) fR dBdp fT dkdk f(O’W)Q dtdt' e ONE (i (k) (k') )

n
X dT f dT, / d eiﬁj (75 —Tj)
£07+w)n+1 0,n (0,4+00) 41 0,n — 507n31:£

<TI0 T 06 [ [ sao)gtao’) exp i) =0 - i) -0}

To abbreviate we have used the notation drg ,, = dr...d7,, dBon =dbo...ds, and
similarly for the prime variables. Integrating out the ¢, 7 variables and their prime
counterparts we get

E,(E)(A)—W(”)n [ asas [ awar [ dgonm{B(0)9 (1)

H g) (Ne/d—ip; +1iB) H(Jg (Ae/d+iB; +ip")

1 1 g()\s/4—zﬁn +10) g(Aefd+if, +iB")
Xefd—if NefA—ifB Neld—iBn,+iB+iw(k) Aefd+iBy, +if —iw(k')
Change variables k, k" according to (5.11) and

Eﬂn = Bn_w(k,)> 56 = 67 56, = B,

(5.14)

we obtain
Oy L 7\" dpdp’ —
EZN = 55w (M) v (VA= iB)Y (A= iB) /T We (0., £)dndt

n-1 n—-1
< [ dbon [1(79) e/ =i; +ie6) [T(T9) O + 38, = ie5)

g(/\6/4 —iefn —iw(f —en/2) +ief) g()\s/4 +iely, +iw(f—en/2) + 255’)

A4 =iB, +iB +id.w(f,n) MA+iB, +ip
Hence
2
lim E©()) = f / WO.0.0vOF ) (5.15)
e—>0+ 2un A+iw' (£)n
The conclusion of the proposition then follows from an application of the dominated
convergence theorem to the series appearing in (5.9), as I'/u € (0,1). O

5.2. Asymptotics of the term involving 9.(\). Invoking (5.4) we wish to cal-
culate the limit lim._ oy £., where

A e R (e 3 e e

for any G € S(R x T).



ASYMPTOTIC SCATTERING 21
Taking into account (5.1) and (5.2) we get

0.\ k) = f DE(\ k), (5.17)

n=0
where
Dg(A k) = Dg 1 (A k) + DG o (A k) (5.18)

and

+00 ) N
Dia (k) =ie [ e IR (0,k)g « ph(1)]
+o0o t
D5a(\k) = ey [ et [ o7 (=5, WE[pY(s)g  3(1)] ds,

€ - s " A *(r * _

DE(\ k) '_E(u) fo e tdthn<t)¢ (t =51, k)(J % g)(t - 51) (5.19)
n-1

X H(J*g)Q(sj -s;:1)E [(g*pg(sn))g] dsy...dsp, n>1.
j=1

Accordingly we can write £. = Y% 2™ where

G*(n, k)
e [ L[t (=)o 5 (e D] EB e
£ rRJT[" Ak 2 H(Dn) Ak 2 /I A +idew(ksn) 7 (5.20)

5.2.1. Computation of Df (A, k). The term D§ (A, k) coincides with 91(A, k) de-
fined in [5, formulas (5.6) and (5.7)]. Therefore, see [5, Lemma 5.1], we have the
following result.

Lemma 5.3. For any test function G € S(RxT) and X >0 we have

Y .. G*(n, k) { ( 677) ( 877)}
-1 f ) I pe (n k=) (D) (0 2 L andk
2 B Jr Nridaco () 1200 M +(D5,) T )pen

W(0,7', k) G (n. k)
A+iw' (kK)n' | Jr A +iw’'(k)n

(5.21)

=y fM Re[v (k)] dn} dkdn.

5.2.2. Asymptotics of Dj 5(, k). Using (4.4) we can write

D§o(\ k) = —ev f0+°° e-*“dtfotdsexp{z’w(k)(t—s)}E[g*pS(s)g*pS(t)]

The expression for D§,(A, k) is therefore identical with 92 (A, k) defined by [5,
formulas (5.6) and (5.7)]. We have therefore, see [5, Lemma 5.2].

