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Abstract

The goal of clustering is to group similar objects into meaningful partitions. This
process is well understood when an explicit similarity measure between the objects
is given. However, far less is known when this information is not readily available
and, instead, one only observes ordinal comparisons such as “object i is more simi-
lar to j than to k.” In this paper, we tackle this problem using a two-step procedure:
we estimate a pairwise similarity matrix from the comparisons before using a clus-
tering method based on semi-definite programming (SDP). We theoretically show
that our approach can exactly recover a planted clustering using a near-optimal
number of passive comparisons. We empirically validate our theoretical findings
and demonstrate the good behaviour of our method on real data.

1 Introduction

In clustering, the objective is to group together objects that share the same semantic meaning, that
are similar to each other, into k disjoint partitions. This problem has been extensively studied in the
literature when a measure of similarity between the objects is readily available, for example when
the examples have a Euclidean representation or a graph structure (Shi and Malik, 2000; Arthur and
Vassilvitskii, 2007; von Luxburg, 2007). However, it has attracted less attention when the objects
are difficult to represent in a standard way, for example cars or food. A recent trend to tackle this
problem is to use comparison based learning (Ukkonen, 2017; Emamjomeh-Zadeh and Kempe, 2018)
where, instead of similarities, one only observes comparisons between the examples:
Triplet comparison: Object xi is more similar to object xj than to object xk;
Quadruplet comparison: Objects xi and xj are more similar to each other than objects xk and xl.
There are two ways to obtain these comparisons. On the one hand, one can adaptively query them
from an oracle, for example a crowd. This is the active setting. On the other hand, they can be
directly given, with no way to make new queries. This is the passive setting. In this paper, we study
comparison based learning for clustering using passively obtained triplets and quadruplets.

Comparison based learning mainly stems from the psychometric and crowdsourcing literature (Shep-
ard, 1962; Young, 1987; Stewart et al., 2005) where the importance and robustness of collecting
ordinal information from human subjects has been widely discussed. In recent years, this framework
has attracted an increasing amount of attention in the machine learning community and three main
learning paradigms have emerged. The first one consists in obtaining an Euclidean embedding of
the data that respects the comparisons as much as possible and then applying standard learning
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techniques (Borg and Groenen, 2005; Agarwal et al., 2007; Jamieson and Nowak, 2011; Tamuz et al.,
2011; van der Maaten and Weinberger, 2012; Terada and von Luxburg, 2014; Zhang et al., 2015;
Amid and Ukkonen, 2015; Arias-Castro, 2017). The second paradigm is to directly solve a specific
task from the ordinal comparisons, such as data dimension or density estimation (Kleindessner and
von Luxburg, 2015; Ukkonen et al., 2015), classification and regression (Haghiri et al., 2018), or
clustering (Vikram and Dasgupta, 2016; Ukkonen, 2017; Ghoshdastidar et al., 2019). Finally, the
third paradigm is an intermediate solution where the idea is to learn a similarity or distance function,
as in embedding approaches, but, instead of satisfying the comparisons, the objective is to solve one
or several standard problems such as classification or clustering (Kleindessner and von Luxburg,
2017). In this paper, we focus on this third paradigm and propose two new similarities based on
triplet and quadruplet comparisons respectively. While these new similarities can be used to solve any
machine learning problem, we show that they are provably good for clustering under a well known
planted partitioning framework (Abbe, 2017; Yan et al., 2018; Xu et al., 2020).

Motivation of this work. A key bottleneck in comparison based learning is the overall number of
available comparisons: given n examples, there exist O

(
n3
)

different triplets and O
(
n4
)

different
quadruplets. In practice, it means that, in most applications, obtaining all the comparisons is not
realistic. Instead, most approaches try to use as few comparisons as possible. This problem is relatively
easy when the comparisons can be actively queried and it is known that Ω (n lnn) adaptively selected
comparisons are sufficient for various learning problems (Haghiri et al., 2017; Emamjomeh-Zadeh
and Kempe, 2018; Ghoshdastidar et al., 2019). On the other hand, this problem becomes harder
when the comparisons are passively obtained. The general conclusion in most theoretical results on
learning from passive ordinal comparisons is that, in the worst case, almost all the O

(
n3
)

or O
(
n4
)

comparisons should be observed (Jamieson and Nowak, 2011; Emamjomeh-Zadeh and Kempe, 2018).
The focus of this work is to show that, by carefully handling the passively obtained comparisons,
it is possible to design comparison based approaches that use almost as few comparisons as active
approaches for planted clustering problems.

Near-optimal guarantees for clustering with passive comparisons. In hierarchical clustering,
Emamjomeh-Zadeh and Kempe (2018) showed that constructing a hierarchy that satisfies all compar-
isons in a top-down fashion requires Ω

(
n3
)

passively obtained triplets in the worst case. Similarly,
Ghoshdastidar et al. (2019) considered a planted model and showed that Ω

(
n3.5 lnn

)
passive quadru-

plets suffice to recover the true hierarchy in the data using a bottom-up approach. Since the main
difficulty lies in recovering the small clusters at the bottom of the tree, we believe that this latter
result also holds for standard clustering. In this paper, we consider a planted model for standard
clustering and we show that, when the number of clusters k is constant, Ω

(
n(lnn)2

)
passive triplets

or quadruplets are sufficient for exact recovery.2 This result is comparable to the sufficient number of
active comparisons in most problems, that is Ω (n lnn) (Haghiri et al., 2017; Emamjomeh-Zadeh
and Kempe, 2018). Furthermore, it is near-optimal. Indeed, to cluster an example, it is necessary to
observe it in a comparison at least once as, otherwise, it can only be assigned to a random cluster.
Thus, to cluster n objects, it is necessary to have access to at least Ω (n) comparisons. Finally, to
obtain these results, we study a semi-definite programming (SDP) based clustering method and our
analysis could be of significant interest beyond the comparison based framework.

General noise model for comparison based learning. In comparison based learning, there are two
main sources of noise. First, the observed comparisons can be noisy, that is the observed triplets and
quadruplets are not in line with the underlying similarities. This noise stems, for example, from the
randomness of the answers gathered from a crowd. It is typically modelled by assuming that each
observed comparison is randomly (and independently) flipped (Jain et al., 2016; Emamjomeh-Zadeh
and Kempe, 2018). This is mitigated in the active setting by repeatedly querying each comparison,
but may have a significant impact in the passive setting where a single instance of each comparison
is often observed. Apart from the aforementioned observation errors, the underlying similarities
may also have intrinsic noise. For instance, the food data set by Wilber et al. (2014) contains triplet
comparisons in terms of which items taste more similar, and it is possible that the taste of a dessert is
closer to a main dish than to another dessert. This noise has been considered in Ghoshdastidar et al.
(2019) by assuming that every pair of items possesses a latent random similarity, which affects the

2When we write that Ω
(
n(lnn)2

)
comparisons are sufficient, we express that any number of comparisons

greater than Cn(lnn)2 with C a constant is sufficient to solve the problem. In other words, it means that having
exactly Cn(lnn)2 comparisons is sufficient but also that having more comparisons is not detrimental. This
notation is used in statistics and information theory (Fletcher et al., 2009) and is equivalent to &.
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responses to comparisons. In this paper, we propose, to the best of our knowledge, the first analysis
that considers and shows the impact of both types of noise on the number of passive comparisons.

Scalable comparison based similarity functions. Several similarity and kernel functions have been
proposed in the literature (Kleindessner and von Luxburg, 2017; Ghoshdastidar et al., 2019). However,
computing these similarities is usually expensive as they require up to O (n) passes over the set of
available comparisons. In this paper, we propose new similarity functions whose construction is much
more efficient than previous kernels. Indeed, they can be obtained with a single pass over the set of
available comparisons. It means that our similarity functions can be computed in an online fashion
where the comparisons are obtained one at a time from a stream. The main drawback compared to
existing approaches is that we lose the positive semi-definiteness of the similarity matrix, but our
theoretical results show that this is not an issue in the context of clustering. We also demonstrate this
empirically as our similarities obtain results that are comparable with state of the art methods.

2 Background and theoretical framework

In this section, we present the comparison based framework and our planted clustering model, under
which we later show that a small number of passive comparisons suffices for learning. We consider
the following setup. There are n items, denoted by [n] = {1, 2, . . . , n}, and we assume that, for
every pair of distinct items i, j ∈ [n], there is an implicit real-valued similarity wij that we cannot
directly observe. Instead, we have access to

Triplets: T =
{

(i, j, r) ∈ [n]3 : wij > wir, i, j, r distinct
}
, or

Quadruplets: Q =
{

(i, j, r, s) ∈ [n]4 : wij > wrs, i 6= j, r 6= s, (i, j) 6= (r, s)
}
.

(1)

There areO
(
n4
)

possible quadruplets andO
(
n3
)

possible triplets, and it is expensive to collect such
a large number of comparisons via crowdsourcing. In practice, T or Q only contain a small fraction
of all possible comparisons. We note that if a triple i, j, r ∈ [n] is observed with i as reference item,
then either (i, j, r) ∈ T or (i, r, j) ∈ T depending on whether i is more similar to j or to r. Similarly,
when tuples (i, j) and (r, s) are compared, we have either (i, j, r, s) ∈ Q or (r, s, i, j) ∈ Q.

Sampling and noise in comparisons. This paper focuses on passive observation of comparisons. To
model this, we assume that the comparisons are obtained via uniform sampling, and every comparison
is equally likely to be observed. Let p ∈ (0, 1] denote a sampling rate that depends on n. We
assume that every comparison (triplet or quadruplet) is independently observed with probability p. In
expectation, |Q| = O

(
pn4
)

and |T | = O
(
pn3
)
, and we can control the sampling rate p to study the

effect of the number of observations, |Q| or |T |, on the performance of an algorithm.

As noted in the introduction, the observed comparisons are typically noisy due to random flipping of
answers by the crowd workers and inherent noise in the similarities. To model the external (crowd)
noise we follow the work of Jain et al. (2016) and, given a parameter ε ∈ (0, 1], we assume that any
observed comparison is correct with probability 1

2 (1 + ε) and flipped with probability 1
2 (1− ε). To

be precise, for observed triple i, j, r ∈ [n] such that wij > wir,

P
(
(i, j, r) ∈ T | wij > wir

)
=

1 + ε

2
, whereas P

(
(i, r, j) ∈ T | wij > wir

)
=

1− ε
2

. (2)

The probabilities for flipping quadruplets can be similarly expressed. We model the inherent noise by
assuming wij to be random, and present a model for the similarities under planted clustering.

Planted clustering model. We now present a theoretical model for the inherent noise in the similari-
ties that reflects a clustered structure of the items. The following model is a variant of the popular
stochastic block model, studied in the context of graph clustering (Abbe, 2017), and is related to the
non-parametric weighted stochastic block model (Xu et al., 2020).

We assume that the item set [n] is partitioned into k clusters C1, . . . , Ck of sizes n1, . . . , nk, re-
spectively, but the number of clusters k as well as the clusters C1, . . . , Ck are unknown to the
algorithm. Let Fin and Fout be two distributions defined on R. We assume that the inherent (and
unobserved) similarities {wij : i < j} are random and mutually independent, and

wij ∼ Fin if i, j ∈ C` for some `, and wij ∼ Fout otherwise.
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We further assume that wii is undefined, wji = wij , and that for w,w′ independent,

Pw,w′∼Fin(w > w′) = Pw,w′∼Fout(w > w′) = 1/2, and

Pw∼Fin,w′∼Fout(w > w′) = (1 + δ)/2 for some δ ∈ (0, 1].
(3)

The first condition in (3) requires that Fin, Fout do not have point masses, and is assumed for
analytical convenience. The second condition ensures that within cluster similarities are larger than
inter-cluster similarities—a natural requirement. Ghoshdastidar et al. (2019) used a special case
of the above model, where Fin, Fout are assumed to be Gaussian with identical variances σ2, and
means satisfy µin > µout . In this case, δ = 2Φ

(
(µin − µout)/

√
2σ
)
− 1 where Φ is the cumulative

distribution function of the standard normal distribution.

The goal of this paper is to obtain bounds on the number of passively obtained
triplets/quadruplets that are sufficient to recover the aforementioned planted clusters with
zero error. To this end, we propose two similarity functions respectively computed from triplet and
quadruplet comparisons, and show that a similarity based clustering approach using semi-definite
programming (SDP) can exactly recover clusters planted in the data using few passive comparisons.

3 A theoretical analysis of similarity based clustering

Before presenting our new comparison based similarity functions, we describe the SDP approach
for clustering from similarity matrices that we use throughout the paper (Yan et al., 2018; Chen and
Yang, 2020). In addition, we prove a generic theoretical guarantee for this approach that holds for
any similarity matrix and, thus, that could be of interest even beyond the comparison based setting.

Similarity based clustering is widely used in machine learning, and there exist a range of popular
approaches including spectral methods (von Luxburg, 2007), semi-definite relaxations (Yan and
Sarkar, 2016), or linkage algorithms (Dasgupta, 2016) among others. We consider the following SDP
for similarity based clustering. Let S ∈ Rn×n be a symmetric similarity matrix among n items, and
Z ∈ {0, 1}n×k be the cluster assignment matrix that we wish to estimate. For unknown number of
clusters k, it is difficult to directly determine Z, and hence, we estimate the normalised clustering
matrix X ∈ Rn×n such that Xij = 1

|C| if i, j co-occur in estimated cluster C, and Xij = 0 otherwise.
Note that trace (X) = k. The following SDP was proposed and analysed by Yan et al. (2018) under
the stochastic block model for graphs, and can also be applied in the more general context of data
clustering (Chen and Yang, 2020). This SDP is agnostic to the number of clusters, but penalises large
values of trace (X) to restrict the number of estimated clusters:

max
X

trace (SX)− λ trace (X)

s.t. X ≥ 0, X � 0, X1 = 1.
(SDP-λ)

Here, λ is a tuning parameter and 1 denotes the vector of all ones. The constraints X ≥ 0 and X � 0
restricts the optimisation to non-negative, positive semi-definite matrices.

