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Introduction

Nowadays, numerical models are extensively used in all industrial and scientific disciplines to describe physical phenomena (e.g., systems of ordinary differential equations in ecosystem modeling, finite element models in structural mechanics, finite volume schemes in computational fluid dynamics) in order to design, analyze or optimize various processes and systems. These numerical models are often useful from either a scientific standpoint (e.g., by improving the understanding of modeled physical phenomena) or from an engineering standpoint (e.g., to better assist a decision-taking process). In addition to this tremendous growth in computational modeling and simulation, the identification and treatment of the multiple sources of uncertainties has become an essential task from the early design stage to the whole system life cycle. As an example, such a task is crucial in the management of complex systems such as those encountered in energy exploration and production [START_REF] De Rocquigny | Uncertainty in industrial practice: a guide to quantitative uncertainty management[END_REF] and in sustainable resource development [START_REF] Beven | Environmental Modelling: An Uncertain Future?[END_REF].

In addition, the emergence of global sensitivity analysis (GSA) of model outputs played a fundamental role in the development and enhancement of these numerical models (see, e.g., [START_REF] Pianosi | Sensitivity analysis of environmental models: A systematic review with practical workflow[END_REF]; [START_REF] Razavi | The future of sensitivity analysis: An essential discipline for systems modelling and policy making[END_REF] for recent reviews). Mathematically, if the model inputs (resp. output) are denoted by X (resp. Y ) and the model is written G(•), such as

Y = G(X), (1) 
GSA aims at understanding the behavior of Y with respect to (w.r.t. ) X = (X 1 , . . . , X d ) ⊤ the vector of d inputs. GSA has been extensively used as a versatile tool to achieve various goals: for instance, quantifying the relative importance of inputs regarding their influence on the output (a.k.a. "ranking"), identifying the most influential inputs among a large number of inputs (a.k.a. screening) or analyzing the input-output code (i.e., the numerically modeled phenomenon) behavior [START_REF] Saltelli | Global Sensitivity Analysis. The Primer[END_REF][START_REF] Iooss | A review on global sensitivity analysis methods[END_REF].

When complex systems are critical or need to be highly safe, numerical models can also be of great help for risk and reliability assessment [START_REF] Lemaire | Structural Reliability[END_REF]. Indeed, to track potential failures of a system (which could lead to dramatic environmental, human or financial consequences), numerical models allow a simulation of its behavior far from its nominal one (see, e.g., [START_REF] Richet | Inversion algorithm for civil flood defense optimization: Application to twodimensional numerical model of the garonne river in france[END_REF] in flood hazard assessment). In such a context, analytical or experimental approaches can be inappropriate, too expensive, or too difficult to perform. Based on numerical simulations, the tail behavior of the output distribution can be studied and typical risk measures can be estimated [START_REF] Rockafellar | Engineering Decisions under Risk Averseness[END_REF]. Among others, the probability that the output Y exceeds a given threshold value t ∈ R, given by P(Y > t) and often called a failure probability, is widely used in many applications. When {Y > t} is a rare event (i.e., associated to a very low failure probability), advanced sampling-based or approximation-based techniques [START_REF] Morio | Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach[END_REF] are required to accurately estimate the failure probability. In this very specific context, dedicated sensitivity analysis methods have been developed, especially in the structural reliability community (see, e.g., [START_REF] Wu | Computational Methods for Efficient Structural Reliability and Reliability Sensitivity Analysis[END_REF]; [START_REF] Song | Subset simulation for structural reliability sensitivity analysis[END_REF]; [START_REF] Wei | Efficient sampling methods for global reliability sensitivity analysis[END_REF]). In such a framework, called reliability-oriented sensitivity analysis (ROSA) [START_REF] Chabridon | Reliability-oriented sensitivity analysis under probabilistic model uncertainty -Application to aerospace systems[END_REF][START_REF] Perrin | Efficient Evaluation of Reliability-Oriented Sensitivity Indices[END_REF], the idea is to provide importance measures dedicated to the problem of rare event estimation.

Formally, standard GSA methods mostly focus on quantities of interest (QoI) characterizing the central part of the output distribution (e.g., the variance for Sobol' indices [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF], the entire distribution for moment-independent indices [START_REF] Borgonovo | A new uncertainty importance measure[END_REF]), while ROSA methods focus on risk measures and their associated practical difficulties (e.g., costly to estimate, inducing a conditioning on the distributions, non-trivial interpretation of the indices). Following [START_REF] Raguet | Target and conditional sensitivity analysis with emphasis on dependence measures[END_REF], ROSA methods can be categorized regarding the type of study they consider, i.e., according to the following two categories:

• target sensitivity analysis (TSA) aims at measuring the influence of the inputs (considering their entire input domain) on the occurrence of the failure event. This means considering the following random variable, defined by the indicator function of the failure domain: 1 {G(X)>t} ;

• conditional sensitivity analysis aims at studying the influence of the inputs on the conditional distribution of the output Y |{G(X) > t}, i.e., exclusively within the critical domain. By Eq. ( 1), a conditioning also appears on the inputs' domain.

Various indices have been proposed to tackle these two types of studies (see, e.g., [START_REF] Li | Moment-independent importance measure of basic variable and its state dependent parameter solution[END_REF]; [START_REF] Wei | Efficient sampling methods for global reliability sensitivity analysis[END_REF]; [START_REF] Perrin | Efficient Evaluation of Reliability-Oriented Sensitivity Indices[END_REF]; [START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor, Reliability Engineering and System Safety[END_REF]). The present paper is dedicated to ROSA (under the assumption that the QoI is a failure probability) and focuses on a TSA study. However, a new consideration for TSA is addressed in the present work: the possible statistical dependence between the inputs. Indeed, most of the common GSA methods (and it is similar for the ROSA ones) have been developed under the assumption of independent inputs. As an example, the well-known Sobol' indices [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] which rely on the so-called functional analysis of variance (ANOVA) and Hoeffding decomposition [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF], can be directly interpreted as shares of the output variance that are due to each input and combination of inputs (called "interactions") as long as the inputs are independent.

