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Abstract. Several leading-edge applications such as pathology detection, biometric identification and face 

recognition are mainly based on blob and line detection. To address this problem, the Eigen value computing has 

been commonly employed due to its accuracy and robustness. However, the Eigen value computing requires a raised 

computational processing, an intensive memory data access and a data overlapping which involve higher execution 

times. 

To overcome these limitations, we propose in this paper a new parallel strategy to implement the Eigen value 

computing using a GPU. Our contributions are: (1) to optimize instruction scheduling in order to reduce the 

computation time, (2) to efficiently partition processing into blocks in order to increase the occupancy of streaming 

multiprocessors, (3) to provide efficient input data splitting on shared memory to take benefit from its lower access 

time, (4) and to propose new data management of shared memory so as to avoid access memory conflict and reduce 

memory bank accesses. 

Experimental results show that our proposed GPU parallel strategy for Eigen value computing achieves speedups of 

27 compared to a multithreaded implementation, of 16 compared to a predefined function in the OpenCV library, 

and of 8 compared to a predefined function in the Cublas library, which are performed into a quad core multi-CPU 

platform. Next, our parallel strategy is evaluated through an Eigen value based method for retinal thick vessel 

segmentation which is essential for detecting ocular pathologies. The Eigen value computing is executed in 0.017 

seconds, when using STARE database images. Accordingly, we have achieved real-time thick retinal vessel 

segmentation where average execution time is about 0.039 seconds. 

 

Keywords: Eigen values; Hessian filter; Parallel algorithms; Graphics Processing unit (GPU); CUDA; Real-time 

GPU implementation. 
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1 Introduction 

 Line and blob object detection is a fundamental step in common computer recognition domains, 

such as detecting and modeling friction ridges in fingerprint images for biometric identification 
1
 

and identifying the facial features based on their border edges for face recognition 
2
. In medical 

image diagnosis, several pathology detection methods are based on blood vessel extraction and 

enhancement, which correspond to linear shapes with flexible widths and orientations 
3
.  
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Moreover, several lesions and anatomical structures are automatically detected based on their 

curved edge shape like neovascularization and cervical vertebrae 
4
.  

For this purpose, some works have aimed to line and blob object detection, where we 

particularly distinguish an approach called "Eigen value computing" which has provided higher 

performance for shape detection. The Eigen values correspond to two features, called 

respectively λ1 and λ2, provided for each pixel of the input image, where Frangi et al. 
5
 defined 

the relation with corresponding shapes, whether linear or blob. When λ1≈0, a λ2>>0 (resp. 

λ2<<0) indicates that a pixel belongs to a dark (resp. bright) linear structure in a bright (resp. 

dark) background. Furthermore, if λ1<<0 & λ2<<0 (resp. λ1>>0 & λ2>>0), the pixel belongs to 

a bright (resp. dark) blob structure in a dark (resp. bright) background, as indicated in Fig. 1.  

 
(a) (b) (c) (d) 

Fig.  1 Relation between Eigen values and linear or blob shapes: (a) Bright linear structure in dark background 

(λ1≈0 & λ2<<0), (b) Dark linear structure in bright background (λ1≈0 & λ2>>0), (c) Bright blob structure in dark 

background (λ1<<0 & λ2<<0), (d) Dark blob structure in bright background (λ1>>0 & λ2>>0) 

The Eigen value computing is widely used in several image analysis methods such as the 

ones dedicated for junction detection 
6
, circle and spherical shape detection 

7
 and geometric 

active contour model for object outlining 
8
. Moreover, Eigen value computing allows performing 

higher accuracies when employed in several applications such as the arterial improvement in 

magnetic resonance angiography 
9
, the membrane segmentation in tomography images 

10
, the 

shape detection in computed tomography scan imaging 
11

, the vascular structure segmentation 

and enhancement 
2,9,12–14

 and the pathological lesion detection 
15,16

. 
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In fact, the computing algorithm of Eigen values requires two main steps, which are 

respectively modeling shapes in horizontal, vertical and diagonal directions, and providing the 

matrices λ1 and λ2 through Hessian processing. Both steps are sequentially executed for each 

pixel and need computational intensive processing. Moreover, those steps simultaneously require 

several access requests to the same data and lead to overlapped data reading, which involve data 

access conflict, hence serialized accesses. Consequently, both criteria result in a higher execution 

time for computing the Eigen values and so for Eigen-values-based methods, as the ones 

suggested in 
3,9,17–19

. Otherwise, the current trend is raising the image input size, such as wide 

field satellite imagery or ultra-high field images, thus a similar increase in execution time. In 

contrast, several methods require real-time responses like clutter filtering 
20,21

 and full waveform 

inversion 
22

. Consequently, the higher execution time of Eigen value processing represents a 

limitation factor to employ the Eigen-values-based methods. 