We first present a general theoretical result for SDP-λ. Assume that the data has an implicit partition
into k clusters C1, . . . , Ck of sizes n1, . . . , nk and with cluster assignment matrix Z, and suppose that
the similarity S is close to an ideal similarity matrix S̃ that has a k × k block structure S̃ = ZΣZT .
The matrix Σ ∈ Rk×k is such that Σ``′ represents the ideal pairwise similarity between items
from clusters C` and C`′ . Typically, under a random planted model, S̃ is the same as E[S] up to
possible differences in the diagonal terms. For S = S̃ and certain values of λ, the unique optimal
solution of SDP-λ is a block diagonal matrix X∗ = ZN−1ZT , where N ∈ Rk×k is diagonal with
entries n1, . . . , nk (see Appendix B). Thus, in the ideal case, solving the SDP provides the desired
normalised clustering matrix from which one can recover the partition C1, . . . , Ck. The following
result shows that X∗ is also the unique optimal solution of SDP-λ if S is sufficiently close to S̃.
Proposition 1 (Recovery of planted clusters using SDP-λ). Let Z ∈ {0, 1}n×k be the assignments
for a planted k-way clustering, S̃ = ZΣZT , and X∗ = ZN−1ZT as defined above. Define

∆1 = min
` 6=`′

(
Σ`` + Σ`′`′

2
− Σ``′

)
, and ∆2 = max

i∈[n]
max
`∈[k]

∣∣∣∣∣∣ 1

|C`|
∑
j∈C`

(
Sij − S̃ij

)∣∣∣∣∣∣ .
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X∗ is the unique optimal solution of SDP-λ for any choice of λ in the interval∥∥∥S − S̃∥∥∥
2
< λ < min

`
n` ·min

{
∆1

2
, ∆1 − 6∆2

}
.

The proof of Proposition 1, given in Appendix B, is adapted from Yan et al. (2018) although
uniqueness was not proved in this previous work. The term ∆1 quantifies the separation between the
ideal within and inter-cluster similarities, and is similar in spirit to the weak assortativity criterion for
stochastic block models (Yan et al., 2018). On the other hand, the matrix spectral norm ‖S − S̃‖2
and the term ∆2 both quantify the deviation of the similarities S from their ideal values S̃. Note
that the number of clusters can be computed as k = trace (X) and cluster assignment Z is obtained
by clustering the rows of X∗ using k-means or spectral clustering for example. In the experiments
(Section 5), we present a data-dependent approach to tune λ and find k.

We conclude this section by noting that most of the previous analyses of SDP clustering either
assume sub-Gaussian data (Yan and Sarkar, 2016) or consider similarity matrices with independence
assumptions (Chen and Xu, 2014; Yan et al., 2018) that might not hold in general, and do not hold
for our AddS-3 and AddS-4 similarities described in the next section. In contrast, the deterministic
criteria stated in Proposition 1 make the result applicable in more general settings.

4 Similarities from passive comparisons

We present two new similarity functions computed from passive comparisons (AddS-3 and AddS-4)
and guarantees for recovering planted clusters using SDP-λ in conjunction with these similarities.
Kleindessner and von Luxburg (2017) introduced pairwise similarities computed from triplets. A
quadruplets variant was proposed by Ghoshdastidar et al. (2019). These similarities, detailed in
Appendix A, are positive-definite kernels and have multiplicative forms. In contrast, we compute the
similarity between items i, j by simply adding binary responses to comparisons involving i and j.

Similarity from quadruplets. We construct the additive similarity for quadruplets, referred to as
AddS-4, in the following way. Recall the definition of Q in Equation (1) and for every i 6= j, define

Sij =
∑
r 6=s

(
I{(i,j,r,s)∈Q} − I{(r,s,i,j)∈Q}

)
, (AddS-4)

where I{·} is the indicator function. The intuition is that if i, j are similar (wij is large), then for every
observed tuple i, j, r, s, wij > wrs is more likely to be observed. Thus, (i, j, r, s) appears in Q more
often than (r, s, i, j), and Sij is a (possibly large) positive term. On the other hand, smaller wij leads
to a negative value of Sij . Under the aforementioned planted model with clusters of size n1, . . . , nk,
one can verify that Sij indeed reveals the planted clusters in expectation since if i, j belong to the

same planted cluster, then E[Sij ] = pεδ
∑
`∈[k]

n`(n− n`)
2

, and E[Sij ] = −pεδ
∑
`∈[k]

(
n`
2

)
otherwise.

Thus, in expectation, the within cluster similarity exceeds the inter-cluster similarity by pεδ
(
n
2

)
.

Similarity from triplets. The additive similarity based on passive triplets AddS-3 is given by

Sij =
∑
r 6=i,j

(
I{(i,j,r)∈T } − I{(i,r,j)∈T }

)
+
(
I{(j,i,r)∈T } − I{(j,r,i)∈T }

)
(AddS-3)

for every i 6= j. The AddS-3 similarity Sij aggregates all the comparisons that involve both i and j,
with either i or j as the reference item. Similar to the case of AddS-4, Sij tends to be positive when
wij is large, and negative for small wij . One can also verify that, under a planted model, the expected
within cluster AddS-3 similarity exceeds the inter-cluster similarity by pεδ(n− 2).

A significant advantage of AddS-3 and AddS-4 over existing similarities is in terms of computational
time for constructing S. Unlike existing kernels, both similarities can be computed from a single
pass over T or Q. In addition, the following result shows that the proposed similarities can exactly
recover planted clusters using only a few (near optimal) number of passive comparisons.
Theorem 1 (Cluster recovery using AddS-3 and AddS-4). Let X∗ denote the normalised cluster-
ing matrix corresponding to the true partition, and nmin be the size of the smallest planted cluster.
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Given the triplet or the quadruplet setting, there exist absolute constants c1, c2, c3, c4 > 0 such
that, with probability at least 1 − 1

n , X∗ is the unique optimal solution of SDP-λ if δ satisfies

c1

√
n lnn

nmin
< δ ≤ 1 , and one of the following two conditions hold:

• (triplet setting) S is given by AddS-3, and the number of triplets |T | and the parameter λ satisfy

|T | > c2
n3(lnn)2

ε2δ2n2
min

and c3 max

{√
|T | lnn

n
, |T |ε

√
lnn

n3
, (lnn)2

}
< λ < c4|T |

εδnmin

n2
;

• (quadruplet setting) S is given by AddS-4, and the number of quadruplets |Q| and λ satisfy

|Q| > c2
n3(lnn)2

ε2δ2n2
min

and c3 max

{√
|Q| lnn

n
, |Q|ε

√
lnn

n3
, (lnn)2

}
< λ < c4|Q|

εδnmin

n2
.

The condition on δ and the number of comparisons ensure that the interval for λ is non-empty.

Theorem 1 is proved in Appendix C. This result shows that given a sufficient number of comparisons,
one can exactly recover the planted clusters using SDP-λwith an appropriate choice of λ. In particular,
if there are k planted clusters of similar sizes and δ satisfies the stated condition, then recovery of the
planted clusters with zero error is possible with only Ω

(
k2

ε2δ2n(lnn)2
)

passively obtained triplets
or quadruplets. In this particular context, we make a few important remarks about the sufficient
conditions.
Remark 1 (Comparison with existing results). For fixed k and fixed ε, δ ∈ (0, 1], Theorem 1 states
that Ω

(
n(lnn)2

)
passive comparisons (triplets or quadruplets) suffice to exactly recover the clusters.

This significantly improves over the result of Ghoshdastidar et al. (2019) stating that Ω
(
n3.5 lnn

)
passive quadruplets are sufficient in a planted setting, and the fact that Ω

(
n3
)

triplets are necessary
in the worst case (Emamjomeh-Zadeh and Kempe, 2018).
Remark 2 (Dependence of the number of comparisons on the noise levels ε, δ). When one can
actively obtain comparisons, Emamjomeh-Zadeh and Kempe (2018) showed that it suffices to query
Ω
(
n ln

(
n
ε

))
triplets. Compared to the ln

(
1
ε

)
dependence in the active setting, the sufficient number

of passive comparisons in Theorem 1 has a stronger dependence of 1
ε2 on the crowd noise level ε.

While we do not know whether this dependence is optimal, the stronger criterion is intuitive since,
unlike the active setting, the passive setting does not provide repeated observations of the same
comparisons that can easily nullify the crowd noise. The number of comparisons also depends as 1

δ2

on the inherent noise level, which is similar to the conditions in Ghoshdastidar et al. (2019).

Theorem 1 states that exact recovery primarily depends on two sufficient conditions, one on δ and the
other on the number of passive comparisons (|T | or |Q|). The following two remarks show that both
conditions are necessary, up to possible differences in logarithmic factors.
Remark 3 (Necessity of the condition on δ). The condition on δ imposes the condition of nmin =

Ω
(√

n lnn
)

. This requirement on nmin appears naturally in planted problems. Indeed, assuming that

all k clusters are of similar sizes, the above condition is equivalent to a requirement of k = O
(√

n
lnn

)
and it is believed that polynomial time algorithms cannot recover k � √n planted clusters (Chen
and Xu, 2014, Conjecture 1).
Remark 4 (Near-optimal number of comparisons). To cluster n items, one needs to observe each
example at least once. Hence, one trivially needs at least Ω (n) comparisons (active or passive).
Similarly, existing works on actively obtained comparisons show that Ω (n lnn) comparisons are
sufficient for learning in supervised or unsupervised problems (Haghiri et al., 2017; Emamjomeh-
Zadeh and Kempe, 2018; Ghoshdastidar et al., 2019). We observe that, in the setting of Remark 1,
it suffices to have Ω

(
n(lnn)2

)
passive comparisons which matches the necessary conditions up

to logarithmic factors. However, the sufficient condition on the number of comparisons becomes
Ω
(
k2n(lnn)2

)
if k grows with n while ε and δ are fixed. It means that the worst case of k =

O
(√

n
lnn

)
, stated in Remark 3, can only be tackled using at least Ω

(
n2 lnn

)
passive comparisons.

Remark 5 (No new information beyond Ω
(
n2/ε2

)
comparisons). Theorem 1 shows that for large

n and Ω
(
n2/ε2

)
number of comparisons, the condition for exact recovery of the clusters is only
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governed by the condition on δ as the interval for λ is always non empty. It means that, beyond a
quadratic number of comparisons, no new information is gained by observing more comparisons. This
explains why significantly fewer passive comparisons suffice in practice than the known worst-case
requirements of Ω

(
n3
)

passive triplets or Ω
(
n4
)

passive quadruplets.

We conclude our theoretical discussion with a remark about recovering planted clusters when the
pairwise similarities wij are observed. Our methods are near optimal even in this setting.
Remark 6 (Recovering planted clusters for non-parametric Fin, Fout). Theoretical studies in the
classic setting of clustering with observed pairwise similarities {wij : i < j} typically assume that
the distributions Fin and Fout for the pairwise similarities are Bernoulli (in unweighted graphs), or
take finitely many values (labelled graphs), or belong to exponential families (Chen and Xu, 2014;
Aicher et al., 2015; Yun and Proutiere, 2016). Hence, the applicability of such results are restrictive.
Recently, Xu et al. (2020) considered non-parametric distributions for Fin, Fout, and presented a
near-optimal approach based on discretisation of the similarities into finitely many bins. Our work
suggests an alternative approach: compute ordinal comparisons from the original similarities and use
clustering on AddS-3 or AddS-4. Theorem 1 then guarantees, for any non-parametric and continuous
Fin and Fout, exact recovery of the planted clusters under a near-optimal condition on δ.

5 Experiments

The goal of this section is three-fold: present a strategy to tune λ in SDP-λ; empirically validate our
theoretical findings; and demonstrate the performance of the proposed approaches on real datasets.

Choosing λ and estimating the number of clusters based on Theorem 1. Given a similarity
matrix S, the main difficulty involved in using SDP-λ is tuning the parameter λ. Yan et al. (2018)

proposed the algorithm SPUR to select the best λ as λ∗ = arg max0≤λ≤λmax

∑
i≤kλ

σi(Xλ)

trace(Xλ) where
Xλ is the solution of SDP-λ, kλ is the closest integer to trace (Xλ) and an estimate of the number of
clusters, σi(Xλ) is the i-th largest eigenvalue of Xλ, and λmax is a theoretically well-founded upper
bound on λ. The maximum of the above objective is 1, achieved when Xλ has the same structure
as X∗ in Proposition 1. In our setting, Theorem 1 gives an upper bound on λ that depends on ε, δ
and nmin which are not known in practice. Furthermore, it is computationally beneficial to use the
theoretical lower bound for λ instead of using λ ≥ 0 as suggested in SPUR.

We propose to modify SPUR based on the fact that the estimated number of clusters k monotonically
decreases with λ (details in Appendix D). Given Theorem 1, we choose λmin =

√
c(lnn)/n and

λmax = c/n, where c = |Q| or |T |. The trace of the SDP-λ solution then gives two estimates of the
number of clusters, kλmin and kλmax , and we search over k ∈ [kλmax

, kλmin
] instead of searching over

λ—in practice, it helps to search over the values max{2, kλmax
} ≤ k ≤ kλmin

+ 2. We select k that
maximises the above SPUR objective, where X is computed using a simpler SDP (Yan et al., 2018):

maxX 〈S,X〉 s.t. X ≥ 0, X � 0, X1 = 1, trace (X) = k. (SDP-k)

The overall approach is summarized in Algorithm 1.

Clustering with AddS-3 and AddS-4.3 For the proposed similarity matrices AddS-3 and AddS-4,
the above strategy provides the optimal number of clusters k and a corresponding solution Xk of
SDP-k. The partition is obtained by clustering the rows ofXk using k-means. Alternative approaches,
such as spectral clustering, lead to similar performances (see Appendix E).

Evaluation function. We use the Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) between
the ground truth and the predictions. The ARI takes values in [−1, 1] and measures the agreement
between two partitions: 1 implies identical partitions, whereas 0 implies that the predicted clustering
is random. In all the experiments, we report the mean and standard deviation over 10 repetitions.

Simulated data with planted clusters. We generate data using the planted model from Section 2 and
verify that the learned clusters are similar to the planted ones. As default parameters we use n = 1000,
k = 4, ε = 0.75, |T | = |Q| = n(lnn)4 and Fin = N

(√
2σΦ−1

(
1+δ

2

)
, σ2
)
, Fout = N

(
0, σ2

)
with σ = 0.1 and δ = 0.5. In each experiment, we investigate the sensitivity of our method by varying
one of the parameters while keeping the others fixed. We use SPUR to estimate the number of clusters.

3We provide a Python implementation on https://github.com/mperrot/AddS-Clustering
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Algorithm 1: Comparison-based SPUR
input : The number of examples n and the comparisons T or Q.
begin

Define c = |T | or |Q|.
Let S be obtained with AddS-3 or AddS-4.