When the inputs are dependent, the inputs' correlations dramatically alter the interpretation of the Sobol' indices. To handle this issue, several approaches have been investigated in the literature. For instance, [START_REF] Jacques | Sensitivity analysis in presence of model uncertainty and correlated inputs[END_REF] proposed to estimate indices for groups of correlated inputs. However, this approach does not allow for a quantification of the influence of individual inputs. Amongst other similar works, [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF]; [START_REF] Chastaing | Generalized Hoeffding-Sobol decomposition for dependent variables -Application to sensitivity analysis[END_REF] proposed to extend the functional ANOVA decomposition to a more general one (e.g., taking the covariance into account). However, the indices obtained for these approaches can be negative, which limits their practical use due to interpretability challenges (i.e., as a share of the output's variance). In addition to this, other works (see, e.g., [START_REF] Xu | Uncertainty and sensitivity analysis for models with correlated parameters[END_REF]; [START_REF] Mara | Variance-based sensitivity indices for models with dependent inputs[END_REF]) considered a Gram-Schmidt procedure to decorrelate the inputs and proposed to estimate two kinds of contributions for each variable (an uncorrelated one and a correlated one). These developments finally resulted in the proposition of a set of four Sobol' indices (instead of the two standard ones which are the first-order index and total index in the independent case) which enable the correlation effects to be fully captured in a GSA [START_REF] Mara | Non-parametric methods for global sensitivity analysis of model output with dependent inputs[END_REF]. Despite this achievement, this approach remains difficult to implement in practice (see [START_REF] Benoumechiara | Shapley effects for sensitivity analysis with dependent inputs: bootstrap and kriging-based algorithms[END_REF] for extensive studies). Finally, the VARS approach [START_REF] Do | Correlation effects? A major but often neglected component in sensitivity and uncertainty analysis[END_REF] (allowing a thorough analysis of the inputs-output relationships) can handle input correlation but is out of scope of the present work which only focuses on variance-based sensitivity indices, directly computed from the numerical model. Recently, another method has been developed by considering another type of indices: the Shapley effects. The initial formulation originates from the "Shapley values" developed in the field of Game Theory [START_REF] Shapley | A value for n-person games[END_REF][START_REF] Osborne | A Course in Game Theory[END_REF]. The underlying idea is to fairly distribute both gains and costs to multiple players working cooperatively. By analogy with the GSA framework, the inputs can be seen as the players while the overall process can be seen as attributing shares of the output variability to the inputs. Considering the variance of the output in a GSA formulation leads to the so-called "Shapley effects" proposed by [START_REF] Owen | Sobol' indices and Shapley value[END_REF]. In the same vein, [START_REF] Owen | On Shapley value for measuring importance of dependent inputs[END_REF]; [START_REF] Iooss | Shapley effects for Sensitivity Analysis with correlated inputs : Comparisons with Sobol' Indices, Numerical Estimation and Applications[END_REF]; [START_REF] Benoumechiara | Shapley effects for sensitivity analysis with dependent inputs: bootstrap and kriging-based algorithms[END_REF] bridge the gap between Sobol' indices and Shapley effects while illustrating the usefulness of these new indices to handle correlated inputs in the GSA framework. Thus, the present work attempts to to extend the use of Shapley effects to the ROSA context.

Overall, the main objective is to develop a ROSA index which enables TSA to be performed (i.e., capturing the influence of the inputs on a risk measure, typically a failure probability here) under the constraint of dependent inputs. This work relies on the use of recent promising results and numerical tools (both in field of TSA [START_REF] Spagnol | Kernel-based sensitivity indices for high-dimensional optimization problems[END_REF] and Shapley effects' estimation [START_REF] Broto | Variance reduction for estimation of shapley effects and adaptation to unknown input distribution[END_REF]). The outline of this paper is the following. Section 2 is devoted to a pedagogical introduction of the statistical dependence challenges for variance-based sensitivity indices, that can be solved by Shapley effects. Section 3 presents a new formulation of TSA, based on Shapley effects leading to the novel target Shapley effects, while Section 4 develops two algorithms for their estimation. Section 5 provides illustrations on simple toy-cases which give analytical expressions of the target Shapley effects, allowing deeper appreciation of their behavior. Section 6 applies these new sensitivity indices to two use-cases: a simplified model of a river flood and an epidemiological model applied to the COVID-19 pandemic.

Finally, Section 7 gives conclusions and research perspectives. Throughout this paper, the mathematical notation E(•) (resp. V(•)) will represent the expectation (resp. variance) operator.

Variance-based sensitivity analysis with dependent inputs: the Shapley solution

While devoted to computer experiments, GSA has close connections with multivariate data analysis and statistical learning [START_REF] Christensen | Linear models for multivariate, time series and spatial data[END_REF][START_REF] Hastie | The elements of statistical learning[END_REF]. Indeed, in all these topics, one important issue is often to provide a weight to some variables (the inputs) w.r.t. its impact on another variables (the outputs). Depending on the domain, such a weight can either be called a "sensitivity index" or an "importance measure". A very convenient way is to base these weights on the ANOVA (analysis of variance) decomposition [START_REF] Christensen | Linear models for multivariate, time series and spatial data[END_REF][START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] of the output variance. Indeed, such a decomposition provides a natural division of the output's variance in shares attributed to each input. The principle of the "variance-based sensitivity indices" [START_REF] Saltelli | Global Sensitivity Analysis. The Primer[END_REF] consists then in understanding how to separate the contribution of each X i from the variance of Y . However, due to potential statistical dependencies between inputs, this decomposition cannot be directly performed. Starting from a simple example of a linear model, chosen for pedagogical purposes, this section provides a reminder on this topic while illustrating the important potential of Shapley effects in practice.

Understanding the correlation issues via the linear model case

In this section, the aim is to quantify the relative importance of d scalar inputs X j (j = 1, . . . , d) by fitting on a data sample (coming from the model Eq. ( 1)) a linear regression model so as to predict a scalar output Y :

Y (X) = d j=0 β j X j + ǫ , (2) 
where

X 0 = 1, β = (β 0 , . . . , β d ) ⊤ ∈ R d+1 is the effects vector and ǫ ∈ R the model's error of variance σ 2 .
If a sample of inputs and outputs

(X n , Y n ) = X (i) 1 , . . . , X (i) d , Y (i) i=1,...,n is available (with n > d),
the Ordinary Least Squares method (see, e.g., [START_REF] Christensen | Linear models for multivariate, time series and spatial data[END_REF]) can easily be used to estimate the parameters β and σ 2 in the linear regression model in Eq. ( 2). Moreover, one obtains the predictor Y (x * ) of Y at any prediction point x * . An important validation metric of this model is the classical coefficient of determination given by:

R 2 Y (X) = n i=1 Y (X (i) ) -Ȳ 2 Y (i) -Ȳ 2 (3)
where Ȳ is the output empirical mean. R 2 Y (X) represents the percentage of output variability explained by the linear regression model of Y on X. Finally, from Eq. ( 2), the variance decomposition expresses as:

V(Y ) = d j=1 β 2 j V(X j ) + 2 k>j β j β k Cov(X j , X k ) + σ 2 . ( 4 
)
In the specific case of independent inputs, the covariance terms cancel and the standard ANOVA (i.e., V(Y ) = β 2 j V(X j ) + σ 2 ) is obtained. Then, global sensitivity indices, called Standardized Regression Coefficients (SRC), can be directly computed:

SRC j = β j V(X j )/V(Y ) .
(5)

The estimation of the SRC is made by replacing the terms in Eq. ( 5) by their estimates. Interestingly, this metric for relative importance is signed (thanks to the regression coefficient sign), giving the sense of variation of the output w.r.t. each input. Moreover, SRC 2 j represents a share of variance and the sum of all the SRC 2 j approaches R 2 (i.e., the amount of explained variance by the linear model). Note that, in a perfect linear regression model (i.e., without any random error term ǫ), SRC j is equal to the linear Pearson's correlation coefficient between X j and Y (denoted by ρ(X j , Y )). Note also that the ANOVA and SRC 2 extend to the functional ANOVA and Sobol' indices in the general (non-linear model) case (see Appendix A).