This article proposes a new parallel strategy to implement the Eigen value computing on 

Graphics Processing unit (GPU) architecture in order to reduce the execution time. Within this 

objective, three axes are explored: (i) the scheduling of Eigen value instructions is optimized; (ii) 

Then, the processing is efficiently partitioned on elementary blocks in order to increase the 

parallelism level; (iii) In addition, data are saved and managed in shared memory to take 

advantage of a lower access time. The article is organized as follows. In section 2, we describe 

Eigen values computing and its execution time behavior.  In section 3, we describe our proposed 

parallel strategy for accelerating the Eigen value computing. The evaluation of our contributions 

using different types of GPU architecture is done in section 4, followed by the discussion and 

conclusion in section 5. 
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2 Eigen value computing 

2.1 Processing principles 

The Eigen value computing requires two main steps. The first one entitled "shape direction 

modelling" aims to model shapes in horizontal, vertical and diagonal directions. For this purpose, 

two approaches were propounded which consisted in applying either the Gaussian filter followed 

by a second order derivative 
3
, or applying the Sobel filter followed by a Laplacian filter 

23
, as 

represented respectively by top and bottom channels of the first step in Fig. 2. For the first 

approach, the Gaussian kernel is applied to the input image as indicated in Eq. 1, in order to 

reduce noise and involve the blurring aspect with respect to the Gaussian deviation. 

                                              (1) 

Where   and        are respectively the input and the convolved images,   represents the 

convolution operation,          is the 2D Gaussian kernel and σ is the Gaussian deviation 
5
. 

 
Fig.  2 Eigen value computing flowchart 

Thereafter, the second derivative order is applied to the        image on three directions in 

order to obtain an effective edge representation and highlight regions having rapid intensity 

change 
23

. Several second order derivative methods were proposed to apply the Gradient filter  to 

the        image, as indicated in Eq. 2, Eq. 3 and Eq. 4 
24

. 

                                                               (2) 
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                                                                (3) 

                                                             (4) 

where      and      are the gradient filter matrices,         is the pixel index in the image and 

  ,    and    images are the results of the second order derivative respectively in horizontal, 

vertical and diagonal directions, which are illustrated as gray squares after the first step in Fig. 2. 

The second step entitled "shape feature computing" aims to compute linear and blob shape 

features through Hessian processing. For this objective, a Hessian matrix   is provided for each 

pixel as indicated in Eq. 5 
3–5,19,22

. 

        
              
              

                    (5) 

where                       ,   ,     and    are the images provided as described in Eq. 

2, Eq. 3 and Eq. 4. 

The Hessian matrix of Eigen values is obtained by solving the characteristic equation 

    –             with respect to  , where   is the identity matrix      . The Hessian matrix 

      is symmetric and therefore has two float Eigen values,    and   , where           . 

Indeed,         and         are computed in terms of pixels in    ,    and    images having the 

same indices      , which are illustrated respectively in Eq. 6 and Eq. 7.  

        
 

 
                                                                  (6) 

        
 

 
                                                                  (7) 

Both Eigen values are computed with respect to each pixel in the input image  , as reported 

by the two nested loops of Algorithm 1, where       is the input image size. 
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Algorithm 1: Hessian processing 

1: Begin 

2: For i:1 To N do 

3: For j: 1 To  M do 

4: Compute         // as indicated in (6) 

5: Compute         // as indicated in (7) 

6: End for  

7: End for 

8: End  

2.2 Computational time evaluation of Eigen value processing 

Eigen-values-based methods are always characterized by a high processing workload, caused by 

the processing required for each pixel and the number of pixels 
4
. In fact, the Gaussian filter, the 

second order derivative and the Hessian processing require a computation time of       , 

where       is the image size. Hence, any Eigen-values-based method requires at least a 

quadratic computational complexity of        . Moreover, some work has indicated that 

Hessian processing requires significant size of data memory in order to store either input, output 

images or intermediate images. In addition, Hessian computing needs several data requests and 

overlapped data reading like convolution computing in the modeling shape direction step, which 

implies data access latency. Elsewhere, the size growth of input image leads to a similar growth 

on computational time and on data accesses. Indeed, the image size has risen much faster 
15,25–27

 

than the computer processing power, the memory capacities and the bandwidth for data 

scheduling 
17

. Those criteria lead to a higher execution time for Eigen value computing, which is 

not suitable for several timing-constrained practical fields, and hence limiting the employment of 

Eigen-value-based methods. 

