Peter Beyls
email: peter@arti.vub.ac.be

Aesthetic navigation: musical complexity engineering using genetic algorithms

The present paper suggests artificial evolution as an alternative to design. Genetic algorithms are used to explore the generative potential of genotypes formulated as cellular automata rewrite rules. We describe the biological, musical and engineering context for evolutionary methods in addition to the functionality of the current implementation.

Introduction.

Evolution is a process that alters the genetic makeup of organisms to make them better adapted to the environment they live in. We provide experimental evidence that the principle of implicit evolution may be used successfully as an alternative to explicit design in the context of musical composition. Nature provides a wealth of living structures and processes that were not designed explicitly but came about through a process of natural evolution, first recognised by Darwin in 1859. For evolution to take place one needs maximum diversity i.e. many individuals of which some survive to the next generation. So, randomness should generate a large population of different initial structures because the seeds for future complexity must already be present in this primordial collection. According to Darwin, adaptation is the essence of life. In biological evolution, species survive and reproduce according to their fitness i.e. how well they are adapted to their environment. Higher fitness means better chances for survival and reproduction. Surviving fitter offsprings are similar but not identical to their parents so diversity is maintained. Natural evolution produces individuals that are well adapted in form, function and behaviour to the destructive forces of their ecological environment. The process of artificial evolution is based on the selection of apparently promising individuals according to a certain fitness function i.e. how well they perform given their context.

DNA may be viewed as a micro-program which specifies the morphology and behaviour of an organism. The string of instructions is called a genotype and is expressed through a developmental process called epigenesis., the organism that results is called a phenotype . From the observation of the extraordinary complexity of life itself --ranging from monocellular organisms to the emergence of human consciousness --one must conclude that evolution has been very successful at searching the large and complex space of genotypes, eventually, it led to the development of genetic algorithms [Holland,75]. The basic idea is to extract and generalise the critical processes of evolution and apply them to solve other search problems e.g. the creation of musical artefacts.

Note that evolutionary programming may be situated on three different levels. The most general and open ended one is to view program instructions as genotypes and have artificial selectionism evolve a functional program. In this case, the genetic space is virtually infinite. Tom Ray's Tierra project [Ray,94] is exemplary here. The least general method is based on computational strategies that cannot extend their genetic space; breeding cellular automata lookup tables, for instance, offer flexibility limited to a discrete world formulated in a rigid geometric structure. The system proposed next is situated right in between these two extremes: both L-systems and rewrite grammars are based on the recursive application of a rule of arbitrary complexity. We can think of the rewrite rules as genotypes realised into the graphic or musical domain. Rules can be complex because they consist of nested Lisp objects of arbitrary depth. The system generates families of rules, the user selects some based on direct inspection of their aesthetic appeal. Selected rules are combined via cross-over operations leading to a new generation of fitter rules. This process of cyclical optimisation is typical to the exploration of a genetic space. The user must actively provide orientation to this search process --interesting objects are discovered as a consequence of the act of navigation itself.

Part of the current document is based on previous yet unpublished material presented at the ISEA Conference in Montreal, Autumn 1995.

Motivation

Genetic algorithms are explorational devices. They allow for the synthesis of complexities that would be impossible to design by explicit specification because the underlying principles that gave rise to this complexity are unknown or too complex to formalise. This complexity barrier is characteristic for knowledge-based approaches to complexity engineering and led to the consideration of sub-symbolic methods in general.

The focus is on development of models of evolution in time, on methods of steering emerging complexity employing a minimum of control specification. This steering of evolution can be considered as a process of the accumulation of small change [Dawkins,88]. Dawkins describes, in biological terms, the synthesis of biomorphs using a collection of genes. The value of the genes is mapped to define the structure of biomorphs. Ensembles of biomorphs are generated, some of them selected --guided by aesthetic considerations , their genes are combined and mutated to give rise to the next generation. Note that one does not aim for a pre-conceived distant target and nor does natural selection: the evolutionary creativity of natural selection is indeed a blind watchmaker.