When the inputs are dependent, the main concern is to allocate the covariance terms in Eq. ( 4) to the various inputs. In this case, the Partial Correlation Coefficient (PCC) has been promoted in GSA [START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF][START_REF] Saltelli | Global Sensitivity Analysis. The Primer[END_REF]) as a substitute to the SRC, in order to cancel the effects of other inputs when allocating the weight of one input X j in the variance of Y :

PCC j = ρ(X j -X -j , Y -Y -j ) (6)
where X -j is the vector of all the d inputs except X j , X -j is the prediction of the linear model expressing X j w.r.t. X -j and Y -j is the prediction of the linear model Y w.r.t. X -j . However, PCC is not a right sensitivity index of the input. Indeed, it consists in measuring the linear correlation between Y and X j by fixing X -j , and is then a measure of the linearity (and not the importance) between the output and one input.

Instead of controlling other inputs X -j such as done in the PCC, the Semi-Partial Correlation Coefficient (SPCC) quantifies the proportion of the output variance explained by X j after removing the information brought by X -j (on X j ) [START_REF] Johnson | History and use of relative importance indices in organizational research[END_REF]:

SPCC j = ρ(X j -X -j , Y ) . ( 7 
)
SPCC can also be expressed by using the relation SPCC

2 j = R 2 Y (X) -R 2 Y (X-j )
, which clearly shows that SPCC gives the additional explanatory power of the input X j in the linear regression model of Y on X. However, the SPCC of highly correlated inputs will be small, despite their "real" explanatory power on the output. This aspect seems to be the main drawback of SPCC and probably explains its lack of popularity for GSA purposes.

To give an intuitive view of the limitations induced by the multicollinearity of the inputs (i.e., when inputs are linearly correlated to each other), Venn diagrams can be used (see, Figure 1) in the case of two inputs, X 1 and X 2 , and one output Y . From Figure 1, the coefficient of determination can be written as:

R 2 Y (X1,X2) = a + b + c a + b + c + σ 2 , ( 8 
)
where a + b + c + σ 2 is equal to the variance of Y and a + b + c represents the part of explained variance by the regression model (with b = 0 in the uncorrelated case). In this elementary example, the previously introduced sensitivity indices are given by [START_REF] Clouvel | Uncertainty quantification of the fast flux calculation for a PWR vessel[END_REF]:

SRC 2 1 = (a + b)/(a + b + c + σ 2 ) , SRC 2 2 = (c + b)/(a + b + c + σ 2 ) , PCC 2 1 = a/(a + σ 2 ) , PCC 2 2 = c/(c + σ 2 ) , SPCC 2 1 = a/(a + b + c + σ 2 ) , SPCC 2 2 = c/(a + b + c + σ 2 ) . (9) 
Thus, one can understand the limitations of SRC, PCC and SPCC when correlation is present: the variance share which comes from the correlation between inputs (i.e., the b value in Figure 1 -right) is allocated two times with the SRC but not allocated at all with SPCC, while PCC does not represent any variance sharing. The three problems above can be solved by using another sensitivity index which finds a way to partition the R 2 among the d inputs: the LMG [START_REF] Lindeman | Introduction to bivariate and multivariate analysis[END_REF][START_REF] Grömping | Relative importance for linear regression in R: the Package relaimpo[END_REF] (acronym based on the authors' names, i.e., "Lindeman -Merenda -Gold") uses sequential sums of squares from the linear model and obtains an overall measure by averaging over all orderings of inputs. Mathematically, let A be a subset of indices in the set of all subsets of {1, . . . , d} and X A = (X j : j ∈ A) a group of inputs. LMG is based on the measure of the elementary contribution of any given variable X j to a given subset model Y (X A ) by the increase in R 2 that results from adding that predictive variable to the regression model:

LMG j = 1 d! π∈permutations of {1,...,d} R 2 Y (X v∪{j} ) -R 2 Y (Xv ) (10) 
with v the indices entered before j in the order π. In Eq. ( 10), the sum is performed over all the permutations of {1, . . . , d}. For the case of two inputs (see Figure 1), we can easily show that:

LMG 1 = (a + b/2)/(a + b + c + σ 2 ) , LMG 2 = (c + b/2)/(a + b + c + σ 2 ) . (11) 
Then, in the LMG framework, the R 2 Y (X1,X2) has been perfectly shared into two parts with an equitable distribution of the b term between X 1 and X 2 .

This allocation principle exactly corresponds to the application of the Shapley values [START_REF] Shapley | A value for n-person games[END_REF] on the linear model. This attribution method has been primarily used in cooperative game theory, allowing for a cooperative allocation of resources between players based on their collective production (see Appendix B for a more formal definition). The Shapley values solution consists in fairly distributing both gains and costs to several actors working in coalition. In situations when the contributions of each actor are unequal, it ensures that each actor gains as much or more as they would have from acting independently. Now, if the actors are identified with a set of inputs and the value assigned to each coalition is identified to the explanatory power of the subset of model inputs composing the coalition, one obtains the LMG in Eq. (10).

Shapley effects

In the general case, when no assumption is made on the model G(•) (see Eq. ( 1)), variance-based sensitivity indices have been developed (see, [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]; [START_REF] Saltelli | Global Sensitivity Analysis. The Primer[END_REF]) and applied to perform a GSA of complex models (see, e.g., [START_REF] Nossent | Sobol' sensitivity analysis of a complex environmental model[END_REF]).

When the inputs are assumed to be independent, they allow the variance of the model output to be decomposed according to each possible subsets of inputs (called "Sobol' indices"). They are a means to measure the individual effects of inputs, as well as the effect of their interaction (see, Appendix A for the theoretical details).

When the inputs are effectively dependent, the Sobol' indices lose their inherent interpretation (i.e., decomposition in individual and interaction effects). To remedy this drawback, [START_REF] Owen | Sobol' indices and Shapley value[END_REF] recently proposed game theoretic GSA indices, in the same fashion as the LMG indices (see, Eq. ( 10)), inspired by the Shapley values of cooperative games. They are defined by:

Sh j = 1 d A⊂{-j} d -1 |A| -1 (val(A ∪ {j}) -val(A)) , (12) 
where val(A) is called cost function (or value function) assigned to a subset A ∈ P d of inputs, P d denotes the set of all possible subsets of {1, . . . , d}, {-j} denotes the set of indices {1, . . . , d} \ j and |A| denotes the cardinal number of A.