Lemma 5.4. For any A\>0 and G € S(R xT) we have

o en . en\| G* (. k)dndk
-1 Dj =5 ) T Po) M Sy
2 Eli% RxT [ 0,2 ()\7]{; 2 ) i ( 072) ( T 2 )] A+ i55w(k,77)
v g0 k)di'dk i G (n,k)dn (5.22)
4 JRxT A +iw!(k)n’ R A+iw (k)n '
[ 9WW O ~k)dy'dk [ G (0 k)
4 Jrxr A —iw' (k)ny’ R+ (k)

Summarizing, taking into account definitions (2.41), we have

(p+ (k) - 1)1’ (k)] WO, k)dn' p-(R)&'(B) W (0., ~k)dn’
A +iw!(k)n RxT A +iw' (k) A+iw'(k)n Jr  A—iw'(k)y
(5.23)

~ T lim Sgo) =
2 e—0
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5.2.3. Asymptotics of Y127 DS (A, k). We prove the following.

Lemma 5.5. For any A >0 we have

i Lo 2) o o ]

ot A+ i0.w(k,n)
7 G* (. k)[1 - v (k) *]dndk f W (OPW(0,7', €)di'dl
24(1 =T/ ) JrxT A +iw’ (k)n RxT A +iw’ (£)n' '

The proof of the lemma is presented in Section 5.2.5. It requires some auxiliary
calculations that are done in Section 5.2.4.

5.2.4. Auziliary calculations. We suppose that n > 1. Using the change of variables
Tj =8 =841, § =0,...,n, with s¢ := ¢ and s,41 := 0 in the last formula of (5.19)
and then (4.12) we get

. e ,y n + 00 —)\gt/2 f ) n
D;(MEk)=—1— / dt | d dTo.n t- E j
n(AF) 27 (u) o © R b (0, +00ynit 10 EXP W = 7i

(5.25)

x exp{—xs(i ) /2}¢*<ro,k><J <)) T+ 0 ()= [ (0 ph(r0) ] 21

Doubling the 7; variables, via (4.12), we get

d ”d d nf d !
2 )n+2( ) f f BO B (0,+00)n+1 70, (0,400)n+1 TO,n

w e Net]2 HeXp {Zﬂj(Tj - T;)}exp iB|t- = Z Ti— 5 Z TJ,’
it 2 =0 2 7=0

% exp {—)\5 (]ﬁ; Tj) /4} exp {—Aa (i T;) /4}

x ¢* (9, k) (J * g)(70) H Jxg)(75) H(J*g)(T )E [(g*po(ma)) (9 * po(72))]-

Dy (M k) =

Integrating out the ¢, 7 and 7’ variables we get

R N 7\" ag s . , Ta s
DL = oy (1) 527 i Sows W0 (T) Ol =80+ 18/2) 6" e~ i = i8/2,)

< TT(T8) Ol -5 +i6/2) TT(Tg) e/ + 88, + 1812 GO/ - 1By + 18/2)5\e/4 + 8, + i6/2)
- - (5.26)

< E[po(Ae/d — By +iB/2)P(Ne/A +iB, +iB/[2)].

Here

SR =3 fgizk)

=0 h(0) b (0)
Po(A )_f{)d-lw(@) _)\—iw(f)}dg

are the Laplace transforms of ¢(¢, k) and pJ(t), respectively.

and
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Thanks to (2.20) we have

U 1 , E [ (0)d*(¢)] E[$(£)d*(0)]
B[ROR0] - o [ fLar {()\1 (D) e — () T (1 — (D)) (e + iw(z'))}

Substituting into (5.26) we get

DE(A k) = dfo.n(J) (Ael4~ifo +iB/2)