A wonderful example of musical heredity behaviour is documented in [Sheldrake, 1988], a hypothesis of formative causation based on morphic resonance is put forward. This controversial theory claims that resonance from the past will guide evolution, action patterns are not coded in genes --the genes are said to favour or discourage certain morphic fields to be effective or not. The example in fig. 1 illustrates a genetic mix. It shows that the instinctive behaviour of 2 crossed species produces hybrids that show evidence of both parental types. Female gibbons in the Thai forests make impressive morning calls. The calls vary --according to the species --in length between an average of 8 and 73 notes per call, while the duration remains more or less constant. Hybrids behave from what they inherit from both parents. The idea, then, is to build an interactive system that supports experimentation with the above principles; a technique of genetic interpolation is described later.

In the broader context of AI, selectionism fits the dynamics paradigm [Steels,87]. In contrast, classic approaches to problem solving promote the symbolic paradigm: knowledge characterised as rules and facts manipulate complex hierarchies of symbolic representations until a solution is found. This method remains problematic: knowledge may be elusive, incomplete or inconsistent --particularly in creative reasoning --and the complexity of the problem at hand may be too complex to formalise in explicit code. The dynamics paradigm suggests the more robust architecture of a distributed system and is inspired by examples in nature such as social behaviour in ant colonies [Deneubourg et al. 83]. The basic idea is to build a system consisting of many simple organisms and have them evolve in parallel in time. They interact only locally and a supervising control structure is missing. From local, microscopic interactions, global macroscopic structures are built: these emergent properties represent the solution to the problem. Many approaches to musical composition rooted in self-organisation using dynamical, distributed architectures is documented in [START_REF] Beyls | Chaos and creativity. The complex dynamics approach to musical composition[END_REF]91a]. In short, complex systems exhibit self-organising structures i.e. order is generated from random initial conditions. Again, randomness here, is not the architect but provides a starting ground of all possible degrees of freedom to feed a dynamic process of spontaneous pattern formation. However, interesting patterns emerge only for specific, well defined parameters, the obvious problem is to locate these values in the very large and non-linear search space of all possible parameter settings. Genetic algorithms tune in to areas of interesting parameter values. Genetic algorithms are used with great results as systems for artificial evolution in computer graphics [Sims,91a] --this work views symbolic expressions as genotypes to synthesise 3d objects and evolving animations with a strong organic quality. [START_REF][END_REF]] breed families of virtual computer sculptures from the mutation of genes acting on a few geometric primitives. The process of software development in the realm of a personal, autonomous art making expert system, viewed as a process of gradual optimisation based on feedback from the artist/programmer is described in [Verostko,90] --this system approaches epigenesis in a metaphorical sense. [Lund,Pagliarini & Miglino,95] report on Automatic Painter, a hybrid system combining automatic fitness evaluation and user interaction. Genetic algorithms have invaded the musical domain in recent years. [Horner & Goldberg,91] describe a technique of thematic bridging using genetic operators and Gary Nelson created a MAX implementation of a random walk in genetic space [Nelson,93]. Further projects include a genetic algorithm based model of a novice jazz musician learning to improvise [Biles,94], a method to offer optimal control of the many parameters involved in granular synthesis [Fujinaga et al. 94] and an interactive system which learns the composer's criteria for generating percussion textures [Horowitz,94]. In addition, some composers imagined musical structures as produced by the collective behaviour of a family of simulated, living entities, making use of biologically inspired operators, the work by [Lunden,88] is exemplary.

Selectionist cellular automata

Cellular automata are discrete idealisations of complex natural systems containing large numbers of simple, identical components organised in some geometric structure like a vector or array. The next generation is computed from the current one through evaluation of a rule, represented as a lookup table. The idea is to consider this rule as a genotype and breed lookup tables using a method of interactive optimisation [Sims,91b]. There is evidence that cellular automata are capable of echoing the complex processes of nature. [Wolfram,84] defines four classes of CA behaviour. In terms of chaos theory, class 1 and class 2 evolve toward, respectively, a limit point and a limit cycle. Class 3 evolution leads to chaotic patterns, while the qualitative behaviour in class 4 exhibits strange attractors.