For GSA purposes, [START_REF] Owen | Sobol' indices and Shapley value[END_REF] proposes to use the "closed Sobol' indices" as the value function in Eq. ( 12):

val(A) = S clos A = V E G(X) X A V (G(X)) , (13) 
The attribution properties of the Shapley values applied to this particular cost function, leads to the definition of the Shapley effects:

Sh j = 1 d A⊂{-j} d -1 |A| -1 S clos A∪{j} -S clos A . (14) 
These indices allow for a quantification of the importance of each input, which intrinsically takes into account both interaction and dependence effects on the output's variance. Moreover, two important properties of the Shapley effects allow for their interpretation: they sum up to one and are non-negative. Thus, they can be considered as a decomposition of the output's variance. They allow for input ranking by attributing to each input a percentage of the variable of interest's variance. These indices have been extensively studied by [START_REF] Owen | On Shapley value for measuring importance of dependent inputs[END_REF]; [START_REF] Iooss | Shapley effects for Sensitivity Analysis with correlated inputs : Comparisons with Sobol' Indices, Numerical Estimation and Applications[END_REF]. An alternative way of defining the Shapley effects has also been proposed, by taking the following cost function:

val(A) = E V G(X)|X A V (G(X)) (15) 
where A = {1, . . . , d} \ A. This alternative definition leads to an equivalent definition of the Shapley effects (Eq. ( 14)), as outlined by [START_REF] Song | Shapley effects for global sensitivity analysis: Theory and computation[END_REF], and allows for additional estimation methods.

In order to illustrate Shapley effects' attributions, one can first consider a model with three inputs

X = (X 1 , X 2 , X 3 ) ⊤ .
From Eq. ( 14), one has:

Sh 1 = 1 3 S clos 1 + 1 6 S clos {1,2} -S clos 2 + S clos {1,3} -S clos 3 + 1 3 S clos {1,2,3} -S clos {2,3} .
If the three inputs are assumed to be independent, this result leads to:

Sh 1 = S 1 + 1 2 S {1,2} + 1 2 S {1,3} + 1 3 S {1,2,3}
where one can notice that the Shapley effects' decomposition consists in allocating the initial Sobol' index, plus an equal share of the interaction effects between all the inputs. However, if dependence between inputs is assumed, this behavior cannot be clearly illustrated, except when a linear model G(•) is assumed (see Subsection 2.1).

The quantity S clos

A∪{j} -S clos A can be interpreted as being a quantification of the marginal effects of the input j in relation to the subset of variables A. It is heavily linked to the notion of marginal contributions of cooperative games, aiming at quantifying the bargaining power of a player in an allocation process [START_REF] Brandenburger | Cooperative Game Theory: Characteristic Functions, Allocations, Marginal Contribution[END_REF]. If S clos A is believed to contain the initial effects of the inputs in A, plus their interaction effects, and any effect due to their dependence structure, then the increment S clos A∪{j} -S clos A quantifies the initial effect of the input j, its interaction effects with the inputs in A, and the effects due to their dependence. Then, the Shapley attribution weighs all the marginal effects, in order to assess the effective influence of the involved inputs through their marginal contributions, in the same fashion as the LMG indices for a linear model, as depicted in Section 2.1.

It is important to note that the above mentioned alleged decomposition of S clos A cannot be verified due to the lack of a univocal functional variance decomposition when inputs are dependent. However, the interpretation of the Shapley effects does not rely on the chosen cost function to be meaningful, but rather on its ability to quantify marginal contributions. Empirical studies and analytical studies show that the choice of S clos A as a cost function remains pertinent, even when inputs are dependent (see, [START_REF] Iooss | Shapley effects for Sensitivity Analysis with correlated inputs : Comparisons with Sobol' Indices, Numerical Estimation and Applications[END_REF]).

Reliability-oriented Shapley effects for target sensitivity analysis

A brief overview of reliability-oriented sensitivity analysis

When focusing on complex systems, one often needs to prepare for possible critical events, which potentially have a low occurence probability but lead to a system failure. Such failures may have dramatic human, environmental and economic consequences, depending on the context. The fields of reliability assessment and risk analysis [START_REF] Lemaire | Structural Reliability[END_REF][START_REF] Richet | Inversion algorithm for civil flood defense optimization: Application to twodimensional numerical model of the garonne river in france[END_REF], aim to prevent these failures. Mathematically, a reliability problem focuses on a risk measure computed from the tail of the variable of interest's distribution [START_REF] Rockafellar | Engineering Decisions under Risk Averseness[END_REF]. Performing sensitivity analysis in such a context requires the use of dedicated tools, which have been developed by various authors under the denomination of "reliability-oriented sensitivity analysis" (ROSA) (see, e.g., [START_REF] Perrin | Efficient Evaluation of Reliability-Oriented Sensitivity Indices[END_REF]; [START_REF] Derennes | Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures[END_REF]; [START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor, Reliability Engineering and System Safety[END_REF]). A large panel of ROSA methods have been proposed in the structural reliability community such as, for example, several variance-based approaches (see, e.g., [START_REF] Morio | Extreme quantile estimation with nonparametric adaptive importance sampling[END_REF]; [START_REF] Wei | Efficient sampling methods for global reliability sensitivity analysis[END_REF]; [START_REF] Perrin | Efficient Evaluation of Reliability-Oriented Sensitivity Indices[END_REF]; [START_REF] Chabridon | Mechanical Engineering Under Uncertainties[END_REF]) and moment-independent approaches (see, e.g., [START_REF] Cui | Moment-independent importance measure of basic random variable and its probability density evolution solution[END_REF]; [START_REF] Li | Moment-independent importance measure of basic variable and its state dependent parameter solution[END_REF]; [START_REF] Derennes | Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures[END_REF]). From the GSA community, several extensions have also been proposed in order to study risks, or reliability measures. The contrast-based indices proposed by [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF] are, amongst others, an example of a versatile tool which can handle several types of QoI. They were applied in the works of [START_REF] Browne | Estimate of quantile-oriented sensitivity indices[END_REF]; Maume-Deschamps and Niang (2018) in quantile-oriented formulations. Other formulations such as the quantile-based global sensitivity measures [START_REF] Kucherenko | Quantile based global sensitivity measures[END_REF] or other indices related to dependence measures [START_REF] Raguet | Target and conditional sensitivity analysis with emphasis on dependence measures[END_REF][START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor, Reliability Engineering and System Safety[END_REF] have been proposed.

