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ABSTRACT 
Neuroimaging and neurological studies suggest that stroke is a brain network           

syndrome. While causing local ischemia and cell damage at the site of injury, stroke              

strongly perturbs the functional organization of brain networks at large. Critically,           
functional connectivity abnormalities parallel both behavioral deficits and functional         

recovery across different cognitive domains. However, the reasons for such relations           
remain poorly understood. Here, we tested the hypothesis that alterations in inter-areal            

communication underlie stroke-related modulations in functional connectivity (FC). To         

this aim, we used resting-state fMRI and Granger causality analysis to quantify            
information transfer between brain areas and its alteration in stroke. Two main            

large-scale anomalies were observed in stroke patients. First, inter-hemispheric         
information transfer was strongly decreased with respect to healthy controls. Second,           

information transfer within the affected hemisphere, and from the affected to the intact             

hemisphere was reduced. Both anomalies were more prominent in resting-state          
networks related to attention and language, and they were correlated with impaired            

performance in several behavioral domains. Overall, our results support the hypothesis           
that stroke perturbs inter-areal communication within and across hemispheres, and          

suggest novel therapeutic approaches aimed at restoring normal information flow. 
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SIGNIFICANCE STATEMENT 
A thorough understanding of how stroke perturbs brain function is needed to improve             

recovery from the severe neurological syndromes affecting stroke patients. Previous          

resting-state neuroimaging studies suggested that interaction between hemispheres        
decreases after stroke, while interaction between areas of the same hemisphere           

increases. Here, we used Granger causality to reconstruct information flows in the brain             
at rest, and analyze how stroke perturbs them. We showed that stroke causes a global               

reduction of inter-hemispheric communication, and an imbalance between the intact          

and the affected hemisphere: information flows within and from the latter are impaired.             
Our results may inform the design of stimulation therapies to restore the functional             

balance lost after stroke.  
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INTRODUCTION 
Spontaneous brain activity is intrinsically organized into large-scale networks of          

correlated activity ​(Bullmore and Sporns, 2009​; ​Damoiseaux et al., 2006; Fox et al.,             

2005)​, also known as resting-state networks (RSNs). The functional organization of           
RSNs is altered in stroke ​(Corbetta et al., 2018, 2015)​. In fact, local ischemia, which               

damages cells and neural connections at the site of injury, primarily affects subcortical             
regions and white matter, thus altering long-range functional connectivity (FC) between           

cortical areas. Two types of large-scale FC alterations affect RSNs ​(Joshua Sarfaty            

Siegel et al., 2016)​: i) a decrease of within-network interhemispheric FC ​(Carter et al.,              
2010; Golestani et al., 2013; He et al., 2007; New et al., 2015; Park Chang-hyun et al.,                 

2011; Ramsey et al., 2016; Joshua Sarfaty Siegel et al., 2016; Tang et al., 2016)​; ii) an                 
increase of between-network intra-hemispheric FC ​(Baldassarre et al., 2014; Eldaief et           

al., 2017; Ramsey et al., 2016; Joshua Sarfaty Siegel et al., 2016)​. As a consequence,               

RSNs tend to be less integrated internally, and less segregated externally, which            
translates into an overall decrease of network modularity ​(Gratton et al., 2012) ​. The             

presence of such common network-level perturbations explains why lesions in different           
locations in the brain produce remarkably similar behavioral deficits in different patients            

(Corbetta et al., 2018)​. 

The relation between FC alterations and behavioral deficits remains, however, elusive.           
Here, we tested the hypothesis that a key factor linking stroke-related FC modulations             

and behavioral deficits is the alteration in inter-areal communication. In particular, our            
goal was to investigate whether: i) the decrease of interhemispheric FC observed after             

stroke is associated with a symmetric or asymmetric decrease in information flow            

between areas in the damaged and non-damaged hemisphere; ii) the increase of            
between-network intra-hemispheric FC is paralleled by a change in intra-hemispheric          

information flow; iii) alterations in information flows between brains areas predict           
cognitive deficits across multiple domains.  

To this aim, we performed covariance-based Granger Causality (GC) analyses (Brovelli           

et al., 2015) of resting-state fMRI data collected from stroke patients in the sub-acute              
phase (two weeks after stroke onset). Data were provided by the Washington university             

stroke database ​(Corbetta et al., 2015)​, and included structural lesions, resting-state           
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fMRI, and neuropsychological scores for a large cohort of first-time stroke patients and             
age-matched control subjects. A major advantage of covariance-based GC is the ability            

to analyse large networks of nodes, such as the 343 nodes used in this study, and over                 
short time series (i.e., hundreds of data points), thus enabling direct comparison with             

previous FC studies. Granger causality analyses revealed that inter-hemispheric         

information transfer was significantly decreased in stroke patients with respect to           
healthy controls. In addition, a pronounced inter-hemispheric imbalance of the          

within-network information transfer was observed in patients. Both anomalies were          
more prominent in resting-state networks related to attention and language, and they            

paralleled deficits in several behavioral domains.  

 
MATERIALS & METHODS 
 
Brain imaging and behavioral measurements 
 
Subject Enrollment and Retention. Participants (n = 172) were prospectively recruited.           

First-time stroke patients with clinical evidence of motor, language, attention, visual, or            
memory deficits based on neurological examination were included. One hundred and           

thirty-two patients met all inclusion criteria (for details see Corbetta et al., 2015) and              
completed the entire subacute protocol (mean age 52.8 years with range 22-77, 119             

right-handed, 63 females, 64 right hemisphere). Patients were excluded from analysis           

for poor quality imaging data (n = 5), fewer than 400 frames remaining after motion               
scrubbing (n=8), or excessive hemodynamic lags (see below, n = 6) leaving 113             

subjects in the final analysis. Demographically matched controls (n = 31) were recruited             
and underwent the same behavioral and imaging exams (mean age 55.7 years, SD =              

11.5, range 21-83) in two separate scanning sessions (time point 1 and time point 2).               

Controls were matched to the study population in age, gender, handedness, and level of              
education. Controls were excluded based on a low number of frames after motion             

scrubbing (n = 4 at time point 1, n = 6 at time point 2), leaving 27 controls at time point 1                      
and 25 controls at time point 2. 
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Neuropsychological evaluation​. Participants underwent a behavioral battery devised to         

assess motor, language, attention, memory, and visual function following each scanning           
session (details can be found in in Siegel et al., 2016). As described in Corbetta et al.                 

2015, principal components analysis was performed on all tests within a behavioral            

domain to produce a single score that predicted the highest percentage of variance             
across tasks. The left/right ‘Motor’ scores described left/right body motor performance           

that correlated across shoulder flexion, wrist extension/flexion, ankle flexion, hand          
dynamometer, nine-hole peg, action research arm test, timed walk, functional          

independence measure, and the lower extremity motricity index. The ‘Visual Field           

Attention’ score described contra-lesional attention biases in Posner, Mesulam, and          
behavioral inattention center-of-cancellation tasks. The ‘Sustained Attention’ score        

loaded on non-spatial measures of overall performance, reaction time, and accuracy on            
the same tests. The ‘Shifting Attention’ score loaded on tests indexing attention shifts,             

e.g. the difference in response times for attended ​versus unattended targets. The            

‘Spatial Memory’ score loaded on the Brief Visuospatial Memory Test and spatial span.             
The ‘Verbal Memory’ score loaded on the Hopkins Verbal Learning Test. The            

‘Language’ score loaded on tests devised to assess language comprehension (complex           
ideational material, commands, reading comprehension) and production (Boston        

naming, oral reading). The score of each of the seven factors for each patient was               

normalized using the mean and standard deviation of the corresponding factor scores in             
age-matched controls.  

 
Brain imaging acquisition​. Patients were scanned two weeks (mean = 13.4 days,            

SD=4.8 days) after stroke onset. Controls were scanned twice at an interval of             

3-months. All imaging was performed using a Siemens 3T Tim-Trio scanner at the             
Washington University School of Medicine (WUSM) and a standard 12-channel head           

coil. The MRI protocol included structural, functional, pulsed arterial spin labeling           
(PASL), and diffusion tensor scans. Structural scans included: i) a sagittal T1-weighted            

MP-RAGE (TR = 1950 msec, TE = 2.26 msec, flip angle=90°, voxel size=1.0×1.0×1.0             

mm); ii) a transverse T2-weighted turbo spin-echo (TR = 2500 msec, TE=435msec,            

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


voxel- size=1.0×1.0×1.0mm); and iii) sagittal FLAIR (fluid attenuated inversion recovery)          
with TR = 7500 msec, TE = 326 msec and voxel-size=1.5×1.5×1.5mm. Resting-state            

functional scans were acquired with a gradient echo EPI sequence (TR = 2000 msec,              
TE = 27 msec, 32 contiguous 4 mm slices, 4×4mm in-plane resolution) during which              

participants were instructed to fixate a small white cross centered on a screen with a               

black background in a low luminance environment. Six to eight resting state fMRI runs,              
each including 128 volumes (for a total of 30 minutes) were acquired. A camera fixated               

on the eyes was used to determine when a subject’s eyes were open or closed during                
scans. Patients had eyes open on 65.6±31.9% of frames and controls had eyes open              

on 76.8±30.2% of frames (t (114) = -1.7, p = 0.091).  

 
Brain lesion masking​. Lesions were manually segmented on individual structural MRI           

images (T1-weighted MP-RAGE, T2-weighted spin echo images, and FLAIR images          
obtained from 1 to 3 weeks post-stroke) using the Analyze biomedical imaging software             

system (www.mayo.edu; Robb and Hanson,1991). Two board-certified neurologists (Dr.         

Maurizio Corbetta and Dr. Alexandre Carter) reviewed all segmentations. In          
hemorrhagic strokes, edema was included in the lesion. A neurologist (MC) reviewed all             

segmentations a second time paying special attention to the borders of the lesions and              
degree of white matter disease. Atlas-registered segmented lesions ranged from 0.02           

cm ​3 to 82.97 cm ​3 with a mean of 10.15 cm ​3 (SD = 13.94 cm ​3​). Lesions were summed to                  

display the number of patients with structural damage for each voxel. 
 

fMRI data preprocessing​. Preprocessing of fMRI data included: i) compensation for           
asynchronous slice acquisition using sinc interpolation; ii) elimination of odd/even slice           

intensity differences resulting from interleaved acquisition; iii) whole brain intensity          

normalization to achieve a mode value of 1000; iv) removal of distortion using synthetic              
field map estimation and spatial realignment within and across fMRI runs; v) resampling             

to 3mm cubic voxels in atlas space including realignment and atlas transformation in             
one resampling step. Cross-modal (e.g., T2-weighted to T1-weighted) image         

registration was accomplished by aligning image gradients. Cross-modal image         

registration in patients was checked by comparing the optimized voxel similarity           
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measure to the 97.5 percentile obtained in the control group. In some cases, structural              
images were substituted across sessions to improve the quality of registration.           

