
HAL Id: hal-03106699
https://hal.science/hal-03106699

Submitted on 25 May 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The Design and FPGA-Based Implementation of a
Stream Cipher Based on a Secure Chaotic Generator
Fethi Dridi, Safwan El Assad, Wajih El Hadj Youssef, Mohsen Machhout,

René Lozi

To cite this version:
Fethi Dridi, Safwan El Assad, Wajih El Hadj Youssef, Mohsen Machhout, René Lozi. The Design
and FPGA-Based Implementation of a Stream Cipher Based on a Secure Chaotic Generator. Applied
Sciences, 2021, 11 (2), pp.625. �10.3390/app11020625�. �hal-03106699�

https://hal.science/hal-03106699
https://hal.archives-ouvertes.fr

applied
sciences

Article

The Design and FPGA-Based Implementation of a Stream
Cipher Based on a Secure Chaotic Generator

Fethi Dridi 1,2 , Safwan El Assad 2,* , Wajih El Hadj Youssef 1 , Mohsen Machhout 1 and René Lozi 3

����������
�������

Citation: Dridi, F.; El Assad, S.;

El Hadj Youssef, W.; Machhout, M.;

Lozi, R. The Design and FPGA-

Based Implementation of a Stream

Cipher Based on a Secure Chaotic

Generator. Appl. Sci. 2021, 11, 625.

https://doi.org/10.3390/app1102

0625

Received: 30 November 2020

Accepted: 5 January 2021

Published: 11 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electronics and Microelectronics Laboratory (EmE), Faculty of Sciences of Monastir, University of Monastir,
5019 Monastir, Tunisia; fethi.dridi@fsm.u-monastir.tn (F.D.); wajih.hajyoussef@enim.u-monastir.tn (W.E.H.Y.);
mohsen.machhout@fsm.rnu.tn (M.M.)

2 IETR (UMR 6164) Laboratory, CNRS, University of Nantes, F-44000 Nantes, France
3 J. A. Dieudonné (UMR 7351) Laboratory, CNRS, University of Cote d’Azur, 06103 Nice, France;

rene.lozi@univ-cotedazur.fr
* Correspondence: safwan.elassad@univ-nantes.fr

Abstract: In this study, with an FPGA-board using VHDL, we designed a secure chaos-based
stream cipher (SCbSC), and we evaluated its hardware implementation performance in terms of
computational complexity and its security. The fundamental element of the system is the proposed
secure pseudo-chaotic number generator (SPCNG). The architecture of the proposed SPCNG includes
three first-order recursive filters, each containing a discrete chaotic map and a mixing technique
using an internal pseudo-random number (PRN). The three discrete chaotic maps, namely, the
3D Chebyshev map (3D Ch), the 1D logistic map (L), and the 1D skew-tent map (S), are weakly
coupled by a predefined coupling matrix M. The mixing technique combined with the weak coupling
technique of the three chaotic maps allows preserving the system against side-channel attacks
(SCAs). The proposed system was implemented on a Xilinx XC7Z020 PYNQ-Z2 FPGA platform.
Logic resources, throughput, and cryptanalytic and statistical tests showed a good tradeoff between
efficiency and security. Thus, the proposed SCbSC can be used as a secure stream cipher.

Keywords: chaos-based stream cipher; SPCNG; 3D chebyshev; logistic; skew-tent; FPGA; perfor-
mance

1. Introduction

The protection of information against unauthorized eavesdropping and exchanges
is essential, in particular for military, medical, and industrial applications. Nowadays,
cryptographic attacks are more and more numerous and sophisticated; consequently, new
effective and fast techniques of information protection have appeared or are under develop-
ment. In this context, recent works have focused on designing new chaos-based algorithms,
which provide reliable security while minimizing the cost of hardware and computing time.
Chaos theory was first discovered in the computer system by Edward Lorenz in 1963 [1].
A chaotic system, although deterministic and not truly random, has unpredictable behavior,
due to its high sensitivity to initial conditions and control parameters which constitute
the secret key. It can generate an aperiodic analog signal whenever its phase space is
continuous (i.e., with an infinity of values). However, when its phase state is discrete (with
a finite set of values), its orbits must be periodic, even with a very long period.

In the field of chaos-based digital communication systems, the chaotic signal has been
one of the main concerns in recent decades and is widely used to secure communication.
In chaos-based cryptography, discrete chaotic maps are used in most chaotic systems (en-
cryption, steganography, watermark, hash functions) to generate pseudo-random chaotic
sequences with robust cryptographic properties [2–10]. In a stream cipher, the pseudo-
random number generator (PRNG) is the most important component since all the security
of the system depends on it. For this, a new category of pseudo-chaotic number generator

Appl. Sci. 2021, 11, 625. https://doi.org/10.3390/app11020625 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2630-7783
https://orcid.org/0000-0002-4026-7346
https://orcid.org/0000-0002-3529-9415
https://orcid.org/0000-0003-0451-4255
https://doi.org/10.3390/app11020625
https://doi.org/10.3390/app11020625
https://doi.org/10.3390/app11020625
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11020625
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/2/625?type=check_update&version=2

Appl. Sci. 2021, 11, 625 2 of 19

(PCNG) has been recently built to secure stream-data [11–14]. These PCNGs use combined
chaotic maps because single chaotic maps are not secure for use in stream ciphers.

In 2017, M. Abu Taha et al. [15] designed a novel stream cipher based on an efficient
chaotic generator; the results obtained from the cryptographic analysis and of common
statistical tests indicate the robustness of the proposed stream cipher. In 2018, Ons et al. [16]
developed two new stream ciphers based on pseudo-chaotic number generators (PCNGs)
that integrate discrete chaotic maps and use the weak coupling and switching technique
introduced by Lozi [17]. Indeed, the obtained results show that the proposed stream ciphers
can be used in practical applications, including secure network communication.

In 2019, Ding et al. [18] proposed a new lightweight stream cipher system based on
chaos—a chaotic system—and two nonlinear feedback shift registers (NFSRs) are used.
The results show that the stream cipher has good cryptographic characteristics. In 2020,
Abdelfatah et al. [19] proposed several efficient multimedia encryption techniques based
on four combined chaotic maps (Arnold Map, Lorenz Map, Chebyshev Map, and logistic
Map) using serial or parallel connections. With the rapid growth of Internet of Things
(IoT) technology that connects devices with low power consumption and low computing
resources, the hardware implementation of chaotic and non-chaotic ciphers is more suitable
than a software implementation. Note that few chaotic encryption systems are realized in
the hardware [20–22].