Define λmin =
√

c(ln c)
n and λmax = c

n .
Xλmin

, Xλmax ← SDP-λmin, SDP-λmax on S.
kλmin

, kλmax
← btrace (Xλmin

)e, btrace (Xλmax
)e.

for k = max{2, kλmax
} to kλmin + 2 do

Solve SDP-k to obtain Xk.
end
Choose k̂ = argmax

k

∑
i≤k σi(Xk)

trace(Xk) , where σi(Xk) denotes the i-th largest eigenvalue of Xk.

end
output : Number of clusters k̂, Xk̂.
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Figure 1: ARI of various methods on the planted model (higher is better). We vary: (1a) the number
of comparisons |T | and |Q|; (1b) the crowd noise level ε; (1c) the distributions Fin and Fout.

As baselines, we use SDP-k (using the number of clusters estimated by our approaches) followed by
k-means with two comparison based multiplicative kernels: MulK-3 for triplets (Kleindessner and
von Luxburg, 2017) and MulK-4 for quadruplets (Ghoshdastidar et al., 2019).

We present some significant results in Figure 1 and defer the others to Appendix E. In Figure 1a, we
vary the number of sampled comparisons. Unsurprisingly, our approaches are able to exactly recover
the planted clusters using as few as n(lnn)3 comparisons—extra lnn factor compared to Theorem 1
accounts for ε, δ and constants. MulK-3 and MulK-4 respectively need n(lnn)4.5 and n(lnn)5.5

comparisons (both values exceed n2 for n = 1000). In all our experiments, AddS-3 and AddS-4 have
comparable performance while MulK-3 is significantly better than MulK-4. Thus we focus on triplets
in the subsequent experiments for the sake of readability. In Figure 1b, we vary the external noise
level ε. Given n(lnn)4 comparisons, AddS-3 exactly recovers the planted clusters for ε as small
as 0.25 (high crowd noise) while, given the same number of comparisons, MulK-3 only recovers
the planted clusters for ε > 0.9. Figure 1c shows that AddS-3 outperforms MulK-3 even when
different distributions for Fin and Fout are considered (Uniform + Beta or Uniform + Normal; details
in Appendix E). It also shows that the distributions affect the performances, which is not evident
from Theorem 1, indicating the possibility of a refined analysis under distributional assumptions.

MNIST clustering with comparisons. We consider two datasets which are subsets of the MNIST
test dataset (LeCun and Cortes, 2010) that originally contains 10000 examples roughly equally
distributed among the ten digits: (i) a subset of 2163 examples containing all the 1 and 7 (MNIST
1vs.7), two digits that are visually very similar, and (ii) a randomly selected subset of 2000 examples
drawn without replacement and covering all 10 classes (MNIST 10). In both cases, to generate
the comparisons, we use the Gaussian similarity (See Section F.3 in the supplementary) on a 2-
dimensional embedding of the entire MNIST test data constructed with t-SNE (van der Maaten,
2014) and normalized so that each example lies in [−1, 1]2. We focus on the triplet setting and we
randomly and uniformly draw, without replacement, between n(lnn)2 and n(lnn)4 comparisons
to be observed by the different approaches. We also consider two additional baselines. First, we
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Figure 2: Experiments on real datasets. (2a)–(2b) ARI on MNIST; (2c) ARI similarity matrix
comparing the clusters obtained by the different methods on car (darker means more agreement).

use t-STE (van der Maaten and Weinberger, 2012), an ordinal embedding approach, to embed the
examples in 2 dimensions, and then cluster them using k-means on the embedded data. Second, we
directly use k-means on the normalized data obtained with t-SNE. The latter is a baseline with access
to Euclidean data instead of triplet comparisons.

For MNIST 1vs.7 (Figure 2a), |T | = n(lnn)2 is sufficient for AddS-3 to reach the performance of
k-means and t-STE while MulK-3 requires n(lnn)3 triplets. Furthermore, note that AddS-3 with
known number of clusters performs similarly to AddS-3 using SPUR, indicating that SPUR estimates
the number of clusters correctly. If we consider MNIST 10 (Figure 2b) and |T | = n(lnn)2, AddS-3
with known k outperforms AddS-3 using SPUR, suggesting that the number of comparisons here
is not sufficient to estimate the number of clusters accurately. Moreover, AddS-3 with known k
outperforms MulK-3 while being close to the performance of t-STE. Finally for n(lnn)4 triplets,
all ordinal methods converge to the baseline of k-means with access to original data. The ARI of
AddS-3 SPUR improves when the number of comparisons increases due to better estimations of the
number of clusters—estimated k increases from 3 for |T | = n(lnn)2 up to 9 for |T | = n(lnn)4.

Real comparison based data. First, we consider the Food dataset (Wilber et al., 2014) that contains
100 examples and 190376 triplet comparisons. Unfortunately, there is no ground truth and, thus,
quantitatively assessing the quality of the obtained partitions is difficult. Thus, in Appendix F, we
simply compare the different methods with respect to one another and present the partition obtained
by AddS-3 for visual inspection. Second, we consider the Car dataset (Kleindessner and von Luxburg,
2016). It contains 60 examples grouped into 3 classes (SUV, city cars, sport cars) with 4 outliers,
and exhibits 12112 triplet comparisons. For this dataset, AddS-3 SPUR estimates k = 2 instead
of the correct 3 clusters. Figure 2c considers all ordinal methods with k = 2 and k = 3, and
shows the pairwise agreement (ARI) between different methods and also with the true labels. While
MulK-3 with k = 3 agrees the most with the true labels, all the clustering methods agree well for
k = 2 (top-left 3× 3 block). Hence, the data may have another natural clustering with two clusters,
suggesting possible discrepancies in how different people judge the similarities between cars (for
instance, color or brand instead of the specified classes).

6 Conclusion

It is generally believed that a large number of passive comparisons is necessary in comparison
based learning. Existing results on clustering require at least Ω

(
n3
)

passive comparisons in the
worst-case or under a planted framework. We show that, in fact, Ω

(
n(lnn)2

)
passive comparisons

suffice for accurately recovering planted clusters. This number of comparisons is near-optimal, and
almost matches the number of active comparisons typically needed for learning. Our theoretical
findings are based on two simple approaches for constructing pairwise similarity matrices from
passive comparisons (AddS-3 and AddS-4). The present analysis is in a restricted framework, where
all within (or inter) cluster similarities are assumed to be identically distributed. Based on existing
work on robustness of SDPs (Moitra et al., 2016), we believe that our theoretical result holds in a
more general semi-random setting. Lastly, while we studied the merits of AddS-3 and AddS-4 in the
context of clustering, they could be used for other problems such as semi-supervised learning, data
embedding, or classification.
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Broader Impact

This work primarily has applications in the fields of psychophysics and crowdsourcing, and more
generally, in learning from human responses. Such data and learning problems could be affected by
implicit biases in human responses. However, this latter issue is beyond the scope of this work and,
thus, was not formally analysed.
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A Existing comparison based similarities / kernel functions

The literature on ordinal embedding from triplet comparisons is extensive (Jamieson and Nowak,
2011; Arias-Castro, 2017). In contrast, the idea of directly constructing similarity or kernel matrices
from the comparisons, without embedding the data in an Euclidean space, is rather new. Such
an approach is known to be significantly faster than embedding methods, and provides similar or
sometimes better performances in certain learning tasks. To the best of our knowledge, there are
only two works that learn kernel functions from comparisons (Kleindessner and von Luxburg, 2017;
Ghoshdastidar et al., 2019), while the works of Jain et al. (2016) and Mason et al. (2017) estimate
a Gram (or kernel) matrix from the triplets, which is then further used for data embedding. In
this section, we describe the aforementioned approaches for constructing pairwise similarities from
comparisons. Through this discussion, we illustrate the fundamental difference between the proposed
additive similarities, AddS-3 and AddS-4, and the existing kernels that are of multiplicative nature
(Kleindessner and von Luxburg, 2017; Ghoshdastidar et al., 2019).

Kernels from ordinal data were introduced by Kleindessner and von Luxburg (2017), who proposed
two kernel functions (named k1 and k2) based on observed triplets. The kernels originated from the
notion of Kendall’s τ correlation between two rankings, and k1 was empirically observed to perform
slightly better. We mention this kernel function, which we refer to as a multiplicative triplet kernel
(MulK-3). For any distinct i, j ∈ [n], the MulK-3 similarity is computed as

Sij =

∑
r<s

(
I{(i,r,s)∈T } − I{(i,s,r)∈T }

)(
I{(j,r,s)∈T } − I{(j,s,r)∈T }

)
√
|{(`, r, s) ∈ T : ` = i}|

√
|{(`, r, s) ∈ T : ` = j}|

(MulK-3)

where T is the set of observed triplets. Note that this kernel does not consider comparisons involving
wij but, instead, uses multiplicative terms indicating how i and j behave with respect to every pair
r, s. For uniform sampling with rate p� lnn

n2 , the denominators in MulK-3 are approximately p
(
n
2

)
for every i 6= j. Hence, it suffices to focus only on the numerator. Ghoshdastidar et al. (2019)
proposed a kernel similar to MulK-3 for the case of quadruplets, which is referred to as multiplicative
quadruplet kernel (MulK-4). For i 6= j, it is given by

Sij =
∑
` 6=i,j

∑
r<s

(
I{(i,`,r,s)∈Q} − I{(r,s,i,`)∈Q}

)(
I{(j,`,r,s)∈Q} − I{(r,s,j,`)∈Q}

)
. (MulK-4)

Ghoshdastidar et al. (2019) studied MulK-4 in the context of hierarchical clustering, and showed that
it requires O

(
n3.5 lnn

)
passive quadruplet comparisons to exactly recover a planted hierarchical

structure in the data. Combining their concentration results with Proposition 1 shows that the same
number of passive quadruplets suffices to recover the planted clusters considered in this work. Note
that both MulK-3 and MulK-4 kernel functions have a multiplicative nature since each entry is an
aggregate of products. This is essential for their positive semi-definite property. In contrast, the
proposed AddS-3 and AddS-4 similarities simply aggregate comparisons involving the pairwise
similarity wij , and hence, are not positive semi-definite kernels.

We also mention the work on fast ordinal triplet embedding (FORTE) (Mason et al., 2017), which
learns a metric from the given triplet comparisons. One can easily adapt the formulation to that of
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learning a kernel matrix K ∈ Rn×n from triplets. Consider the squared distance in the corresponding
reproducing kernel Hilbert space (RKHS), d2

K(i, j) = Kii − 2Kij +Kjj . Assuming that the triplets
adhere to the distance relation in the RKHS, it is easy to see that when a comparison of t = {i, r, s}
with i as pivot is available, then

yt := I{(i,r,s)∈T } − I{(i,s,r)∈T } = sign
(
d2
K(i, r)− d2

K(i, s)
)

= sign (Krr − 2Kir −Kss + 2Kis) ,

which is the sign of a linear map of K, which we can denote as sign(〈Mt,K〉) for some Mt ∈ Rn×n.
One can learn the optimal kernel matrix, that satisfies most triplet comparisons, by minimising the

empirical loss
1

|T |
∑
t∈T

`(yt〈Mt,K〉) with positive definiteness constraints for K, where ` is a loss

function (log loss is suggested by Jain et al. (2016)).

B Proof of Proposition 1

In this section, we first provide a proof of Proposition 1 which is split into two parts: the proof
of optimality of X∗, and the proof of uniqueness of the optimal solution. In addition, we provide
a derivation for the claim that X∗ is the unique optimal solution for SDP-λ when S = S̃ and
0 < λ < nmin∆1. The derivation, given at the end of the section, follows from simplifying some of
the computations in the proof of Proposition 1.

B.1 Optimality of X∗ when S is close to S̃

The proof is adapted from Yan et al. (2018). We first state the Karush-Kahn-Tucker (KKT) conditions
for SDP-λ. Let Γ,Λ ∈ Rn×n be the Lagrange parameters for the non-negativity constraint (X ≥ 0)
and the positive semi-definiteness constraint (X � 0), respectively. Let α ∈ Rn be the Lagrange
parameter for the row sum constraints. The tuple (X,Λ,Γ, α) is a primal-dual optimal solution for
SDP-λ if and only if it satisfies the following KKT conditions:

Stationarity : S − λI + Λ + Γ− 1αT − α1T = 0

Primal feasibility : X ≥ 0 ; X � 0 ; X1 = 1

Dual feasibility : Λ � 0 ; Γ ≥ 0

Complementary slackness : 〈Λ, X〉 = 0 ; ΓijXij = 0 ∀ i, j
where we use 〈A,B〉 to denote trace (AB) for symmetric matrices A,B. The above derivation is
straightforward. The term 1αT + α1T in the stationarity condition arises due to the symmetry of X ,
that is, since row-sum and column-sum are identical. We construct a primal-dual witness to show
that X∗ is the optimal solution of SDP-λ under the stated conditions on λ. We use the following
notations. For any vector u ∈ Rn and C ⊂ [n], we let uC ∈ R|C| be the projection of u on the indices
contained in C. Similarly, for a matrix A ∈ Rn×n, ACC′ is the sub-matrix corresponding to row
indices in C and column indices in C′. We also define 1m and Im the constant vector of ones and
the identity matrix of size m, respectively. We use C1, . . . , Ck to denote the planted clusters of size
n1, . . . , nk. We consider the following primal-dual construction that is similar to Yan et al. (2018),
where X = X∗. For every j, ` ∈ {1, . . . , k} and ` 6= j, we define

α : αCj =
1

nj
SCjCj1nj −

(
λ

2nj
+

1

2n2
j

1TnjSCjCj1nj

)
1nj (4)

Λ :


ΛCjCj = −SCjCj + αCj1

T
nj + 1njα

T
Cj + λInj

ΛCjC` = −
(
Inj −

1

nj
1nj1

T
nj

)
SCjC`

(
In` −

1

n`
1n`1

T
n`

) (5)

Γ :

{
ΓCjCj = 0

ΓCjC` = −SCjC` − ΛCjC` + αCj1
T
n`

+ 1njα
T
C` .

(6)

The proof of Proposition 1 is based on verifying the KKT conditions for the above Λ,Γ, α and
X = X∗. To this end, note that X∗CjCj = 1

nj
1nj1

T
nj and X∗CjC` = 0 for ` 6= j. Primal feasibility
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is obviously satisfied by X∗, and it is easy to see that the choice of ΛCjCj and ΓCjC` ensures that
stationarity holds. Hence, we only need to verify dual feasibility and complementary slackness.