22(2 )n+2 (*) [T ]R)\z’:‘/;lﬁ—lﬂ Rn+1

g(Aefd+iBy +i8/2) ‘ ‘ ) ‘ .
x )\5/4 +ifo +if)2 —iw (k)g(As/4 —iBn +18/2)g(Nef4d +ifB, +i5/2)
n-1

x H(Jg) (Ae/d—ip; +iB[2) H Jj) (Ae/d+ip; +iB[2)

) B0 ()]
[Ne/d— By + B2 + iw(£)][Ae/d + ifn + B2 — i (€)]
. E [ (09()]
[Ne/A— By + 182 —iw(E)][Ne/d +iBn +iB/2 +iw ()]

Change variables ﬁ; == B;+6/2, j =0,...,n and integrate out the § variable,
using (4.15). We can write then

DiK) = 1o (l)n . [ s, nH (J3) (3Ae/4—iB;) H(Jg) Oefd+iB;),
(5.27)
where
= L [(79) 3xefa - i) Ajﬁi/;o*_’fzzk)dﬁo (5.28)
and
1. = %fT dfdﬁ’ng(S/\e/él—iﬁn)g(/\s/ZL+z‘6n)
E[¢(0)d*(£)]
. { [3Xe/4—if + iw(O)][Ne/4 + By — iw(0))] (5:29)
E [ (g (¢)]
T BASA =By — i (O)][Ne /A + Py + i (1] } 4B

5.2.5. The end of the proof of Lemma 5.5. Using formula (5.27) we conclude, cf
(5.20) and (2.46), that

lim £(™ = hm g (5.30)
e—0+
where
£ —2[]ReD€ (A k) ot ¢ (”’k) (5.31)
'(k)
Here

5 I\nfl
D,i()\, k) = 4771-[6 IIE
W

The calculation of the limit (5.30) reduces therefore to computing the limits of I,
and II..
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Computation of lim._q, I.. Since §(A\) = 1-~JG(\) we can write I, = I! + I2, where

_ 7 [ (J9) (Bre/4~iBo)
L= 2m fm Ae/4 +ifo —iw(k) dfo

o 7 [a oy () (Ne/4+ifo)
Ie = R (9 (B4 = iB0) S s k)

o

dpp.

Using (4.15) we get

_ 0 [ UDBXSA=iBo) ,
= Ne/d+ B0 — (k) W0 = 7(J9) (e —iw (k)

Therefore
lim I = 1-v(k). (5.32)
e—>0+
On the other hand
g%(jﬁ) (3Xe/4—-iBo) (J§)(Ae/4+iBo) =|(JF)I*(iBo)

in any LP(R), p € (1,+00) and pointwise. Therefore,

lin 72 = -2 tim { [0 i) P }
R

=0+ 27 a0+ Ne /4 + iy — iw(k)

Since 5(8) =|(J§) (iBo)|? belongs to any LP(R) for p € [1,+0c0), by the multiplier
theorem, see e.g. [9, Corollary of Theorem 3, p. 96]

5(Bo)dpo 5=im= 27rf 285 (n)dn,

0
=0+ JR Aefd +ify —i —o0
in the LP(R) sense, for any p € (1,+00). Here
jy= [ e mi(8)ds
is the Fourier transform of j. Therefore
2 ol
lim 2= -2 j(w(k)) (5.33)
in the LP(T) sense for any p € [1,2). We have shown therefore that
-2
lim I. =T:=1-v(k) - —j(w(k)) (5.34)
e—>0+ 2T
in the LP(T) sense for any p € [1,2). Since j is real valued we have
1. 1. 1, -..,. 9
o) = 53 (B) = 51(Jg) (iw(k)) . (5.35)
2m 2 2
Thus, using the relation
V(TN =1-5(N),

we conclude that

Rel:=1-Rev(k) = |(Jg) (iw(k)) P

— 1 Rew(k) - %u — (k)P - % (1= (k)P).