Following cross-modal registration, data were passed through three additional         
preprocessing steps. First, tissue-based regressors were computed based on         

FreeSurfer segmentation (Fischl, Sereno, Tootell, & Dale, 1999). The following sources           

of spurious variance were removed by regression: i) six parameters obtained by rigid             
body correction of head motion; ii) the signal averaged over the whole brain; iii) signal               

from ventricles and CSF; iv) signal from white matter. For Undirected Functional            
Connectivity (UFC) computations, we additionally regressed v) the average signal for           

gray matter. This step, commonly called global signal regression (GSR) was not applied             

for Granger causality (GC) computations. The rationale for this choice was to avoid any              
potential suppression of highly variable signals (Nalci et al., 2019) and distortion of             

information flow estimates using GC. Second, we performed temporal filtering retaining           
frequencies in the 0.009–0.08 Hz band. Third, we applied frame censoring meaning that             

the first four frames of each BOLD run were excluded. Frame censoring was             

implemented using frame wise displacement (Power et al., 2014) with a threshold of             
1mm. This frame-censoring criterion was uniformly applied to all R-fMRI data (patients            

and controls).  
 

Cortical surface processing​. Surface generation and processing of functional data          

followed procedures similar to Glasser et al. (Glasser et al., 2013), with additional             
consideration for cortical segmentation in stroke patients. First, anatomical surfaces          

were generated for each subject’s T1MRI using FreeSurfer automated segmentation          
(Fischl et al., 1999). This included brain extraction, segmentation, generation of white            

matter and pial surface, inflation of the surfaces to a sphere, and surface shape-based              

spherical registration to the subject’s “native” surface to the fs average surface.            
Segmentations were manually checked for accuracy. For patients in whom the stroke            

disrupted automated segmentation, or registration, values within lesioned voxels were          
filled with normal atlas values prior to segmentation, and then masked immediately after             

(7 patients). The left and right hemispheres were then resampled to 164,000 vertices             

and registered to each other (Van Essen et al., 2001), and finally down-sampled to              
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10,242 vertices each (a combined total of 18,722 vertices after exclusion of the medial              
wall) for projection of functional data. Following preprocessing, BOLD data were           

sampled to each subject’s individual surface (between white matter and pial surface)            
using a ribbon-constrained sampling available in Connectome Workbench (Marcus et          

al., 2013). Voxels with a high coefficient of variation (0.5 standard deviations above the              

mean coefficient of variation of all voxels in a 5 mm sigma Gaussian neighborhood)              
were excluded from volume to surface mapping (Glasser et al., 2013). Time courses             

were then smoothed along the 10,242 vertex surface using a 3mm FWHM Gaussian             
kernel. All brain surface visualizations were generated using Connectome Workbench          

(Marcus et al., 2013). 

 
Brain parcellation scheme. We used a cortical surface parcellation generated by Gordon            

& Laumann and colleagues (Gordon et al., 2016). The parcellation is based on R-fMRI              
boundary mapping and achieves full cortical coverage and optimal region homogeneity.           

The parcellation includes 324 regions of interest (159 left hemisphere, 165 right            

hemisphere). Note that the original parcellation includes 333 regions, while here all            
regions less than 20 vertices (approximately 50 mm ​2​) were excluded. This cutoff was             

arbitrarily chosen based on the assumption that parcels below this size would have             
unreliable signal given 4 mm sampling of our functional data. Notably, the parcellation             

was generated on 120 young adults aged 18-33 and is applied here to adults aged               

21-83. To generate parcel-wise connectivity matrices, time courses of all vertices within            
a parcel were averaged. For each ROI, we defined its center-of-mass coordinates            

as the average of the ( ​x,y,z) coordinates of all vertices in the ROI. For eachx, ,(ˉ ȳ z)̄                 

ROI, identified the homologous regions as the ROI in having the lowest distance from              

(i.e., the ROI closest to be symmetrically located in the opposite hemisphere).− , ,( x̄ ȳ z)̄  

In addition to the 324 cortical parcels, we also defined a set of 19 sub-cortical and                
cerebellar regions based on the FreeSurfer segmentation: for each hemisphere 9           

regions consisting of cerebellum, thalamus, caudate, putamen, pallidum, hippocampus,         

amygdala, accumbens and ventral dorsal caudate, plus brainstem ​(Fischl et al., 2002) ​. 
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Granger causality analysis and inter-areal information transfer 
 
Granger Causality (GC) framework. ​One of the most successful data-driven methods to            
quantify the degree of communication from statistical dependencies between neural          

signals is based on the Wiener-Granger causality principle (Granger, 1980; Brovelli et            

al., 2004; Ding et al., 2006; Bressler and Seth, 2011; Seth et al., 2015). 

  
Figure 1 ​: Dependencies between two time series. Each graph can be thought of as a representation of a                  

conditional mutual information CMI(A:B|C) where A and B are in blue and linked by an arrow, while C is in                    
red (a) for each time series, we consider its present value and the previous ​L values in the past             X t         

. (b) The information about contained in is defined as the MI between theX (L)
t−1 ≡ X , ,t−1 X t−2 ...,X t−L      X t    Y         

present of ​X and ​Y ​(present and past), (c) The information about contained ​exclusively        (X )I t : Y Yt
(L)
t−1      X t    

in (and not in the past values of X) is the CMI between the present of ​X and ​Y ​(present and past), Y                       

conditioned ​on the past of X, (d) the ​instantaneous causality ​measures information      (X |X )I t : Y Yt
(L)
t−1 

(L)
t−1        

about contained exclusively in (and not already contained in , ). (e) the ​directed causality  X t      Y t      Y (L)
t−1 X (L)

t−1      

from ​Y to ​X measures information about contained exclusively in , (and not already contained in        X t     Y (L)
t−1        

). (f) the ​directed causality ​from ​X to ​Y measures information about contained exclusively inX (L)
t−1              Y t     X (L)

t−1

, (and not already contained in ).  Y (L)
t−1   

 
In order to describe the Granger causality framework, let us consider two (discrete) time              

series , ​representing the activity of two subsystems sampled at }  X X= { t }  Y = {Y t          
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discrete times ​t={1,2,3,...,T} ​within a finite time window of length ​T. Standard undirected             
functional connectivity (UFC) is classically computed as the Pearson’s correlation,          

defined as where , are the standard deviations of and and  R = σ(X ,Y )
σ(X)σ(Y ) 

  σ(X)  (Y )  σ        X t    Y t   

is their covariance within the selected time window. The UFC only considers(X , )  σ2
 Y              

dependencies between and for the same ​t. ​Information-theoretically, this type of   X t    Y t          

dependency is quantified by the mutual information , which is a simple function       (X )  I t : Y t       

of for Gaussian data, . The UFC ​is insensitive to the R     (X ) − /2log(1 )  I t : Y t = 1 − R2        

temporal structure of correlation between ​X and ​Y​, since it is invariant under             
permutation of ​t ​. On the other hand, the framework based on Granger causality             

(Granger 1963; 1980) and further developed by Geweke ​(Geweke, 1982) considers           
dependencies between L+1 successive values of and , instead of single values.       X    Y      

Let us assume that , are independent of the past values of and occurring     X t  Y t          X    Y   

before a time , i.e., and This implies that one   t − L    X , , ..t−L−1 X t−L−2 .    Y , , ..t−L−1 Y t−L−2 .       

should only consider dependencies between , and the preceding values of the      X t  Y t    L      

time series (Fig. 1a), 

and X (L)
t−1 ≡ X , ,t−1 X t−2 ...,X t−L Y (L)

t−1 ≡ Y , ,t−1 Y t−2 ...,Y t−L   (1) 

The total information about contained in is defined as the mutual information     X t     Y        

between the present of ​X and ​Y ​(present and past), (Fig. 1b). By virtue of          (X )I t : Y Yt
(L)
t−1       

the identity , the latter can be decomposed into an  (A C) (A ) (A |B)  I : B = I : B + I : C         

“instantaneous” and a “lagged” term:  

(X ) (X |Y ) (X )I t : Y Yt
(L)
t−1 = I t : Y t 

(L)
t−1 + I t : Y (L)

t−1      (2) 

The conditioning on the instantaneous term implies that measures        (X |Y )I t : Y t 
(L)
t−1   

information about contained exclusively in (and not already contained in ).   X t      Y t      Y (L)
t−1  

However, possibly includes information that is already present in . To (X )I t : Y Yt
(L)
t−1          X (L)

t−1   

obtain the “exclusive” information about contained in we ought to condition over      X t     Y       

 (Fig. 1c):X (L)
t−1  

                                                                     (3)(X |X )I t : Y Yt
(L)
t−1 

(L)
t−1  

and again obtain an “instantaneous” and a “lagged” term:  

       (X |X ) (X |X Y ) (X |X )I t : Y Yt
(L)
t−1 

(L)
t−1 = I t : Y t 

(L)
t−1

(L)
t−1 + I t : Y (L)

t−1 
(L)
t−1   (4) 
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The first term is called instantaneous causality (IC) and usually indicated by (Fig.            F X⋅Y  

1d) 

                                                         (5)≡I(X |X Y )F X⋅Y t : Y t 
(L)
t−1

(L)
t−1  

The second term is called directed causality (DC) from to and usually indicated by          Y    X      

 (Fig. 1e)F Y →X  

                                                        (6)≡I(X |X )F Y →X t : Y (L)
t−1 

(L)
t−1  

Symmetrically, the exclusive information about   contained in  is measured by Y t  X   

     (7)(Y |Y  ) (X |X Y ) (Y |Y  )I t : X  Xt
(L)
t−1 

(L)
t−1 = I t : Y t 

(L)
t−1

(L)
t−1 + I t : X  (L)

t−1 
(L)
t−1  

The first term coincides with and the second one is the directed causality from     F X⋅Y            X  

to  (Fig. 1f), Y  

                                                            (8)≡I(Y |Y )F X→Y t : X (L)
t−1 

(L)
t−1  

The measures , and were proposed by Geweke ​(Geweke, 1982)​,  F X→Y  F Y →X  F X⋅Y        

who also defined the total interdependence between and as the sum of the three        X    Y        

terms,  
                                                       (9)F X ,Y = F X→Y + F Y →X + F X⋅Y  

This is the “new” correlation between   and created at time ,  indeed X  Y  t  

       I(X )F (X X Y )X ,Y = I t
(L)
t−1 : Y t 

(L)
t−1 −

 
(L)
t−1 : Y (L)

t−1           (10) 

Granger causality measures can therefore be reformulated in completely         
information-theoretical terms ​(Barnett et al., 2009; Marko, 1973; Rissanen and Wax,           

1987; Schreiber, 2000)​. Equivalent information-theoretic measures based on the         

Wiener-Granger principle, such as Transfer Entropy (Schreiber, 2000) and Directed          
Information (Massey, 1990), represent the most general measures of Wiener-Granger          

causality and capture any (linear and nonlinear) time-lagged conditional dependence          
between neural signals (Besserve et al., 2015; Vicente et al., 2011).  