In this study, we designed an efficient chaos-based stream cipher (SCbSC) using a
proposed secure PCNG. Then, we addressed the hardware implementation and evaluated
the performance in terms of resilience against cryptanalytic attacks and in terms of hard-
ware metrics (areas, throughput, and efficiency). The proposed system uses three weakly
coupled chaotic maps (3D Chebyshev, logistic, and skew-tent) and integrates a masking
technique in the recursive cells to resist side-channel attacks (SCAs). Its implementation on
a Xilinx XC7Z020 PYNQ-Z2 FPGA hardware platform achieves a throughput of 1.1 Gbps
at an operating frequency of 37.25 MHZ.

The main contributions of the proposed chaotic system are: First all, the introduction of
some countermeasures to fix side channel attacks (SCAs) which is done using the masking
technique on the recursive cells, and to fix division and conquer attacks on the initial
vector (IV), using a weakly coupling matrix. Second, its hardware implementation on a
Xilinx XC7Z020 PYNQ-Z2 FPGA platform and evaluation of its performance in terms of
computational complexity and security.

The remainder of this paper is organized as follows. The next Section 2 presents
the architecture of the proposed secure chaos-based stream cipher. Section 3 presents
the hardware implementation on the Xilinx XC7Z020 PYNQ-Z2 FPGA platform of the
proposed secure pseudo-chaotic number generator (SPCNG) and analyzes its performance.
Section 4, investigates the performance of the proposed SCbSC in terms of hardware metrics
and cryptanalytic analysis. Finally, Section 5 summarizes the whole paper.

2. The Proposed SCbSC-Based Architecture

The block diagram of a stream encryption/decryption system is presented in
Figure 1. As we can see, the stream encryption/decryption algorithm comes down to
an XOR operation between the plaintext and the keystream for encryption; the ciphertext
and the keystream for decryption. The security of such a system depends entirely on the
keystream delivered by the keystream generator. If the keystream is perfectly random and
the period tends to infinity, then the encryption/decryption system becomes uncondition-
ally secure (called a one-time pad). The keystream generator takes as input a secret key
and an initial value (IV) used to overcome known plain text attacks. The IV is changed
with each new session and must be used only once. Thus, the sequences generated in
the different sessions with the same secret key are different. Recall that stream ciphers
are used to encrypt data (bits or samples) continuously, such as network communications
or selective video encryption. In the following, we will describe in detail the proposed
SPCNG as a secure keystream generator.

Appl. Sci. 2021, 11, 625 3 of 19

SPCNG

Plain text

Pi

Cipher Text

Ci Plain Text

Pi

ENCRYPTION

SPCNG

DECRYPTION

Secret Key

 K
IV Secret Key

 K
IV

Keystream Keystream

Cipher Text

Ci

Communication

channel

Figure 1. Block diagram of a stream encryption/decryption system.

Description of the Architecture of the Proposed SPCNG

The architecture of the proposed SPCNG is on the one hand, partly based on one of
our previous PCNG [16,17], and on the other hand, it takes into account the vulnerabilities
detected by SCAs [23,24] in one of our other PCNGs [15]. This new architecture makes it
possible to resist SCAs. The proposed system comprises three one-delay recursive cells,
shown in blue, containing weakly coupled chaotic maps, namely: the logistic map (L),
the skew-tent (S), and the 3D Chebyshev map (3D Ch) in parallel with a linear feedback
shift register (LFSR), and a mixing technique on each recursive cell, depicted in red, as
shown in Figure 2.

+ Logistic
IVL

XL0

X(n)[M]

PRNLZ-1

Z-1

x

x
kL

kL

XLCM(n)

+
IVS

XS0

SkewT

XL(n)

XS(n)

KL × XLC(n-1)

KS × XSC(n-1)

x

x

kSkS

PRNS

XLC(n)

XSC(n)

Z-1 Z-1

+

XT0

3D Ch
XT(n)

KT × XTIC(n-1)

IVT

LFSR
Q(n)

XTI(n)

PRNT

Z-1

Z-1

x

XTICM(n)
x

kT
kT

XTIC(n)

IV

K

Internal State Output Function

XSCM(n)

Figure 2. Architecture of the proposed SPCNG.

The M-matrix weak coupling technique creates an interdependence between the three
chaotic maps that avoids an attacker using the divide and conquer approach on the first

Appl. Sci. 2021, 11, 625 4 of 19

128-bit IV. Indeed, for each new sample calculation, an attacker must take into account
the three chaotic maps together. Besides, the use of the logistic map and especially the
3D Chebyshev map (which we have discretized) adds robustness to the system against
algebraic attacks. Finally, the three recursive one-delay cells are protected against SCAs by
using a mixing technique based on three internal pseudo-random numbers: PRNL, PRNS,
and PRNT respectively, shown in red.

The proposed SPCNG takes as input an initial vector (IV) and a secret key (K). The IV
of the system provides the initial vectors of the three chaotic maps, IVL, IVS, and IVT; the
initial condition XS0 of the skew-tent map; and the initial seeds X0_L, X0_S, and X0_T (of
128 bits each) of the three pseudo-random numbers PRNL, PRNS, and PRNT. The output
of each PRN is of size N = 32 bits. The secret key K provides the initial conditions and
parameters of the SPCNG listed in Table 1.

Table 1. Composition of the secret key K.

Symbol Definition

XL0 and XT0 The initial conditions of the chaotic maps: logistic and 3D
Chebyshev respectively, ranging from 1 to 2N − 1.

XLC1, XSC1, and XTIC1
The initial conditions of the delayed values in recursive
cells: logistic, skew-tent, and 3D Chebyshev respectively,

in the range [1, 2N − 1].

Q0

The initial value Q0 of the Linear Feedback Shift Register
(LFSR) defined by:

Q(n) = x32 + x22 + x2 + x + 1.

KL, KS, and KT The coefficients of the recursive cells: logistic, skew-tent,
and 3D Chebyshev respectively, ranging from 1 to 2N − 1.

Ps
The control parameter of the skew-tent map, in the range

[1, 2N − 1].

εij
The parameters of the coupling matrix M, in the interval

[1, 2k] with k ≤ 5.
Tr The transient phase of 10 bits.

Note that XLC1, XSC1, and XTIC1 mean XLC(−1), XSC(−1), and XTIC(−1).
The models of the discrete logistic, skew-tent, and 3D Chebyshev maps are respectively

given by:

• The discrete logistic map [25]:

XL(n) =

⌊

XL(n−1)[2N−XL(n−1)]
2N−2

⌋
i f XL(n− 1) 6=

[
3× 2N−2, 2N]

2N − 1 otherwise

(1)

This is the discretized equation of the standard logistic map:

x(n) = µx(n− 1)(1− x(n− 1)) (2)

with here µ = 4 and x(n) ∈ [0, 1].