(5.36)
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Computation of lim._qy II.. We have II, = Hl + H2 where
G(BXe/4—iB,)G(Nef4 +iB,)E [d(£)d* (¢)]
o Jaatdt [ s [3he/4— 0B, + iw(D)] [N/ + By — iwo(0)]

2| , G(3Ae/4 - i) G(Nef4 +iBn)E [ () (¢)]
2o [ aae L as, BA/A—if, — iw(0)] [N /A + By + ()]

'l =

Changing variables ), := 3, —w(¢’) we obtain

. , g(3Xef4 - szn—iw(())g()\s/4+i56n+iw(€))E[z/AJ(£)z/AJ*(€')]
=52 f dtdl f dBn [(BA/4 =B, +iet (w(0) —w(?))][N4 +iB,] ‘
Therefore

lim 17} = 0de’.

e—0+ 27'( e—0+

[ P (OPE [d(0)d ()]
! /T2A+ze‘1(w(£) w(@’))d

Changing again variables

we conclude that

hm III |V(£)|2W(07n7£)

dndl. 5.37
=0+ RxT A+ Zw’(é)n K ( )

A similar calculation proves that also

O)PW(0,7,0)
lim 112 = [ OFW 0.1, ;10 5.38
50 e RxT A +iw'(£)n " (5.38)

We conclude therefore

—
11 = Jim 11, =4 [v(OPW (0,1, )

dndl. 5.39
e—0+ RxT A +iw/(0)n " (5.39)

The right hand side of (5.39) is real valued. Gathering all the facts proven above
we conclude that

rn-t G*(n,k
lim £ = —— f Rer-E"F)_ (5.40)
e—0+ 2u™ JrxT A+iw'(k)n
ol 1-v(k)?)G*(n. k OEW 0,7/, ¢
B (1= P (R)P)G" (n )dndk[ POPWO.5.0) 0y
ur o JRxT A +iw'(k)n RxT A+ iw'(£)n'
Combining this with formula (5.31) we conclude the proof of Lemma 5.5. O

5.3. Proof of Proposition 5.1. According to (5.4) for any we have

3
fR ng()\,n,k)G*(n,k)dndk => W;E), where
X =1

(E) ::f WE(O)n?k)G*(,'%k)d dk
W Rt Atio.w(kyn)

o) G (0. ) (5.41)
(e) . e UB
dndk
& 7 RxT A + 16w (k;n) K
@2 [ Gk [ ()\ —5”) ()\ k —)]d dk.
W™ 2 JrxT A +i0.w(k;n) o\ 2 " g

It is easy to see that the limit of Wl(e), as € - 0+, corresponds to the first term in the
right hand side of (5.6). Using Proposition 5.2 we conclude that the limit of W(E)
matches the second term there. Finally Wés) -2 Z E(n) and the respective
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limit is a consequence of Lemmas 5.3, 5.4 and 5.5. This ends the proof of the
proposition. U

5.4. The end of the proof of Theorem 2.4. Using the equality (3.8) and the
results of Proposition 4.3 (for p > 1/2), Proposition 4.4 (for u = 1/2) and Proposition
4.3, together with formula (5.6) we conclude that for any A € C, the Laplace-Fourier-
Wigner functions @, (\,7n, k) converge, as ¢ — 0+, in A, in the »-weak topology
to

_ _ W(0,n,k) VTl (k) 1
TR = S G T AT A0 i (h)) (1 2u) (5.42)
(k) W(OPW0,7,0) ., ARe[v(k)] r W(O,7.k)
2u[A+iw (k)n](1-T/p) foT A+’ (O)n' dydt = A+’ (k)n Jr A+ iw’(k)n’d
vg (k) WO k)dn' g (k) W (0,7, ~k)dn'

TA0 i (R)) Jr A+iw (B dOv+ i () Je A= iw (R)nf

Inverting both the Laplace transform in ¢ and Fourier transform in  we obtain
(2.51), which ends the proof of the theorem. O