 
Covariance-based Granger Causality. The GC measures , and      F X→Y  F Y →X   F X⋅Y  

capture statistical relations among the values of in a time window of length       ,  X Y        L + 1

including the “present” values , and the “past” values . Together,    ,  X t Y t      X ,(L)
t−1 Y (L)

t−1   

define a vector of length values. The GC measures can be,X ,t Y t X ,(L)
t−1 Y (L)

t−1      L2 + 2        
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ultimately expressed in terms of Shannon entropies involving the ( -variate)         L2 + 2  

probability distribution   and some of its marginals:(X , , )P t Y t X ,(L)
t−1 Y (L)

t−1   

                 (11)(Y Y ) (Y ) (Y X Y ) (X Y )F X→Y = H t
(L)
t−1 − H (L)

t−1 − H t
(L)
t−1

(L)
t−1 + H (L)

t−1
(L)
t−1   

(Y X Y ) (X X Y ) (X Y ) (X Y X Y )F X⋅Y = H t
(L)
t−1

(L)
t−1 + H t

(L)
t−1

(L)
t−1 − H (L)

t−1
(L)
t−1  − H t t

(L)
t−1

(L)
t−1   

Assuming the distribution to be stationary. The classical method to   (X , , )P t Y t X ,(L)
t−1 Y (L)

t−1         

compute entropies is the “binning method”. One considers running windows of length        T      

, and for each window extracts the vector , thus obtainingL + 1         ,X ,t Y t X ,(L)
t−1 Y (L)

t−1    T  

samples of . Binning each univariate variable and collecting the bin counts, the  L2 + 2            

joint probability distribution is approximated by (multidimensional)   (X , , )P t Y t X ,(L)
t−1 Y (L)

t−1      

histogram ​(Beirlant et al., 1997; Treves and Panzeri, 1995)​. If bins are used for each          n       

univariate variable, the total number of multidimensional bins is . As a rule of         n2(L+1)      

thumb, to get at least a rough estimate of the bin counts one needs at least as many                  
samples as bins, so points. This requires a large sample for estimation.    ≥nT 2(L+1)        ≥nT 4    

In order to make the estimation feasible on short time windows, a common solution is to                
approximate the distribution with the first term of the Gram-Charlier expansion, i.e., by a              

Gaussian distribution with the same second order moments (covariance matrix) as the            
given distribution. This approximation amounts to keeping only second order statistics,           

and neglecting higher-order terms, and is rather accurate for fMRI data ​(Hlinka et al.,              

2011)​. In this approximation, the distribution and its marginals are      (X , , )P t Y t X ,(L)
t−1 Y (L)

t−1      

effectively replaced by the covariance matrix and its submatrices.      (X , , )Σ t Y t X ,(L)
t−1 Y (L)

t−1     

Estimating requires only to estimate parameters corresponding to the Σ      2L 2)( +  2      

second moments of the distribution. Furthemore, entropies can be simply computed           

with the formula 

                                    (12)          H(A) log 2πe log|Σ(A) | = 2
nA + 2

1 
  

where is the covariance matrix of , the dimension of , and is the (A)Σ       A  nA     A   ⋅|  |    

determinant. Thus, in this ​covariance-based approximation, GC measures are         
expressed in terms of determinants of submatrices of the covariance matrix of the data              

(Brovelli et al., 2015)​. For instance, 
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        log|Σ(Y Y )| log|Σ(Y )|  F X→Y = 2
1 

t
(L)
t−1  

− 2
1 

t    +    (13) 

log|Σ(Y X Y )| log|Σ(X Y ))|−  2
1 

t
(L)
t−1

(L)
t−1 +

 2
1 (L)

t−1
(L)
t−1  

  

The covariance-based GC estimation is equivalent to the parametric estimation of GC            

from an autoregressive model with Gaussian innovations, i.e., the traditional way to            
estimate Granger causality. 

 
Gaussian-copula-based estimation of GC​. The assumption of Gaussianity can be          

relaxed as follows. If two variables are not Gaussian, one may nevertheless be      ,  X Y         

able to find two new variables that are Gaussian and have the same MI as .      ,X̃ Ỹ           ,  X Y   

One can then apply the covariance-based estimation to . ​The GC measures        ,X̃ Ỹ     F X→Y

, and can be written as appropriate sums of mutual information (MI) terms.  F Y →X  F X⋅Y             

For instance,  

                             (Y |Y ) (Y Y ) (Y )F X→Y = I t : X (L)
t−1

(L)
t−1 = I t : X (L)

t−1
(L)
t−1 − I t : Y (L)

t−1   
     (14) 

The MI is invariant under monotonic transformations of the marginals. Formally,           

consider the transformations 

                                                ,                                                 (15)(X)X̃ = t (Y )Ỹ = u   

where , are monotonic functions: it holds that . The t  u         I(X ) (t(X) (Y )): Y = I : u    

invariance is exploited in the Gaussian copula estimation of mutual information ​(Ince et             
al., 2017) ​. In short, one first transforms the marginals such that they are Gaussian, and               

then applies a covariance-based MI estimation to the transformed variables. In detail,            
consider two random variables , with joint cumulative distribution function (CDF)     X  Y        

 and marginal CDFs , . Consider(X , )  H Y (X)  F (X)  G  

 ,                                   (16)(X) (F (X))  t = Φ−1 (Y ) (G(Y ))  u = Φ−1   

where is the CDF of a standard normal variable. One can immediately show that Φ               

,  are standard normal variables, i.e.,  , .(X)X̃ = t (Y )Ỹ = u (X) (X)F̃ ˜ = Φ ˜ (Y ) (Y )G̃ ˜ = Φ ˜  

Applying the covariance-based approach to the transformed variables, one has          

, ​and by virtue of the invariance . The Gaussian(X  , ) logI ˜ Ỹ = 2
1

|Σ |XY˜ ˜

|Σ ||Σ |
X̃ Ỹ        (X , ) (X  , )I Y = I ˜ Ỹ    

evaluation of the MI between ​is not exact. In general, even though the marginal      ,X̃ Ỹ           

distribution of are Gaussian, the joint distribution is not a bivariate Gaussian. This   ,X̃ Ỹ             
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is true only if the ​copula​, i.e., the part of the distribution specifying the dependence               
between the two variables, is Gaussian (see Ince et al. 2017 for a definition of copula                

and discussion of this point). However, for many distributions the Gaussian copula            
assumption is approximately met. In summary, one obtains the following algorithm to            

compute the MI: i) given samples , approximate , with the empirical      X , }  { i Y i   (X)  F  (Y )  G     

CDFs , ​and compute , (X ) ank(X )/N  F i = r i  (Y ) ank(Y )/N  G i = r i    ) (rank(X )/N )  t(X i = Φ−1
i  

. ​and ​are normally distributed and have the same MI) (rank(Y )/N )  u(Y i = Φ−1
i  )  t(X i   )  u(Y i          

as ii) compute the MI from the samples with the covariance-based  ,  X i Y i         ), (Y )}  {t(X i u i     

method. In our work, we have computed all GC measures by expressing them in terms               

of sums of MIs and then applying the Gaussian-copula-based estimation to each term in              
the sum. 

Overall, the first advantage of bivariate gaussian-copula and covariance-based GC is its            
applicability to large networks of nodes, such as the 343 nodes used in this study. Most                

other methods to infer directed GC (such as multivariate Granger causality) are more             

accurate in inferring ​direct ​(i.e., non-mediated) influences, but usually applicable to only            
smaller networks (of the order of 100 nodes) (Tang et al., 2012; Stramaglia et al., 2016).                

The use of covariance-based GC does not require to select a specific sub-network of              
nodes, or to average BOLD signals over large regions (which would imply a             

considerable signal loss, due to potential inhomogeneities). A second advantage is its            

estimability from short signals. This property allows us to estimate GC from BOLD time              
series of 400-800 time points, i.e., the time series of single subjects. Thus, we do not                

need to concatenate several subjects to perform the estimation, and we can obtain             
individual estimates. These two key properties enable a direct comparison of Granger            

causality results with previous FC studies. 

 
Choice of the appropriate lag (L). ​GC measures , and depend on the        F X→Y  F Y →X  F X⋅Y     

time window length used to define the past of each time series. Intuitively, should   L            L   

include all points in the past that have correlations with , . This would roughly           X t   Y t     

correspond to the autocorrelation decay time of the time series. For rs-fMRI, this is of               
the order of 10s (5 TR). More rigorously, we tested how many points in the past                

significantly contribute to predicting the present values of the time series by assuming a              
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specific form for the process generating the data. If we assume that the data are               
generated by a Gaussian vector autoregressive (VAR) process of length L   

,     ​             (17)X Y +X t = ∑
L

s=1
axx,s t−s + axy,s t−s εx X Y +Y t = ∑

L

s=1
ayx,s t−s + ayy,s t−s εy  

where ,  are (possibly correlated) Gaussian innovations. This can be rewritten asεx εy  

                   ,                       ​(18)+X t = Axx · X (L)
t−1 + Axy · Y (L)

t−1 εx +Y t = Ayx · X (L)
t−1 + Ayy · Y (L)

t−1 εy  

with vectors , , . ​In this setting are Gaussian with means ×1L   ,Axx Axy Ayx Ayy     ,  X t Y t      

, and covariance given by theX Yμx = Axx
(L)
t−1 + Axy

(L)
t−1  X Yμy = Ayx

(L)
t−1 + Ayy

(L)
t−1    σ     ×22

covariance matrix of , . Using least squares estimation, one obtains the best fit for   εx εy            

the parameters  

, , ,Axx,s = var(X )t−s

cov(X ,X )t t−s Axy,s = var(Y )t−s

cov(X ,Y  )t t−s Ayx,s = var(X )t−s

cov(Y  ,X )t t−s  

                              ,                                            ​(19)Ayy,s = var(Y )t−s

cov(Y ,Y  )t t−s Σ(X Y |X Y  )σ =  t t
(L)
t−1

(L)
t−1  

where is the partial covariance matrix of given (A|B) (A) (X , )Σ (B)Σ(A, )  Σ = Σ − Σ Y −1 B T        A   

, with .B et σ |Σ(X Y , Y  )| |Σ(X Y  )|d =  t t X
(L)
t−1

(L)
t−1 −  (L)

t−1
(L)
t−1   

An appropriate choice of is given by model comparison, i.e., by fitting models with    L            

different to the data and selecting the model yielding the “best fit”. Since the models L                

for increasing are nested (models with higher include models with lower as a  L       L      L    

special case), the likelihood of the models increases monotonically as a function of .             L  

To avoid overfitting, the customary procedure with nested models is to select the proper              
by a model-comparison criterion penalizing models with a larger number ofL             

parameters. Here, we used the common BIC criterion ​(McQuarrie and Tsai, 1998) that             
assesses the fitness of each model as ​where is the       logΛ  log(n)B = 2 − d   Λ    

log-likelihood, and is a term penalizing models with a large number of   log(n)d            

parameters . The log-likelihood of the model (17) is which d         ogΛ log2πe det σl =  − 2
N   

gives the BIC value 

              IC  log(n) logΛ (L ) log(n) log2πe detΣ(X Y |X Y  )B = d − 2 = 4 + 1 − 2
N

t t
(L)
t−1

(L)
t−1  
(20) 

The best-fitting model is the one maximising . We computed the value of for       IC  B       IC  B   

all pairs of regions-of-interest (ROIs) and all subjects (patients and controls) as a             
function of . We found that on average BIC increases up to , and then remains  L           ≈5L     
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relatively stable. Note that since TR= 2s, corresponds to the expected       L = 5      

autocorrelation length of the signal. On the basis of these results, we chose to fix               L = 5  

in our analyses.  