Appl. Sci. 2021, 11, 625 5 of 19

• The discrete skew-tent map [26]:

XS(n) =

⌊
2N×XS(n−1)

Ps

⌋
i f 0 < XS(n− 1) < Ps⌊

2N × [2N−XS(n−1)]
2N−Ps

⌋
i f Ps < XS(n− 1) < 2N

2N − 1 otherwise

(3)

This is the discretized equation of the standard skew-tent map:

x(n) =

{ x(n−1)
p i f 0 ≤ x(n− 1) ≤ p

1−x(n−1)
1−p i f p ≤ x(n− 1) ≤ 1

(4)

with x(n) ∈ [0, 1]; 0 < p < 1.
• The discrete 3D Chebyshev map [27]:

XT(n) =

2(−2N+2) ×

 4×
(

XT − 2(N−1)
)3
− 3

× 2(2N−2) ×
(

XT − 2(N−1)
)
+ 2(N−1)

 (5)

This is the discretized equation of the standrd 3D Chebyshev map:

x(n) = 4[x(n− 1)]3 − 3x(n− 1). (6)

with x(n) ∈ [−1, 1].

bZc (floor function) is the greatest integer less than or equal to Z and X(n) takes
integer values ∈ [1, 2N − 1] and N = 32 is the precision used.

In Figure 3a,b, we show the mapping and attractor of the 3D Chebyshev map respectively.

Figure 3. (a) Mapping of the 3D Chebyshev map (3D Ch); (b) its attractor.

Further, in Figure 4a,b, we give the histogram of a sequence produced by the 3D
Chebyshev map alone and the histogram of a sequence generated by the 3D Chebyshev map
in parallel with an LFSR, respectively. As we can see, the histogram of Figure 4b becomes
uniform (confirmed by the chi-square test) compared to that of Figure 4a. The histograms
of the skew-tent and logistic maps are known, and an example of their shape is given
in [28].

Appl. Sci. 2021, 11, 625 6 of 19

Figure 4. (a) Histogram of the 3D Ch; (b) histogram of the 3D Ch in parallel with a linear feedback
shift register (LFSR).

The first sample is calculated by:

XL(1) = Logistic
{

mod
(

XL(0), 2N
)}

(7)

XS(1) = SkewT
{

mod
(

XS(0), 2N
)

, Ps

}
(8)

XT(1) = 3D Ch
{

mod
(

XT(0), 2N
)}

(9)

where XL(0), XS(0) and XT(0) are the initial values (inputs) of the three chaotic maps
defined as follows:

XL(0) = (IVL + XL0 + KL× XLC1)
XS(0) = (IVS + XS0 + KS× XSC1)

XT(0) = (IVT + XT0 + KT × XTIC1)
(10)

Afterward, for n ≥ 2 and n ≤ Ns, we calculate the samples by the following
relations:

XL(n) = Logistic
{

mod
(

KL× XLC(n− 1), 2N
)}

(11)

XS(n) = SkewT
{

mod
(

KS× XSC(n− 1), 2N
)

, Ps

}
(12)

XT(n) = 3D Ch
{

mod
(

KT × XTIC(n− 1), 2N
)}

(13)

where Ns is the number of the desired samples, and XLC(n − 1), XSC(n − 1), and
XTIC(n− 1) are the unmasked inputs of the three chaotic maps.

The coupling system is defined by the following relation: XLC(n)
XSC(n)

XTIC(n)

 = M ×

 XL(n)
XS(n)

XTI(n)

, (14)

where:

M =

 M11 ε12 ε13
ε21 M22 ε23
ε31 ε32 M33

, (15)

with M11 = (2N − ε12 − ε13), M22 = (2N − ε21 − ε23), and M33 = (2N − ε31 − ε32).
XL(n), XS(n), and XT(n) are the outputs of the chaotic maps: logistic, skew-tent, and

3D Chebyshev respectively, and

XTI(n) = XT(n)⊕Q(n) (16)

Appl. Sci. 2021, 11, 625 7 of 19

where Q(n) is the output of the LFSR.
The masking operations aim to randomize the intermediate results, and they are

carried out by adding a random value to the outputs of the weak coupling samples
XLC(n), XSC(n), and XTIC(n).

XLCM(n) = XLC(n)⊕ PRNL(n)
XSCM(n) = XSC(n)⊕ PRNS(n)

XTICM(n) = XTIC(n)⊕ PRNT(n)
(17)

where XLCM(n), XSCM(n), and XTICM(n) represent the masked outputs of the recur-
sive cells: logistic, skew-tent, and 3D Chebyshev, respectively, and PRNL(n), PRNS(n),
and PRNT(n) are random integer values generated by the Xorshift pseudo-random num-
ber generator of random integer values, in the range [1, 2N − 1]. To get the same output
X(n) for the same secret key and the same IV, the masking operations are reversed at the
inputs of the chaotic maps.

XLC(n− 1)× KL = XLCM(n− 1)× KL⊕ PRNL(n− 1)× KL
XSC(n− 1)× KS = XSCM(n− 1)× KS⊕ PRNS(n− 1)× KS

XTIC(n− 1)× KT = XTICM(n− 1)× KT ⊕ PRNT(n− 1)× KT
(18)

Note that PRNs are based on Xoshiro’s RNG, which was developed by David Black-
man and Sebastiano Vigna [29] in 2019, which serves as a parameter module for PRNs.
The Xoshiro construction itself is based on the Xorshift concept invented by George
Marsaglia [30]. Therefore, the masking operation is an effective countermeasure to protect
the implementation against power analysis-based side-channel attacks (SCAs) [31,32]. Note
that the VHDL implementation of these PRNs produce 32 bits at each clock cycle.

Algorithm 1 summarizes the full operation of the proposed SPCNG.

Algorithm 1: Generation of the pseudo-chaotic sequence X(n).
Result: Keystream X(n)
initialization;
XL(0) = (IVL + XL0 + KL× XLC1);
XS(0) = (IVS + XS0 + KS× XSC1);
XT(0) = (IVT + XT0 + KT × XTIC1);
Calculation of the first sample;
XL(1) = Logistic

{
mod(XL(0), 2N)

}
;

XS(1) = SkewT
{
[mod(XS(0), 2N), Ps]

}
;

XT(1) = 3D Ch
{

mod(XT(0), 2N)
}

;
Samples generation;
M11 = (2N − ε12 − ε13);
M22 = (2N − ε21 − ε23);
M33 = (2N − ε31 − ε32);
while n ≥ 2 and n < Ns do

Internal State;
Unmasking operations;
XLC(n− 1)× KL = XLCM(n− 1)× KL⊕ PRNL(n− 1)× KL;
XSC(n− 1)× KS = XSCM(n− 1)× KS⊕ PRNS(n− 1)× KS;
XTIC(n− 1)× KT = XTICM(n− 1)× KT ⊕ PRNT(n− 1)× KT;
XL(n) = Logistic

{
mod(KL× XLC(n− 1), 2N)

}
;

XS(n) = SkewT
{
[mod(KS× XSC(n− 1), 2N), Ps]

}
;