6. PROOFS OF LEMMAS 2.1 AND 2.2

6.1. Proof of Lemma 2.1. We have

J(N) =G(N\) +H(N), (6.1)
where
1 de 1 dae
== — H(\) == —_— . 2
¢ 2 J1, A +iw(l) ) 2 J1. A—iw(¥) (6.2)
Thanks to (6.1) and (2.32) we conclude that
1(§)(N)] < IAl > Winax, Re A > 0. (6.3)

|)\| — Wmax '

On the other hand, thanks to (2.32) and (2.33), we have also
~ 2
I(gJ)(N\)| <=, ReA>0. (6.4)
Y

As a result §gJ € H?(C,) for any p € (1,+00). The limits in (2.38) and (2.39) can be
substantiated by the results of Sections A and B of Chapter 6 of [6].

Recall that w;'(-) is the inverse of the restriction wyg 1/2). From (6.2) we get

Wnax dv
wmn - @' (Wi (v))[e +i(v +w(k))]
To simplify assume that k € [0,1/2]. It is clear that

Gle +iw(k)) = %

1 Wmax de

2 Join @ (@7 (0)) (0 + w(k))

li%l G(e+iw(k)) = G(iw(k))

e—0+

and there exists C' > 0 such that
\G(w@(k)) —G(iw(k))| <Ce, keQl®, (6.5)

where Q) = [keT: dist(k,Q.) > §]. Concerning H(-) we have

Wmax d'U

wmin - W'(wit(v))[e +i(w(k) - v)]

H(e+iw(k)) = %
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A simple calculation leads to

H(iw(k)) = lim H(e +iw(k)) = wmx—w(k))]

7r+ilog(w(k)_w _

1
20 (8) [
L1 e W) - w(wi (v)]dy
2 Jomin W (Wi ()W (k) (w(k) -v)
Since w'(-) is Lipschitz the integral in the right hand side makes sense. A straight-
forward calculation implies the existence of C' > 0 such that

|H(5 +iw(k)) - H(iw(k))‘ <Ce, ke, (6.6)

From (6.5) and (6.6) we conclude (2.40). In addition we infer also the continuity of
von T\ Q,. O

6.2. Proof of Lemma 2.2.

6.2.1. Some preliminaries. With some abuse of notation we denote by A the Banach
space of all matrix valued functions obtained by the completion of functions of the
form

F(y,k):[ ]C_’Yl(y(yki) g((;’f]z) ] (y,k) €RxT, (6.7)

with C'™° smooth entries satisfying G is real valued and H is complex valued and
even in k. The completion is taken in the norm given by the maximum of the A
norms of the entries, see (2.2). The Fourier transform in the y variable shall be
denoted by

(?:+(77ak) E+(777k)
H_(n,k) G-(n,k)
We have G_(n,k) = G+(n,~k) = Gi(-n,~k) and H_(n, k) = H:(-n, k).

The Wigner distribution, corresponding to the wave function 1) (t), is a 2 x 2-
matrix tensor W, (t), whose entries are distributions belonging to A" - the dual to
A, given by their respective Fourier transforms

:W5,+(t,'f],k) /?i,+(t7777k)
Ye (k) We_(t,n.k)
with the entries defined in (2.22).

Using (2.18) with u = 1 we obtain the following system of equations for the
evolution of the tensor W, (¢):

iws(t) = (D +YTL T W (t) + g‘]. (6.10)

dt
1 -1
[ 1]

Operator 9. : A" - A’ is given by the action on the Fourier transform in the spatial
variable

F(y,k) = [ ] . (nk)eRxT. (6.8)

Ws(ta n, k) = [ ] y (k) eTexT, (6.9)

Here

. — 2 -
mideo (ki)W (k) ~ =@ (k.em)V(n. k)

HW(n, k) = . Wed. (6.11)
21 _ - ) —
;Zw(k,sn)Yf(n,k) i6ew(k;n)W-(n, k)
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Here §.w(k;n) is given by (4.13) and

s 3[ofe-2)oule )