Thereupon, the predefined function for Eigen processing included in the Open Computer 

Vision (OpenCV) library 
28

 is time consuming, which requires 4 seconds for a single image of 

the High-Resolution Fundus (HRF) database, as proved later in section 4.2.3. Likewise, several 
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Eigen-value-based methods suffer from higher execution times 
17,18,23

. As an example, the 

cerebral micro bleeds are detected in approximately 17 minutes, when executed on 2.4 GHz 

Central-Processing-unit (CPU) architecture 
9
. In addition, the retinal vessels are segmented for an 

image with a 2048×1536 size in 31.31 seconds when implementing on 4 GHz Intel i7 CPU 
19

. 

The retinal thick vessels 
3
 are also extracted in more than 20 seconds when running on 2 GHz 

Intel i7 CPU using images with a size of 1500×1152. 

To tackle this problem, some works have indicated that Eigen value computing is adequate 

for Single-Instruction-Multiple-Data (SIMD) scheduling and put forward parallel strategies to 

enhance computational behaviors. In the case of the Harris-Hessian (H-H) algorithm 
29

, the 

determinant of the Hessian matrix is applied to avoid false detection. Then, the algorithm was 

implemented on GPU architecture using the CUDA, where image was equally partitioned into 

blocks and block threads. In addition, the memory hierarchy is explored to enhance the 

communication time. 

 The GPU realization including copying data from the source image into texture and 

constant memories, achieved a speedup between 10-20x when implemented on the NVIDIA 

GeForce 9800GTX architecture. Moreover, the Eigen-value-based method propounded in 
22

 was 

implemented on a single GPU architecture using the CUDA where data was saved in shared 

memory to avoid the limitation of the global memory. The implementation achieved a 12-time 

speedup on the Tesla C2075 GPU card compared with the 8 core CPU implementation optimized 

by OpenMP. Otherwise, the work described in 
4
 provided a clutter filtering framework based on 

Eigen value computing. The framework is modeled on matrix algebra concepts. Then, the 

instructions are rescheduled and implemented on GPU architecture. 
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Those works have confirmed that a GPU parallel implementation enhances considerably the 

execution times of Eigen-value-based methods. Moreover, managing data into memory hierarchy 

is valuable to reduce the computational performance. However, such works proceed always to 

alter Eigen value processing 
17,22,30

. Then, the parallel implementations are suggested for the 

whole methods, where the parallel scheduling depends on upstream and downstream Eigen-value 

processing 
4,29,30

. Moreover, the data partitioning is closely related to a specific data size. Indeed, 

none of these related studies have addressed the problem of overlapping data access. Besides, 

each proposed parallel strategy is entirely evaluated, where Eigen value computing cannot be 

evaluated separately. Consequently, no parallel strategy can be a widespread for any Eigen-

value-based method. 

3 Our proposed parallel strategy of computing Eigen values on GPU Architecture 

In this section, we propose a parallel strategy for computing the Eigen values on GPU 

architecture. As indicated in subsection 2.1, the processing is sequentially composed of Gaussian 

filter, second order derivative and Hessian processing. The experimentation, detailed in section 

4, involves that Hessian processing requires more than 80% of the whole execution time. 

Furthermore, the Gaussian filter has already been implemented on GPU 
10,14,31

, and so has the 

second order derivative 
11,32

. Therefore, we focus on proposing a parallel strategy to efficiently 

implement Hessian processing on GPU architecture. For this purpose, we describe the 

parallelization principles of our strategy which optimizes and efficiently partitions processing in 

order to increase the parallelism level, and manage data and memory access in shared memory to 

decrease the access time. 
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3.1 Optimization of    and    Eigen value computing 

Both         and         require reading pixels having the same indexes       from   ,    and    

images, where pixels are respectively modeled by red cells in Fig. 3(a). Moreover, the same data 

are requested several times to compute both Eigen values, as indicated respectively in Eq. 6 and 

Eq. 7. These data accesses involve an excess of memory usage, which prevents parallel data 

reading. As a result, scheduling         and         in two separate threads leads to a higher 

latency due to the rise on communication time.  

Therefore, we proceed to compute both         and         in the same thread in order to 

reduce reading the        ,         and         pixels, as depicted in Fig. 3 (b). Therefore, 

simultaneous data access is avoided which reduces the communication time. In addition, we 

distinguish that both    and    Eigen values require a common sub-processing that can be 

performed in an intermediate parameter       , as shown in Eq. 8, which presents the important 

processing and data access required for each Eigen value. 