XT(n) = 3D Ch
{

mod(KT × XTIC(n− 1), 2N)
}

;
XTI(n) = XT(n)⊕Q(n);
XLC(n) = (M11 × XL) + (ε12 × XS)) + (ε13 × XTI);
XSC(n) = (ε21 × XL) + (M22 × XS) + (ε23 × XTI);
XTIC(n) = (ε31 × XL) + (ε32 × XS) + (M33 × XTI);
SPCNG’s output;
X(n) = XSC(n)⊕ XTIC(n);

end

Appl. Sci. 2021, 11, 625 8 of 19

3. Hardware Implementation of the Proposed SCbSC and Evaluation of
Its Performance

The implementation of the secure chaos-based stream cipher was realized on the
PYNQ Z-2 FPGA prototyping board from Xilinx. For implementation, the SCbSC’s code
was written in VHDL with 32-bit fixed-point data formats, then synthesized, and imple-
mented using the Xilinx Vivado design suite (V.2017.2). Vivado design tools essentially
made it possible to carry out the various steps from design to implementation on the target
FPGA board. It allows, among other things, description, synthesis, simulation, and imple-
mentation of a design, then programming it on a chip from one of the different families of
Xilinx FPGAs. In Figure 5, we summarize the different steps of the design flow that were
performed under Vivado for the performance evaluation of the proposed SPCNG.

Design entry
Spcng.VHD

Design
Synthesis

Behavioral
Simulation

(Xsim)

Check syntaxe

Design Implementation

Timing
Similation

Configuration Bitstream
Generation

XDC file
Translate

Map
Place & Route

Optimize Design

IV
K

Output
X(n)Testbench

Tb_spcng.VHD

Spcng.bit
Spcng.tcl

(Keystream)

Fmax

Figure 5. FPGA conception flow (under Vivado) of the proposed SPCNG.

First, we describe the proposed SPCNG using a hierarchical description containing
several modules described in VHDL. Second, the synthesis step checks the VHDL descrip-
tion of the SPCNG, converts it into a gate-level representation, and creates a netlist. Third,
we perform a behavioral simulation of the SPCNG to check its validity and make sure that
the results obtained X(n) are consistent with those gotten by MATLAB. The simulation was
invoked directly by the Xsim simulator integrated into the Vivado tools and the results
obtained are displayed in a chronogram (see Figure 6 (Behavioral simulation)). At this step
we can assess the statistical performance of the SPCNG. Fourth, the design implementation
performs: First, Translate merges the netlists resulting from the design synthesis and the
specified constraints file (Xilinx Design Constraint XDC file); then Map fits the design with
the available resources of the target FPGA. After that, the Place and Route process places
the components and routes them, respecting the constraints specified during the translation,
to obtain a configuration file. At this step, we get the maximum frequency and hardware
resources summarized in the implementation reports. After the design implementation,
we performed the post-implementation timing simulation to get the true timing delay

Appl. Sci. 2021, 11, 625 9 of 19

information of the SPCNG as shown in the chronogram of Figure 6 (Post-implementation
timing simulation).

Behavioral
Simulation

Post-
Implementation

Timing
Simulation

Figure 6. Behavioral simulation and Post-implementation timing simulation.

Finally, we generated a programming file (BIT) to program the Xilinx device PYNQ-
Z2 FPGA.

3.1. Hardware Cost of the Proposed Secure PCNG

In this section, we analyze the performance of the proposed SPCNG implementation in
terms of resources used (area, DSP), speed (maximum frequency—Max. Freq., throughput),
and efficiency. Four SPNG versions were realized to choose the best among them in terms of
hardware resources, throughput, and statistical resilience (NIST test) for use in the SCbSC
system (see Table 2). Furthermore, we give the efficiency (in terms of throughput/slices)
of all versions. The efficiency parameter gives us an overall idea of the hardware metrics
performance of the implementation.

Max.Freq. =
1

T −WNS
[Mhz]. (19)

where T = 8 ns is the target clock period (F = 1/T = 125 Mhz) and WNS is the worst
negative slack of the clock signal in the intra-clock paths section.

Throughput = N ×Max.Freq.[Mbps]. (20)

E f f iciency =
Throughput

Slices
[Mbps/Slices]. (21)

The proposed SPCNG versions were implemented on a Xilinx XC7Z020 PYNQ-Z2
FPGA hardware platform.

Appl. Sci. 2021, 11, 625 10 of 19

Table 2. Comparison of the proposed SPCNG design versions on ZYNQ PYNQ Z2 FPGA.

Versions

Chaotic Multiplexing XOR Operation

Without LFSR With LFSR Without LFSR With LFSR

Resources used
Area

LUTs 3744/7.04% 3763/7.07% 3586/6.74% 3599/6.77%
FFS 1066/1% 1130/1.06% 1064/1% 1128/1.06%
Slices * 1079/8.11% 1087/8.17% 1031/7.75% 1029/7.74%

DSPs 25/11.36% 25/11.36% 22/10% 22/10%

Speed

WNS [ns] −18.968 −19.062 −19.632 −18.018
Max. Freq. [Mhz] 37.08 36.95 36.18 38.43
Throughput
[Mbps]

1186.59 1182.46 1158.07 1229.91

Efficiency [Mbps/Slices] 1.09 1.08 1.12 1.19

NIST Successful Successful Successful Successful
* Note: Each slice contains four LUTs with 6 inputs and eight FFs.

The four SPCNG versions have the same general structure but are completely different
in their output function and slightly different in their internal state. The differences between
the versions of columns 1 and 2 on the one hand, and the versions of columns 3 and 4 on
the other hand, are in the output function used, as shown in Table 2. Indeed, versions 1
and 2 use a chaotic multiplexing technique as output function, where the sequence X(n) is
controlled by a chaotic sample Xth(n) and a threshold Tth is defined as follows:

X(n) =
{

XSC(n) i f 0 < Xth < Tth
XTIC(n) otherwise

(22)

with Xth(n) = XLC(n)⊕ XSC(n) and Tth = 0.8× 2N .
Version 2, compared to version 1, contains a LFSR in parallel with the 3D Chebyshev

map. Version 4 is the one shown in Figure 2, and version 3 is the same as version 4,
but without the LFSR. Moreover, all SPCNG versions successfully passed the 15 NIST
tests. However, versions without LFSR did not pass certain sub-tests. For the chaotic
multiplexing technique, we found only one failed sub-test out of 148 non-overlapping
template sub-tests, and for the XOR operation, we found three failed sub-tests out of
148 non-overlapping template sub-tests. Therefore, based on all results in Table 2, we
chose version 4, which is the best (in terms of resources used, throughput, and efficiency)
compared to other versions, to be used in the SCbSC system.