The complementary slackness condition for Γ holds since ΓCjCj = 0 and X∗CjC` = 0 for j 6= `. To
verify 〈Λ, X∗〉 = 0, observe that

〈Λ, X∗〉 =
∑
j,`

〈ΛCjC` , X∗CjC`〉 =
∑
j

〈ΛCjCj , X∗CjCj 〉 =
∑
j

1

nj
1TnjΛCjCj1nj

=
∑
j

− 1

nj
1TnjSCjCj1nj + 21TnjαCj + λ,

where the last step follows by substituting ΛCjCj from (5) and noting that 1Tnj1nj = nj . Substituting
the value of αCj above shows that each term in the sum is zero, and hence, 〈Λ, X∗〉 = 0.

We now verify the dual feasibility and first prove that Γ ≥ 0, in particular, ΓCjC` ≥ 0 for j 6= `. We
substitute ΛCjC` and αCj in (6) to obtain

ΓCjC` = −SCjC` +

(
Inj −

1

nj
1nj1

T
nj

)
SCjC`

(
In` −

1

n`
1n`1

T
n`

)
+

1

nj
SCjCj1nj1

T
n`
−
(

λ

2nj
+

1

2n2
j

1TnjSCjCj1nj

)
1nj1

T
n`

+
1

n`
1nj1

T
n`
SC`C` −

(
λ

2n`
+

1

2n2
`

1Tn`SC`C`1n`

)
1nj1

T
n`

= − 1

nj
1nj1

T
njSCjC` −

1

n`
SCjC`1n`1

T
n`

+
1

nj
SCjCj1nj1

T
n`

+
1

n`
1nj1

T
n`
SC`C`

+

(
1TnjSCjC`1n`

njn`
− λ

2nj
−

1TnjSCjCj1nj

2n2
j

− λ

2n`
− 1Tn`SC`C`1n`

2n2
`

)
1nj1

T
n`
.

Consider i ∈ Cj and r ∈ C`. From above, we can compute Γir as

Γir = − 1

nj
1TnjSCjr −

1

n`
SiC`1n` +

1

nj
SiCj1nj +

1

n`
1Tn`SC`r

+
1TnjSCjC`1n`

njn`
−

1TnjSCjCj1nj

2n2
j

− 1Tn`SC`C`1n`
2n2

`

− λ

2nj
− λ

2n`

= − 1

nj

∑
i′∈Cj

Si′r −
1

n`

∑
r′∈C`

Sir′ +
1

nj

∑
i′∈Cj

Sii′ +
1

n`

∑
r′∈C`

Srr′

+
1

njn`

∑
i′∈Cj ,r′∈C`

Si′r′ −
1

2n2
j

∑
i,i′∈Cj

Sii′ −
1

2n2
`

∑
r,r′∈C`

Srr′ −
λ

2nj
− λ

2n`
.

Our goal is to derive a lower bound for Γir and show that, for suitable values of λ, Γir ≥ 0 for all
i ∈ Cj , r ∈ C`. We bound each of the terms from below. For the last two terms involving λ, we
note that both terms are at least − λ

2nmin
, where nmin = min` n`. For each of the other terms, we

rewrite the summations in terms of the ideal similarity matrix S̃ and bound the deviation in terms of

∆2 = max
i∈[n]

max
`∈[k]

∣∣∣∣∣ 1
n`

∑
r∈C`

(
Sir − S̃ir

)∣∣∣∣∣. For the first term, we have

− 1

nj

∑
i′∈Cj

Si′r = − 1

nj

∑
i′∈Cj

S̃i′r −
1

nj

∑
i′∈Cj

(
Si′r − S̃i′r

)
= −Σj` −

1

nj

∑
i′∈Cj

(
Si′r − S̃i′r

)
≥ −Σj` −∆2.
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For the second inequality, we use the structure of S̃ to note that S̃ir = Σj` for every i ∈ Ci, r ∈ C`,
and finally the deviation term is bounded by ∆2. Similarly, one can bound the second, third and
fourth terms from below by (−Σj` −∆2), (Σjj −∆2) and (Σ`` −∆2), respectively. For the fifth
term, we write

1

njn`

∑
i′∈Cj ,r′∈C`

Si′r′ =
1

njn`

∑
i′∈Cj ,r′∈C`̃

Si′r′ +
1

njn`

∑
i′∈Cj ,r′∈C`

(
Si′r′ − S̃i′r′

)

= Σj` +
1

nj

∑
i′∈Cj

(
1

n`

∑
r′∈C`

(
Si′r − S̃i′r

))
≥ Σj` −∆2,

since each term in the outer summation is at least −∆2. Similarly, one can bound the sixth and
seventh terms from below by 1

2 (Σjj −∆2) and 1
2 (Σ`` −∆2), respectively. Combining the above

lower bounds, we have

Γir ≥
1

2
Σjj +

1

2
Σ`` − Σj` − 6∆2 −

λ

nmin
≥ (∆1 − 6∆2)− λ

nmin
,

where we recall that ∆1 = min
` 6=`′

(
Σ``+Σ`′`′

2 − Σ``′
)

. Hence, for λ ≤ nmin(∆1 − 6∆2), as stated in

Proposition 1, Γir ≥ 0, and more generally, Γ is non-negative.

We finally derive the positive semi-definiteness of Λ. Define the vectors u1, . . . , uk ∈ Rn such that
(u`)i = 1 if i ∈ C` and 0 otherwise. We first claim that u1, . . . , uk lie in the null space of Λ. To
verify this, we compute the Cj-th block of Λu`. For j 6= `,

(Λu`)Cj = ΛCjC`1n` = −
(
Inj −

1

nj
1nj1

T
nj

)
SCjC`

(
In` −

1

n`
1n`1

T
n`

)
1n` = 0,

whereas for j = `, we have from (4) and (5),

(Λu`)C` = ΛC`C`1n`

= −SC`C`1n` + n`αC` + 1n`α
T
C`1n` + λ1n`

= −SC`C`1n` + SC`C`1n` − 2

(
λ

2
+

1Tn`SC`C`1n`
2n`

)
1n` + 1n`

1Tn`SC`C`1n`
n`

+ λ1n`

= 0.

Thus Λu` = 0 for ` = 1, . . . , k, and to prove that Λ � 0, it suffices to show that uTΛu ≥ 0 for all
u ∈ Rn that are orthogonal to u1, . . . , uk. In other words, we consider only u such that uTC`1n` = 0
for every `. For such a vector u, we have

uTΛu =

k∑
j,`=1

uTCjΛCjC`uC` =

k∑
j=1

uTCjΛCjCjuCj +
∑
j 6=`

uTCjΛCjC`uC`

=

k∑
j=1

uTCj (−SCjCj + λInj )uCj −
∑
j 6=`

uTCjSCjC`uC`

=

k∑
j=1

λuTCjuCj −
∑
j,`

uTCjSCjC`uC`

= λ‖u‖2 − uTSu,

where ‖u‖ is the Euclidean norm. The third equality follows from (5) and uTC`1n` = 0 for every `.
In addition to above, recall that S̃ = ZΣZT , where Z = [u1 . . . uk]. Hence, for u orthogonal to
u1, . . . , uk, we have uT S̃u = 0, which, combined with above, gives

uTΛu = λ‖u‖2 − uTSu
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= λ‖u‖2 − uT
(
S − S̃

)
u

≥
(
λ−

∥∥∥S − S̃∥∥∥
2

)
‖u‖2

> 0

for all u if λ >
∥∥∥S − S̃∥∥∥

2
, which is the condition stated in Proposition 1. Thus, for the specified

range of λ, the KKT conditions are satisfied and X∗ is the optimal solution for SDP-λ.

B.2 Uniqueness of the optimal solution X∗

The uniqueness of the solution can be shown by proving that any other optimal solution X ′ for SDP-λ
must satisfy X ′ = X∗. This is shown in two steps. First, we show that any optimal solution X ′ must
have the same block structure as X∗ and X∗ −X ′ � 0. We use this fact to show that the objective
value for X∗ is strictly greater than that for any such X ′.

Note that the previously constructed Lagrange parameters in (4)–(6) need not correspond to the
optimal solution associated with X ′. However, for the previously defined α,Λ,Γ, we can still use the
condition for stationarity to write

〈Λ + Γ, X ′〉 = 〈−S + 1αT + α1T + λI,X ′〉

= −〈S,X ′〉+

n∑
i,j=1

(αi + αj)X
′
ij + λtrace (X)

= −trace (SX ′) + λtrace (X ′) + 2

n∑
i=1

αi

where the simplification happens noting that X ′ is primal feasible and hence
∑
j Xij = 1. Due to

optimality of X ′ and X∗, we have trace (SX ′)− λtrace (X ′) = trace (SX∗)− λtrace (X∗), and so,
〈Λ + Γ, X ′〉 = −trace (SX∗) + λtrace (X∗) + 21Tα

= λ+

k∑
j=1

(
−
1TnjSCjCj1nj

nj
+ 21TnjαCj

)
= 0,

where the final step follows by substituting αCj from (4). From above, we argue that both 〈Λ, X ′〉
and 〈Γ, X ′〉 are zero. To verify this, note that Γ and X ′ are both non-negative and hence, 〈Γ, X ′〉 ≥ 0.
On the other hand, from the definition of Frobenius (or Hilbert-Schmidt) norm, we have 〈Λ, X ′〉 =∥∥Λ1/2X ′1/2

∥∥2

F
≥ 0, where the matrices square roots exist since Λ, X ′ are both positive semi-definite.

Since both inner products, 〈Λ, X ′〉 and 〈Γ, X ′〉, are non-negative and yet their sum is zero, we can
conclude that each of them equals zero.

Note that 〈Λ, X ′〉 =
∥∥Λ1/2X ′1/2

∥∥2

F
= 0 implies ΛX ′ = 0, or the range space of X ′ lies in the null

space of Λ. Recall, from the proof of positive semi-definiteness of Λ, that, for λ > ‖S − S̃‖2, the
null space of Λ is exactly spanned by Z = [u1 . . . uk]. Thus, the range space of X ′ is spanned by the
columns of Z, or in other words X ′ = ZAZT for some A ∈ Rk×k that is symmetric, non-negative,
and positive semi-definite (to ensure thatX ′ is primal feasible), and

∑
j Aijnj = 1 (to satisfy the row

sum constraint). Recall that X∗ = ZN−1ZT where N = diag(n1, . . . , nk). Thus, X ′ has the same
block structure as X∗. However, this result does not imply that we can recover k planted clusters
from X ′ since it is possible that A has less than k distinct rows.

We now argue that X∗ −X ′ must be positive semi-definite, a property that we use later. To see this,
note that

X∗ −X ′ = ZN−1/2
(
Ik −N1/2AN1/2

)
N−1/2ZT ,

where ZN−1/2 is a matrix with orthonormal columns. Hence, to prove that X∗ −X ′ � 0, it suffices
to show that Ik − N1/2AN1/2 � 0 or, equivalently, that the largest eigenvalue of N1/2AN1/2 is
smaller than 1. This can verified as∥∥∥N1/2AN1/2

∥∥∥
2

= max
u : ‖u‖=1

uTN1/2AN1/2u = max
u : ‖u‖=1

k∑
i,j=1

Aij
√
ninjuiuj .
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From the AM-GM inequality, we have√ninjuiuj ≤ 1
2

(
niu

2
j + nju

2
i

)
. Hence,∥∥∥N1/2AN1/2

∥∥∥
2
≤ max
u : ‖u‖=1

1

2

k∑
i,j=1

Aij
(
niu

2
j + nju

2
i

)
=

k∑
i=1

u2
i = 1,

where we use the fact that
∑
j Aijnj =

∑
iAijni = 1. From this discussion, we have X∗−X ′ � 0.

We now claim that ∣∣∣trace
(

(S − S̃)(X∗ −X)
)∣∣∣ ≤ ∥∥∥S − S̃∥∥∥

2
trace (X∗ −X ′) , (7)

which follows from von Neumann’s trace inequality and the fact thatX∗−X ′ is positive semi-definite.

We now prove that for any X ′ = ZAZT 6= X∗, with A satisfying the above mentioned conditions,
and for ‖S − S̃‖2 < λ < 1

2∆1nmin,

trace (SX∗)− λtrace (X∗) > trace (SX ′)− λtrace (X ′) , (8)

which shows that X∗ is the unique optimal solution. We compute

trace (SX∗)−λtrace (X∗)− trace (SX ′) + λtrace (X ′)

= trace (S(X∗ −X ′))− λtrace (X∗ −X ′)
= trace

(
S̃(X∗ −X ′)

)
+ trace

(
(S − S̃)(X∗ −X ′)

)
− λtrace (X∗ −X ′)

> trace
(
S̃(X∗ −X ′)

)
−
∥∥∥S − S̃∥∥∥

2
trace (X∗ −X ′)− λtrace (X∗ −X ′)

> trace
(
S̃(X∗ −X ′)

)
− nmin∆1trace (X∗ −X ′) .

In the last step, we use
∥∥∥S − S̃∥∥∥

2
+ λ < 2λ < nmin∆1. We later prove that

trace
(
S̃(X∗ −X ′)

)
≥

k∑
`=1

n`(1−A``n`)∆1 ≥ nmin∆1trace (X∗ −X ′) . (9)

Using (9) in the previous derivation proves (8) or the fact that X∗ is the unique optimal solution,
provided that trace (X∗ −X ′) > 0 for all X ′ 6= X∗. Hence, we need to verify the strict positivity
of the trace. Assume that trace (X∗ −X ′) = 0. Due to the row sum constraint for X ′, we have∑
j A`jnj = 1, which implies A``n` ≤ 1. On the other hand trace (X ′) = trace (X∗) = k

holds if
∑
`A``n` = k, which is only possible if A``n` = 1 for every `, and hence A`j = 0

for j 6= `. Thus, trace (X∗ −X ′) = 0 if and only if X ′ = X∗. For every X ′ 6= X∗, we have
trace (X∗ −X ′) =

∑
`(1−A``n`) > 0. We conclude the proof by proving (9). We compute

trace
(
S̃(X∗ −X ′)

)
= trace

(
ZΣZTZ(N−1 −A)ZT

)
= trace

(
ΣZTZ(N−1 −A)ZTZ

)
= trace

(
ΣN(N−1 −A)N

)
=

k∑
`=1

Σ``n`(1−A``n`)−
k∑
`=1

∑
j 6=`

A`jnjn`Σ`j ,

where the third equality follows from the fact ZTZ = N . Recall from the definition of ∆1 that
Σ`j ≤ 1

2 (Σjj + Σ``)−∆1. Using this, we can write

trace
(
S̃(X∗ −X ′)

)
≥

k∑
`=1

Σ``n`(1−A``n`) +

k∑
`=1

∑
j 6=`

A`jnjn`∆1 −
1

2

k∑
`=1

∑
j 6=`

A`jnjn`(Σ`` + Σjj)

=

k∑
`=1

Σ``n`(1−A``n`) +

k∑
`=1

∑
j 6=`

A`jnjn`∆1 −
k∑
`=1

∑
j 6=`

A`jnjn`Σ``
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=

k∑
`=1

Σ``n`(1−A``n`) +

k∑
`=1

n`∆1(1−A``n`)−
k∑
`=1

n`Σ``(1−A``n`).