                                                                    (8) 

Since both Eigen values are processed in the same thread, we compute the        parameter once, 

and used afterwards to provide         and        , as given inside the nested loops of Algorithm 

2. This optimization leads reduces the computation time from          to         , 

where       is the input image size. 
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(a) (b) 

Fig.  3 Computing λ1 and λ2: (a) in different threads; (b) in the same thread 

Algorithm 2 : Optimized Hessian processing 

1: Begin 

2: For i:1 To N do 

3: For j: 1 To  M do 

4: Compute        // as indicated in (16) 

5:        ←
 

 
                             

6:        ←
 

  
                             

7: End for  

8: End for 

9: End 

3.2 Proposed scheduling of Hessian processing on GPU architecture 

We notice that each recent GPU architecture has a memory hierarchy where an efficient memory 

management is a key issue to adequately using the computational power of the GPU. The global 

memory is the main one in GPUs, which can be accessed from all cores. Depending on the GPU 

model, it can be expressed in terms of Giga Byte (GB), which allows saving large data. 

However, it has the slowest accessing speed. As cited in 
7,33

, the access of data saved in global 

memory requires a considerable communication time, when comparing to others GPU memories. 

As highlighted in
3,27

, shared memory is about 100x faster than global memory. Hence, saving 

input images in shared memory considerably reduces the communication time, and so for the 

whole computational performance of parallel Hessian processing. However, their storage 



11 

 

capacities are limited which is always expressed in terms of kilobyte (KB). Moreover, a shared 

memory corresponds to a single block, where stored data is available only through block threads. 

Thus, the challenge is to split data to be saved in the shared memory, where data processing 

will be performed in the shared memory-related block, in order to benefit from its higher speed 

access. In this objective, we simultaneously perform coarse grained and fine grained levels of 

parallelism. In the coarse-grained level, we partition images between blocks to parallelize their 

related processing. In the fine-grained level, the Eigen values are computed in parallel between 

threads of the same block. 

The coarse-grained parallelism consists in partitioning the data into minimal number of 

blocks while the processed data size does not exceed the storage capacity of shared memory. For 

this purpose, we aim to maximizing the sub-image size while being able to be saved in shared 

memory. For that, the   ,    and    images are divided into sub-images, as illustrated in the left 

side of Fig. 4. The extracted sub-images, called respectively    ,     and     must have the 

similar size                  . In addition, their pixels have the same indexes, with respect to the 

Eigen values processing indicated in Eq. 6 and Eq. 7. As a result, the        is computed as 

indicated in Eq. 9. 

                                                  (9) 

Where           is the storage capacity of shared memory in terms of bytes, the 3 value 

corresponds to the number of sub-images and           is the required bytes to save one sub-

image pixel. Each block computes Hessian processing through    ,     and     to provide the 

two sub-images       and      , where the block number           is defined as indicated in 

Eq. 10. 
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    (10) 

Where (        is the size of the whole input image and        is computed as defined in 

Eq. 9. 

In the CUDA software environment, the GPU device executes a grid of thread blocks. Each 

block has a predefined number of threads that execute the same code. All threads in the same 

block are organized into a thread warp that has relatively a consistent program behavior. 

 
Fig.  4 Coarse-grain parallelism levels in the Hessian GPU implementation 

Subsequently, we proceed to scheduling in parallel the Hessian processing allocated for a single 

block. In fact, the threads in a same block are split into warps which are performed sequentially, 

while threads of the same warp are executed in parallel. Thus, we choose to define a single warp 

in each block. Hence, the processing allocated to a block is split into warp threads in order to 

raise the parallelism level and to synchronize thread processing. Hence, all data of input and 

output sub-images, which are respectively (   ,     and    ) and (      and      ), are split 

into threads of a single warp. As modeled by crossed rectangles in Fig. 5, the first partitions in 

   ,     and    , are read by the first thread in the warp. Similarly, the provided Eigen values 

are saved in related partitions in       and       images, as modeled by dotted rectangles in 
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Fig. 5. Therefore, the pixels of the same sub-image are partitioned equally on             , as 

shown in Eq. 11, where each partition is allocated to a single thread. 

             
             

     
        (11) 

Where       is the maximal number of thread on a warp and        is the sub-image size 

defined in Eq. 9. 

 
Fig.  5 parallelization of Hessian processing in the same block 

Algorithm 3 : Parallel Hessian processing 

Inputs:   ,    and    matrices 

Outputs :    and    matrices 

1: Begin 

2: For all   from 0 To           do in parallel 

3: Forall   from 0 To         do in parallel  

4: For   from                             To                                  do 

5: Compute        // as indicated in (16) 

6:        ←
 

 
                             

7:        ←
 

 
                              

8:       End for 

9:    End for all 

10: End for all 

11: End  

Consequently, Hessian processing is partitioned on         blocks to be executed in 

parallel, as indicated by the iterative structure in the second instruction of Algorithm 3. The 

       pixels allocated to each block are split into       threads to be run in parallel, as 
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modeled in the third instruction of Algorithm 3. Each thread will perform              pixels 

sequentially, while the corresponding iterative structure is provided in the fourth instruction. 

3.3 Shared memory management 

We describe in this section our proposed method to manage data in order to optimize the access 

time to the shared memory. Data are transferred from global to shared memory of each block. 