3.2. SPCNG Resilience against Statistical Attacks

To quantify the cryptographic properties of the pseudo-chaotic sequences generated
by the proposed SPCNG, a series of tests must be applied. Each test measures a particular
characteristic, such as the correlation between generated sequences or their uniformity,
and the overall results of these tests give an idea of the degree of randomness of the
sequences produced. The pseudo-chaotic behavior of the generated sequences is closely
linked to the statistical characteristics of these sequences. The National Institute of Stan-
dards and Technology (NIST) tests [33] serve, among other things, as a reference to quantify
and compare the statistical properties of binary pseudo-chaotic sequences.

Note that the Lyapunov exponents of the three chaotic maps used are positive; how-
ever, it is not obvious to compute the Lyapunov exponents of the new stream cipher we
propose here. Nevertheless, its chaotic nature is due mainly to the weak coupling of the
three chaotic maps. The weak coupling mechanism of chaotic maps has been thoroughly
studied [17]; it leads generally to high quality pseudo-random generators. The chaotic

Appl. Sci. 2021, 11, 625 11 of 19

nature of it is highlighted by the histogram and figures of the uniform and uncorrelated
distribution of its iterates (Figures 7 and 8).

Figure 7. (a) Mapping of a sequence X(n) of 3,125,000 samples, generated by the proposed SPCNG
and the mapping of 1000 samples taken randomly from X(n) in (b).

0 1 2 3 4 5

109

0

500

1000

1500

2000

2500

3000

3500

Figure 8. Histogram.

3.2.1. Phase Space Test

We draw in Figure 7a the phase space or mapping of a sequence X(n) generated by
the proposed SPCNG formed by 3,125,000 samples out of the 3,125,100 samples generated
to deviate from the transitional regime Tr = 100, and in Figure 7b, we show the mapping
of 1000 samples taken randomly from X(n).

Already, from Figure 7b, the region looks like a totally disordered region, indicating
the lack of correlation between adjacent sample values.

3.2.2. Histogram and Chi-Square Tests

An important key property of a secure pseudo-chaotic number generator is that the
sequences generated should have a uniform distribution. The histogram of a sequence X
(n) produced is given in Figure 8, the uniformity of which is observed visually.

The visual uniformity result should be confirmed by the chi-square test formulated
as follows:

χ2
ex =

Nc−1

∑
i=0

(Oi − Ei)
2

Ei
(23)

Appl. Sci. 2021, 11, 625 12 of 19

where:

• Nc = 1000: number of classes.
• Oi: number of calculated samples in the ith class Ei.
• Ei = Ns/Nc: expected number of samples of a uniform distribution.
• Ns: the number of samples produced—here, Ns = 3,125,000

After that step, we obtain: χ2
ex = 909.46 < χ2

th(Nc − 1; α) = 1073.64 (for Nc = 1000
and α = 0.05). The experimental value of the chi-square test is less than the theoretical one,
asserting the histogram’s uniformity. This test was performed on 100 different sequences
using 100 different secret keys, and all sequences were uniform.

3.2.3. NIST Test

Another important key property of a secure pseudo-chaotic number generator is that
the sequences generated should pass the statistical NIST test, which is a package of 188
tests and sub-tests used to evaluate the randomness of long binary sequences. NIST test
was applied to 100 pseudo-chaotic sequences of size 108 bits, generated from the initial
conditions and the parameters of the chaotic system. For each test, a set of 100 p-values
was calculated to indicate the result of the test. A p-value larger than α = 0.01 (the level of
significance of the test) indicates that the sequence would be random and a p-value less
than 0.01 means that the sequence is nonrandom. The proportion of 100 sequences passing
a test is equal to the number of p-values ≥ α divided by 100. The results obtained, given in
Table 3, indicate that the sequences generated passed all 15 statistical tests.

Table 3. P-values and proportion results of NIST test.

Test p-Value Proportion %

Frequency test 0.616 100
Block-frequency test 0.182 97

Cumulative-sums test (2) 0.825 99.5
Runs test 0.956 100

Longest-run test 0.868 100
Rank test 0.182 99
FFT test 0.868 99

Nonperiodic-templates (148) 0.507 98.912
Overlapping-templates 0.956 99

Universal 0.575 98
Approximate Entropie 0.658 99
Random-excursions (8) 0.511 99.432

Random-excursion-variant(18) 0.376 99.832
Serial test (2) 0.290 98

Linear-complexity 0.834 100

This means that the proposed SPCNG produces indistinguishable sequences of integer
random sequences.

4. Performance Analysis of the Proposed SCbSC

In this section, we first give the hardware metrics obtained by the proposed SCbSC
system and compare them with those of some published systems. Then, and we assess its
security against a known cryptanalytic analysis.

4.1. SCbSC Hardware Metrics

The hardware metrics of the SCbSC system are shown in Table 4, and as expected,
they are similar to those of SPCNG.

Appl. Sci. 2021, 11, 625 13 of 19

Table 4. Hardware metrics of the proposed SCbSC.

Resources used Area

LUTs 3631/6.83%

FFS 1225/1.15%

Slices 1081/8.13%

DSPs 22/10%

Speed

WNS [ns] −18.845
Max. Freq. [Mhz] 37.25
Throughput
[Mbps]

1192.02

Efficiency [Mbps/Slices] 1.1

The comparison of the hardware metrics of several chaotic and non-chaotic systems
(from eSTREAM project phase-2 focus hardware profile) is summarized in Table 5. This
comparison is difficult to interpret due to the differences in characteristics of the FPGAs
tested—particularly for the clock rate parameter. However, considering the clock rate of the
FPGA board and the efficiency achieved, we can make this comparison. Thus, the SCbSc
system presents competitive hardware metrics compared to those obtained from most
other chaotic and non-chaotic systems, except the Trivium cipher. However, since 2007,
different types of attacks have been applied to eSTREAM ciphers, thereby revealing some
weaknesses, in particular on Trivium cipher [34,35]. Indeed, in Trivium AND gates are the
only nonlinear elements to prevent attacks that exploit, among other things, the linearity of
linear feedback shift registers.

Table 5. Hardware metrics usage comparison of several chaotic and non-chaotic systems.

Cipher Device
Frequency [Mhz]

Slices
Throughput Efficiency

Clock Frequency Max. Freq. [Mbps] [Mbps/slices]

SCbSC Pynq Z2 125 37.25 1081 1119.02 1.1
LWCB SC [20] Zynq7000 - 18.5 2363 LUTs 565 -
Lorenz’s chaotic System [21] Virtex-II 50 15.598 1926 124 0.06
Chaos-ring [22] Virtex-6 125 464.688 1050 464.688 0.44
Trivium [36] Spartan 3 50 190 388 12,160 31.34
Grain-128 [37] Virtex- II 50 181 48 181 3.77
Mickey-128 [37] Virtex- II 50 200 190 200 1.05

4.2. Cryptanalytic Analysis

In order to assess the security of the proposed SCbSC system against the most common
attacks, we performed the following the key space analysis and assessed its sensitivity;
then we used statistical analysis.