 
Relation between linear correlation and covariance-based Granger causality measures.         

Standard undirected functional connectivity (UFC) is classically computed as the          

Pearson’s correlation, defined as where , are the standard    R = σ(X ,Y )
σ(X)σ(Y ) 

  σ(X)  (Y )  σ     

deviations of and and is their covariance within the selected time   X t    Y t   (X , )  σ2
 Y         

window. The UFC only considers dependencies between and for the same ​t.        X t    Y t      

UFC and covariance-based Granger causality measures share common properties.         

Linear correlation and total interdependence are undirected measures quantifying static          
and dynamic dependencies, respectively. Although these measures are not related by a            

mathematical decomposition, there is a strong relationship between the existence of           
both types of dependencies. A lack of total interdependence implies a lack of linear              

correlation; and, if we assume that the future of X and Y causally depends on their own                 

past, respectively, the opposite relation is also true. This occurs because linear            
correlation is related to the covariance-based approximation of the mutual information,           

, and because conditioning on the past cannot create new(X ) − /2log(1 )  I t : Y t = 1 − R2           

dependencies (Chicharro and Panzeri, 2014). It is also clear the directed and            

instantaneous Granger measures are smaller than the total interdependence. Thus, null           
total interdependence implies the absence of Granger causality measures because they           

constitute non-negative contributions to the total interdependence. In other words,          
Granger causality is present if, and only if, both linear correlation and total Granger              

interdependencies are not zero. 

 
The FC and GC quality-based exclusion criteria​. In order to ensure good-quality FC and              

GC estimates, we excluded from analysis all subjects with less than 400 usable frames              
after motion scrubbing. Furthermore, for each subject, we computed a lag between            

homologous ROIs as in (Siegel et al., 2016B). In brief, for any integer lag              
we computed the lagged cross-correlation between− ,− , .., ,  l = 4 3 . 3 4       < Y   C l = X t t+l  >   
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the BOLD signals of the homologous ROIs; the homotopic lag between the ROIs   ,  X Y            

was identified by finding , performing a parabolic interpolation on    rgmin(C )l0 = a l       

, and computing the minimum of the parabola. An average homotopic, CC , Cl −10
 

l0
 l +10

           

lag between the left and right hemisphere was computed by averaging over all             

homptipic lags between left ROIs and the homologous right ROIs. Anomalously large            
homotopic lags are a likely indication of the presence of lags of hemodynamic origin,              

due to disruption of the standard hemodynamic response in the vicinity of the lesion.              

Therefore, we excluded from analysis all subjects with severe homotopic lags (greater            
than 1s inter-hemispheric difference). After motion and lag exclusion, 113 patients were            

included at two weeks, 27 controls at time point one, and 25 at time point two. 
 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 4, 2021. ; https://doi.org/10.1101/2021.01.04.425190doi: bioRxiv preprint 

https://doi.org/10.1101/2021.01.04.425190
http://creativecommons.org/licenses/by-nc-nd/4.0/


RESULTS 
 

We analyzed resting-state fMRI data of acute stroke patients (n=113) and healthy            
control subjects (n=26). Our analysis tested the hypothesis that post-stroke FC           

alterations are tightly intertwined with information flow deficits occurring both          
inter-hemispherically and intra-hemispherically. To address this issue, we performed         

covariance-based Granger causality analyses (Brovelli et al., 2015) of resting-state fMRI           

data and compared inter-areal information flow analyses with standard FC approaches.           
The comparison was performed by means of the notion of total interdependence            

between signals (Geweke et al., 1982). In the GC framework, the total interdependence             
between two signals can be split into three terms: two directed Granger causality (DC)              

terms and an instantaneous Granger causality (IC) term. The DC terms           F , F )( X→Y  Y →X  

represent a directed flow of information from to or vice versa. The IC term ( )        X    Y        F X⋅Y  

represents information shared between and “instantaneously”, i.e., in less than     X    Y       

one TR, and it accounts for unconsidered influences that may originate from common             
(e.g., subcortical) sources. Functional MRI data were computed for 324 parcels of the             

Gordon-Laumann cortical parcellation ​(Gordon et al., 2016) and 19 sub-cortical and           
cerebellar parcels from the FreeSurfer atlas ​(Fischl et al., 2002)​. For each subject and              

for each pair of regions-of-interest (ROIs), we evaluated the undirected functional           

connectivity (UFC, z-transformed Pearson correlation), the instantaneous Granger        
causality (IC) and the directed Granger causality in both directions (DC). For control             

subjects, the DC, IC and UFC matrices obtained in two independent sessions were             
averaged. We then investigated differences in DC and IC (i) between the two             

hemispheres and (ii) within the lesioned and intact hemisphere, and compared the            

results with shifts in UFC.  
 

Consistency of UFC and GC measures across fMRI sessions 

We first tested the reliability of our results by verifying the consistency of the UFC and                

GC measures obtained for control subjects in two separate sessions (Fig. 2a).            

Consistency was defined as the Pearson correlation between the (upper-triangular parts           
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of the) corresponding matrices in the two sessions. The UFC matrices were highly             
consistent (r=0.65±0.03, average and standard error over subjects). The same result           

was obtained for IC matrices (r=0.73±0.02). The DC matrices, instead, were much less             
consistent (r=0.22±0.02). We obtained reduced network-wise (28×28) FC matrices by          

averaging over ROIs in the same network and hemisphere. We considered thirteen            

cortical resting-state networks as in ​(Gordon et al., 2016)​, plus subcortical ROIs.            
Consistency improved for UFC (r= 0.80±0.03), IC (r=0.87±0.03), and DC (r=0.41±0.03).           

The UFC and DC results are thus reliable at the single-subject level, especially if              
network-averaged results are considered. As for the DC, due to the poor level of              

consistency obtained in the full (343×343) DC matrix, we cannot expect reliable results             

at the level of single subject, single ROI. Also at the network level individual results are                
not completely reliable. To assess the reliability of group results, we computed the             
consistency of group-averaged FC matrices for random groups of subjects (Fig. 2b).         n     

The group consistency is significantly stronger than the individual consistency. When           

considering groups of 5 subjects, the DC consistency rises to 0.4 (0.7 for network-wise              
matrices), and for 10 subjects it rises to 0.5 (0.8 for network-wise matrices). This result               

implies that while individual DC results are affected by a very large noise, DC results at                
the group-level are reliable. In summary, UFC and IC matrices were highly consistent             

both at the individual and group level, while DC matrices were consistent only at the               

group level.  
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Figure 2 ​: Consistency of FC measures in two separate sessions. We computed 343×343 DC, IC and                

UFC matrices for the two separate sessions of control subjects. We assessed consistency between the               

FC results in the two sessions as the Pearson correlation between the (upper-triangular part of the)                

corresponding matrices in the two sessions. We also evaluated consistency between the 28×28 DC, IC               

and UFC matrices obtained by averaging over all pairs of ROIs belonging to the same RSN (13 cortical                  

resting state systems + subcortical ROIs). In panel (a) we show the distribution of consistency for the                 

individual results of each subject. In panel (b), we assess consistency of group averages. For each ​n​, we                  

randomly select ​n subjects and average the FC matrices over subjects. We then show the average (over                 

random choices of n subjects) consistency of the group-averaged matrices as a function of ​n 
 

Interhemispheric homotopic undirected functional connectivity and Granger       
causality analyses 
Previous studies have shown that stroke patients present a reduced interhemispheric           

UFC with respect to healthy controls (Carter et al., 2010; Golestani et al., 2013; He et                
al., 2007; New et al., 2015; Park et al., 2011; Ramsey et al., 2016; Siegel et al., 2016;                  

Tang et al., 2016). Such effect is strongest for interhemispheric homotopic connections,            
which link homologous ROIs located symmetrically in opposite hemispheres. We          

computed UFC, IC, and DC between pairs of homologous ROIs and compared healthy             

controls with stroke patients. Furthermore, we subdivided the latter group into patients            
with lesions in the left hemisphere (LH patients) and patients with lesions in the right               
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hemisphere (RH patients). LH and RH patients were kept separate as they were             
clinically different and presented dissimilarities in FC. 

Global measures of homotopic connectivity were obtained by averaging the UFC, IC            
and DC over all pairs of homotopic links. Network-wise measures were obtained by             

averaging over pairs of homotopic ROIs belonging to the same resting state network             

(RSNs). We considered twelve RSNs as in ​(Gordon et al., 2016)​, in addition to              
subcortical regions, and left out networks with less than 5 nodes. We considered the              

following RSNs: the visual network (VIS), sensorimotor dorsal network (SMD),          
sensorimotor ventral network (SMV), auditory network (AUD), cingulo-opercular network         

(CON), ventral attention network (VAN), dorsal attention network (DAN), default mode           

network (DMN), fronto-parietal network (FPN), subcortical regions (SUB). 
Figure 3a shows the distribution of the homotopic UFC, averaged over all homotopic             

pairs for healthy controls (n=26), LH patients (n=60) and RH patients (n=53) in the              
sub-acute phase. We observed a significant difference in the UFC distribution between            

the three groups (one-way ANOVA, F(2,136)=6.6, p=0.002). Post-hoc T-tests show that           

the UFC was significantly higher in controls as compared to LH patients (T(84)=4.1,             
p=0.0001) and RH patients (T(77)=3.2, p=0.0001), which in turn were not different (LH             

vs. RH patients T(111)=−0.9, p=0.37). Figure 4d shows UFC distributions for each RSN.             
We found a significant effect of group and network, as well as a significant group x                

network interaction (two-way ANOVA; group: F(2,1224) = 6.4, p=0.002; network:          

F(9,1224) = 126.7, p <10 ​−10​; interaction: F(18,1224) = 2.1, p= 0.005). Post-hoc T-tests             
showed that controls had significantly higher UFC than LH patients (p<0.05 FDR            

corrected for 10 comparisons) in all networks except for the VAN, and significantly             
higher UFC than RH patients in all networks except for the VAN, DMN, FPN and SMV                

(p<0.05 FDR corrected for 10 comparisons). The UFC appeared to be slightly higher for              

RH than LH patients; however, the difference between LH and RH patients disappeared             
(one-way ANOVA: F(1,1110) = 1.5, p= 0.2) if controlled for lesion volume by linearly              

regressing the logarithm of volume lesion from the UFC. In summary, stroke patients             
presented an overall decrease of homotopic UFC with respect to healthy subjects, with             

a stronger effect for patients with larger lesion volume. The effect was strongest for              

homotopic connections in VIS, SMD, AUD, CON, DAN networks, and for subcortical            
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regions. Analogous results were already obtained in previous analyses ​(Joshua Sarfaty           
Siegel et al., 2016)​.  