The shared memory is divided into memory modules having an equal data size, called banks. 

Each single data request consists of an access of its corresponding memory bank. 

However, several distinct requests of the same data lead to similar accesses of its memory 

bank, where accesses are performed sequentially. For the same block, saving    ,     and     

sub-images on shared memory consists in ordering their pixels successively, as illustrated in Fig. 

6 (a). However, each thread processing requires access to a similar pixel set from the three sub-

images. As indicated in the processing partitioning, threads in the same block require access to a 

neighbor pixel which may be stored in the same memory banks, as depicted in Fig. 6 (a), where 

the first three threads have input data stored in the same bank. Therefore, the access requests 

from several threads to the same memory bank lead to a bank conflict, and so to serialize 

accesses. 

For this purpose, we reorganize the data of sub-images in shared memory: The pixels of    , 

    and     images are redistributed such that data needed for every thread are saved with 

consecutive addresses in the shared memory. Therefore, data required to compute a couple of 

Eigen values will be saved in the same memory bank, as represented in Fig. 6 (b). As a result, the 

number of memory bank accesses will be reduced and access conflicts will be avoided, which 

results in decreasing the communication time and improving the execution time. 
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(a) 

 
(b) 

Fig.  6 Coalesced memory accesses illustrating thread reading (a) Respective data elements allocated in separate memory banks 

and with different addresses; (b) Respective data elements allocated in same memory banks and with consecutive addresses   

4 Experimental results and evaluation 

4.1 Experiment principles of our implementation method: a case study of thick vessel extraction 

from image fundus 

Our experimentation targets three objectives that are described respectively in the following sub-

sections. The first one aims to evaluate the impact of the parallelism strategy on the Hessian 

processing execution time separately. The second objective consists in studying the execution 

time improvement of Eigen value computing, as proceeded in 
34

. Thereafter, the third one 

consists at evaluating the impact of our proposed parallelism through a practical field 

application. 

In fact, several ocular pathologies cause gradually the loss of visual field until involving 

vision lost. Based on the world report on vision 
35

 edited by the World Health Organization 

(WHO), a higher number of affected persons are estimated which are expressed in terms of 

hundreds of millions cases for each pathology. In addition, patient number will increase in 
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coming years due to aging, unbalance nutrition, etc. Therefore, the early diagnosis is highly 

recommended in order to cure the ocular diseases or interrupt their evolution. To address this 

problem, several research activities aimed to propose automated methods for ocular pathology 

detection from fundus images. Those methods are timing constrained to reduce the 

ophthalmologist workload and raise the number of diagnosed images. For this purpose, the 

parallelism evaluations of both Hessian processing and Eigen-values computing are performed 

using fundus images. The last experimentation consists at evaluation the parallelism strategy 

impact on commonly main processing of automated methods for ocular pathology detection.  

Our parallel strategy is provided independently of image size. Therefore, we choose to carry 

out the evaluation using varied size to deduce the correlation between parallelism and image 

size. In this context, we randomly select 10 fundus images from three public data sets having 

different image sizes which are respectively the STructured Analysis of the Retina (STARE), the 

Methods to Evaluate Segmentation and Indexing Techniques in the field of Retinal 

Ophthalmology (MESSIDOR) and the HRF databases indicated in Table 1. 

Table 1. Fundus image sizes in terms of fundus image database 

 STARE MESSIDOR HRF 

Image size 700 x 605 2240 x 1488 3540 x 2336 

Moreover, the optimized CUDA implementation is proposed to ensure execution time 

improvement whatever the GPU-architecture is. For this purpose, the execution times of both 

Hessian and Eigen processing implemented on multi-CPU architecture are compared to 

execution times for the same processing when implemented in different multi-GPU architectures. 

the initial code is implemented using C++ in the CPU platform Intel core i7-4790 having a 

processor frequency 3.67 GHZ (up to 4 GHZ), with 8 MB cache memory and 8 Go RAM and 
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compiled on a 32-bit mode. Similarly, the parallel codes is implemented in three GPU 

architectures where architectural parameters are given in Table 2. 