In the first equality, we exploit the symmetry of the third summation, while the second equality uses
the row sum constraint to write

∑
j 6=`A`jnj = 1−A``n`. Cancelling first and third terms, we get

trace
(
S̃(X∗ −X ′)

)
≥ ∆1

k∑
`=1

n`(1−A``n`)

≥ ∆1nmin

k∑
`=1

(1−A``n`) = nmin∆1trace (X∗ −X ′) ,

which proves (9), and completes the proof.

B.3 Unique optimality of X∗ when S = S̃

We now prove that X∗ is the unique optimal solution when S = S̃ = ZΣZT and 0 < λ < nmin∆1.
This claim does not immediately follow from Proposition 1, but can be derived from the proof.

We first prove the optimality of X∗ in this case. Recall, from the proof of Proposition 1, that the
claim hinges on showing that Γ ≥ 0 and Λ � 0. From the previous proof, it suffices to show that
ΓCjC` ≥ 0 and uTΛu ≥ 0 for any u that is orthogonal to the columns of Z. To show that the latter
holds, recall that

uTΛu = λ‖u‖2 − uTSu.
Since S = S̃ = ZΣZT and ZTu = 0, we get uTΛu = λ‖u‖2 ≥ 0, which in turn shows that Λ � 0
for all λ > 0. To verify the non-negativity of ΓCjC` , we observe that, in this case, it can be computed
as

ΓCjC` = − 1

nj
1nj1

T
nj S̃CjC` −

1

n`
S̃CjC`1n`1

T
n`

+
1

nj
S̃CjCj1nj1

T
n`

+
1

n`
1nj1

T
n`
S̃C`C`

+

(
1Tnj S̃CjC`1n`

njn`
− λ

2nj
−

1Tnj S̃CjCj1nj

2n2
j

− λ

2n`
− 1Tn` S̃C`C`1n`

2n2
`

)
1nj1

T
n`

=

(
−2Σj` + Σjj + Σ`` + Σj` −

λ

2

(
1

nj
+

1

n`

)
− Σjj + Σ``

2

)
1nj1

T
n`

≥
(

∆1 −
λ

nmin

)
1nj1

T
n`

So for λ ≤ nmin∆1, ΓCjC` ≥ 0, and hence Γ is non-negative. Combining this with the previous
proof of optimality, we derive that X∗ is an optimal solution in this case for 0 < λ ≤ nmin∆1.

The proof of uniqueness is similar to the more general case in Proposition 1. We use the previously
derived claim that any optimal solutionX ′ must be of the formX ′ = ZAZT for someA ∈ Rk×k, and
X∗−X � 0. We have also previously shown that trace

(
S̃(X∗ −X ′)

)
≥ nmin∆1trace (X∗ −X ′).

Hence, we have

trace
(
S̃X∗

)
− λtrace (X∗)−

(
trace

(
S̃X ′

)
− λtrace (X ′)

)
≥ (nmin∆1 − λ)trace (X∗ −X ′) ,

which is strictly positive for λ < nmin∆1, and hence, X∗ is the unique optimal solution in this case.

C Proof of Theorem 1

We prove the result for triplets and quadruplets in separate sections. While the proof structure is the
same in both cases, the computations are quite different. Before presenting the proofs, we list the key
steps.

We first compute the expectation of the similarity matrix S computed using AddS-3 or AddS-4, and
derive appropriate ideal matrices S̃ in each case. In our proofs, S̃ = E[S], except differences in the
diagonal entries since Sii = 0 for all i. From the block structure of S̃, we can compute ∆1.
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Subsequently, concentration inequalities are used to derive upper bounds on ‖S−S̃‖2 and ∆2 in terms
of the model parameters. In this context, note that though the pairwise similarities {wij : i < j}
are independent, the entries of the matrix S are highly dependent since each wij appears in multiple
entries of S. Hence, to decouple such dependencies, we use a technique by Janson and Ruciński
(2002), which considers the dependency graphs of the random variables and finds an equitable
colouring to find independent sets of comparable sizes. To the best of our knowledge, the present
work is the first study which uses the equitable colouring approach of Janson and Ruciński (2002) to
derive spectral norm bounds. Ghoshdastidar et al. (2019) use this technique only to bound matrix
entries.

Finally, we use concentration to show that for a sampling rate p large enough, the number of
comparisons (|Q| or |T |) is close to its expected value. Hence, we can replace the sampling rate p in
the previously derived bounds by the number of comparisons, leading to differences in constants only.

Notation. For the sake of simplicity, we will ignore absolute constants in the inequalities stated
below, and use the notations . and & to write inequalities that hold up to some multiplicative absolute
constant.

C.1 Quadruplet setting

We first present the proof for the quadruplet setting using the aforementioned steps.

Computation of ∆1. We first derive the expectation of the AddS-4 similarity matrix S, where for
i 6= j,

E[Sij ] =
∑
r 6=s

P
(
(i, j, r, s) ∈ Q

)
−P

(
(r, s, i, j) ∈ Q

)
. (10)

Note that the summation in AddS-4 is a sum over all distinct pairs r, s, noting that we do not count
both (s, r) and (r, s) since they refer to the same comparison. To compute the expectation of each
term in the summation, recall that the items belong to the planted clusters C1, . . . , Ck and, for each
item i, use ψi ∈ [k] to denote the cluster index in which i belongs, that is, i ∈ Cψi . The expected
values of the terms are given in Table 1.

Table 1: Value of each term in the summation in (10), assuming i 6= j, r 6= s, (i, j) 6= (r, s).

Case P
(
(i, j, r, s) ∈ Q

)
P
(
(r, s, i, j) ∈ Q

)
Difference

ψi = ψj ; ψr = ψs p/2 p/2 0
ψi = ψj ; ψr 6= ψs p(1 + εδ)/2 p(1− εδ)/2 pεδ
ψi 6= ψj ; ψr = ψs p(1− εδ)/2 p(1 + εδ)/2 −pεδ
ψi 6= ψj ; ψr 6= ψs p/2 p/2 0

We only explain the derivation of P
(
(i, j, r, s) ∈ Q

)
for the case ψi = ψj and ψr 6= ψs as the other

values are computed similarly. In this case,

P
(
(i, j, r, s) ∈ Q

)
= P

(
(i, j, r, s) ∈ Q

∣∣(i, j), (r, s) compared
)
P
(
(i, j), (r, s) compared

)
= pP

(
(i, j, r, s) ∈ Q

∣∣(i, j), (r, s) compared
)

= p
[
P
(
(i, j, r, s) ∈ Q

∣∣wij > wrs; (i, j), (r, s) compared
)
P(wij > wrs)

+ P
(
(i, j, r, s) ∈ Q

∣∣wij < wrs; (i, j), (r, s) compared
)
P(wij < wrs)

]
= p

[
(1 + ε)

2

(1 + δ)

2
+

(1− ε)
2

(1− δ)
2

]
= p

(1 + εδ)

2
,

where in each product, the term P(wij > wrs) is computed from (3), and the other term, denoting
flipped answers, follows from the quadruplet variant of (2). Based on Table 1, we have for i, j such
that ψi = ψj

E[Sij ] =
∑

(r,s):ψr 6=ψs

pεδ = pεδ

k∑
`=1

n`(n− n`)
2
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if i 6= j. For i = j, obviously E[Sij ] = 0. For i, j such that ψi 6= ψj , we have

E[Sij ] =
∑

(r,s):ψr=ψs

−pεδ = −pεδ
k∑
`=1

(
n`
2

)
.

Hence, we define the ideal similarity matrix as S̃ij = E[Sij ] for i 6= j, and S̃ii = pεδ
k∑̀
=1

n`(n−n`)
2 .

Observe that S̃ = ZΣZT , where Z ∈ {0, 1}n×k is the assignment matrix for the planted clusters,
and Σ ∈ Rk×k such that Σ`` = pεδ

∑
`
n`(n−n`)

2 and Σ``′ = −pεδ∑`

(
n`
2

)
for ` 6= `′. Hence, in

this case, we have

∆1 = pεδ

(
n

2

)
. (11)

Preliminary computations and definitions for concentration. As noted earlier, S̃ and E[S] are
identical, except in the diagonal entries. Hence, we mainly have to obtain concentration of f(S −
E[S]), where f is a non-negative scalar function. In the case of ∆2, f denotes the maximum partial
row sum, whereas f is the spectral norm in the bound for ‖S − S̃‖2. DefineW = {wij : i < j} as
the collection of random pairwise similarities. We write

S −E[S] =
(
S −E[S|W]

)
+
(
E[S|W]−E[S]

)
,

where the first difference accounts for randomness in sampling and crowd noise, while the second
difference accounts for the inherent noise inW . This helps in separately concentrating both terms,
which have different dependence structures. Formally, we perform the concentration of f(S −E[S])
in the following way, assuming f satisfies triangle inequality (which holds in the cases that we later
consider).

P
(
f(S −E[S]) > t

)
≤ P

(
f(S −E[S|W]) + f(E[S|W]−E[S]) > t

)
≤ P

(
f(S −E[S|W]) > t/2

)
+ P

(
f(E[S|W]−E[S]) > t/2

)
≤ EW

[
P·|W

(
f(S −E[S|W]) > t/2

)]
+ P

(
f(E[S|W]−E[S]) > t/2

)
,

where P·|W denotes the probability over sampling and crowd noise, but conditioned onW . In fact,
we derive an uniform upper bound on the conditional probability, irrespective ofW , and hence the
expectation is trivially bounded. To separately deal with the randomness inW and the randomness
due to sampling and crowd noise, we write

Sij =
∑
r 6=s

(
I{(i,j,r,s)∈Q} − I{(r,s,i,j)∈Q}

)
=
∑
r<s

ξijrs
(
I{wij>wrs} − I{wij<wrs}

)
(12)

where ξijrs ∈ {−1, 0,+1} denotes whether the comparison between (i, j) and (r, s) is observed
(ξijrs = 0 if not observed), and whether the crowd response was correct (ξijrs = +1) or flipped
(ξijrs = −1). Under our sampling and noise model,

P(ξijrs = 0) = 1− p, P(ξijrs = 1) =
p(1 + ε)

2
, P(ξijrs = −1) =

p(1− ε)
2

and so, E[ξijrs] = pε and Var (ξijrs) ≤ p. Note that the set Ξ = {ξijrs : i < j, r < s, (i, j) <
(r, s)} is a collection of independent random variables. Here, (i, j) < (r, s) denotes a lexicographic
ordering of tuples since we do not care about the ordering between (i, j) and (r, s).

In addition, recall that Fin, Fout are continuous, and hence, with probability 1, any two pairwise
similarities are distinct. Hence, we can write I{wij>wrs}− I{wij<wrs} = 2I{wij>wrs}−1. It is noted
that ξijrs is independent of (2I{wij>wrs} − 1), and furthermore, the latter variable is deterministic
conditioned onW . Based on this and using the notation of ξijrs, we write

Sij −E[Sij |W] =
∑
r<s

Bijrs, where Bijrs = (ξijrs − pε)
(
2I{wij>wrs} − 1

)
E[Sij |W]−E[Sij ] =

∑
r<s

B′ijrs, where B′ijrs = 2pε
(
I{wij>wrs} −P(wij > wrs)

)
.

(13)
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We make the following observations about the collection of random variables Bijrs, B′ijrs, which are
crucial to the subsequent concentration results. It is easy to see that |Bijrs| ≤ 2, |B′ijrs| ≤ 2pε with
probability 1, and E[Bijrs] = E[B′ijrs] = 0, Var (Bijrs) ≤ p and Var

(
B′ijrs

)
≤ 4p2ε2. Define the

sets
B = {Bijrs : i < j, r < s, (i, j) 6= (r, s)},
B′ = {B′ijrs : i < j, r < s, (i, j) 6= (r, s)},
Bi` = {Bijrs : j ∈ C`, j 6= i, r < s, (i, j) 6= (r, s)} for every i ∈ [n], ` ∈ [k],

and B′i` = {B′ijrs : j ∈ C`, j 6= i, r < s, (i, j) 6= (r, s)} for every i ∈ [n], ` ∈ [k].

(14)

Each of B and B′ have
(
n
2

) ((
n
2

)
− 1
)

random variables. Bijrs = −Brsij , but conditioned onW ,
Bijrs is independent of all other variables in B. Thus, a dependency graph on B, conditioned onW ,
has a maximum degree of 1. On the other hand, B′ijrs depends on all the random variables of the
form B′ijr′s′ , B

′
i′j′rs, B

′
r′s′ij and B′rsi′j′ , and so, the dependence graph for B′ has degree smaller

than 4
(
n
2

)
− 7. Similarly, Bi`,B′i` have at most n`

((
n
2

)
− 1
)

random variables. While Bi` has a
dependency graph with degree at most 1, the dependency graph of B′i` has degree at most n`+

(
n
2

)
−3.

We now use the above discussion to derive upper bounds on ∆2 and ‖S − S̃‖2.

Upper bound for ∆2. To derive a bound on ∆2, we first note that

∆2 ≤ max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

Sij −E[Sij ]

∣∣∣∣∣∣+
a0

nmin

where a0 = S̃ii takes into account the fact that S̃ and E[S] differ only in diagonal terms. In the
subsequent steps, we bound the first term. For any t > 0, the union bound leads to

P

max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

Sij −E[Sij ]

∣∣∣∣∣∣ > t


≤
∑
i∈[n]

∑
`∈[k]

P

∣∣∣∣∣∣
∑
j∈C`

Sij −E[Sij |W] + E[Sij |W]−E[Sij ]

∣∣∣∣∣∣ > n`t

 .