Moreover, T, %) : A" - A’ act via the formulas

2 W T I _| W k) YV (n.k)

TW(n, k) = W' (n, k)J, TIW(n, k) == [ }’7_//(777 k) W_//(n, k) |’ (6.12)
with

i/ 1 17 / AV ’ \Va / 4
W (nak) = 5 ﬁz {2W+(77 >£) —Y+(77 ’E) —Y—(77 76)}d77 dg? (613>

T? defined in (5.12), and

W”(k—i o LAy B —kk
in,)—2€T1n5,+ +Ye|n+ +

4
_Wi(n_%7k+k,) Wi(n+ k+k:)]dk’, (6.14)
€
?1,”(77,]{):—2i [Yi(n+2k k+kz’)+Yi(77—k: k;’)
9

2 14
—W;(n+ i k+k;) Wi(n—lm—k;) dk’.

All the operators $)., T. and T are bounded on A’ for a fixed € > 0. Therefore
equation (6.10) has a unique solution for a given initial data W.(0) € A’. A direct
calculations show that W, (¢) given by the entries

— / -
Wa,i(tanak) ET250 (T/_ 2)7 }/E,:t(tan?k) EO (615)
LeZ

is a stationary solution of (6.10).

6.2.2. Fquilibrium initial data. We suppose that (1 )zez is an i.i.d. zero mean,
complex Gaussian field with

E[¢.%.]=0 and E[y.v;]= 20, T, =, YA (6.16)

Then
1/1([6') _ Z 6—27mkzwm
Tel
is the complex valued Gaussian white noise field on T with

E[{(k)$(K)]=0 and E[O(k){*(K)]=0o(k~k'), kK €T, (6.17)
where ¢ (1) is the Dirac delta distribution.

Suppose that ¥ (¢, k) is the solution of (2.18) with the initial data described above.
Let (&) (¢, k) := (t/e, k) and let W_(t) be the Wigner distribution tensor given by
(6.9) with the entries given by the formula (2.22). It satisfies the system (6.10). As
before we denote by we + (A, 1, k), ye + (A, 0, k) the Laplace-Fourier-Wigner functions
corresponding to the entries W (¢).

Note that Y;i(o, 7,k) =0 and, by the Poisson summation formula,

o0y = SE [ sk ) (sh= )] e £ oo -7 5 (0 g)

zel CeZ



ASYMPTOTIC SCATTERING 29

6.2.3. Proof of the identity (2.48). Due to the uniqueness of solutions of the system
(6.10) we have

— —_ 4 =
Wa,i(t777ak) EW€,+(O7nak) :TZ(SO (77—2), }/57i(t7777k) =0. (618)
LeZ
In particular, we have
T
lim @ . (A, k) = Lo0 (1) (6.19)
e—>0 7’ A

in the *-weak sense in A’.
On the other hand, from (3.7) and Proposition 4.10 (recall that p = 1), we have

YT |v(k)[?

1' AE >\a 7k O N
el—r>%w’+( nk) 22X +iw'(k)n)

+ lir%@; LN k), (6.20)
£ ’

where
+oo N N
ok =5 [ B[ 6k ) @7 (k- D) |dt (10 € TopexT

and 9’ (¢, k) is given by (5.2), corresponding to the initial data described by (6.16)
and p = 1. Tt satisfies (5.4). The calculation concerning the asymptotics of WL (A, 1, k)
are similar to those carried out in Section 5. However the latter cannot be directly
applied, as in the case of initial data (6.16) the assumption (2.26) is not satisfied.

Note that
3

717;:()‘7777k/’) = z m;,j()‘an7k)7 where
j=1
—~ We.(0,m,k)
We (Aanak) = :
o1 >\+155w(/€;77) (6.21)
Py yee(A)
Ank)=——"—+°>-"—
Tea k) = s o))
—1 v en * en
A1, k) = — o [ NE-—)+0 [ NE+—]],
D=sAn k) = =5 s St [ ( 2 )+ ( " )]
with W.(0,n,k) given by (6.18) and e.(A), 0. (A, k) given by (5.5). Obviously,
lim @3 (A, 7, k) = 000 (6.22)
e—0+ 7 A

in the x-weak sense in A’.