Table 2. architectural parameters in terms of GPU-architecture 

 GTX 950 GTX 960 GTX 980 

SM 6 8 8 

Core/SM 128 128 256 

Architecture Maxwell Maxwell Maxwell 

Number of cores 768 1024 2048 

Base clock (MHz) 1127 – 1178 1024 – 1188 1190 

Shared memory size 48Kbytes 48Kbytes 96Kbytes 

Compilation mode 32-bits 32-bits 32-bits 

4.2 Evaluation of the proposed parallel strategy 

4.2.1 Execution time evaluation of parallel Hessian processing 

Our parallel strategy consists in efficiently managing data into shared memory in order to reduce 

the communication time. Therefore, we implement Hessian processing respectively in the CPU 

architecture, in GPU architecture using only global memory and in GPU architecture using 

shared memory indicated in our parallel strategy described in section 3. Such implemention is 

performed and evaluated using the three fundus image sets mentioned in Table 1, on both kinds 

of architectures described in Table 2. The Fig. 7 (a) (respectivelly Fig. 7 (b)  and  Fig. 7 (c)) 

illustates the execution time values when implemention is performed on GTX-950 architecture 

using STARE images (respectively MESSIDOR and HRF images). We deduce that our 

parallelism strategy offers a higher execution time improvement as regards to the CPU 

implementation. The achieved speedups, with repsect to CPU implementation and global 

memory GPU implementation, are modelled in Fig. 7 (d) (respectivelly Fig. 7 (e) and Fig. 7 (f)). 
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(a) (b) (c) 

 
(d) (e) (f) 

Fig.  7 Hessian filter implementation in GTX-950 architecture: (a) Execution time in terms of STARE images, (b) 

Execution time of MESSIDOR images, (c) Execution time of HRF images, (d) Speedup in terms of STARE images, 

(e) Speedup in terms of MESSIDOR images, (g) Speedup in terms of HRF images 

The same experimentation process is performed using the GTX-960 architecture and  GTX-980 

architecture, where the execution times and speedup are depicted respectively in Fig. 8 and Fig. 

9. 

The speedup averages of shared memory implementation are provided in Table 3. The 

experimental results show that our parallel strategy ensures enhancing the Hessian processing 

execution times as regards the CPU architecture and the GPU architecture using global memory. 

Else, we deduce that the speedup increases in terms of image size.  
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(a) (b) (c) 

 
(d) (e) (f) 

Fig.  8 Hessian filter implementation in GTX-960 architecture: (a) Execution time in terms of STARE images, (b) 

Execution time of MESSIDOR images, (c) Execution time of HRF images, (d) Speedup in terms of STARE images, 

(e) Speedup in terms of MESSIDOR images, (g) Speedup in terms of HRF images 

Table 3. Speedup of parallel Hessian filter implementation in terms of image sizes and GPU architectures. 

 GTX 950 GTX 960 GTX 980 

 Global memory 

Speedup 

23.52 

Shared memory 

Speedup 

23.52 

Global memory 

Speedup 

23.52 

Shared memory 

Speedup 

23.52 

Global memory 

Speedup 

Shared memory 

Speedup  

STARE 22.84 67.81 17.5 67,81 25.39 79.8 

MESSIDOR 23.52 80 28.55 87.15 43.6 129 

HRF 23.93 83.3 28.59 87.34 44.37 153.7 

 

Moreover, the speedup rises as a function of the parallelism level offered by the GPU 

architecture where GTX-980 having 2048 GPU cores allows achieving a higher speedup than 

GTX-950  and GTX-960 having 768 GPU cores and 1024 GPU cores. Accordingly, we deduce 

that with respect to the Permanent improvement of GPU architecture (Number of cores, 

streaming multiprocessor), a similar improvement in speed can be achieved. Furthermore, we 

deduce that saving and managing data in shared memory allows significantly reducing the 

execution time in comparison to saving data in global memory where the speedups exceed 3 
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whatever the image size and the GPU architecture are.  

 
(a) (b) (c) 

 
(d) (e) (f) 

Fig.  9 Hessian filter implementation in GTX-980 architecture: (a) Execution time in terms of STARE images, (b) 

Execution time of MESSIDOR images, (c) Execution time of HRF images, (d) Speedup in terms of STARE images, 

(e) Speedup in terms of MESSIDOR images, (g) Speedup in terms of HRF images 

4.2.2 Data transfer time evaluation of the parallel Hessian processing 

To exploit the GPU architecture, input data must be transferred from CPU to Global 

memory and output data must similarly brought back to the CPU. The data transfer requires an 

elapsed time upstream and downstream the calculation execution. Moreover, a large trasferred 

data leads to a higher transfer time which may reduce the time saved through the parallelism 

strategy. For this purpose, we proceed to evaluate our parallism strategy with different data size 

and with multi-GPU architectures having different data throughputs. We randomly selected 10 

fundus images from the three fundus image sets mentioned in Table 1, on the three of 

architectures described in Table 2. Then, the computation time and the data transfer time are 

compared to each fundus image, as shown in Fig. 10. 
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Fig.  10 Hessian filter implementation in GTX-950, GTX-960 and GTX-980 architecture using STARE, 

MESSIDOR and HRF fundus image 

Even with the same architecture, we deduce that data transfert time increases slightly, and 

remains always negligible against the execution time of the multi-CPU implementation. In 

addition, the data tranfert requires the same time proportion with respect to the calculation time 

which similarly depends of the image size. We deduce that, even with the rise of  data transfert 

time with respect to the image size, the speedup remains more important. 
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4.3 Execution time evaluation of parallel Eigen value computing 

In this section, we evaluate the impact of our parallelism strategy on the execution time of 

the Eigen value computing. Firstly, we evaluate the optimized CUDA implementation against the 

multi-CPUs implementation. Thereafter, The parallel strategy is evaluated with respect to the 

predefined function in OpenCV library for Eigen value computing
36

 and to the predefined 

parallel function predefined in Cublas library
47

. 