The analysis of homotopic UFC in patients showed that the activity of homologous             
regions is less correlated than in healthy controls, suggesting a reduced interaction            

between the hemispheres. Granger causality (GC) analyses were performed to          

characterize instantaneous (IC) and directional (DC) interactions between homologous         
regions. Figure 3b depicts the distribution of instantaneous causality (IC), averaged over            

all homotopic pairs of ROIs. We observed a significant difference in IC between the              
three groups of subjects (one-way ANOVA, F(2,136) = 14.0, p= 3·10 ​−6​). Post-hoc t-tests             

showed that the IC was significantly higher in controls with respect to LH patients (T(84)               

= 5.5, p=4·10 ​−6​) and RH patients (T(77) = 4.2, p=0.0001), but did not differ between LH                
and RH patients (T(111)=−1.1, p= 0.27). Figure 3e shows results separately for each             

network. We found significant effects both for group type and networks, as well as a               
group x network interaction (two-way ANOVA; group: F(2,1224)=13.5, p=4·10 ​−6​;         

network: F(2,1224)=180.3, p<10 ​−10​; interaction: F(18,1360)=4.2, p=1.0·10 ​−10​). While       

controls had significantly higher IC than both LH and RH patients in all networks (t-test,               
p<0.05 FDR corrected for 10 comparisons), the strongest differences between patients           

and controls was observed in the VIS, SMD, CON, DAN and subcortical regions.             
Similarly to UFC, the IC was slightly higher for RH than LH patients, but controlling for                

lesion volume removed the effect (one-way ANOVA: F(1,1110)=3.4, p=0.06). In          

summary, the IC results are in qualitative agreement with those of UFC, but the              
discrepancy between patients and control subjects is more pronounced (as mirrored in            

a larger group effect).  
We then analyzed directional Granger causality measures between homologous         

regions. We first investigated whether the bidirectional information flow across          

hemispheres was different between patients and controls. To this aim, we computed            
total directed interdependence between brain regions, defined as the sum of DC            
estimates, where is a ROI in the left hemisphere and the SX↔Y = F X→Y + F Y →X    X           Y   

homologous ROI in the right hemisphere. Figure 3c shows the distribution of the             

homotopic bidirectional DC, averaged over homotopic pairs of regions. We observed a            
significant difference between the three groups (one way Anova, F(2,136)=3.6, p=0.03);           
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post-hoc t-tests show that the homotopic DC was significantly higher in controls than LH              
patients (T(84)=2.9, p=0.006), but not RH patients (T(77)=1.2, p=0.22). Considering          

different networks separately (Fig. 3f), we found a significant effect of group and             
network separately (group: F(2,1224)=3.7, p=0.03; network: F(9,1224)=75.8, p<10 ​−10​;        

interaction: F(18,1224)=1.3, p=0.14). For all networks, the bidirectional information flow          

was higher in healthy controls than LH patients.  
 

 
Figure 3 ​: Average homotopic UFC, IC and DC in acute phase. For each subject, we averaged the UFC,                  

the IC, and the bidirectional DC for homotopic pairs of ROIs. (a-c) show individual averages of homotopic                 

UFC, IC, bidirectional DC (each dot represents one subject). At a group level, the average homotopic                

UFC and IC are higher for controls than both LH and RH patients. The bidirectional DC is higher for                   

controls than LH patients. (d-f) show homotopic UFC, IC and bidirectional DC by resting-state network.               

Column heights are averages over subjects, error bars standard errors over subjects. At the group level,                

the UFC and IC for each network is higher in controls compared to patients. Control/patient differences                

are stronger for IC than UFC. The average bidirectional DC for each network is higher in controls                 

compared to LH patients. Stars indicate networks for which comparison with controls (two-sample T-test,              

p<0.05 FDR corrected for 10 comparisons) is significant. VIS=visual, SMD=sensorimotor dorsal,           
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SMV=sensorimotor ventral, AUD=auditory network, CON=cingulo-opercular network, VAN=ventral       

attention network, DAN=dorsal attention network, DMN=default mode network, FPN=fronto-parietal         

network SUB=subcortical nodes. 

 
We then studied whether stroke induces an asymmetry in information flow between the             

hemispheres by quantifying the asymmetry in information flow between brain regions,           
defined as the difference in DC, . We computed the net      F FGX→Y =  X→Y −  Y →X      

homotopic DC asymmetry where is a ROI in the right hemisphere and the   GX→Y    X           Y  

homologous ROI in the left hemisphere. larger than zero implies a net      GX→Y        

information flow from the right to the left hemisphere, and vice versa for smaller             GX→Y   

than zero. Figure 4a shows the distribution of the homotopic DC asymmetry, averaged             

over homotopic pairs of ROIs. We observed a significant difference between the three             
groups (one-way ANOVA, F(2,136)=13.5, p=4·10 ​−6​). Post-hoc t-tests showed that the          

net homotopic information flow is shifted towards the left hemisphere in LH patients             

compared to control subjects (T(84)=3.1, p=0.002), and significantly shifted towards the           
right hemisphere in RH patients compared to controls (T(77)=2.5, p=0.02). In other            

words, the DC from the intact to the lesioned hemisphere tended to be higher than in                
the opposite direction, implying a net information flow from the intact to the lesioned              

hemisphere. Considering individual RNSs (Fig. 4d), we found significant effects at the            

group and network level (group: F(2,1224)=11.1, p=4·10 ​−5​; network: F(9,1224)=2.3,         
p=0.02; interaction: F(18,1224)=1.2, p=0.2). For all networks, the information flow          

captured by the DC asymmetry was higher from the healthy to the lesioned hemisphere              
in patients. Figure 4d additionally shows that the net information flow in healthy             

participants was preferentially from the left (dominant) towards the right (non-dominant)           

hemisphere, but the net asymmetry was much weaker than that observed in patients.  
We then investigated whether the asymmetry effect could be attributed to a reduction of              

DC from the lesioned to the intact hemisphere, or rather to an enhancement of DC from                
the intact to the lesioned hemisphere. We analysed separately homotopic DC terms            

, where is a ROI in the left hemisphere and the homologous ROI inF X→Y  F Y →X    X           Y      

the right hemisphere. The results revealed that the asymmetry is due to a reduction of               

DC from the lesioned to the healthy hemisphere. Indeed, we found that the homotopic              
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DC from the lesioned to the healthy hemisphere (left to right) in LH patients was               

significantly lower than in healthy controls (T(84)=3.9, p= 3·10 ​−​4​)​, while the DC from the              

healthy to the lesioned hemisphere (right to left) was only slightly, but not significantly              

reduced (T(84)=1.6, p=0.1) (see Fig. 4b-4c). For RH patients, the DC from the lesioned              

to the healthy hemisphere (right to left) was significantly lower in comparison with             
healthy controls (T(77)=2.2, p=0.03), while the DC from the healthy to the lesioned was              

comparable (T(77)=−0.05, p=0.95). In Fig. 4e and 4f, we show the DC from left to right                
and from right to left for different networks, respectively. We performed a three-way             

ANOVA to test for the effects of group, network and directionality (left to right vs right to                 

left) on homotopic DC. We found a significant effect of group (F(2,136)=3.7, p=0.03),             

network (F(9,2584)=74.9, p<10 ​−​10​) and directionality (F(1,2584)=5.7, p=0.02), as well as          

significant group x directionality (F(2,2584)=37.8, p<10 ​−​10​) and network x directionality          

(F(9,2584)=2.5, p-0.01) effects. In summary, the homotopic directed connectivity from          
the lesioned to the intact hemisphere was reduced with respect to healthy controls.             

Directed connectivity from the intact to the lesioned was slightly reduced (for LH             
patients) or comparable with that of healthy controls. Consequently, stroke patients           

present an asymmetric interhemispheric information flow, going from the healthy to the            

lesioned hemisphere.  
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Figure 4 ​: Direction of the average homotopic DC in acute phase. For each subject, we averaged the DC                  

over homotopic pairs of ROIs, considering separately the DC from left regions to right regions, from right                 

regions to left regions, and the difference, called homotopic DC asymmetry asymmetry. (a-c) we show               

individual averages of homotopic DC from left to right, right to left, and asymmetry (left to right - right to                    

left). Each dot represents a subject. At a group level, for both LH and RH patients, the information flow                   

(DC asymmetry) is in the direction of the lesioned hemisphere, i.e., the homotopic DC from the intact to                  

the lesioned hemisphere is higher than vice versa. DC from left to right is reduced for all patients                  

compared to controls, but much more strongly for LH patients. DC from right to left is reduced for RH                   

patients compared to controls. Overall, DC from the lesioned to the intact hemisphere tends to be                

reduced in patients. (d) We show homotopic DC asymmetry (right to left - left to right) by resting-state                  

network. Column heights are averages over subjects, error bars standard errors over subjects. For all               

networks, the information flow (DC asymmetry) is from right to left LH patients, and from left to right in RH                    

patients. Stars represent networks for which comparison with 0 (one-sample T-test, p<0.05 FDR             

corrected for 10 comparisons) is significant. (e-f) We show homotopic DC from left to right and right to left.                   

Column heights are averages over subjects, error bars standard errors over subjects. DC from left to right                 

is significantly reduced in several networks for LH patients. Stars represent networks for which              

comparison with controls (two-sample T-test, p<0.05 FDR corrected for 10 comparisons) is significant.             

VIS=visual, SMD=sensorimotor dorsal, SMV=sensorimotor ventral, AUD=auditory network, CON=cing        

VIS=visual, SMD=sensorimotor dorsal, SMV=sensorimotor ventral, AUD=auditory network,       
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CON=cingulo-opercular network, VAN=ventral attention network, DAN=dorsal attention network,        

DMN=default mode network, FPN=fronto-parietal network SUB=subcortical nodes. 
 