≤
∑
i∈[n]

∑
`∈[k]

EW

P·|W
∣∣∣∣∣∣
∑
j∈C`

Sij −E[Sij |W]

∣∣∣∣∣∣ > n`t

2

+ P

∣∣∣∣∣∣
∑
j∈C`

E[Sij |W]−E[Sij ]

∣∣∣∣∣∣ > n`t


≤
∑
i∈[n]

∑
`∈[k]

EW

P·|W
∣∣∣∣∣∣
∑
j∈C`

∑
r<s

Bijrs

∣∣∣∣∣∣ > n`t

2

+ P

∣∣∣∣∣∣
∑
j∈C`

∑
r<s

B′ijrs

∣∣∣∣∣∣ > n`t

2

 (15)

For the probability conditioned on W , the summation involves terms in the set Bi` in (14). The
discussion on Bi` shows that, conditioned onW , the summation is a sum of independent random
variables Bijrs whose properties are stated after (13). Hence, we can apply Bernstein’s inequality to
bound the conditional probability as

P·|W

∣∣∣∣∣∣
∑
j∈C`

∑
r<s

Bijrs

∣∣∣∣∣∣ > n`t

2

 ≤ 2 exp

(
− (n`t2 )2

2pn`
(
n
2

)
+ 2

32n`t2

)

. 2 exp

(
−min

{
n`t

2

pn2
, n`t

})
.

1

n3

for t & max


√
pn2 lnn

nmin
,

lnn

nmin

. Since the O
(

1
n3

)
bound on the probability holds uniformly for

allW , it also bounds the first term in (15).

For the second probability in (15), note that the B′ijrs in the summation are not independent, and we
cannot directly apply Bernstein inequality. Hence, we apply the technique in Janson and Ruciński
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(2002, Theorem 5) which bounds the probability by partitioning the random variables in B′i` into
independent sets. Since the dependency graph on B′i` has maximum degree d = n` +

(
n
2

)
− 3,

we can obtain an equitable (d+ 1)-colouring, with each independent set of size b|B′i`|/(d+ 1)c or
d|B′i`|/(d+1)e, which are both smaller than n`. Denote the independent sets by B′i`,(1), . . . ,B′i`,(d+1),
and we can apply Bernstein’s inequality to bound the summation over each independent set. Hence,
we bound the second probability in (15), for every i, `, as

P

∣∣∣∣∣∣
∑
j∈C`

∑
r<s

B′ijrs

∣∣∣∣∣∣ > n`t

2


≤ P

 max
r∈{1,...,d+1}

∣∣∣∣∣∣
∑

B′∈B′
i`,(r)

B′

∣∣∣∣∣∣ > n`t

2(d+ 1)


≤

d+1∑
r=1

P

∣∣∣∣∣∣
∑

B′∈B′
i`,(r)

B′

∣∣∣∣∣∣ > n`t

2(d+ 1)

 (union bound)

≤ 2(d+ 1) exp

− ( n`t
2(d+1) )2

2
∑

B′∈B′
i`,(r)

Var (B′) + 2
32pε n`t

2(d+1)

 (Bernstein bound)

≤ 2(d+ 1) exp

(
−

( n`td+1 )2

8p2ε2n` + 2
3pε

n`t
d+1

)

. n2 exp

(
−min

{
n`t

2

p2ε2n4
,
n`t

pεn2

})
,

which is O
(

1
n3

)
for t & pεn2 ·max

{√
lnn

nmin
,

lnn

nmin

}
. The first term dominates since, under the

condition on δ, we have nmin & lnn. Thus, we conclude that, with probability 1− 1
4n ,

∆2 ≤ max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

Sij −E[Sij ]

∣∣∣∣∣∣+
a0

nmin

. max


√
pn2 lnn

nmin
,

lnn

nmin
, pεn2

√
lnn

nmin
,
pεδn2

nmin

 , (16)

where the last term is obviously dominated by the third term.

Upper bound for ‖S − S̃‖2. Similar to the case of ∆2, we bound the spectral norm as

‖S − S̃‖2 ≤ ‖S −E[S|W]‖2 + ‖E[S|W]−E[S]‖2 + ‖E[S]− S̃‖2,

where the last term equals a0 = S̃ii since E[S] − S̃ is a diagonal matrix. For the first term,
we derive a bound conditioned on W . Recall from (13)–(14) that, conditioned on W , the matrix
S −E[S|W] comprises of variables in B, which has a dependence graph with degree 1. We partition
B into two independent sets via equitable colouring, and write S − E[S|W] = A + A′, where
A and A′ are the symmetric matrices corresponding to each of the independent sets. We derive
a spectral norm for each of A and A′. For this, we first claim that, conditioned on W , the event
E =

{
maxi,j

{
|Aij |, |A′ij |

}
. max

{√
pn2 lnn, lnn

}}
occurs with probability 1 − O

(
1
n

)
. To

see this, observe that Aij (or A′ij) is a sum of at most
(
n
2

)
independent random variables Bijrs. By

Bernstein inequality,

P·|W(|Aij | > τ) ≤ 2 exp

(
− τ2

2p
(
n
2

)
+ 4

3τ

)
. exp

(
−min

{
τ2

pn2
, τ

})
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which is O
(

1
n3

)
for τ & max

{√
pn2 lnn, lnn

}
. Applying the union bound gives P(Ec) = O

(
1
n

)
.

Conditioned on W and E , the matrices A,A′ have independent zero mean entries, with each en-
try bounded by O

(
max

{√
pn2 lnn, lnn

})
. Furthermore, from the variance of Bijrs, we have

maxi
∑
j Var (Aij) < pn3, and same for A′. Hence, by matrix Bernstein inequality (Tropp, 2012),

P·|W,E (‖S −E[S|W]‖2 > t) ≤ P·|W,E (‖A‖2 > t/2) + P·|W,E (‖A′‖2 > t/2)

≤ 2n exp

− t2/4

pn3 + 1
3 t ·max

{√
pn2 lnn, lnn

}


. n exp

(
−min

{
t2

pn3
,

t√
pn2 lnn

,
t

lnn

})
.

1

n

for t &
{√

pn3 lnn ,
√
pn2(lnn)3 , (lnn)2

}
, where the second term is smaller than the first for n

large enough. Denote the complement of E by Ec. For t satisfying the stated condition,

P (‖S −E[S|W]‖2 > t)

= EW
[
P·|W (‖S −E[S|W]‖2 > t)

]
= EW

[
P·|W,E (‖S −E[S|W]‖2 > t)P·|W(E) + P·|W,Ec (‖S −E[S|W]‖2 > t)P·|W(Ec)

]
. EW

[
P·|W,E (‖S −E[S|W]‖2 > t) + P·|W(Ec)

]
.

1

n

as each term in the expectation is O
(

1
n

)
. Thus, we have ‖S −E[S|W]‖2 .

{√
pn3 lnn , (lnn)2

}
.

To bound ‖E[S|W]−E[S]‖2, we note that the entries of the matrix comprises of mutually dependent
variables in the set B′ defined in (14). We need to partition the entries into independent sets.
Since the dependency graph for B′ has maximum degree d = 4

((
n
2

)
− 1
)
, we can partition B′

into d+ 1 independent sets of nearly identical sizes (equitable colouring). Let E[S|W]− E[S] =
A(1) + . . . + A(d+1) denote the corresponding partition of the matrix, where A(`) ∈ Rn×n is a
symmetric matrix, consisting of the variables in the `-th independent set. Due to independence
of variables, we have A(`)

ij = B′ijrs for some r, s, and hence, we can conclude that each A(`) is a
symmetric matrix with independent zero-mean entries, bounded by 2pε and variance at most 4p2ε2

(follows from properties of B′ijrs). Thus, by matrix Bernstein inequality (Tropp, 2012), we have

P
(
‖A(`)‖2 > τ

)
≤ n exp

(
− t2

8p2ε2n+ 2
3pεt

)
,

and combining with the union bound,

P (‖E[S|W]−E[S]‖2 > t) ≤ P

(
max
`∈[d+1]

‖A(`)‖2 >
t

d+ 1

)
≤ n(d+ 1) exp

(
−

( t
d+1 )2

8p2ε2n+ 2
3pε

t
d+1

)

. n3 exp

(
−min

{
t2

p2ε2n5
,

t

pεn2

})
,

which is O
(

1
n

)
for t & pεn2 · max

{√
n lnn, lnn

}
, where the first term obviously dominates.

Combining the above derivations, we have with probability 1− 1
4n ,

‖S − S̃‖2 . max
{√

pn3 lnn , (lnn)2 , pεn2
√
n lnn , pεδn2

}
(17)

where the last term (arising due to a0) is dominated by the third.
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Deriving interval for λ in terms of |Q|. We now use (11), (16) and (17) to complete the proof for
the quadruplet setting. To this end, our main objective is to verify the conditions in Proposition 1:

∆1

2
< ∆1 − 6∆2, that is, ∆2 <

∆1

12
and ‖S − S̃‖2 <

nmin∆1

2
.

Using (11) and the bound in (16), we observe that ∆2 . ∆1 if

p & max

{
lnn

ε2δ2n2nmin
,

lnn

εδn2nmin

}
and δ &

√
lnn

nmin
,

where the condition on δ arises due to the third term in the bound in (16). Similarly, comparing the
bound in (17) to (11), we get that ‖S − S̃‖2 . nmin∆1 if

p & max

{
lnn

ε2δ2nn2
min

,
(lnn)2

εδn2nmin

}
and δ &

√
n lnn

nmin
,

where the condition on δ arises from the third bound in (17). Combining the above cases, we conclude
that if

δ &

√
n lnn

nmin
and p &

(lnn)2

ε2δ2nn2
min

, (18)

then the criteria for ∆2 and ‖S − S̃‖2 are satisfied, and by Proposition 1, X∗ is the unique optimal
solution for SDP-λ with the range of λ given by

‖S − S̃‖2 . max
{√

pn3 lnn , pε
√
n5 lnn , (lnn)2

}
. λ <

pεδnmin

2

(
n

2

)
=

∆1

2
. (19)

We finally show that the condition on p holds under the stated condition of |Q| & n3(lnn)2

ε2δ2n2
min

, and

state the above interval for λ in terms of |Q|. Under the assumption that each quadruplet is observed

independently with probability p, we have that E[|Q|] = p
((n2)

2

)
= O(pn4). By Bernstein inequality,

it is easy to verify that for p & lnn
n4 or equivalently |Q| & lnn, we have |Q| ∈

(
1
2E[|Q|], 3

2E[|Q|]
)

with probability 1−O
(

1
n

)
. Hence, we can replace p by |Q|n4 in (18)–(19) up to difference in constants,

which leads to the statement of Theorem 1 in the quadruplet setting.

C.2 Triplet setting

The proof structure in the triplet case is similar to that of the quadruplet setting. We derive an
appropriate ideal matrix S̃, where S̃ = E[S], except for some differences in the diagonal entries since
Sii = 0 for all i. From the block structure of S̃, we can compute ∆1. Subsequently, concentration
inequalities are used to derive upper bounds on ‖S − S̃‖2 and ∆2 in terms of the model parameters.
As done in the analysis of AddS-4, we letW denote the collection of random pairwise similarities,
and decompose

S − S̃ =
(
S −E[S|W]

)
+
(
E[S|W]−E[S]

)
+
(
E[S]− S̃

)
.

The last term is easy to tackle, and we use separate concentration for the first two terms both in the
context of ∆2 and the spectral norm. Bounds on these terms, combined with Proposition 1, provide
sufficient conditions on δ and sampling rate p such that exact recovery occurs. Finally, we show that
for p large enough, the number of triplets |T | is close to its expected value pn

(
n−1

2

)
, and state the

conditions in terms of |T |.
Computation of ∆1. The expectation of the AddS-3 similarity Sij , for i 6= j, is given by

E[Sij ] =
∑
r 6=i,j

P
(
(i, j, r) ∈ T

)
−P

(
(i, r, j) ∈ T

)
+ P

(
(j, i, r) ∈ T

)
−P

(
(j, r, i) ∈ T

)
. (20)

We now compute each term in the summation using the notation ψi ∈ [k] to indicate i ∈ Cψi . The
expected values of the terms are given in Table 2, where the last column represents the overall term
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Table 2: Value of each term in the summation in (20), assuming i, j, r are distinct.

Case P
(
(i, j, r) ∈ T

)
P
(
(i, r, j) ∈ T

)
P
(
(j, i, r) ∈ T

)
P
(
(j, r, i) ∈ T

)
Aggregate

ψi = ψj = ψr p/2 p/2 p/2 p/2 0
ψi = ψj 6= ψr p(1 + εδ)/2 p(1− εδ)/2 p(1 + εδ)/2 p(1− εδ)/2 2pεδ
ψi 6= ψj = ψr p/2 p/2 p(1− εδ)/2 p(1 + εδ)/2 −pεδ
ψi = ψr 6= ψj p(1− εδ)/2 p(1 + εδ)/2 p/2 p/2 −pεδ
ψi 6= ψj 6= ψr p/2 p/2 p/2 p/2 0

for each r 6= i, j in (20). The derivation for these values is identical to the one in the quadruplet
setting.

Based on Table 2, we can infer that for i 6= j such that ψi = ψj ,

E[Sij ] =
∑
r/∈Cψi

2pεδ = 2pεδ(n− nψi)

For i, j such that ψi 6= ψj , we have

E[Sij ] =
∑

r∈Cψi ,r 6=i

(−pεδ) +
∑

r∈Cψj ,r 6=j

(−pεδ) = −pεδ(nψi + nψj − 2).

Hence, we define the ideal similarity matrix as S̃ij = ZΣZT , where Σ`` = 2pεδ(n − n`) and
Σ``′ = −pεδ(n` + n`′ − 2) for ` 6= `′, and we can compute

∆1 = pεδ(n− 2). (21)

Preliminary computations and definitions for concentration. We defineW = {wij : i < j} as
the collection of random pairwise similarities, and split the concentration of ∆2 and ‖S − S̃‖2 into
terms involving S −E[S|W] and E[S|W]−E[S]. The basic idea is discussed in the corresponding
part of the quadruplet setting, and here, we introduce the key random variables. We first write

Sij =
∑
r 6=i,j

(
I{(i,j,r)∈T } − I{(i,r,j)∈T }

)
+
(
I{(j,i,r)∈T } − I{(j,r,i)∈T }

)
=
∑
r 6=i,j

ξijr
(
I{wij>wir} − I{wij<wir}

)
+ ξjir

(
I{wji>wjr} − I{wji<wjr}

)
(22)

where ξijr ∈ {−1, 0,+1} denotes whether the comparison between (i, j) and (i, r) is observed
(ξijr = 0 if not observed), and whether the crowd response was correct (ξijr = +1) or flipped
(ξijr = −1). Under our sampling and noise model,

P(ξijr = 0) = 1− p, P(ξijr = 1) =
p(1 + ε)

2
, P(ξijr = −1) =

p(1− ε)
2

and so, E[ξijr] = pε and Var (ξijr) ≤ p. The set Ξ = {ξijr : j < r, i 6= j, r} denotes the collection
of such random variables, where we abuse notation by using ξijr and ξirj to refer to the same variable.
We note that the variables in Ξ are mutually independent.