4.3.1 Evaluation of the optimized CUDA implementation 

Eigen value computing consists in successively applying the Gaussian filter and second order 

derivative. In fact, the OpenCV library proposes predefined functions that correspond to the 

parallel implementation of both Gaussian filter and the second order derivative on either the CPU 

or GPU architecture. Therefore, the Eigen values computing are implemented using predefined 

OpenCV functions followed by the implementation of our parallel Hessian processing described 

in section 3. Two types of implementation are performed respectively in CPU and GPU 

architectures. 

Both codes are carried out with the three image sizes and with both GPU architectures, 

where execution times and speedups are illustrated in Fig. 11. For example, Fig. 11  models the 

execution times and the speedups when implementing the Eigen value processing on CPU and 

GPU with shared memory using STARE images on GTX-950 architecture. The gap between 

sequential execution time and the parallel execution time rises in relation with the image size, 

which leads to achieve an average speed up, summarized in Table 4, that exceeds 27.1 for HRF 

image resolution. 
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Fig.  11 Execution times and speedup of  Eigen values computing in GTX-950, GTX-960 and GTX-980 architecture 

using STARE, MESSIDOR and HRF fundus image. 

For the STARE database images, a real-time Eigen value computing is achieved where 

average execution times of 0.0272 and 0.017 seconds are registered for GTX-950 and GTX-960, 

which correspond to 36 and 58 frames per second (fps), respectively. Moreover, we deduce that 

speedup increases depending on the different number of blocks and threads offered by the GPU 

architecture.   
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Table 4. Speedup of Eigen value computing in terms of image sizes and GPU architectures 

 GTX 950 GTX 960 GTX 980 

STARE 10.73 17.17 21.05 

MESSIDOR 24.53 25.16 27.64 

HRF 25.7 27.1 33.85 

4.3.2 Execution time evaluation against the OpenCV predefined function 

In this section, we evaluate the computational performance of our optimized CUDA 

implementation with respect to the Eigen function defined in the Opencv library 
28

. For this 

purpose, we randomly selected 10 fundus images from the HRF database. Then, optimized 

CUDA implementation and the OpenCV predefined function are performed to each fundus 

image, on the GTX-960 architecture, where the execution times are shown in Fig. 12. The Eigen 

values are provided in an average of 4.15 seconds using the OpenCV predefined function, while 

they require an average of 0.17 second through the optimized CUDA implementation. Hence, an 

average speed up, that is defined as the  ratio of  sum of speed up computed for each image to the  

number of image, about 16x is achieved. Furthermore, the execution time improvement remains 

similar for all fundus images. 

 

Fig.  12 Execution times and speedup of Eigen values computing: optimized CUDA implementation Vs OpenCV 

predefined function 

4.3.3 Execution time evaluation against the cublas library predefined function 

In this section, we evaluate the computational performance of our optimized CUDA 
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implementation with respect to the Eigen function entitled “cusolverDnDsyevd” defined in 

cublas library 
47

. For this purpose, we randomly selected 10 fundus images from the HRF 

database. Then, optimized CUDA implementation and the Cublas predefined function are 

performed to each fundus image, on the GTX-960 architecture, where the execution times are 

shown in Fig. 13. 

In fact, this function computes all Eigen values and eigenvectors. In addition, this function 

proceeds to extract the Eigen values whose are large than threshold values and them retained as 

key points features. Therefore, the Eigen values are provided in an average of 1.4 seconds using 

the “cusolverDnDsyevd” function, while they require an average of 0.17 second through the 

optimized CUDA implementation. Hence, our optimized CUDA implementation achieves an 

average speed up about 8x, as modelled for each speedup of fundus images, illustrated in Fig. 13.  