We can repeat the calculations leading to (5.7) and obtain that in this case

| O T
lim e.()) = dnde = OPde. (6.23
11 e = 5077 Jer xr i @n T o) SO (6:23)
Accordingly,
T

fT w(0)2dt, (6.24)

lim @, 5(\,n, k) =
Jim W22 (A, k) 2A(1-T)(\ +iw'(k))

boundedly pointwise.

On the other hand 9.(\, k) is given by the series (5.17) with the accompanying
equations (5.18) and (5.19).

Using the first formula of (5.19) together with (6.17) we conclude that

e [ (D (R)D(O)dl

Dg 1 (A k) 2 Jt de +i(w(®) —w(k))

(N — (k) = %g(e)\ iw(k)).  (6.25)
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To compute Dg ,(A, k), note that by (3.2).

[PO(U)PO(O =3 / “’“(k)(” —) 4 giwk) (o= ))dk‘ o,0' 20. (6.26)
Therefore,
D5 o (A k) = DS;(A k)+D02()‘ k),

where

t t
DEL(AK) = €7T/def mdtf g(da)/ ds
’ 0 0

xexp (i(w(k) ~w(O) (- )} [ g(da)e= O

t t
DE2(M k) = - EVdezf ”\stdtf g(do)f ds
’ 0 0

x exp {i(w(k) +w(?))(t-s)} fos g(do”)e“O(~).

and

Using (4.12) we get
T +0oo , ) , ¢ 4
Dy5(\ k) = —i f f f e A WH)/2 gy aur /Reiﬁ(t—t )dﬁfo e (i)

t s , ’
x [ dsexp (i) +w(O)(t' - )} [ g(d)e O
0 0
After straightforward calculation we obtain

eT s G(Aes/2+iB —iw(l))

DR == [ ey e 90 2vie0-i8) 3 s

Therefore
. T W (0)]2d
lim DS2(\ k) = - lim —1— f
lim Do2(Ak) == lim = (A5/2)2+ﬂ2 2 Nef2+ B—i(w(k) + (D)
VyT lv(0)>de
T w(k)+w(l)’

in the LP(T) sense for any p € [1,2).

(6.27)

Next, using again (4.12), we get

T +oo + 00 , . , t +
DEJ ME) = — 204 fdgf / —Ae(t+t )/thdtlf iB(t—t )d / d [ d
02(AF) 2(2r) Jr - Jo o ¢ ®° p 0 9(do) o ¥

T dB gref2-if—iw(r)) L
" T202r) Jr (e2)2 4 32 Jv Aef2 + 0B — i(w(k) - w(g))g(Ag/Q +if i (0))dl
Applying Lemma 2.1 we conclude that
o en T (eA/2)dB v (6)]Par
i Do K) == i S0 e en2y2+ 32 Jr a2+ iB = i(w(h) = (0))

in the LP(T) sense for p € [1,2). Suppose that p € (0,1). Observe that

el T (eA/2)dp v(0)?de
A Doy (A k) == M 05 J e o2y + 2 / N2+ 0B — i(w(k) —w(0))
T Ry ay,

where, cf Section 2.4.1

v(wt(v))]?
o) = A @)

7 — WminsWmax (U)'
W (wit(v)) T ]
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Summarizing we have shown that

11%1 D§(\ k) =Do(M\ k), in the LP(T) sense, p € [1,2), (6.28)
e—0+
where, cf (2.41),
T ATlv(k)> T Tg (k)
Re Dg(A k) = —Rev(k) - ————— = —Rerv(k) - . 6.29
Do k) = TRew(h) - JrEdl - TRev) - T (620)