Given this behavioural wealth, its seems natural to think of a global control mechanism to navigate this behavioural space. One method suggested by [Langton,86] is based on the lambda parameter --in fact, a continuous controller of complexity and periodicity --is implemented in the current system. A more detailed description of the musical potential of the lambda controller is given in [START_REF] Beyls | Chaos and creativity. The complex dynamics approach to musical composition[END_REF]91b]. The analogy between the rule table and a DNA sequence was first made by [Li and Packard,89] to investigate the structure of the elementary CA rule space. More recent, genetic algorithms were applied to design CA that can perform computations requiring global co-ordination [Mitchell et al. 96]. Selectionist automata consist of populations of different virtual organisms in which diversity is maintained. The environment acts as a selector, it evaluates organisms according to their fitness and selects the better ones to survive. The genotypes of the surviving structures are modified by genetic operators like mutation and cross-over to provide progressively better performance. A fitness landscape is extended over the huge combinatorial space of all possible genotype values. Optimisation of the fitness function mirrors a creative process of searching though the composers' personal search space. The problem is to keep the proper balance between exploitation (to search the best regions of the current niche) and exploration (to move to unexplored and possibly better regions) [Manderick,91]. Exploration is analogous to self-confirmation in the creative process while exploration is more like self-revision and seems closer to the heart of true human creativity. The basic outline of the genetic algorithm is given below: t=0 initialise P(t) while not finished do begin evaluate all pi ∈ P(t) select P(t+1) from P(t) apply genetic operators to some/all of pi ∈ P(t+1) t = t + 1 end As seen in figure 2, at initialisation time, a population of 10 random lookup tables are generated according to a lambda value of 77. The lambda parameter is a simple measure of the distribution of state transitions in the lookup table. For instance, consider the value zero to be the quiescent state when the number of different values equals 5 i.e. 0 to 4. Now, the lambda parameter determines the probability that a non-quiescent state (1 ~ 4) will be selected to be appended to the transition table, with equal probabilities. By changing the lambda value, we can tune in to regions of interesting behaviour. Another important parameter is the evaluation neighbourhood; in our implementation; 3, 5 or 7. However, limitations exist since large nr of values with wide neighbourhoods make for extremely long lookup table lists. The rule length is defined as:

(defun weighted-rule-length (nv nbh) (loop for i from 1 to nbh sum (expt nv i)))

In the evaluation phase , a fitness is attributed according to initial visual inspection; the morphological complexity of the cellular automaton and its evolution in time (up to 80 generations deep) is evaluated. The second stage of the evaluation process involves mapping the automaton from 2d visual space to a MIDI stream in time and thus, introduces aural inspection of the phenotype. More on mapping later. The next step introduces variation and involves the recombination of the elements of the population P(t+1) exhibiting highest fitness using genetic operators. Three types of cross-over operator exist: random recombination of segments from 2 or more rules, recombination according to a split point and, swapping a single segment between rules. Cross-over is the most powerful operator. Mutation: all elements of the CA lookup table are changed according to a certain probability (0 < new_value < nr_values). Mutation is performed because the cross-over operator introduces the potential danger of losing certain automaton rule values for future adaptive progress. The mutation operator randomly replaces a few values of the gene by another one --the mutation rate should be low to guarantee smooth navigation in combinatorial space.

Fig. 3

One obvious possibility is to interpolate between two interesting rules which will produce a sequence of rules with contrasting behaviour according to their mutual distance in genetic space. In addition, an N-dimensional data structure may define a trajectory through genetic space --it is read out sequentially and sets the lambda parameter and parameters affecting midi mapping. Quite elaborate results are obtained when this method is combined with intelligent mapping to the midi domain: the generative system and the objects that result from it should receive a musical interpretation based on knowledge of the psychological effect of the sounding result as well as knowledge of the constraints when scoring for acoustic instruments. Figure 3 shows the gesture editor used to edit a trajectory.