In the context of reliability assessment, a typical risk measure is the failure probability given by:

p Y t def = P (Y > t) = P (G(X) > t) = E 1 {G(X)>t} (X) = E [1 Ft (X)] ( 16 
)
where t ∈ R represents a threshold characterizing the state of the system. Typically, the event {Y > t} denotes a failure event (i.e., the system described by the model G(X) enters a failure state). As for F t , it represents the input failure domain, i.e., F t def = {X | G(X) > t}. Performing a ROSA study poses a few challenges: firstly, the variable of interest here is not directly Y anymore, but rather a binary random variable whose occurrence is characterized by the indicator function 1 Ft (X); secondly, in practice, these failure events are typically "rare events", associated to a low failure probability which might be difficult to estimate in practice through typical sampling methods [START_REF] Morio | Estimation of Rare Event Probabilities in Complex Aerospace and Other Systems: A Practical Approach[END_REF]; thirdly, the type of study one desires to perform has to be reinterpreted regarding the new QoI. Regarding this last point, [START_REF] Raguet | Target and conditional sensitivity analysis with emphasis on dependence measures[END_REF] focus on two types of studies when dealing with critical events: the first one, called target sensitivity analysis (TSA), aims at catching the influence of the inputs on the occurrence of the failure event, while the second one, called "conditional sensitivity analysis" aims at studying the influence of the inputs once the threshold value has been reached (i.e., within the failure domain). The present paper is dedicated to ROSA (under the assumption that the QoI is a failure probability given by Eq. ( 16)) and aims at developing tools for TSA.

To illustrate this paradigm in plain text, one can refer to the study of the water level in a river protected by a dyke. From the traditional GSA point of view, the central question would be "Which inputs influence the water level?", while in the TSA paradigm, one focuses more on the question "Which inputs influence the occurrence of a flood?". Note that this particular example is studied in depth in Subsection 6.1.

When the inputs are assumed to be independent, a first category of sensitivity indices dedicated to TSA are the "target Sobol' indices" whose first formulation has been proposed by [START_REF] Li | Moment-independent importance measure of basic variable and its state dependent parameter solution[END_REF].

In this document, the original Sobol' indices, in the TSA context, are denoted:

T-S A = B⊆A (-1) |A|-|B| V (E [1 Ft (X) | X B ]) V (1 Ft (X)) (17) where V (1 Ft (X)) = p Y t (1 -p Y t ).
Similarly, the closed Sobol' indices (see Appendix A) are defined as follows:

T-S clos A = V (E [1 Ft (X) | X A ]) V (1 Ft (X)) . (18) 
Several estimation schemes for these indices have been proposed when dealing with rare failure events [START_REF] Wei | Efficient sampling methods for global reliability sensitivity analysis[END_REF][START_REF] Perrin | Efficient Evaluation of Reliability-Oriented Sensitivity Indices[END_REF]. To illustrate the behavior of these indices, one can consider a linear model given by Y = X 1 + X 2 + X 3 , with X = (X 1 , X 2 , X 3 ) ⊤ , three standard Gaussian random variables assumed to be independent. The left plot of Figure 2 Note that, when the inputs are assumed to be independent, the second-order Sobol' indices (i.e., when

|A| = 2) verify T-S {1,2} = T-S {1,3} = T-S {2,3}
. One can additionally remark that as soon as t induces a low or high failure probability (i.e., "close" to 0 or 1), the third-order (i.e., |A| = 3) closed Sobol' index for TSA increases, indicating high interaction between the three inputs. Note that studying this behavior falls under the conditional sensitivity analysis paradigm, which is out of the scope of this paper. However, the acknowledgment of this phenomenon remains important for better understanding the proposed indices' behavior.

Another category of sensitivity indices dedicated to TSA fall under the category of "momentindependent" ROSA indices. Among others, one can mention the two indices proposed by [START_REF] Cui | Moment-independent importance measure of basic random variable and its probability density evolution solution[END_REF] which are given by: where p

η A = 1 2 E p Y t -p Y |XA t (19a) δ A = 1 2 E p Y t -p Y |XA t 2 (19b)
Y |XA t
denotes the conditional failure probability when X A is fixed. Note that, if η A does not require any independence assumption for a meaningful quantification of input influence, it is known to be difficult to estimate in practice [START_REF] Derennes | Simultaneous estimation of complementary moment independent and reliability-oriented sensitivity measures[END_REF]. As for δ A , it is simply proportional to the target closed Sobol' index given in Eq. ( 18). Note that an extension of δ A has been proposed in [START_REF] Li | Moment-independent importance measure of correlated input variable and its state dependent parameter solution[END_REF] for correlated inputs. It relies on a similar orthogonalization procedure strategy as proposed by [START_REF] Mara | Variance-based sensitivity indices for models with dependent inputs[END_REF] for usual Sobol' indices. However, as mentioned previously, this tends to increase the number of estimated indices to properly interpret the inputs' influence.

The following section aims at introducing the distance-based TSA indices, while highlighting their links with existing TSA indices. New TSA indices inspired from the Shapley values (see, Section 2.2) are then proposed.

Distance-based TSA indices

As outlined by several authors [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF][START_REF] Raguet | Target and conditional sensitivity analysis with emphasis on dependence measures[END_REF], it can be noted that

V (E [Y |X A ]) = E (E [Y |X A ] -E [Y ]
) 2 . This equality can be interpreted as the expected squared distance between two expectations, and thus allows to apprehend closed Sobol' indices (see Eq. ( 13)) as a particular case of distance-based indices. This broader point of view has been adopted by [START_REF] Fort | New sensitivity analysis subordinated to a contrast[END_REF] to provide a generalization of the Sobol' indices using contrast functions.

By applying a similar idea for TSA, one can extend the standard T-S A and η A definition to more general cases based on distances. One can then define more general distance-based TSA indices, relative to a subset of inputs A ∈ P d , as follows:

T-S D A = E D p Y t , p Y |XA t E D p Y t , p Y |X t (20)
where D(•, •) can be any distance function. Links can be made between this definition and the indices presented previously, through the use of specific distance functions. For example, by choosing the distance derived from the ℓ 1 norm (i.e., the absolute difference), one can remark that the corresponding distance-based TSA index is proportional to the η A index:

T-S ℓ 1 A = E E[1 Ft (X)] -E[1 Ft (X)|X A ] E 1 Ft (X) -E [1 Ft (X)] = 2 E 1 Ft (X) -E [1 Ft (X)] η A (21)
Moreover, by using the distance derived from the ℓ 2 norm (i.e., the squared difference), one can remark the resulting distance-based TSA indices are equal to the closed Sobol' index for TSA, as defined in Eq. ( 18):

T-S ℓ 2 A = T-S clos A = V E 1 Ft (X) X A V 1 Ft (X) . ( 22 
)
As outlined, the distance-based TSA indices are intimately related to existing ones (i.e., η A and the closed Sobol' indices for TSA), and can thus be seen as a broader class of indices. Moreover, they are relevant candidates as cost functions for defining Shapley values inspired TSA indices, following a similar line of thinking as in Section 2.2.