We use formula (5.25) to express D5, (A, k). Doubling the 7; variables with the
help of (4.12) we get

e et 1o [+°° [ f / f f
D:(\ k) = dt dBo n dro,nd d dl
n( ) ) (2’/T)n+2 0 Rn+1 60, [0,+00)2n+2 To,nATo 0 ﬂ .

y e—)\et/2¢*(7-6’ EY(J * g)(70) IHTOGXP {iﬁj(Tj - TJI)}
=

x exp{if t—EZTj—EZT; expi-Ae| Y 7| /4
2520 2% 7=0
X exp {—)\5 (Z TJ') /4} f ! e g(do) f "0 g(do"), n>1.
3=0 0 0

Integrating the 7 and 7’ variables, we get

. "7 B g(Aefd+ifBy +1if/2)
Dr(3k) = (27)+2 f f )\5/2—zﬁ s B0 (JG) (Aef4 = B0 + iB/2 ))\5/4+i50+i6/2—iw(k)

ﬁ g) (Ne/d—ip; +if]2) H Jg) (Ae/4+1iB; +1B3]2)

J=1

g(Aefd—ifB, +iB/2 + zw(ﬁ)) g(Ae/A+iBy +iB[2 - iw(l))
Ne/4 — B +iB/2 Ne/d+iBn +iB[2
Change variables 8} := 3; + 8/2, j =0,...,n. We can write then

n>1.

£\ k) = EVnT GOe/4 +ifo)
Dn()\7k)_ Yn+2 / fR)\E/Q— i Jrnn ﬁon(Jg) (Aef4—ify +1iB) /At iBo—iw(k)
< T1(g) (vefa= 8, +i6) Ul (J3) O/t +18;)

y gAe/A—iBp +if +iw(l)) g(Ae/d+iBn —iw(())
Aefd—if, +iB Aefd +ify ’

We integrate the § variable using the Cauchy formula (4.15) and obtain

n-1
tig DL = i S [Lae [ dso fLas,
~_ X g()\E/4+Zﬂo)
* (J9) (Bre/4=ibo) Ne/d+ifo — iw(k)

x 9(3)\8/4_1571'4_ ’LOJ(Z)) . g(AE/4+Zﬁn._ ZOJ(K)) — hm F’I’L 1TI III n Z 17
34 -1if, Aef4+1if, >0+

n>1.

where I is given by (5.28) and

. §(3Ae/4 —iBy +iw(l)) g(Aef4+iBy —iw(l))
I = fdgf 4B 3Xe/d By avig, o (630

We have shown that lim._o. I = I, see (5.34).
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In the case of II. we perform the change variables €3/ := §8,, and get

;1 9(3Xe/4 —ieBy +iw(l)) G(Aef4 +iefBy —iw(l))
At e = o sli%i ‘w[ 4 3N4—iB, N4+ B,
(6.31)
2 dbBn 2
513512 Jowol ‘M/(gm BB fTW)' d (6:32)
Hence,

Cw(k
Tim gD (A k) = (2)\(1 (r))| f| (0)dr. (6.33)

As a result for any G € S(R x T) we can write
VG (n, k)dndk

li @, (N1, k)G (n, k)dndk = - Do(\ K
ai%l_'_ RxT we,?)( > 1 ) (na ) n RxT )\‘FiW'(k)’I] Re 0( ) ) (6 34)
+o00 * :
lim MReDn(A,k).
a0+ JRxT A +iw! (k)1
Substituting from (6.29) and (6.33) into (6.34) we obtain
) ~yTRev (k)
1 A1, k)G (g, k) dndk = f __ynenth)
al)Iél+ Rx 63( TI ) (17 ) T] { >\+lw,(k)"7)
(6.35)
vy (k)T VT(1 - (k)P f
0)|*de k)dndk.
A + i’ (k)7) 2()\+zw’(k)n))\(1 1) Je " Pty G (n. k)

Combining (6.20) with (6.22), (6.24) and (6.35) we get, after some elementary
computation,

1 1

which in turn yields (2.48). Note that (6.36) is in fact equivalent with (2.47). O
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