4.2.1. Key Size and Sensitivity Analysis

For a secure image encryption system, the key space should be large enough to resist
a brute-force attack [38]. The secret key is produced here by Xorshif generator [30] and its
size is given by:

|K| = |XL0|+ |XT0|+ |Q0|+ |XLC1|+ |XSC1|+ |XTIC1|+ |Ps|
+|KL|+ |KS|+ |KT|+ |Tr|+ (6×

∣∣εij
∣∣) = 360 bits

(24)

where |XL0| = |XT0| = |Q0| = |XLC1| = |XSC1| = |XTIC1| = |Ps| = |KL| = |KS| =
|KT| = 32 bits, |Tr| = 10 bits, and

∣∣εij
∣∣ = 5 bits

Thus, the key space contains 2360 different combinations of the secret key, which is
large enough to make brute force attack impracticable.

Appl. Sci. 2021, 11, 625 14 of 19

A robust cryptosystem should also be sensitive to the secret key; that is, changing
a one bit in the secret key must produce a completely different encrypted image. This
sensitivity is conventionally measured by two parameters which are the NPCR (number
of pixel change rate) and the UACI (unified average changing intensity) [39]. Besides,
instead of those two parameters which operate on the bytes, we use the Hamming distance
HD which operates on the bits (in our opinion HD is more precise than NPCR and UACI
parameters). The expressions of these parameters are given below, with C1 and C2 being
the two ciphered images of the same plain image P.

NPCR =
1

M× N ∑
i,j

D(i, j)× 100% (25)

D(i, j) =
{

1 i f C1(i, j) 6= C2(i, j)
0 i f C1(i, j) = C2(i, j)

(26)

where M and N are the width and height of C1 and C2. The NPCR measures the percentage
of different pixel numbers between two ciphered images.

UACI =
1

M× N × 255 ∑
i,j
|C1(i, j)− C2(i, j)| × 100% (27)

which measures the average intensity of differences between the two images.

HD(C1, C2) =
1

Nb

Nb

∑
i=1

(C1(i)⊕ C2(i)) (28)

with Nb being the number of bits in an encrypted image.
For a random image, the expected values of NPCR, UACI, and HD are 99.609%,

33.4635%, and 50% respectively. Table 6 shows the results obtained of NPCR, UACI, and HD
for the plain images Lena, Pepper, Baboon, Barbara, and Boats of the same size—256× 256
grayscale images. As we can see from these results, the NPCR, UACI, and HD values
obtained are very close to the optimal values. These values indicate that the proposed
SCbSC system is very sensitive to slight modifications of the secret key.

Table 6. Number of pixel change rate (NPCR), unified average changing intensity (UACI), and
HD values.

Test Lena Pepper Baboon Barbara Boats

NPCR % 99.5483 99.5452 99.5788 99.5513 99.5529
UACI % 33.7768 33.6530 33.5595 33.7723 33.6886

HD 0.5015 0.4991 0.4996 0.5009 0.4996

4.2.2. Statistical Analysis

In order to analyze the resilience of the proposed SCbSC system against most statistical
attacks, we use histogram, chi-square, entropy, and correlation analysis.

Histogram and Chi-Square Analysis

The histogram of an encrypted image is an important feature in evaluating the perfor-
mance of the encryption process. It illustrates how the gray levels of the pixels in an image
are distributed and should be very close to a uniform distribution. In Figures 9–13, we give
the results obtained for Lena, Peppers, Baboon, Barbara, and Boats of size 256 × 256, in (a)
and (c) the plain/cipher images and in (b) and (d) their histograms respectively.

Appl. Sci. 2021, 11, 625 15 of 19

Figure 9. Result of Lena image. (a) Lena image, (b) histogram of Lena image, (c) encrypted Lena,
and (d) histogram of encrypted Lena.

Figure 10. Result of Pepper image. (a) Pepper image, (b) histogram of Pepper image, (c) encrypted
Pepper, and (d) histogram of encrypted Pepper.

Figure 11. Result of Baboon image. (a) Baboon image, (b) histogram of Baboon image, (c) encrypted
Baboon, and (d) histogram of encrypted Baboon.

Figure 12. Result of Barbara image. (a) Barbara image, (b) histogram of Barbara image, (c) encrypted
Barbara, and (d) histogram of encrypted Barbara.

Figure 13. Result of Boats image. (a) Boats image, (b) histogram of Boats image, (c) encrypted Boats,
and (d) histogram of encrypted Boats.

Appl. Sci. 2021, 11, 625 16 of 19

It was observed that the histograms of the ciphered images are very close to the
uniform distribution and are completely different from the plain images. We applied
the chi-square test, using Equation (23), on ciphered images to statistically confirm their
uniformity. Nc = 28 = 256 is the number of levels, Oi is the calculated occurrence frequency
of each gray level i ∈ [0, 255] in the histogram of the ciphered image, and Ei is the expected
occurrence frequency of the uniform distribution, calculated by Ei = image size in bytes/Nc.
The distribution of the histogram tested is uniform if it satisfies the following condition:
χ2

ex < χ2
th(Nc − 1, α) = 293.24 (for Nc = 256 and α = 0.05). The results obtained for the

chi-square test, given in Table 7, indicate that the histograms of the ciphered images tested
are uniform because their experimental values are smaller than the theoretical values.

Table 7. Chi-square results on the histograms tested.

Chi-Square Test Lena Pepper Baboon Barbara Boats

χ2
ex 216.10 231.84 244.05 233.62 265.47

χ2
th (255, 0.05) 293.24 293.24 293.24 293.24 293.24

Entropy Analysis

The random behavior of the ciphered image can be quantitatively measured by entropy
information given by Shannon [40]:

H(C) = −
Nc−1

∑
i=0

P(ci)× log2(P(ci)) (29)

where H(C) is the entropy of the encrypted image, and P(ci) is the probability of each gray
level appearance (ci = 0, 1, . . . , 255). In the case of equal probability levels, the entropy
is maximum (=8). The closer the experimental entropy value is to the maximum value,
the more robust the encryption algorithm. We give in Table 8, the results obtained from
the entropy test on the plain and encrypted images. It is clear that the obtained entropies
of ciphered images are close to the optimal value. Then, from these results, the proposed
stream cipher has a high degree level of resilience.

Table 8. Entropy results obtained.

Entropy Lena Pepper Baboon Barbara Boats

Plain image 7.4504 7.5939 7.3102 7.5199 7.2392
Cipher image 7.9571 7.9550 7.9545 7.9570 7.9567

Correlation Analysis

In an original image, each pixel is highly-correlated with adjacent pixels in a horizontal,
vertical, and diagonal directions. A good encryption algorithm should produce encrypted
images with correlation and redundancy as low as possible (close to zero) between adjacent
pixels. To assess the correlation, we performed the following: first, we randomly selected
8000 pairs of two adjacent pixels from the image; then we calculated the correlation
coefficients by using the following equation:

ρxy =
Cov(x, y)√
D(x)

√
D(y)

(30)

where:

Cov(x, y) =
1
N

N

∑
i=1

[xi − E(x)][yi − E(y)] (31)

Appl. Sci. 2021, 11, 625 17 of 19

E(x) =
1
N

N

∑
i=1

xi (32)

D(x) =
1
N

N

∑
i=1

[xi − E(x)]2 (33)

where x and y are the grayscale values of two adjacent pixels in the image. The obtained
results are shown in Table 9.