Intra-hemispheric undirected functional connectivity and Granger causality       
analyses 
We then investigated intra-hemispheric UFC, IC, and DC. Previous studies have shown            
that brain damage leads to a bilateral increase of intra-hemispheric functional           

connections (Baldassarre et al., 2014; Eldaief et al., 2017; Ramsey et al., 2016; Siegel              

et al., 2016). Our analysis, however, showed that the increase of intra-hemispheric UFC             
is, on average, subtle. Figure 5a shows the total (left and right) intra-hemispheric UFC              

for healthy controls and stroke patients. The group effect was not significant (one-way             
ANOVA, F(2,136) = 2.2, p= 0.12), and post-hoc T-tests revealed only a marginally             

significant increase for both LH patients (T(84)=2.08, p=0.04) and RH patients           

(T(77)=2.24, p=0.03) in comparison to controls. When considering different resting-state          
networks separately (for each network, we considered the sum of its connections with             

all networks), we obtained consistent results (Figure 5d). We found a significant effect of              
network only, not group (two-way ANOVA; group: F(2,1224)=1.5, p=0.2; network:          

F(9,1224)=259.3, p<10​−​10​; interaction: F(18,1224)=0.8, p=0.7).  

We then investigated whether stroke impacts the balance in intra-hemispheric functional           

connectivity between the lesioned and intact hemisphere. We computed a measure of            
intra-hemispheric imbalance defined as the difference between the mean UFC          

averaged over all pairs of regions within the same hemisphere. The intra-hemispheric            

UFC did not show a significant imbalance between lesioned and healthy hemisphere            
(Fig. 5g). The three groups did not show a significant difference in imbalance (one-way              

ANOVA, F(2,136)=0.97, p=0.38). Post-hoc T-tests did not show differences in UFC           
imbalance between any pair of groups (controls compared to LH patients (T(84)=0.27,            

p=0.78), controls compared to RH patients (T(77)=1.425, p=0.15), and LH compared to            

RH patients (T(111)=1.1, p=0.27).  
Contrary to UFC, the mean intra-hemispheric IC was clearly reduced in patients as             

compared to controls. Compared to healthy controls, LH patients presented instead a            
reduced intra-hemispheric IC in both hemispheres (Fig 5h and 5i), with a more             

pronounced reduction in the lesioned one (left: T=−3.0, p=0.004; right: T=−2.17,           
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p=0.03). In RH patients, the IC was reduced only in the lesioned hemisphere (left:              
T=−0.7, p=0.48; right: T=−2.31, p=0.02; Fig. 5h and 5i). To conclude, the IC presented              

an imbalance between the two hemispheres in stroke patients. Figure 5b shows the             
distribution of the intra-hemispheric IC imbalance (difference between the average          

intra-hemispheric IC in right and left hemisphere) for LH/RH patients and controls. The             

three groups are significantly inhomogeneous (one-way ANOVA, F(2,136)=19.6,        
p=3·10 ​−​8​), with significant differences pairwise in controls compared to LH patients           

(T(84)=−2.5, p=0.01), controls compared to RH patients (T(77)=3.7, p=0.0004), and LH           
compared to RH patients(T(111)=5.7, p=1·10 ​−7​). Figure 5e shows the intra-hemispheric          

IC imbalance for different resting state networks. For each network, we considered the             

sum of its connections with all networks. We found a significant effect of group and               
network, as well as a significant interaction (group: F(2,1224)=19.7, p<3·10 ​−8​; network:           

F(9,1224)=5.4, p=2·10 ​−7​; interaction: F(18,1224)=4.1, p=2·10 ​−8​). We observed a        
significant (T-test, p<0.05 FDR corrected) imbalance for both LH and RH patients in the              

AUD, CON and DAN networks. For RH patients, we found an imbalance also in VIS,               

SMD, SMV, DMN and FPN. The stronger effects observed in RH patients could be              
explained by lesion volume, as LH patients have wider lesions than RH patients.             

Healthy subjects presented a significant imbalance in the VAN and FPN (i.e., the IC was               
higher in the left hemisphere). In summary, stroke patients showed lower           

intra-hemispheric IC in the lesioned hemisphere than the intact one. Compared to            

healthy subjects, the intra-hemispheric IC was found to be lower in both hemispheres             
(more severely in the lesioned one) for LH patients and in the lesioned hemisphere for               

RH patients. 
Finally, we analyzed DC within each hemisphere and computed a bidirectional DC            

strength, defined as . This metric was computed over all pairs of   SX↔Y = F X→Y + F Y →X           

ROIs within each hemisphere. Compared to healthy controls, LH patients presented a            

slight, but non-significant (left: T=−1.6, p=0.10), reduction in intra-hemispheric DC in the            
left hemisphere, but not in the right hemisphere (right: T=−0.84, p= 0.40). RH patients              

presented no significant difference either (left: T=−0.28, p= 0.77; right: T=−0.59, p=            

0.55). All groups presented an imbalance in intra-hemispheric DC (Figure 5c). For LH             
patients, the intra-hemispheric DC was higher in the right (healthy) hemisphere. For RH             
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patients and controls the intra-hemispheric DC was higher in the left hemisphere, which             
is the dominant hemisphere for healthy subjects and the healthy hemisphere for RH             

patients. The three groups were significantly inhomogeneous (one-way ANOVA,         
F(2,136)=8.12, p=5·10 ​−4​), with significant differences pairwise in controls compared to          

LH patients (T(84)=−3.3, p= 0.0016), and LH compared to RH patients (T(111)=3.6,            

p=0.0005). We did not observe a significant difference in controls compared to RH             
patients (T(77)=1.0, p=0.34). The left-ward imbalance effect appeared only slightly          

strengthened in RH patients compared to control subjects. In Figure 5f, we show the              
imbalance in intra-hemispheric DC for different resting state networks. For each           

network, we considered the sum of its incoming and outgoing connections with all other              

networks. We found a significant effect of group and network, as well as a significant               
group x network interaction (two-way ANOVA; group: F(2,1224)=8.9, p=0.0002;         

network: F(9,1360)=3.7, p=0.0001; interaction: F(18,1224)=2.6, p=0.0002). We       
observed a significant (T-test, p<0.05 FDR corrected) imbalance in CON, AUD and            

DMN and subcortical regions for both LH and RH patients. Additionally, RH patients had              

a significant imbalance in VIS, VAN and FPN networks. We observed an imbalance in              
VIS, VAN, FPN and the CON networks also for healthy controls, so the RH patients'               

effect may not be an anomaly related to stroke.  
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Figure 5 ​: Average intra-hemispheric FC in acute phase. For each subject, we have computed the               

average intra-hemispheric UFC, IC and DC within the LH and RH hemisphere (a) the average               

intra-hemispheric UFC (sum of the LH and RH averages) is higher for patients than for controls. (b-c) the                  

average imbalance (RH-LH difference) in intra-hemispheric IC and DC is positive for LH patients and               

negative for RH patients, implying that the average IC and DC are higher in the intact than the lesioned                   

hemisphere (d) We show the average intra-hemispheric UFC by resting state network. Dots are averages               

over subjects, error bars standard errors over subjects. Stars represent networks for which comparison              

with controls (two-sample T-test) is not significant. (e-f) We show the imbalance in average              

intra-hemispheric IC, DC by resting state network. Dots are averages over subjects, error bars standard               

errors over subjects. Stars represent networks for which comparison with 0 (one-sample T-test) is not               
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significant. (g) there is no left/right imbalance in intra-hemispheric UFC for patients and controls (h) the                

average intra-hemispheric IC in the left hemisphere is reduced in LH patents compared to controls and                

RH patients (i) the average intra-hemispheric IC in the right hemisphere is reduced in RH and LH patients                  

compared to controls. VIS=visual, SMD=sensorimotor dorsal, SMV=sensorimotor ventral, AUD=auditory         

network, CON=cingulo-opercular network, VAN=ventral attention network, DAN=dorsal attention network,         

DMN=default mode network, FPN=fronto-parietal network SUB=subcortical nodes. 

 
Global FC and GC biomarkers and stroke-related behavioral deficits 
In the previous sections, we characterized several global correlates, or biomarkers, of            
stroke based on functional connectivity and Granger causality analyses. Four          

biomarkers were related to homotopic connections: 1) UFC ​homo​: homotopic UFC; 2)           

IC​homo​: homotopic IC; 3) ΣDC ​homo​: sum of homotopic DC (contralesional to ipsilesional            
plus ipsilesional to contralesional); 4) ΔDC ​homo​: homotopic DC asymmetry         

(contralesional to ipsilesional minus ipsilesional to contralesional). Both LH and RH           
patients, as a group, presented a reduced UFC ​homo​, a reduced IC​homo and an enhanced              

ΔDC ​homo in comparison to healthy subjects. In addition, LH patients presented a            

reduction of ΣDC ​homo​. Three additional biomarkers were related to intra-hemispheric          
connections: 5) ΣUFC ​intra​: sum of intra-hemispheric UFC (ipsilesional plus         

contralesional); 6) ΔIC​intra​: intra-hemispheric IC imbalance (contralesional minus        
ipsilesional); 7) ΔDC ​intra​: intra-hemispheric DC imbalance (difference of contralesional         

minus ipsilesional). LH and RH patients present an enhanced ΣUFC ​intra and an            

enhanced ΔIC​intra  ​in comparison to healthy subjects.  
In order to study whether these global correlates of stroke were correlated among each              

other, we computed the partial Spearman correlation values between pairs of           
biomarkers for all patients controlling for lesion volume. Results are shown in Fig. 6a.              

We observed that the markers split into three groups. The first group included UFC ​homo​,              

IC​homo and ΣDC ​homo​, which were all strongly correlated. These three markers measured            
the strength of inter-hemispheric (homotopic) connectivity. The second group included          

ΔDC ​homo​, ΔIC​intra and ΔDC ​intra​, which were mutually correlated and uncorrelated with the            
homotopic measures. These three markers measured homotopic imbalance. Last,         

ΣUFC ​intra was weakly correlated with the other markers. A PCA on the (z-scored)             

markers identified two principal components explaining 32% and 30% of the total            
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variance respectively (Fig. 6b), henceforth indicated as the principal components PC1           
and PC2. The PC1 loaded on UFC ​homo​, IC​homo and ΣDC ​homo​, whereas the PC2 on              

ΔDC ​homo​, ΔIC​intra and ΔDC ​intra​. Intuitively, PC1 summarized the inter-hemispheric         
functional integration, PC2 the inter-hemispheric imbalance. We investigated whether         

PC1 and PC2 were related to the structural lesions. As shown in Fig. 6c, PC1 was                

negatively correlated with lesion volume (Spearman r=-0.47, p<10 ​-6​): the larger the           
lesion, the lower the functional integration between the hemispheres (Fig. 6c).           

Concerning PC2, we found that the modulus of PC2 was positively correlated with             
lesion volume (Spearman r=0.54, p<10 ​-7​): the larger the lesion, the larger the            

asymmetry between the hemispheres (Fig. 6d). In this regard, we should note that the              

value PC2 reflected the direction of the asymmetry (left-ward or right-ward), while its             
modulus reflected the magnitude of the asymmetry.  