Figure 4 shows the result of applying the gesture in fig. 3. Note that the lambda parameter set by the gesture controls both the density and the degree of periodicity of the output.

Yet another method is based on the comparative analysis of families of genotypes using an algorithm instead of direct, interactive selection by the user. In the auto-exploration mode, the program analyses CA output in terms of the following features: periodicity, ratio between repeating and non-repeating values, density, temporal similarity, spatial similarity in a single time slice, auto-correlation analysis, Hamming distance and histogram --all producing numeric data. Pattern matching was also implemented but proved to be problematic in use because of being computationally very expensive. We proceed as follows: a group of random rules is generated and used for the synthesis of automata (every rule is tested with 10 different initial cellular configurations) their morphology is analysed and the result compared to the present criteria (e.g. periodicity between 60 and 70%), all rules receive a fitness according to how well they follow the criteria, next all rules are sorted producing a list of candidates sorted according to their fitness, the two fittest candidate rules are selected and a set of new rules is computed using cross-over and mutation operators. Intermediate results are automatically stored to disk which allows for examination of the systems' behaviour in retrospect. With different explicit criteria we can build a large database of CA objects which can be sorted according to any criterion. The most important yet most difficult part of the chain is to map the behaviour of the CA to midi, we tested many algorithms, consider next documented example.

(defmethod compute-events-6 ((ca ca) play-flags-vector) (let ((td 0) ; total-duration (d 100)

; duration (n 0)

; start-note (result nil ; velocity e1)

; channel result)) (incf cntr)))

; increment local counter (incf td d))))

; increment start-time

Conclusion

One restricting factor is that genotypes viewed as lookup tables can never extend their behavioural complexity. The nature of the rules does not evolve and the system as a whole cannot move to regions of higher complexity, genetic operators cannot alter the structure of the rule. For this reason, we built a related system which views the rewrite-rules used with Lsystems [Lindenmayer,68] as genotypes of variable morphological complexity. Genetic engineering offers instruments to build morphologies of considerable complexity without needing explicit knowledge of the processes involved in their creation. One starts from randomness (there is nothing to refer to) and, gradually, by providing critical advice to the system, families of interesting structures emerge (goals are identified). Incidentally, the proposition of constraints has always been of stronger significance in the human creative process than the elaboration of rules. The method suggested is a foremost example of intimate machine interaction: the results obtained could not be produced in isolation by neither man nor machine.

Fig. 1 -

 1 Fig. 1 -Sound spectrograms of the great calls of gibbons. Adapted from Sheldrake, 1988 --after Brockelman & Schilling, 1984.

Fig 2 .

 2 Fig 2. Main interface to cellular automata explorer program.

Fig. 4 Figure 5

 45 Fig. 4Figure 5 shows part of the score generated from the interpretation of fig. 4.

)) (dolist (slice ; make list of grouped values (mapcar #'append (collect-slice-values ca)) (reverse result)) ; return score (dolist (e slice) ; for every sub-group (setq d (* 200 (length e))) (when (= (length e) (random 6)) (incf td d)) ; entry delay (let ((cntr 0)) (dolist (e1 e) ; for every element in sub-group ; use it if not a rest and play-flag for that value is T (unless (or (zerop e1) (not (nth e1 play-flags-vector))) ; compute new scale-pointer (setq n (clip (if (evenp (position e slice)) (+ e1 n) ; + interval (-n e1))) ; else negative -7 7)) ; collect event: start-time, pitch, dur, vel, chan (push (list td (if (= 1 (length e)) ; note or chord (nth (+ 7 n) *scale*) (nth (+ 7 (* 2 cntr) n) *scale*)) (* d (min 2 (length e))) ; duration (+ 60 (random 60))

Acknowledgements

I want to express my deep gratitude to Luc Steels, Karl Sims, Gary Lee Nelson, Larry Polansky and Andrew Horner for inspiration and discussions.