(D)-target Shapley effects

In this subsection, a novel family of TSA indices is proposed, namely the (D)-target Shapley effects. As briefly mentioned previously, these indices are constructed by taking distance-based TSA indices, defined in Eq. ( 20), as cost functions in a Shapley attribution procedure (see Eq. ( 12)). For a specific input j ∈ {1, . . . , d}, its (D)-target Shapley effects can be defined as being:

T-Sh D j = 1 d A⊂{-j} d -1 |A| -1 T-S D A∪{j} -T-S D A ( 23 
)
where {-j} = {1, . . . , d} \ j. The main property allowing for a clear interpretation of the (D)-target Shapley effects is the following:

Property 1 ((D)-target Shapley effects decomposition). Let A ∈ P d , and val(A) = T-S D A . For any distance function D(., .), the following property holds:

d j=1 T-Sh D j = 1. ( 24 
)
It is important to note that this decomposition property does not rely on any independence assumption about the probabilistic model of the inputs. However, in order to ensure a meaningful interpretation of these indices, (i.e., as a percentage of a statistical dispersion), one needs to ensure that the T-Sh j are non-negative, for all j = 1, . . . , d.

By choosing T-S ℓ 1

A as a cost function (i.e., D(x, y) = |x -y|), one can then define the (ℓ 1 )-target Shapley effect associated to a variable j ∈ {1, . . . , d} as being:

T-Sh ℓ 1 j = 1 d A⊂{-j} d -1 |A| -1 T-S ℓ 1 A∪{j} -T-S ℓ 1 A . (25) 
These indices are non-negative (see the proof in Appendix C.1) which allows the (ℓ 1 )-target Shapley effects to be interpreted as the percentage of the mean absolute deviation of the indicator function (i.e., E 1 Ft (X) -E [1 Ft (X)] ), allocated to each input X j , j ∈ {1, . . . , d}.

By choosing T-S ℓ 2

A as a cost function (i.e., D(x, y) = (xy) 2 ), the (ℓ 2 )-target Shapley effect associated to the variable j ∈ {1, . . . , d} can be defined as:

T-Sh ℓ 2 j = 1 d A⊂{-j} d -1 |A| -1 T-S ℓ 2 A∪{j} -T-S ℓ 2 A . ( 26 
)
Being also non-negative (see the proof in Appendix C.2), they can be interpreted as a percentage of the variance of the indicator function allocated to the input X j , j ∈ {1, . . . , d}. Moreover, using

Eq. ( 22), by analogy with Eqs. ( 13) and ( 15) (in a similar fashion as the alternate cost function proposed by Song et al. ( 2016)), if one chooses to define the cost function val(A) as being:

T-E A def = E V 1 Ft (X)|X A V 1 Ft (X) (27) 
with A = {1, . . . , d} \ A, then one has an equivalent way of defining the (ℓ 2 )-target Shapley effect.

In the following, the (ℓ 2 )-target Shapley effect T-Sh ℓ 2 j will be referred to as "the" target Shapley effect and denoted T-Sh j :

T-Sh j def = T-Sh ℓ 2 j .

(28)

Estimation methods and practical implementation of target Shapley effects

The estimation of the target Shapley effects Eq. ( 26) can be done into two distinct steps:

•

Step #1: estimation of the conditional elements, i.e., the estimation of T-S ℓ 2 A or T-E A for all A ∈ P d ;

• Step #2: an aggregation procedure, i.e., a step to compute the T-Sh j by plugging in the previous estimations of Step #1 in Eq. ( 26).

In the following, two estimation methods are proposed: the first one based on a Monte Carlo sampling procedure, and the second one based on a nearest-neighbor approximation technique.

Monte Carlo sampling-based estimation

This procedure, introduced in [START_REF] Song | Shapley effects for global sensitivity analysis: Theory and computation[END_REF] for the estimation of Shapley effects, relies on a Monte Carlo estimation of the conditional elements. It requires the ability to sample from the marginal distributions of the inputs (i.e., P XA for all A ⊆ {1, . . . , d} \ ∅), as well as from all the conditional distributions (i.e., P X A |XA , for all possible subsets of inputs A). Additionally, one also needs to be able to evaluate the model G(•) which is usually the case in the context of uncertainty quantification of numerical computer models (ignoring the potential difficulties related to the cost of a single evaluation of G(•)) [START_REF] De Rocquigny | Uncertainty in industrial practice: a guide to quantitative uncertainty management[END_REF].

In order to estimate a conditional element T-S ℓ 2 A , one needs to randomly draw several i.i.d. samples:

• an i.i.d. sample of size N drawn from P X and denoted by (X (1) , . . . , X (N ) );

• another i.i.d. sample of size N v drawn from P XA and denoted by (X

A , . . . , X (Nv) A

);

• for each element X (i)

A , i = 1, . . . , N v , a corresponding sample of size N p drawn from P X A |XA given that X A = X (i)
A and denoted by (

X (1) i , . . . , X (Np) i ).
Then, the Monte Carlo estimator of T-S ℓ 2

A can be defined as:

T-S A,MC = Nv i=1 1 Np Np j=1 1 Ft ( X (j) i , X (i) A ) -p Y t 2 (N v -1) p Y t (1 -p Y t ) (29) 
with

p Y t = 1 N N i=1 1 Ft (X (i) ). (30) 
Finally, the aggregation procedure gives:

T-Sh j,MC = 1 d A⊂{-j} d -1 |A| -1 T-S A∪{j},MC -T-S A,MC . (31) 
Thus, one gets that T-Sh j,MC is an unbiased consistent estimator of T-Sh j .

Algorithm 1 provides a detailed description on how to implement this estimator in practice. This estimation method requires (N + d!× (d-1)× N v × N p ) calls to the numerical model G(•). Its empirical convergence w.r.t. N v is illustrated in Appendix E.1. As expected, this first estimation method can become quite expensive in practice. Moreover, numerical models usually encountered in industrial studies can be costly-to-evaluate, which can strongly limit the use of such a method in practice.

Another algorithm has been proposed in [START_REF] Song | Shapley effects for global sensitivity analysis: Theory and computation[END_REF], by leveraging an equivalent definition of the Shapley allocations, as an arithmetic mean over all the d! permutations of {1, . . . , d}. In the same fashion as in Eq. ( 10), it writes:

T-Sh j,MC = 1 m π∈permutations of {1,...,d} T-S v∪{j},MC -T-S v,MC (32) 
with v being the indices before j in the order π. In Eq. ( 32), the sum is not performed over all the permutations of {1, . . . , d} but only on m randomly chosen permutations. By sampling m < d! permutations, one can drive the computational cost of this algorithm to (N + m × (d -1) × N v × N p ) calls to G(•), for a less precise, but still convergent estimator. 