In a previous work (Corbetta et al., 2015), eight behavioral scores were identified,             
corresponding to the eight strongest principal components explaining a large fraction of            

variance in behavioral tests covering language, memory, motion and attention function.           

The eight factors were associated with language, left body motion, right body motion,             
spatial attention (hemispatial neglect), sustained attention, shifting attention, spatial         

memory, verbal memory. Higher scores were associated with better performance in           
each domain. Right body motion, language, verbal memory and shifting attention scores            

tend to be lower for LH patients, sustained attention scores show no hemispheric bias,              

while left body motion and spatial memory scores tend to be lower for RH patients. 
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Figure 6 ​. ​Global FC and GC biomarkers. ​Our analysis identified several global correlates, or              

biomarkers, of stroke based on functional connectivity and Granger causality analyses. (a) Looking at the               

correlation (partial Spearman correlation correcting for lesion volume) between each pair of markers, one              

can immediately notice two separate groups of correlated markers, one including UFC​homo ​, IC​homo ​,             

ΣDC​homo ​, the other including ΔDC​homo , ΔIC​intra ​, ΔDC​intra ​. (b) A PCA on the seven markers revealed two PCs                  

explaining more than 32% and 30% of the total variance across patients. The first component (PC1)                

loaded on UFC​homo ​, IC​homo ​, ΣDC​homo ​, the second component (PC2) on ΔDC​homo , ΔIC​intra ​, ΔDC​intra ​. This is                

summarized in the two brain plots showing intuitively the main effects captured by PC1 and PC2 in the                  

healthy and lesioned hemisphere. (c) PC1 correlates negatively with lesion volume (d) the modulus of               

PC2 correlates positively with lesion volume. 
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Figure 7 ​. ​Correlation with behavioral scores. : ​(a) Spearman ​correlation between behavioral scores             

and the two principal components (PC) summarizing FC and GC stroke markers (b) partial Spearman               
correlation between behavioral scores and the two principal components, correcting for lesion volume 

(c) scatter plot of PC1/PC2 versus language scores for LH patients (d) scatter plot of PC1/PC2 vs verbal                  

memory scores for RH patients (e) scatter plot of PC1/PC2 vs spatial attention scores for RH patients (f)                  

scatter plot of PC1/PC2 versus left body motion scores for RH patients 
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We quantified to which extent the first two principal components (PC1 and PC2) were              
predictive of the observed behavioral deficits. To do so, we computed the Spearman             

correlation between the two PCs and behavioral scores (Fig. 7a). We had two general              

predictions. First, we expected a positive correlation between performance and          
inter-hemispheric integration (Carter 2010, Siegel 2016, Corbetta 2018). Consequently,         

we expected PC1 to correlate positively with behavioral scores. Second, we expected            
that a decrease of connectivity within and from the lesioned hemisphere would have             

been generally detrimental for performance. Hence, behavioral scores were expected to           

correlate negatively with PC2. These expectations were partially met. PC1 correlated           
positively with all scores for both LH and RH, in agreement with expectation. PC2              

correlated negatively for LH patients, while correlations were weaker and ambiguous in            
sign for RH patients. Since PC1 and PC2 correlate with lesion volume, part of the               

observed correlation with behavioral scores may be explained by lesion volume.           

Therefore, we computed the partial Spearman correlation between the two PCs and            
behavioral scores, controlling for the effect of lesion volume (Fig. 7b). While results are              

qualitatively similar, correlations are weaker, especially for LH patients. 
Concerning language and verbal memory scores, we observed a significant positive           

correlation with PC1 and a negative correlation with PC2 for LH patients (Fig. 7c, 7d).               

These correlations, however, were mostly explained by lesion volume. For RH patients,            
whose language ability was less affected by the lesion, both PC1 and PC2 correlated              

positively with scores (significantly for verbal memory), even after controlling for lesion            
volume. This result suggests a supportive role of the contralesional          

(language-dominant) left hemisphere in the case of right lesions. Concerning attentional           

deficits, previous literature suggests that higher scores are associated with a higher            
inter-hemispheric integration, as well as a higher intra-hemispheric integration in the           

lesioned hemisphere (Corbetta et al. 2005, He et al. 2007, Corbetta and Shulman             
2011). Consistently with this picture, we found a significant positive correlation with            

PC1, and a negative correlation with PC2 for sustained attention scores. However, a             

large part of the correlation was explained by lesion volume. For spatial attention, the              
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same qualitative behavior was found, but the only significant correlation occurred           
between PC1 and spatial attention scores for RH patients, highlighting a relevant role of              

inter-hemispheric integration for (RH-dominant) neglect (Fig. 7e). For shifting-attention         
scores, we found weak correlations (except between PC1 and shifting attention scores            

for LH patients). Finally, for what concerns motor deficits, previous literature (Carter et             

al., 2010; Siegel et al., 2016) showed that higher performance was associated with             
higher inter-hemispheric integration. Indeed, we found that right- and left-body motion           

scores correlated positively with PC1. Surprisingly, while the correlation between          
(right-hemisphere-controlled) left body motion and PC1 was significant for RH patients,           

even after partialling out lesion volume (Fig. 7f), the correlation between           

(left-hemisphere-controlled) right body motion and PC1 was not significant for LH           
patients. This suggests that right motor function (based in the left hemisphere) depends             

less on interaction with the contralateral hemisphere than right motor function (based in             
the left hemisphere). Moreover, motor scores correlated negatively, but weakly          

(non-significant values) with PC2.  

 
Control analyses for potential confounds 
We finally performed control analyses to investigate potential confounding effects          
associated with nuisance sources and hemodynamic lags. GC analyses were          

performed on preprocessed BOLD signals without global signal regression (GSR)          

removal. The rationale for this choice was that GSR may effectively work as a “temporal               
filter” ( ​Liu et al., 2017​, Nalci et al., 2019), suppressing the contribution of time points               

associated with low global signal, potentially distorting the estimation of information           
flows in GC. While standardly adopted for UFC estimation, GSR is a contentious step              

(Saad et al., 2012)​, particularly when one compares healthy subjects with neurological            

or psychiatric patients ​(Hahamy et al., 2014; Yang et al., 2014)​. Indeed, the global              
signal can reflect extended correlation of neural origin ​(Schölvinck et al., 2010)​, possibly             

differing between patients and control subjects. By applying GSR our data, homotopic            
information transfer (homotopic IC and bidirectional DC) presented similar effects to           

those found without GSR, including the asymmetry in homotopic DC (Fig. 8a). However,             

results on intra-hemispheric GC differed: no clear imbalance is observed in           
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intra-hemispheric DC or IC (Fig. 8b and 8c). Thus, GSR significantly attenuates the             
hemispheric imbalances. However, due to the high network specificity of the observed            

imbalances, it appears unlikely that such imbalances represent metabolic, movement,          
breathing-rate, cardiovascular or vigilance effects. It is more likely that differences in            

global signal between the hemispheres represent alterations in the excitation/inhibition          

balance within each hemisphere ​(Yang et al., 2014)​, which are obscured by GSR. 
Hemodynamic lags represent an additional potential confound for our results. In fact,            

stroke can cause a pathologic delay in the hemodynamic response in the perilesional             
area, or in a wider area subserved by the occluded artery (Siegel et al., 2016b). This                

delay may introduce spurious “lags” of non-neural origin between regions in this area             

and homologous regions in the intact hemisphere, thus contributing to the observed            
homotopic DC asymmetry. We checked that the observed global homotopic DC           

asymmetry did not originate from asymmetries in the perilesional area. We considered            
each region ​X in the lesioned hemisphere and computed the DC asymmetry            

where ​Y is the homologous area in the intact hemisphere. WeF FGY →X =  Y →X −  X→Y             

thus obtained brain-wide maps of homotopic DC asymmetry that we could overlay with             

the lesion maps (to produce the homotopic DC maps, we assigned the value to             GY →X    

all voxels within a radius of 10mm around the center of each ROI ​X ​, and then applied                 

10mm Gaussian smoothing). In Fig. 8d, we show the results for a representative             

subject.The strongest DC asymmetries were observed far from the lesions location in            
the brain. In order to have a more quantitative control, we repeated our analyses              

excluding all regions at a distance less than 4cm from the lesioned area. As shown in                
Fig. 8e-8g, the homotopic DC asymmetry is still present after this removal, while the              

intra-hemispheric IC and DC imbalance appear to be even strengthened. This showed            

that the observed effects are not due to anomalous hemodynamic lags in the vicinity of               
the lesion.  
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Figure 8 ​. Control for possible confounds. (a-c) We checked the effect of GSR on the found                

inter-hemispheric imbalances. GSR has no effect on the homotopic DC asymmetry, while it removes the               

imbalance in intra-hemispheric IC and DC. (d-g) We checked possible influences of perilesional             

hemodynamic anomalies on our results. In (d) we verified whether the homotopic DC asymmetry could be                

driven by hemodynamic lags in the perilesional area. We show a map of the homotopic DC asymmetry for                  

one representative subject, together with the lesion location (in blue). Strongest homotopic DC             

asymmetries are found far from the lesion. In (e-g) we show the effect of removing from analysis all                  

regions at a distance < 4cm from the lesion. Such removal has no effect on the homotopic DC                  

asymmetry, while it strengthens the imbalance observed in intra-hemispheric IC and DC. 
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DISCUSSION 
 
Stroke-related modulations in inter- and intra-hemispheric coupling revealed by         
Granger causality analyses 
In agreement with previous research ​(Corbetta et al., 2018; Golestani et al., 2013;             
Joshua Sarfaty Siegel et al., 2016; Tang et al., 2016)​, we observed that stroke produces               

a significant decrease in inter-hemispheric UFC, particularly for homotopic connections          

(Fig. 3a). One of the simplest explanations is that damage to structural connectivity             
between the hemispheres causes a reduction of inter-hemispheric interaction, leading to           

a decrease in UFC. Inter-hemispheric structural connectivity is chiefly supported by           
homotopic connections crossing the corpus callosum ​(Schmahmann et al., 2009)​.          