We use the continuous nature of Fin, Fout to write I{wij>wir} − I{wij<wir} = 2I{wij>wir} − 1, and
further define
Sij −E[Sij |W] =

∑
r 6=i,j

Bijr +Bjir with Bijr = (ξijr − pε)
(
2I{wij>wir} − 1

)
,

E[Sij |W]−E[Sij ] =
∑
r 6=i,j

B′ijr +B′jir with B′ijr = 2pε
(
I{wij>wir} −P(wij > wir)

)
.

(23)

The random variables Bijr, B′ijr have the following properties: |Bijr| ≤ 2, |B′ijr| ≤ 2pε with
probability 1, E[Bijr] = E[B′ijr] = 0, Var (Bijr) ≤ p and Var

(
B′ijr

)
≤ 4p2ε2. We define the sets

B = {Bijr : j 6= i, r 6= i, j},
B′ = {B′ijr : j 6= i, r 6= i, j},
Bi` = {Bijr, Bjir : j ∈ C`, r 6= i, j} for every i ∈ [n], ` ∈ [k],

and B′i` = {B′ijr, B′jir : j ∈ C`, r 6= i, j} for every i ∈ [n], ` ∈ [k].

(24)
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Each of B and B′ have n(n− 1)(n− 2) random variables, whereas Bi`,B′i` have at most 2n` (n− 2)
random variables. Note that Bijr = −Birj , but conditioned onW , Bijr is independent of all other
variables in B. Thus, a dependency graph on B, conditioned on W , has a maximum degree of 1.
The same is also true for B′i`. On the other hand, B′ijr depends on the random variables that involve
either wij or wir, that is B′irj , B

′
jir, B

′
jri, B

′
rij , B

′
rji, as well as all six variants of variables B′ijr′ and

B′ij′r, j
′, r′ /∈ {i, j, r}. Thus each B′ijr depends on at most 5 + 12(n− 3) = O (n) variables in B′.

The same holds when we restrict the set to B′i`. Thus, the dependency graph for B′ and B′i` have
dependency graph with O (n) maximum degree. We now use the above defined random variables
and their properties to derive upper bounds on ∆2 and ‖S − S̃‖2.

Upper bound for ∆2. To derive a bound on ∆2, we first note that

∆2 ≤ max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

Sij −E[Sij |W]

∣∣∣∣∣∣+ max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

E[Sij |W]−E[Sij ]

∣∣∣∣∣∣+ max
i∈[n]

S̃ii
nmin

.

In the subsequent steps, we bound the first term. For any t > 0, the union bound leads to

P

max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

Sij −E[Sij |W]

∣∣∣∣∣∣ > t


≤
∑
i∈[n]

∑
`∈[k]

P

∣∣∣∣∣∣
∑
j∈C`

Sij −E[Sij |W]

∣∣∣∣∣∣ > n`t


=
∑
i∈[n]

∑
`∈[k]

EW

P·|W
∣∣∣∣∣∣
∑
j∈C`

∑
r 6=i,j

Bijr +Bjir

∣∣∣∣∣∣ > n`t


The summation inside the conditional probability involves terms in Bi` defined in (24), and the
previous discussions show that the dependency graph of Bi` has maximum degree of 1. Hence, we
can split the 2n`(n− 2) variables in Bi` into two independent sets, say Bi`,(1) and Bi`,(2), and derive
concentration for each of them separately using Bernstein inequality in the following way.

P

max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

Sij −E[Sij |W]

∣∣∣∣∣∣ > t


≤
∑
i∈[n]

∑
`∈[k]

EW

P·|W
∣∣∣∣∣∣

∑
B∈Bi`,(1)

B

∣∣∣∣∣∣ > n`t

2

+ [P·|W

∣∣∣∣∣∣
∑

B∈Bi`,(2)

B

∣∣∣∣∣∣ > n`t

2


≤
∑
i∈[n]

∑
`∈[k]

EW

[
2 exp

(
− (n`t/2)2

2p|Bi`,(1)|+ 2n`t/3

)
+ 2 exp

(
− (n`t/2)2

2p|Bi`,(2)|+ 2n`t/3

)]

. n2 exp

(
−min

{
nmint

2

pn
, nmint

})
,

where the last step follows by noting that each of the two independent sets have Ω (nn`) variables, and

the bounds are independent ofW . The above probability isO
(

1
n

)
for t & max

{√
pn lnn

nmin
,

lnn

nmin

}
.

For the second term in the upper bound for ∆2, we have

P

max
i∈[n]

max
`∈[k]

∣∣∣∣∣∣ 1

n`

∑
j∈C`

E[Sij |W]−E[Sij ]

∣∣∣∣∣∣ > t

 ≤ ∑
i∈[n]

∑
`∈[k]

P

∣∣∣∣∣∣
∑
j∈C`

∑
r 6=i,j

B′ijr +B′jir

∣∣∣∣∣∣ > n`t


where the tail bound is for the sum of all random variables in B′i`. Since the dependency graph
on B′i` has maximum degree d = O (n), we can obtain an equitable (d + 1)-colouring with each
independent set of size b|B′i`|/(d+ 1)c or d|B′i`|/(d+ 1)e, which are smaller than n`. We denote the
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independent sets by B′i`,(1), . . . ,B′i`,(d+1), and use Bernstein inequality to bound the summation over
each independent set. Hence, we bound the probability for every i, `, as

P

∣∣∣∣∣∣
∑
j∈C`

∑
r 6=i,j

B′ijr +B′jir

∣∣∣∣∣∣ > n`t

 ≤ P

 max
r∈{1,...,d+1}

∣∣∣∣∣∣
∑

B′∈B′
i`,(r)

B′

∣∣∣∣∣∣ > n`t

(d+ 1)


≤

d+1∑
r=1

P

∣∣∣∣∣∣
∑

B′∈B′
i`,(r)

B′

∣∣∣∣∣∣ > n`t

(d+ 1)


≤ 2(d+ 1) exp

(
−

( n`t
(d+1) )2

8p2ε2|B′i`,(r)|+ 4
3pε

n`t
(d+1)

)

. n exp

(
−min

{
n`t

2

p2ε2n2
,
n`t

pεn

})
,

which is O
(

1
n3

)
for t & pεn ·max

{√
lnn

nmin
,

lnn

nmin

}
. The first term dominates for nmin & lnn,

which arises due to the condition on δ. Combining the above discussions we claim that, with
probability 1− 1

4n ,

∆2 . max

{√
pn lnn

nmin
,

lnn

nmin
, pεn

√
lnn

nmin
,
pεδn

nmin

}
, (25)

where the last term is obviously dominated by the third term.

Upper bound for ‖S − S̃‖2. Similar to the case of ∆2, we bound

‖S − S̃‖2 ≤ ‖S −E[S|W]‖2 + ‖E[S|W]−E[S]‖2 + ‖E[S]− S̃‖2,
where the last term equals maxi S̃ii. For the first term, we derive a bound conditioned onW . Recall
from (23)–(24) that, conditioned onW , the matrix S −E[S|W] comprises of variables in B, which
has a dependence graph with degree 1. We partition B into two independent sets via equitable
colouring, and write S −E[S|W] = A+A′, where A and A′ are the matrices corresponding to each
of the independent sets. We derive a spectral norm for each of A and A′. For this, we first claim
that, conditioned on W , the event E =

{
maxi,j

{
|Aij |, |A′ij |

}
. max

{√
pn lnn, lnn

}}
occurs

with probability 1−O
(

1
n

)
. To see this, observe that Aij (or A′ij) is a sum of 2(n− 2) independent

random variables Bijr, Bjir. By Bernstein inequality,

P·|W(|Aij | > τ) ≤ 2 exp

(
− τ2

4p(n− 2) + 4
3τ

)
. exp

(
−min

{
τ2

pn
, τ

})
which is O

(
1
n3

)
for τ & max

{√
pn lnn, lnn

}
. Applying the union bound gives P(Ec) = O

(
1
n

)
.

Conditioned on W and E , the matrices A,A′ have independent zero mean entries, with each en-
try bounded by O

(
max

{√
pn lnn, lnn

})
. Furthermore, from the variance of Bijr, we have

maxi
∑
j Var (Aij) < 2pn2, and the same holds for A′. Hence, by matrix Bernstein inequality

(Tropp, 2012),

P·|W,E (‖S −E[S|W]‖2 > t) ≤ P·|W,E (‖A‖2 > t/2) + P·|W,E (‖A′‖2 > t/2)

≤ 2n exp

(
− t2/4

pn2 + 1
3 t ·max

{√
pn lnn, lnn

})

. n exp

(
−min

{
t2

pn2
,

t√
pn lnn

,
t

lnn

})
.

1

n

for t &
{√

pn2 lnn ,
√
pn(lnn)3 , (lnn)2

}
, where the second term is smaller than the first for n

large enough. As in the quadruplet setting, we add the probability P(Ec) and take expectation over
W to obtain ‖S −E[S|W]‖2 .

{√
pn2 lnn , (lnn)2

}
with probability 1−O

(
1
n

)
.
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To bound ‖E[S|W]−E[S]‖2, we note that the entries of the matrix comprises of mutually dependent
variables in the set B′ defined in (24). Since the dependency graph for B′ has maximum degree
d = O (n), we partition B′ into d+ 1 independent sets of nearly identical sizes (equitable colouring).
Let E[S|W]−E[S] = A(1) + . . .+A(d+1) denote the corresponding partition of the matrix, where
A(`) ∈ Rn×n is a symmetric matrix consisting of the variables in the `-th independent set. Due to the
independence of the variables, we have A(`)

ij = A
(`)
ji = B′ijr or B′jir for some r 6= i, j. Hence, each

A(`) is a symmetric matrix with independent zero-mean entries, bounded by 2pε and variance at most
4p2ε2 (follows from properties of B′ijr). Thus, by matrix Bernstein inequality (Tropp, 2012), we have

P
(
‖A(`)‖2 > τ

)
≤ n exp

(
− t2

8p2ε2n+ 2
3pεt

)
,

and combining with the union bound,

P (‖E[S|W]−E[S]‖2 > t) ≤ P

(
max
`∈[d+1]

‖A(`)‖2 >
t

d+ 1

)
≤ n(d+ 1) exp

(
−

( t
d+1 )2

8p2ε2n+ 2
3pε

t
d+1

)

. n2 exp

(
−min

{
t2

p2ε2n3
,
t

pεn

})
,

which is O
(

1
n

)
for t & pεn · max

{√
n lnn, lnn

}
, where the first term obviously dominates.

Combining the above derivations, we have with probability 1− 1
4n ,

‖S − S̃‖2 . max
{√

pn2 lnn , (lnn)2 , pεn
√
n lnn , pεδn

}
(26)

where the last term (arising due to maxi S̃ii) is dominated by the third.

Deriving interval for λ in terms of |T |. We now use (21), (25) and (26) to complete the proof for
the triplet setting. We verify the conditions in Proposition 1 by deriving conditions under which
∆2 <

1
12∆1 and ‖S − S̃‖2 < 1

2nmin∆1. Similar to the proof for the quadruplet setting, we compare
the upper bounds in (16) and (17) with ∆1 and nmin∆1, respectively. As in the previous setting, the
first two bounds in (16)–(17) lead to conditions on p, while the third term leads to a condition on δ.
Combining the different cases, it follows that if

δ &

√
n lnn

nmin
and p &

(lnn)2

ε2δ2n2
min

, (27)

then the criteria for ∆2 and ‖S − S̃‖2 are satisfied, and by Proposition 1, X∗ is the unique optimal
solution for SDP-λ with the range of λ given by

‖S− S̃‖2 . max
{√

pn2 lnn , pε
√
n3 lnn , (lnn)2

}
. λ <

pεδnmin(n− 2)

2
=

∆1

2
. (28)

We finally show that the condition on p holds under the stated condition of |T | & n3(lnn)2

ε2δ2n2
min

, and

state the above interval for λ in terms of |T |. Under the assumption that each triplet is observed
independently with probability p, we E[|T |] = pn

(
n−1

2

)
= O

(
pn3
)
. By Bernstein inequality, it is

easy to verify that for p & lnn
n3 or equivalently |T | & lnn, we have |T | ∈

(
1
2E[|T |], 3

2E[|T |]
)

with
probability 1−O

(
1
n

)
. Hence, we can replace p by |T |n3 in (27)–(28) up to differences in constants,

which leads to the statement of Theorem 1 in the triplet setting.

D Algorithmic details

In this section, we provide details on the modified SPUR algorithm that we use to tune the parameter
λ, and to select the number of clusters.
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SPUR, acronym for Semidefinite Program with Unknown r (r denoting the number of clusters), was
proposed by Yan et al. (2018) to tune the parameter λ of SDP-λ in the context of graph clustering
(see Algorithm 2). The underlying idea of this approach is to search for the optimal λ using a grid
search over the range 0 < λ < λmax, where λmax is derived from an exact recovery result under
stochastic block model.

Algorithm 2: Semidefinite Program with Unknown k (SPUR).
input : graph A, number of candidates T .
begin

for t = 1 to T do
λt = exp

(
t
T ln (1 + λmax)

)
− 1. (Yan et al. (2018) set λmax = ‖A‖op)

Solve SDP-λ with λ = λt to obtain Xt.
Estimate kt = integer approximation of trace (Xt).

end

Choose t̂ = arg max
t

∑
i≤kt σi(Xt)

trace (Xt)
, where σi(Xt) denotes i-th largest eigenvalue of Xt.

end
output : Number of clusters kt̂, Xt̂.