) ← simConditional(A, N p , X (i) A ) /* Compute the conditional element */ 7 T-S A ← 1 Nv-1 Nv i=1 1 Np Np j=1 1 Ft ( X (j) i , X (i) A ) -p Y t 2 × 1 p Y t (1-p Y t )
/* Aggregation step */ 8 for j = 1, . . . , d do 

Given-data estimation using a nearest-neighbor procedure

A "given-data" estimation method has been introduced by [START_REF] Broto | Variance reduction for estimation of shapley effects and adaptation to unknown input distribution[END_REF] to estimate the Shapley effects. This method can be seen as an extension of the Monte Carlo estimator when only a single i.i.d. input-output sample is available. This method is appropriate when the input distributions are not known or when the numerical model G(•) is not available anymore. The main idea behind this method is to replace the exact samples from the conditional distributions P X A |XA by approximated ones based on a non-parametric nearest-neighbor procedure. Let X (1) , . . . , X (N ) be an i.i.d. sample of the inputs X and

A ∈ P d \ {∅, {1 : d}}. Let k A N (l, n) be the index such that X (k A N (l,n)) A is the n-th closest element to X (l) A in X (1) A , . . . , X (N ) A
. Note that, if two observations are at an equal distance from X (l)

A , then one of the two is uniformly randomly selected. Finally, one can define an estimator of the equivalent cost function defined in Eq. ( 27):

T-E A,KNN = N l=1 1 Ns-1 Ns i=1 1 Ft X k A N (l,i) -1 Ns Ns h=1 1 Ft X k A N (l,h) 2 N p Y t (1 -p Y t ) . ( 33 
)
Under some mild assumptions, [START_REF] Broto | Variance reduction for estimation of shapley effects and adaptation to unknown input distribution[END_REF] showed that this estimator does asymptotically converge towards T-E A . With estimates for the conditional elements, one can then define the following plug-in estimator:

T-Sh j,KNN = 1 d A⊂{-j} d -1 |A| -1 T-E A∪{j},KNN -T-E A,KNN (34) 
where p Y t is the empirical mean of 1 Ft (X) on the i.i.d. sample. Algorithm 2 represents the procedure for this given-data estimator. Its empirical convergence w.r.t. the sample size is illustrated in Appendix E.2. This method is less computationally expensive (in terms of model evaluations) compared to the Monte Carlo sampling-based method, since no additional model evaluation, other than the ones in the i.i.d. sample, is required in order to produce estimates of the target Shapley effects.

Since the samples of the conditional and marginal distributions are approximated by a non-parametric procedure, this method also reduces the possible input modeling error (e.g., in the context of ill-defined input distributions), at the cost of less accurate estimates. Another constraint is due to the fact that the input-output sample has to be i.i.d. which prevents it from being used, for instance, in advanced orthogonal designs of computer experiments.

Algorithm 2: Target Shapley effects estimation by a nearest-neighbor procedure.

Input: X, Y, t Output: ( T-Sh j,KNN ) j=1,...,d /* Estimate the failure probability */

1 p Y t ← 1 N N i=1 1 {G(X (i) )>t} (X (i) )
/* For every subsets of inputs */ ) j=1,...,Ns ← KNN(X

2 for A ∈ P d do /* Sample of X A */ 3 X A ← (X ( 
(i) A , X, N s ) /* Compute the conditional element */ 6 T-E A ← N l=1 1 Ns-1 Ns i=1 1 Ft X A,(i) l -1 Ns Ns h=1 1 Ft X A,(h) l 2 × N p Y t (1 -p Y t ) -1
/* Aggregation step */ 7 for j = 1, . . . , d do 2020), a random permutation algorithm, homologous to Eq. ( 32), has been developed, which allows for reducing the overall complexity of the method, which, for the sake of conciseness, is not developed in this paper.

Software and reproducibility of results

The algorithms described in the preceding subsections have been implemented in the sensitivity R package [START_REF] Iooss | sensitivity: Global Sensitivity Analysis of Model Outputs[END_REF]. More precisely, the shapleyPermEx() (sampling-based algorithm) and sobolshap knn() (given-data algorithm) functions can be directly used for the estimation of the target Shapley effects. In the applications of Section 6, only the sobolshap knn() function is used for numerical tractability. Appendix D provides some minimal code examples for the implementation of the Monte Carlo (see, Section 4.1) and nearest neighbors estimation procedure (see, Section 4.2), along with their random permutation variants.

All further results can be accessed on a GitLab1 repository, along with the data used in the following sections. R code files are available, with explicit code, along with all custom-made functions, in order to reproduce the results presented in this paper. The procedures for the theoretical approximations of Section 5 are made available, along with the data-simulation functions for the flood case in Subsection 6.1. The two datasets used for Subsection 6.2 are also available. Finally, all the figures can be reproduced by simply re-running the different RMarkdown files in the aforementioned GitLab repository.

Analytical results using a linear model with Gaussian inputs

To illustrate the behavior of the proposed indices, a first toy-case involving a linear model and multivariate Gaussian inputs is presented. In this setting, analytical results can be derived for the marginal distributions of all subsets of inputs, their conditional distribution, and the distribution of the output given a subset of inputs. Subsequently, analytical formulas can be obtained for both the target Sobol' indices and the target Shapley effects. ), and that the model output writes

Let (β 0 , β) = (β 0 , β 1 , . . . , β d ) ⊤ ∈ R d+1 , µ = (µ 1 , . . . , µ d ) ⊤ ∈ R d and Σ ∈ M d (R) a full-rank symmetric (d × d) matrix. Assume that X ∼ N d (µ, Σ
Y = β 0 + β ⊤ X. ( 35 
)
Then, one has Y ∼ N β 0 + β ⊤ µ, β ⊤ Σβ and, for any

A ∈ P d , (Y |X A = x A ) ∼ N µ A , Σ A with µ A = β 0 + β ⊤ A x a + β ⊤ A (µ A + Σ A,12 Σ -1 A,22 (x a -µ A )), Σ A = β ⊤ A (Σ A,11 -Σ A,12 Σ -1 A,22 Σ A,21 )β A .
Moreover, one also can recall that

(X A , X A ) ⊤ ∼ N d µ A µ A , Σ A = Σ A,11 Σ A,12 Σ A,21 Σ A,22
with the partitions of Σ A having sizes

(d -|A|) × (d -|A|) (d -|A|) × |A| |A| × (d -|A|) |A| × |A|
. Evaluating these results requires some numerical approximations of the theoretical values of T-Sh j for all j = 1, . . . , d.

This has been achieved by using standard multidimensional integration tools, and more specifically, the function adaptIntegrate() from the cubature package of the R software has been used, with a fixed error tolerance set to 10 -8 . This allowed the study of simple toy-cases in order to validate the behavior of the target Shapley effects.

In the following, the inputs are first assumed to be independent, and are studied w.r.t. the threshold t. Then, a toy-case involving linear correlation between inputs (driven by a parameter ρ) is studied.