 

Fig.  13 Execution times and speedup of Eigen values computing: optimized CUDA implementation Vs Cublas 

predefined function 

4.4 Execution time evaluation of thick vessel extraction approach using parallel Eigen value 

computing 

Several methods for ocular pathology detection are based on thick vessel extraction. As an 

example, the micro-aneurysm and hemorrhages lesions of diabetic retinopathy appear near from 

thick vessels 
37

. In addition, the damage of optic nerve in glaucoma disease is deduced based on 



26 

 

thick vessel distribution into optic disk 
38–40

. Moreover, several methods proceed to segment 

separately thick and thin vessel tree and thereafter merge their results in order to enhance 

accuracy when segmenting the whole tree of retinal vessel 
41,42

. Furthermore, the segmentation of 

thick vessel tree is considered as main step on automated methods for retinal component 

detection, where thick vessel convergence to the optic disk 
43

 and leak of thick vessel on macula 

region 
44

 are widely used to locate them. Particularly, the thick vessel tree is segmented in 
3
 

based on Eigen Values, where the result was depicted in Fig. 14. Then, the extracted vessels are 

explored in order to reflect vessel density and hence locating the optic disk. For this purpose, we 

choose to evaluate the contribution of the Eigen value parallel implementation when segmenting 

the thick vessel tree, as proposed in 
3
. 

 
(a) (b) 

Fig.  14 (a) Retinal sub-image; (b) Eigen value matrix of retinal sub-image. 

In this context, the whole thick vessel extraction is implemented twice, using the optimized 

CUDA implementation and the OpenCV predefined function, respectively. The upstream and 

downstream processing implementation remains unchanged, to ensure a trustworthy evaluation. 

In addition, the implementation is performed on varying image sizes and GPU architectures, 

where the execution times and the speedups are presented in Fig. 15, and speedup averages are 

given in Table 5. 
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Table 5. Speedup of thick vessel extraction in terms of image sizes and GPU architectures 

 GTX 950  GTX 960 

STARE 7.3  7.25 

MESSIDOR 14.9  16 

HRF 16.28  17.5 

 Even Eigen value computing presents partial processing, the higher speedup achieved by 

our suggested parallel strategy leads to a significant speedup of the whole thick vessel extraction 

processing, which exceeds 17x for HRF images. The parallel implementation on GTX-960 the 

shared memory management leads a real-time thick vessel detection which an average execution 

time of 0.039 seconds using STARE database images, which corresponds to 25 fps. In addition, 

the speedup rising of Eigen value computing in terms of image size and parallelism level results 

a similar speedup enhancement of the thick vessel extraction. 

Conclusion 

Several state-of-the-art applications are based on Eigen value computing which is distinguished 

as higher performance approach for line and blob detection. However, it requires computational 

intensive processing that involves important data access requests and higher overlapped data 

reading. Hence, Eigen value computing is constrained by a higher execution time. 

In this context, a parallel strategy has been put forward and successfully implemented for Eigen 

value computing. Our contributions consist in optimizing the schedule of Eigen value processing, 

efficiently partitioning the processing to increase the parallelism level, and managing data in 

shared memory to decrease the access time. The Parallelism is evaluated through two multi-GPU 

architectures which provide significant speedups. As consequence, a real-time Eigen value 

computing is achieved when using STARE database images, where speedups of 27 and 16 are 
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registered compared to a multi-threaded implementation, and to the Eigen value predefined 

function in the OpenCV library, both performed into a quad core multi-CPU platform. 

 
STARE Messidor HRF 

GTX 950 

 

GTX960 

Fig.  15 Execution times and speedup of thick vessel extraction in GTX-950 and GTX-960 architecture using 

STARE, MESSIDOR and HRF fundus image. 

In addition, the experimentation demonstrates that speedups grow in terms of image size, 

due to the parallelism contribution with respect to host/device data transferring. Similarly, the 

speedup also rises in terms of parallelism levels offered by GPU architectures, which is 

permanently rising. Consequently, real time Eigen-value-based methods can be achieved, when 

using GPU architecture offering higher parallelism level than the used ones. Thereafter, the 

parallel Eigen value computing has been employed with the thick vessel extraction method 

where a speedup of 17.5 is reached. Hence, a real-time implementation of thick vessel 
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segmentation has been achieved through an average execution time of 0.039 seconds when using 

STARE database images which corresponds to 25 fps. 

On one side, our proposed parallel strategy can be directly employed to take advantage of its 

higher computational performance, respectively for computer vision approaches, like the  

geometric active contour model 
23

 and the detection of linear junctions in 2D images 
6
. Similarly, 

several medical applications can take benefit from our parallelism strategy such as Cerebral 

Microbleeds detection 
9
 and clusters of micro-calcification detection 

44
. Furthermore, the parallel 

implementation of the thick vessel extraction can be directly employed either for OD or macula 

detection. In addition, it can be associated to a thin vessel segmentation method in order to 

provide the whole retinal vessel tree in a lower time. In addition, our parallel strategy can be 

extended for embedded and mobile devices which are increasingly used on several domains such 

as medical and health care processing (Von Lühmann et al. 2017; Elloumi, Akil, and 

Kehtarnavaz 2018) and security systems. 
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