Experiments show that when the callosum is severed, a strong suppression of            

inter-hemispheric FC occurs ​(Mancuso et al., 2019; Roland et al., 2017​; ​O’Reilly et al.,              
2013)​, in agreement with ​in silico modeling showing that the removal of structural             

homotopic connections produces a nearly complete loss of inter-hemispheric FC          
(Messé et al., 2014)​. In fact, recent work showed that inter-hemispheric structural            

connectivity is damaged in stroke, and that patterns of structural disconnection correlate            

with UFC alterations ​(Griffis et al., 2019,​ ​Griffis et al., 2020)​.  
Our results from GC-based analyses support the hypothesis that the UFC decrease is             

associated with a loss of inter-hemispheric interaction. Indeed, homotopic IC and DC,            
which together quantify inter-hemispheric information transfer, showed a consistent         

decrease in stroke patients (Fig. 4b, 4c). The severity of the decrease correlated with              

lesion volume. The IC captured zero-lag (“instantaneous”) cortico-cortical interactions         
occurring within 1 TR, while DC captured lagged cortico-cortical interactions occurring           

on a time scale longer than 1 TR. Classically, IC are interpreted as originating from               
external common inputs (Ding et al., 2006). Our results, therefore, suggest that a             

component of stroke-related alterations in cortico-cortical coupling emerges from         

disrupted common inputs, potentially from regions that project symmetrically to cortical           
areas, such as subcortical structures. This hypothesis is supported by structural           

analyses that locate stroke lesions primarily in subcortical areas, such as the thalamus             
(Corbetta et al. 2015), as well as by recent experimental work showing that subcortical              
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structures can play a large role in maintaining FC between cortical regions when direct              
influences are impaired (Canella et al. 2020). However, given the slow sampling rate of              

fMRI (TR=2s), an IC decrease cannot be uniquely attributed to a loss of common input,               
as it may also result from a decrease of fast directed interactions occurring on timescale               

shorter than 2s. To which extent subcortical structures contribute in re-modulating           

cortical interaction remains a relevant topic for further investigation.  
Our results on homotopic DC showed that stroke impacts the inter-hemispheric           

information flow asymmetrically, with a spared information flow from the healthy to the             
lesioned hemisphere (Fig. 4a). Such effect hints at an asymmetry in the strength of              

inter-hemispheric communication. This asymmetric effect is not immediately explained         

by structural lesions, since there is no evidence that ischemia would affect selectively             
fibers from the ipsilesional to the contralesional hemisphere rather than in the opposite             

direction.  
However, our analysis of intra-hemispheric GC also revealed a functional imbalance           

between the hemispheres in stroke patients, characterized by higher intra-hemispheric          

IC and DC in the intact hemisphere than in the lesioned one (Fig. 5b and 5c). Our                 
results are not conclusive regarding the relation between the homotopic DC asymmetry            

(Fig. 4a) and the imbalance in intra-hemispheric IC and DC. However, we provided             
evidence that the intra-hemispheric and inter-hemispheric imbalances are correlated         

(Fig. 6), which suggests that the two results are not independent and may have a               

common cause. We hypothesize that both effects could stem from a hypoactivity of the              
lesioned hemisphere due to a loss of inter-areal excitatory influences. In models of             

spontaneous whole-brain activity ​(Kringelbach and Deco, 2019)​, the excitatory influence          
one region exerts onto another is determined by the amount of structural connections             

between the two, and the level of activity of the first region. Since stroke can damage                

structural connections between ipsilesional areas, we could generally expect a loss of            
excitatory influences, and hence general activity decrease, within the lesioned          

hemisphere ​(Grefkes and Fink, 2014)​. This, in turn, would also imply that the lesioned              
hemisphere would exert less excitation on the healthy one. This picture would explain             

both the decrease of ipsilesional DC and IC, and the decrease of DC from the lesioned                

to the healthy hemisphere. Moreover, such interpretation supported by the fact that all             
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imbalance measures (ΔDC ​homo​, ΔIC​intra​, ΔDC ​intra​) correlate negatively with lesion volume          
(i.e., the stronger the lesion, the higher the intra- and inter-hemispheric functional            

imbalances).  
Post-stroke inter-hemispheric imbalances in effective connectivity were widely reported         

in the motor system, as reviewed in ​(Grefkes and Fink, 2014)​. During motor tasks,              

excitatory influences within the lesioned hemisphere are reduced, contributing to a           
general decrease of ipsilesional brain activity ​(Grefkes and Fink, 2014; Rehme and            

Grefkes, 2013) ​. Congruently, stimulating the lesioned hemisphere can promote better          
recovery ​(Takeuchi and Izumi, 2012)​. As for inter-hemispheric connectivity, several          

studies on the motor system after stroke indicate an anomalous influence of the             

contralesional hemisphere onto the lesioned one during motor tasks ​( ​Rehme and           
Grefkes, 2013 ​, ​Grefkes et al., 2010 ​, ​Grefkes and Fink, 2014)​. Whether the            

contralesional influence is inhibitory (hence detrimental to motor performance), or          
excitatory (hence supportive of performance) seems to depend on several factors,           

including time after stroke and severity of the lesions ​(Pino et al., 2014)​. Our results               

instead showed a decrease of influence of the damaged hemisphere on the normal one.              
However, we are wary of a direct comparison, since our whole-brain results were             

obtained with a resting-state paradigm, hence without any specific involvement of the            
motor cortex. In order to further clarify inter-hemispheric balance after stroke, future            

whole-brain studies should discriminate between excitatory and inhibitory influences,         

which is not possible in the current GC analysis. 
 

Hemispheric functional imbalance and stroke-related behavioral deficits 
Our results highlight functional and behavioral differences depending on which          

hemisphere is lesioned. Previous work on this cohort ​(Corbetta et al., 2015; Ramsey et              

al., 2017) identified sets of correlated deficits for left and right lesions respectively,             
largely agreeing with hemispheric functional asymmetries maps described in healthy          

subjects ​(Karolis et al., 2019)​. In LH patients, we observed that the decrease of              
inter-hemispheric communication (summarized by PC1) correlated with behavior for         

domains that are specific to the left hemisphere (language, verbal memory, attention            

shifting) or both hemispheres (sustained attention). Conversely, in RH patients PC1           
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correlated with behavior for domains more associated with the right hemisphere (motor            
function, spatial and sustained attention, and spatial memory). For LH patients the            

correlation was significantly lower if lesion volume was regressed, and presently we            
cannot discriminate the specific impact of inter-hemispheric communication loss on          

behavioral function from other possible effects resulting from the lesion. However, in RH             

patients correlations were more robust to regression of lesion volume, which suggests a             
specific impact of inter-hemispheric communication loss. This agrees with previous          

studies showing that deficits that were affected by right lesions, such as spatial attention              
deficits, were more associated with inter-hemispheric rather than intra-hemispheric         

functional disconnection ​(Baldassarre et al., 2016a, 2016b; Siegel et al., 2016)​. We            

speculate that input from the LH may be more critical for functional integrity of the RH                
than the other way around, congruently with studies reporting that the left hemisphere             

presents more central or indispensable regions for the whole-brain structural network           
(Iturria-Medina et al., 2011)​, and ​that the right hemisphere depends more heavily on             

integration with the left one than the other way around ​(Gotts et al., 2013) ​. Also               

congruent with this hypothesis would be the fact that left lesions induce a symmetrical              
effect (bilateral reduction of intra-hemispheric DC, and a bidirectional reduction of           

homotopic DC), while right lesions have a more lateralized effect (decrease of            
intra-hemispheric DC in the right hemisphere, and homotopic DC from the RH to the              

LH). Concerning the imbalance between the hemispheres, summarized by PC2, we           

also observe a difference between left and right hemisphere patients. In LH patients             
PC2 correlated negatively with behavioral scores, while such effect was absent in RH             

patients (except for verbal memory, for which the imbalance impacts positively on            
scores). The negative correlation between PC2 and behavioral scores of LH patients            

was significant for behaviors that were affected by left hemisphere lesions (language,            

verbal memory) and could be largely explained by lesion volume, suggesting that it             
reflects the extent of intra-hemispheric LH damage. Instead, for RH patients we did not              

observe such correlation, suggesting that intra-hemispheric damage has a lesser impact           
on behavior. Instead, the positive correlation between PC2 and verbal memory scores            

suggests a supportive role of the left (contralesional) hemisphere for a left-lateralized            

function in the case of right lesions. 
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Methodological considerations on Granger causality analyses: advantages and        
limitations  
The efficacy of GC as a data-driven analysis method rests on its ability to uncover               
global patterns of information flow and differences in information flows between groups            

or experimental conditions in a completely unsupervised way ​(Faes et al., 2017; Friston             

et al., 2013; Roebroeck et al., 2011, 2005)​. Our results show that whole-brain             
covariance-based GC analysis is well-suited to characterize group differences in          

inter-areal directional interactions from resting state fMRI, ​provided that the correct lag ​L             
is estimated from the data and used for the analyses​. The main limitation of our analysis                

is the uncertainty affecting individual GC estimates (Fig. 2). For each GC-based stroke             

marker (e.g., the total homotopic IC), we obtained a large group variance, and             
consequently a large overlap between the distributions of patients and controls, so that             

we could not robustly classify an individual as patient or control based on his/her value               
of the marker. It is likely that part of this variance reflects estimation error, rather than                

true interindividual variability. Analogously, the uncertainty affecting single-subject        

estimates also implies a difficulty in relating individual GC results with individual            
behavioral scores. Thus, estimation error limits the use of GC for the development of              

personalized biomarkers predictive of clinical condition and behavioral performance at          
the single-patient level. This limitation is not inherent in GC per se, but depends on the                

relative paucity of functional data available for each patient. By taking longer recordings             

or repeating recording sessions, we could obtain much more accurate GC estimates.            
Improved GC estimates may also be obtained by using a lower TR (TR=0.6s would              

more than triple the number of points for estimation, besides offering improved time             
resolution and a better artifact detection). Finally, improved GC estimates may be            

obtained by adopting a different, more computationally intensive framework for GC           

estimation. For instance, a possible way to improve GC estimates would be to harness              
the potentially useful information contained in single-voxel time courses, performing a           

multivariate GC analysis on pairs of voxels within the two regions as in Tang et al. 2012.                 
To avoid computational problems associated with the large number of nodes, one may             

focus analysis on specific links (e.g., homotopic links) revealing large controls/patient           

differences in the covariance-based analyses.  
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Conclusions 
To conclude, the Granger causality (GC) analysis of inter-areal interactions after stroke            
highlighted two broad pathological features. First, a decrease of homotopic GC,           

suggesting a large decrease of interhemispheric communication, either direct or          

mediated by subcortical structures. Second, an inter-hemispheric imbalance, revealed         
by an asymmetry in homotopic GC, as well as a right-left difference in intra-hemispheric              

GC, suggesting a decrease of communication within and from the lesioned hemisphere.            
These results show that previously observed FC alterations in stroke are related to             

broad changes in inter-areal communication. Furthermore, our analysis confirms and          

generalizes previous findings about post-stroke inter-hemispheric imbalances in the         
motor and attention system. Both of the observed GC anomalies were related to             

behavioral deficits. The global decrease in inter-hemispheric communication was highly          
detrimental to behavioral performance in all domains, while the inter-hemispheric          

imbalance was generally detrimental only for patients with left hemisphere lesions, with            

more domain-specific effects. This finding indicates that the role of the contralesional            
hemisphere may be supportive or detrimental depending on the lesioned hemisphere,           

and the specific cognitive function. Overall, our results show the usefulness of            
whole-brain GC analysis to uncover pathological anomalies in inter-areal         

communication, and may boost the development of whole-brain models that reproduce           

large-scale interareal communication patterns, as well as the design of stimulation           
therapies aimed at improving recovery. 
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