In the present setting, Theorem 1 shows that the planted clusters can be exactly recovered given a
sufficient number of comparisons and an appropriate choice of λ. From Theorem 1, a candidate for
λmax can be chosen as |T |n (for triplets) or |Q|n (for quadruplets), which is a loose upper bound for the
theoretical interval for λ, obtained by noting that εδnmin ≤ n. Thus, following Yan et al. (2018), we
could use Algorithm 2 with our choice of λmax.

Unfortunately, this approach has two main drawbacks. First, it ignores the lower bound in Theorem 1
and, second, setting T , the number of λ values that should be considered in Algorithm 2, is difficult. To
address the former issue, we propose to consider Theorem 1 once more and to use λmin =

√
c(lnn)/n

as a lower bound for λ instead of 0, as used in Yan et al. (2018). To address the latter issue, we use
the fact that the estimated number of clusters k monotonically decreases with λ as shown in the next
Lemma.
Lemma 1 (The estimated number of clusters decreases monotonically with increasing λ). For
any λ > 0, let Xλ denote the solution of SDP-λ and kλ = btrace (Xλ)e be the integer approximation
of trace (Xλ), which is an estimate of the number of clusters. Then, kλ is a non-increasing function
of λ, that is

λ′ ≥ λ⇒ kλ′ ≤ kλ.

Proof. We start this proof by noting that since kλ is the integer approximation of trace (Xλ), it
suffices to show that trace (Xλ) is a non-increasing function of λ. Then, consider distinct λ′, λ and
let Xλ′ , Xλ be the solutions of SDP-λ with parameters λ′, λ, respectively. We have

trace (SXλ)− λtrace (Xλ) ≥ trace (SXλ′)− λtrace (Xλ′) ,

trace (SXλ)− λ′trace (Xλ) ≤ trace (SXλ′)− λ′trace (Xλ′) .

Subtracting the second inequality from the first inequality implies
trace (SXλ)− λtrace (Xλ)− (trace (SXλ)− λ′trace (Xλ))

≥ trace (SXλ′)− λtrace (Xλ′)− trace (SXλ′) + λ′trace (Xλ′)

which implies
(λ′ − λ)trace (Xλ) ≥ (λ′ − λ)trace (Xλ′)

or equivalently, (λ′ − λ)(trace (Xλ′) − trace (Xλ)) ≤ 0. Thus, for λ′ > λ, we can conclude that
trace (Xλ′) ≤ trace (Xλ), which shows that trace (Xλ) and kλ are non-increasing functions of λ.

Following this, using λmin and λmax, we get two estimates of the number of clusters, kλmin and
kλmax . Then, we search over k ∈ [kλmax , kλmin ] instead of searching over λ—in practice, it helps
to search over the values max{2, kλmax} ≤ k ≤ kλmin + 2. We select k that maximises the above
SPUR objective, where Xk is computed using the simpler SDP-k (Yan et al., 2018). This approach is
summarized in Algorithm 1 in the main paper.
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Figure 3: Comparing clustering algorithms to partition X in the last step. Using k-means or spectral
clustering does not affect the output of our approach.

E Additional results for the planted model

In this section, we provide additional experiments on our planted model. We show that changing
the clustering method used in the last step of our approach to cluster the matrix X learned by
SDP-λ or SDP-k does not affect the results. We demonstrate that, given a sufficient number of
comparisons, SPUR correctly estimates the number of clusters. We give details on the distributions
used in Figure 1c. Finally, we consider several additional experiments where we vary the planted
model parameters that were ignored in Section 5 in the main paper.

E.1 Clustering method in the last step

In the last step of our approach, we use k-means to cluster the learned matrix Xk. We experimentally
demonstrate here that the partition obtained is, in fact, independent of the clustering algorithm used in
this step. Hence, in Figure 3, we compare spectral clustering with k-means. As in the main paper, we
here consider varying the number of observations, |T |, |Q| and varying the crowd noise ε for both the
setting where k is estimated by SPUR and where we consider k to be known. There is no differences
between the ARI obtained when using k-means or spectral clustering.

E.2 Compare SPUR with known k

An important question is how good is SPUR at estimating the true number of clusters. We illustrate
this in Figure 4. We start by comparing the first two columns, showing how the ARI changes for
various parameters of the planted model. In the setting of |Q|, |T | = n(lnn)3 we see that using
a known number of clusters outperforms SPUR, especially in parameter ranges that are harder to
cluster (e.g. small δ, ε or for a larger number of clusters). If we consider |Q|, |T | = n(lnn)4, SPUR
correctly estimates the number of clusters and thus we omit the plots with known k.

E.3 Experimental details for changing Fin, Fout in the planted model

In this section, we give implementation details on the different distributions considered in Figure 1c.
In the following let φ be the normal pdf and Φ the normal cdf. Recall that, in all the experiments, we
fix δ = 0.5 as the default.

Parameters for Fin and Fout normal distributions. Let Fin = N (µin, σ) and Fout = N (µout, σ).
We fix σ = 0.1 and µout = 0. Using δ we can compute µin. Indeed, in this case, the cumula-
tive distribution function is known and, thus, by setting it equal to Pw∼Fin,w′∼Fout(w > w′) =
1+δ

2 for some δ ∈ (0, 1] (as given in Equation (3)) we directly get the δ defined in Section 2:
δ = 2Φ

(
(µin − µout)/(

√
2σ)
)
− 1. Then, assuming that µout = 0, we get µin =

√
2σΦ−1

(
1+δ

2

)
.
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Parameters for Fin and Fout Beta distributions. Let Fin = Beta(α, β), Fout = Beta(α′, β′). We
set α′ = β′ = 1 such that Fout = Beta(1, 1) = Unif(0, 1). We can then compute

Pw∼Beta(α,β),w′∼Beta(1,1)(w > w′) = Ew
[∫ w

0

dw′
]

= Ew [w]

=
α

α+ β

where the last line follows from the mean of the Beta distribution. Setting this equal to 1+δ
2 and

solving for α gives: α = β
(

1+δ
1−δ

)
. In our experiments, we fix β = 2.

Parameters for Fin Normal and Fout Uniform. Let Fin = N (µ, 0), Fout = Unif(0, 1). To set µ,
we compute:

Pw∼N (µ,0),w′∼Unif(0,1)(w > w′) =

∫ ∞
0

φ(w − µ)dw

[∫ min(w,1)

0

dw′

]

=

∫ 1

0

wφ(w − µ)dw +

∫ ∞
1

φ(w − µ)dw + µ (Φ(1− µ)− Φ(−µ))

=1 + φ(−µ)− φ(1− µ) + (µ− 1)Φ(1− µ)− µΦ(−µ)

Solving numerically for µ gives µ = 1+δ
2 .

E.4 Influence of different planted model parameters

In this section we present additional experiments where we vary various parameters of the planted
model. Recall that we consider the following parameters as default: n = 1000, k = 4, ε = 0.75,
|T | = |Q| = n(lnn)4 and Fin = N

(√
2σΦ−1

(
1+δ

2

)
, σ2
)
, Fout = N

(
0, σ2

)
with σ = 0.1 and

δ = 0.5.

Number of samples n, first row in Figure 4. We can first note that for |Q|, |T | = n(lnn)3 there
is no difference in the behaviour between SPUR and known k. Both AddS-3 and AddS-4 achieve
full recovery while MulK-3 and MulK-4 predictions are random. To learn somewhat meaningful
partitions with MulK-3, one needs to increase the number of observations to n(lnn)4. However, even
with this many comparisons, MulK-4 still learns random clusters.

Intrinsic noise δ, second row in Figure 4. Using |Q|, |T | = n(lnn)3, we see that, for both SPUR
and known k, AddS-3 and AddS-4 exactly recover the clusters even when the intrinsic noise is high,
that is δ = 0.4. MulK-3 and MulK-4 can only make random predictions in this case. When the
number of observations increases to n(lnn)4, AddS-3 and AddS-4 exactly recover the clusters even
for values of δ that are as small as 0.25. In this case, MulK-4 still predicts random clusters, while
MulK-3 is able to recover the clusters when the intrinsic noise is sufficiently small, that is δ ≥ 0.6.

Crowd noise ε, third row in Figure 4. This parameter was already analyzed in the main paper. The
plots are recalled here for the sake of completeness.

Number of clusters k, fourth row in Figure 4. Finally, we vary the number of planted clusters. Here,
we observe the most noticeable difference between SPUR and known k. For |Q|, |T | = n(lnn)3,
AddS-3 and AddS-4 with SPUR achieve perfect recovery for up to five clusters. While we notice a
similar behaviour for AddS-3 and AddS-4 with known k, the drop in ARI only starts for k > 7 and
is far less important than with SPUR. For n(lnn)4 observations AddS-3 and AddS-4 consistently
recover all the clusters. On the other hand, MulK-3 only recovers clusters up to k = 3 (here, MulK-3
uses the number of clusters estimated by AddS-3 with SPUR, that is k = 3). Once again, MulK-4
can only make random predictions.

F Further results for experiments on real comparison based data

In this final section we present supporting results for the real data experiments presented in Section 5.
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Figure 4: Further experiments on the planted model. On the one hand, SPUR needs sufficiently
many comparisons to correctly estimate the number of underlying clusters. On the other hand, our
approaches are not overly sensitive to changes in the planted model parameters and are able to exactly
recover the planted clusters with n(lnn)3 comparisons even in fairly difficult cases (small δ, high
k, . . . ). Furthermore, given n(lnn)4 comparisons, our approaches are able to exactly recover the
planted clusters in all the considered cases.
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Figure 5: ARI between the clustering obtained by the different baselines. AddS-3 and AddS-4 with
SPUR both estimate that the number of cluster is k = 2. There is a high degree of agreement between
the different approaches.

F.1 Details on the Car dataset

The Car dataset (Kleindessner and von Luxburg, 2016) is a comparison based dataset that contains 60
examples grouped into 3 classes (SUV, city cars, sport cars) with 4 outliers. This dataset originally
comes with a set of 6056 comparisons of the form “xi is most central in the triple xi, xj , xk.” Each
of these comparisons corresponds to two triplets: “xj is more similar to xi than to xk” and “xk is
more similar to xi than to xj .” Hence, we have access to 12112 triplet comparisons.

F.2 Food Dataset

In addition to the Car dataset we now look at a second comparison based dataset called Food (Wilber
et al., 2014). It contains 100 food images and comes with 190376 triplet comparisons. Since there
are no ground truth labels for the food dataset, we use the number of clusters estimated by SPUR for
all methods and plot, in Figure 5, the similarity matrix between the different clustering approaches
considered. Here, there is a high degree of agreement between all the clustering methods. Thus, most
approaches predict the same clusters up to minor differences for a few data points. In Figure 7, we
plot the clusters obtained by AddS-3 with SPUR (estimated k is 2). The two clusters seem to separate
Sweet foods from Savoury foods. Intuitively, it seems indeed natural for humans to judge that two
sweet foods are more similar to each other than to a third savoury food.

F.3 MNIST

In this section, we consider additional experiments on the MNIST dataset. First, we consider a second
similarity measure to generate the triplets. Then, we illustrate the partitions obtained with AddS-3
with known k and SPUR respectively.

Gaussian similarity. In the main paper, we use the Gaussian similarity to generate the comparisons.
More precisely, we compute the similarity between two examples xi and xj as

wij = exp

(
‖xi − xj‖22

γ2

)
with γ = 1.

Cosine similarity. Instead of the Gaussian similarity, we could consider alternatives to generate the
comparisons. For example, the Cosine similarity:

wij =
〈xi, xj〉
‖xi‖2 ‖xj‖2

.

In Figure 6, we show that using this alternative similarity affects the absolute results of the considered
approaches. However, it does not change the overall trend, that is, as the number of comparisons
increases, AddS-3 converges to the baseline of k-means with access to the original similarities.

Clustering using known k. Figure 8a shows the t-SNE embedding of 2000 MNIST samples of all
ten classes, where we see a clear separation between some classes (for example, 0 and 1) and very
close embedding between others (for example, 1 and 9). Note that the classes obtained by AddS-3
are shown up to permutations and may not reflect the majority label in the different clusters. Further
note that the data presented here corresponds to a single repetition out of the 10 repetitions used to
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Figure 6: Experiments on MNIST using the cosine similarity. The absolute ARI performances are
different from the Gaussian similarity. However, the overall trend is preserved and, given sufficiently
many comparisons, all the ordinal baselines reach the performance of k-means on the original data.

compute the mean ARI (with standard deviation) in the main paper and this appendix. In Figure 8d,
we see that, for |T | = n(lnn)2, the learned partition is not very representative of the original labels.
Figure 8c shows that, when the number of comparisons increases to |T | = n(lnn)3, the recovery
ability of AddS-3 is greatly improved. However, the obtained partitions are not entirely satisfactory.
Finally, Figure 8b shows that, when the number of comparisons further increases to |T | = n(lnn)4,
the clustering obtained is close to the true labeling and most clusters are correctly identified.

Clustering using SPUR. In this second set of experiments, we extend our observations from the
previous paragraph to the labeling obtained by AddS-3 using SPUR. One can note that SPUR always
underestimates the number of clusters. Hence, in Figure 9a, with |T | = n(lnn)3, the number of
predicted clusters is k = 6 while, in Figure 9b, with |T | = n(lnn)4, the number of predicted clusters
is k = 8. This explain the slightly worse behaviour of SPUR compared to known k in Figure 2b in the
main paper. Nevertheless, the difference in average ARI is not so significant when |T | = n(lnn)4,
suggesting that 8 clusters is, in fact, a good estimate of the number of clusters that can reliably be
distinguished by the different methods.
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Class A with 36 images (Sweet?)

Class B with 64 images (Savoury?)

Figure 7: Clusters obtained by AddS-3 on the food dataset. It seems that the Sweet foods are separated
from the Savoury ones.
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(a) MNIST embedding with true labels
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(b) AddS-3 k = 10, |T | = n(lnn)2
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(c) AddS-3 k = 10, |T | = n(lnn)3
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(d) AddS-3 k = 10, |T | = n(lnn)4

Figure 8: t-SNE embedding of 2000 MNIST samples with (8a) true labeling and (8d)–(8b) clusters
obtained by AddS-3 with known k = 10 and varying number of observations. The classes are given
up to permutations and may not reflect the majority label in each cluster.
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(a) AddS-3 SPUR, |T | = n(lnn)3
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(b) AddS-3 SPUR, |T | = n(lnn)4

Figure 9: t-SNE embedding of 2000 MNIST samples with the clusters predicted by AddS-3 using
SPUR and varying number of comparisons. The classes are given up to permutations and may not
reflect the majority label in each cluster.
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