Table 9. Correlation coefficients of two adjacent pixels in the plain and ciphered images.

Image Horizontal Vertical Diagonal

Lena 0.939403 0.971060 0.931085
Lena encrypted −0.003684 −0.009015 0.002278

Peppers 0.959869 0.967869 0.940375
Peppers encrypted −0.005938 −0.004665 −0.001154

Baboon 0.877794 0.834230 0.788141
Baboon encrypted −0.006750 −0.005998 −0.002088

Barbara 0.907829 0.946119 0.883508
Barbara encrypted −0.008293 −0.010526 0.004815

Boats 0.940837 0.953357 0.904555
Boats encrypted −0.002802 −0.009909 0.002302

It appears from Table 9 that the correlation coefficients for the plain images are close to
1, which shows that the pixels are highly correlated, whereas for the encrypted images, the
correlation coefficients are close to 0, which proves that there is no correlation between the
plain and ciphered images. Therefore, there is no similarity between plain and encrypted
images, proving the very good achieved confusion by the proposed SCbSC.

According to all these results of the histogram, entropy, and correlation, the proposed
stream cipher presents a good ability to resist statistical attacks.

5. Conclusions

In this paper, we studied and implemented on a Xilinx PYNQ-Z2 FPGA hardware
platform using VHDL a novel chaos-based stream cipher (SCbSC) using a proposed secure
pseudo-chaotic number generator (SPCNG). The proposed chaotic system includes some
countermeasures against side channel attacks (SCAs) and uses a weekly coupling matrix,
which prevents division and conquers attacks on the initial vector (IV). Next, we analyzed
the cryptographic properties of the proposed SPCNG and evaluated the performances of
its hardware metrics. The results obtained demonstrate, on the one hand, the high degree
of security, and on the other hand, the good hardware metrics achieved by the SCPNG.
After that, we realized the SCbSC system and asserted its resilience against cryptanalytic
attacks. Further, we evaluated its hardware metrics and compared them to those of some
chaotic and non-chaotic systems. All the results obtained indicate that the proposed SCbSC
is a good candidate for encrypting private data. Our future work will focus on designing
a chaos-based block cipher to secure IoT data and to check hardware implementations
when using non-volatile FPGA technology, which reduces the side attack possibilities in
real-field applications.

Author Contributions: Writing—original draft, F.D.; Writing—review & editing, F.D. and S.E.A.;
Validation, W.E.H.Y., M.M. and R.L. All authors have read and agreed to the published version of the
manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2021, 11, 625 18 of 19

References
1. Lorenz, E.N.; Haman, K. The essence of chaos. Pure Appl. Geophys. 1996, 147, 598–599.
2. Wang, X.-Y.; Zhang, J.-J.; Zhang, F.-C.; Cao, G.-H. New chaotical image encryption algorithm based on Fisher–Yatess scrambling

and DNA coding. Chin. Phys. B 2019, 28, 040504. [CrossRef]
3. Belazi, A.; Abd El-Latif, A.A.; Belghith, S. A novel image encryption scheme based on substitution-permutation network and

chaos. Signal Process. 2016, 128, 155–170. [CrossRef]
4. Amigo, J.; Kocarev, L.; Szczepanski, J. Theory and practice of chaotic cryptography. Phys. Lett. A 2007, 366, 211–216. [CrossRef]
5. Kocarev, L. Chaos-based cryptography: A brief overview. IEEE Circuits Syst. Mag. 2001, 1, 6–21. [CrossRef]
6. Acho, L. A chaotic secure communication system design based on iterative learning control theory. Appl. Sci. 2016, 6, 311.

[CrossRef]
7. Datcu, O.; Macovei, C.; Hobincu, R. Chaos Based Cryptographic Pseudo-Random Number Generator Template with Dynamic

State Change. Appl. Sci. 2020, 10, 451. [CrossRef]
8. Abdoun, N.; El Assad, S.; Manh Hoang, T.; Deforges, O.; Assaf, R.; Khalil, M. Designing Two Secure Keyed Hash Functions Based

on Sponge Construction and the Chaotic Neural Network. Entropy 2020, 22, 1012. [CrossRef] [PubMed]
9. Battikh, D.; El Assad, S.; Hoang, T.M.; Bakhache, B.; Deforges, O.; Khalil, M. Comparative Study of Three Steganographic Methods

Using a Chaotic System and Their Universal Steganalysis Based on Three Feature Vectors. Entropy 2019, 21, 748. [CrossRef]
10. Liao, T.-L.; Wan, P.-Y.; Yan, J.-J. Design of synchronized large-scale chaos random number generators and its application to secure

communication. Appl. Sci. 2019, 9, 185. [CrossRef]
11. Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934. [CrossRef]
12. Kocarev, L.; Jakimoski, G. Logistic map as a block encryption algorithm. Phys. Lett. A 2001, 289, 199–206. [CrossRef]
13. François, M.; Grosges, T.; Barchiesi, D.; Erra, R. Pseudo-random number generator based on mixing of three chaotic maps.

Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 887–895. [CrossRef]
14. Wang, X.-Y.; Qin, X. A new pseudo-random number generator based on CML and chaotic iteration. Nonlinear Dyn.

2012, 70, 1589–1592. [CrossRef]
15. Taha, M.A.; Assad, S.E.; Queudet, A.; Deforges, O. Design and efficient implementation of a chaos-based stream cipher. Int. J.

Internet Technol. Secur. Trans. 2017, 7, 89–114. [CrossRef]
16. Jallouli, O.; El Assad, S.; Chetto, M.; Lozi, R. Design and analysis of two stream ciphers based on chaotic coupling and multiplexing

techniques. Multimed. Tools Appl. 2018, 77, 13391–13417. [CrossRef]
17. Lozi, R. Emergence of randomness from chaos. Int. J. Bifurc. Chaos 2012, 22, 1250021. [CrossRef]
18. Ding, L.; Liu, C.; Zhang, Y.; Ding, Q. A new lightweight stream cipher based on chaos. Symmetry 2019, 11, 853. [CrossRef]
19. Abdelfatah, R.I.; Nasr, M.E.; Alsharqawy, M.A. Encryption for multimedia based on chaotic map: Several scenarios.

Multimed. Tools Appl. 2020. [CrossRef]
20. Gautier, G.; Le Glatin, M.; El Assad, S.; Hamidouche, W.; Déforges, O.; Guilley, S.; Facon, A. Hardware Implementation of

Lightweight Chaos-Based Stream Cipher. In Proceedings of International Conference on Cyber-Technologies and Cyber-Systems,
Porto, Portugal, 22 September 2019; 5p.

21. Tanougast, C. Hardware implementation of chaos based cipher: Design of embedded systems for security applications. In
Chaos-Based Cryptography; Springer: Berlin/Heidelberg, Germany, 2011; pp. 297–330.

22. Koyuncu, İ.; Tuna, M.; Pehlivan, İ.; Fidan, C.B.; Alçın, M. Design, FPGA implementation and statistical analysis of chaos-ring
based dual entropy core true random number generator. Analog Integr. Circuits Signal Process. 2020, 102, 445–456. [CrossRef]

23. Nguyen, R. Penetration Testing on a C-Software Implementation aff1709rns006-c; Internal Report; Secure-IC SAS: Cesson-Sévigné,
France, 2018.

24. Nguyen, R.; Facon, A.; Guilley, S.; Gautier, G.; El Assad, S. Speed-up of SCA Attacks on 32-bit Multiplications. In Proceedings of
the International Conference on Codes, Cryptology, and Information Security, Rabat, Morocco, 22–24 April 2019; pp. 31–39.

25. Peng, J.; You, M.; Yang, Z.; Jin, S. Research on a block encryption cipher based on chaotic dynamical system. In Proceedings of the
Third International Conference on Natural Computation (ICNC 2007), Haikou, China, 24–27 August 2007; pp. 744–748.

26. Masuda, N.; Jakimoski, G.; Aihara, K.; Kocarev, L. Chaotic block ciphers: From theory to practical algorithms. IEEE Trans. Circuits
Syst. I Regul. Pap. 2006, 53, 1341–1352. [CrossRef]

27. El Assad, S. Chaos-Based Cryptography, Internal Report; University of Nantes: Nantes, France, 2019.
28. Jallouli, O. Chaos-Based Security under Real-Time and Eenergy Constraints for the Internet of Things. Ph.D. Thesis, University of

Nantes, Nantes, France, 2017.
29. Blackman, D.; Vigna, S. Scrambled linear pseudorandom number generators. arXiv 2018, arXiv:1805.01407.
30. Vigna, S. Further scramblings of Marsaglia’s xorshift generators. J. Comput. Appl. Math. 2017, 315, 175–181. [CrossRef]
31. Coron, J.-S.; Rondepierre, F.; Zeitoun, R. High order masking of look-up tables with common shares. Iacr Trans. Cryptogr. Hardw.

Embed. Syst. 2018, 40–72. [CrossRef]
32. Coron, J.-S.; Roy, A.; Vivek, S. Fast evaluation of polynomials over binary finite fields and application to side-channel counter-

measures. In International Workshop on Cryptographic Hardware and Embedded Systems; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 170–187.

33. Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E. A Statistical Test Suite for Random and Pseudorandom Number Generators for
Cryptographic Applications; Booz-allen and Hamilton Inc.: McLean, VA, USA, 2001.

http://doi.org/10.1088/1674-1056/28/4/040504
http://dx.doi.org/10.1016/j.sigpro.2016.03.021
http://dx.doi.org/10.1016/j.physleta.2007.02.021
http://dx.doi.org/10.1109/7384.963463
http://dx.doi.org/10.3390/app6100311
http://dx.doi.org/10.3390/app10020451
http://dx.doi.org/10.3390/e22091012
http://www.ncbi.nlm.nih.gov/pubmed/33286780
http://dx.doi.org/10.3390/e21080748
http://dx.doi.org/10.3390/app9010185
http://dx.doi.org/10.1016/j.imavis.2006.02.021
http://dx.doi.org/10.1016/S0375-9601(01)00609-0
http://dx.doi.org/10.1016/j.cnsns.2013.08.032
http://dx.doi.org/10.1007/s11071-012-0558-0
http://dx.doi.org/10.1504/IJITST.2017.087131
http://dx.doi.org/10.1007/s11042-017-4953-x
http://dx.doi.org/10.1142/S0218127412500216
http://dx.doi.org/10.3390/sym11070853
http://dx.doi.org/10.1007/s11042-020-08788-8
http://dx.doi.org/10.1007/s10470-019-01568-x
http://dx.doi.org/10.1109/TCSI.2006.874182
http://dx.doi.org/10.1016/j.cam.2016.11.006
http://dx.doi.org/10.46586/tches.v2018.i1.40-72

Appl. Sci. 2021, 11, 625 19 of 19

34. Manifavas, C.; Hatzivasilis, G.; Fysarakis, K.; Papaefstathiou, Y. A survey of lightweight stream ciphers for embedded systems.
Secur. Commun. Networks 2016, 9, 1226–1246. [CrossRef]

35. Maximov, A.; Biryukov, A. Two trivial attacks on Trivium. In International Workshop on Selected Areas in Cryptography; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 36–55.

36. Gaj, K.; Southern, G.; Bachimanchi, R. Comparison of hardware performance of selected Phase II eSTREAM candidates.
In Proceedings of the State of the Art of Stream Ciphers Workshop (SASC 2007), eSTREAM, ECRYPT Stream Cipher Project,
Report, Lausanne, Switzerland, 31 January–1 February 2007.

37. Bulens, P.; Kalach, K.; Standaert, F.-X.; Quisquater, J.-J. FPGA implementations of eSTREAM phase-2 focus candidates with
hardware profile. In Proceedings of the State of the Art of Stream Ciphers Workshop (SASC 2007), eSTREAM, ECRYPT Stream
Cipher Project, Report, Lausanne, Switzerland, 31 January–1 February 2007.

38. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley & Sons: Hoboken, NJ, USA, 2007.
39. Wu, Y.; Noonan, J.P.; Agaian, S. NPCR and UACI randomness tests for image encryption. CYber J. Multidiscip. J. Sci. Technol. Sel.

Areas Telecommun. 2011, 1, 31–38.
40. Wu, Y.; Zhou, Y.; Saveriades, G.; Agaian, S.; Noonan, J.P.; Natarajan, P. Local Shannon entropy measure with statistical tests for

image randomness. Inf. Sci. 2013, 222, 323–342. [CrossRef]

http://dx.doi.org/10.1002/sec.1399
http://dx.doi.org/10.1016/j.ins.2012.07.049

	Introduction
	The Proposed SCbSC-Based Architecture
	Hardware Implementation of the Proposed SCbSC and Evaluation of Its Performance
	Hardware Cost of the Proposed Secure PCNG
	SPCNG Resilience against Statistical Attacks
	Phase Space Test
	Histogram and Chi-Square Tests
	NIST Test

	Performance Analysis of the Proposed SCbSC
	SCbSC Hardware Metrics
	Cryptanalytic Analysis
	Key Size and Sensitivity Analysis
	Statistical Analysis

	Conclusions
	References