Finally, a last toy-case aims at studying the proposed indices' behavior in the presence of an exogenous input.

Independent standard Gaussian inputs

The first toy-case can be specified by:

   X 1 X 2 X 3    ∼ N 3       0 0 0    ,    1 0 0 0 1 0 0 0 1       , Y = 3 i=1 X i . ( 36 
)
In this case, the three inputs are equally important in terms of defining Y , but they should also be equally important for the variable of interest 1 Ft (X), as assessed by the target Sobol' indices defined as in Eq. ( 18). From [START_REF] Li | Moment-independent importance measure of basic variable and its state dependent parameter solution[END_REF] and [START_REF] Lemaitre | Analyse de sensibilité en fiabilité des structures[END_REF], one can easily deduce that the first-order (FO) target closed Sobol' indices are all equal to each other. Thus, one has:

T-S FO def = T-S ℓ 2 1 = T-S ℓ 2 2 = T-S ℓ 2 3 = V Φ t-X √ 2 V (1 Ft (X)) , (37) 
while the second-order (SO) target closed Sobol' indices are given by:

T-S SO def = T-S ℓ 2 {1,2} = T-S ℓ 2 {1,3} = T-S ℓ 2 {2,3} = V (Φ (t -X ′ )) V (1 Ft (X)) ( 38 
)
where Φ(.) is the standard Gaussian cumulative distribution function (cdf), X ∼ N (0, 1) and X ′ ∼ N (0, 2). Finally, one can also show that the third-order (TO) target closed Sobol' indices are equal to:

T-S TO def = T-S ℓ 2 {1,2,3} = 1. ( 39 
)
From Eqs. ( 37), (38), and (39), and from Property 1, one can deduce that:

T-Sh 1 = T-Sh 2 = T-Sh 3 = 1 3 . ( 40 
)
Additionally, as the inputs are independent, interpreting the original target Sobol' indices (i.e., Eq. ( 17))

is meaningful, and they are equal to:

T-S i = T-S FO , ∀i ∈ {1, 2, 3} (41) T-S {i,j} = T-S SO -2T-S FO , ∀i, j ∈ {1, 2, 3}, i = j (42) T-S {1,2,3} = T-S SO -3 (T-S FO + T-S SO ) . ( 43 
)
The target Sobol' indices are illustrated in Figure 3 (right). One can remark that, focusing on the indicator variable of interest 1 Ft (X) instead of the model output Y leads to interaction effects between the inputs, as outlined in Section 3.1. The target Shapley effects, however, remain constant for all threshold values t. Such a behavior is expected: it highlights the fact the target Shapley effects do not report the interaction effects as the target Sobol' indices would. The proposed indices rather summarize (in the sense of the Shapley values allocation) the target Sobol' indices into a single index.

Their goal is not to report on the "types of effects" (i.e., correlation or interaction), but rather provide a global index which sums up each input's importance.

- 

Correlated Gaussian inputs with unit variance

The behavior of the target Shapley effects are now studied when a linear dependence is added to the inputs. Since Property 1 still holds without any condition on the dependence structure on the input variables, these indices remain interpretable as a percentage of the output's variance. The following model is studied:

   X 1 X 2 X 3    ∼ N 3       0 0 0    ,    1 0 0 0 1 ρ 0 ρ 1       , Y = 3 i=1 X i . ( 44 
)
where -1 < ρ < 1. In this scenario one has:

T-S ℓ 2 1 = V Φ t-X √ 2(1+ρ) V (1 Ft (X)) , (45) T-S ℓ 2 2 = T-S ℓ 2 3 = V Φ t-X(1+ρ) √ 2-ρ 2 V (1 Ft (X)) , (46) 
T-S ℓ 2 {1,2} = T-S ℓ 2 {1,3} = V Φ t-X ′ √ 1-ρ 2 V (1 Ft (X)) , (47) 
T-S ℓ 2 {2,3} = V (Φ (t -X ′′ )) V (1 Ft (X)) ( 48 
)
where X ∼ N (0, 1), X ′ ∼ N (0, 1 + (1 + ρ) 2 ) and X ′′ ∼ N (0, 2(1 + ρ)).

From these results, one can directly remark that T-Sh 2 = T-Sh 3 . Note that the values of the target Shapley effects can also be obtained by combinations of target Sobol' indices (see Eq. ( 26)). These results are illustrated in Figure 4. For fixed threshold values t, the target Shapley effects of the correlated inputs X 2 and X 3 increases when ρ increases. This is an expected behavior since, in this case:

V (1 Ft (X)) = Φ t √ 3 + 2ρ 1 -Φ t √ 3 + 2ρ , (49) 
and subsequently, for a fixed t, the variance of the variable of interest will grow with ρ, as illustrated in Figure 5. This increase in variance due to the correlation between X 2 and X 3 is then attributed through T-Sh 2 and T-Sh 3 , which increase with ρ. On the other hand, T-Sh 1 decreases accordingly, to accommodate Property 1.

In Figure 4, the behavior of the indices w.r.t. ρ is illustrated. T-Sh 1 is predominantly above T-Sh 2 and T-Sh 3 when ρ is negative, and below when it is positive. This can be explained by the fact that, X 2 and X 3 cancel each other out when their correlation is negative, thus lowering the value of T-S {2,3}

below T-S {1,2} and T-S {1,3} , automatically increasing T-Sh 1 in accordance to Property 1. On the other hand, for positive values of ρ, T-S {2,3} is higher than T-S {1,2} and T-S {1,3} , which in turn corresponds to T-Sh 1 being lower than T-Sh 2 = T-Sh 3 .

Quantifying the importance of an exogenous input in the Gaussian setting

In this toy-case, inspired by [START_REF] Lemaitre | Analyse de sensibilité en fiabilité des structures[END_REF], the following model is considered:

      X 1 X 2 X 3 X 4       ∼ N 4             0 0 0 0       ,       1 0 0 0 0 1 0 ρ 0 0 1 0 0 ρ 0 1             , Y = X 1 + 6X 2 + 4X 3 (50)
where X 4 is an exogenous input, but correlated to X 2 , which is the most important variable in terms of variance contribution, due to its higher linear coefficient. The threshold is fixed at t = 16. This which is correlated with an endogenous input, even though it does not appear in the model. In the results given in Figure 6, one can remark that T-Sh 4 increases when ρ approaches either 1 or -1, despite the fact that it has no direct causal effect on the model G(•).

Discussion on causal relationship assessment

As outlined in Subsection 5.3, one can remark that, in the context of highly correlated inputs, the proposed indices fail to provide insights on the causal relationships of an input on the model's output: an exogenous input may receive a share of the output's variance. This behavior is intrinsically due to the Shapley values allocation method, and has been highlighted in [START_REF] Iooss | Shapley effects for Sensitivity Analysis with correlated inputs : Comparisons with Sobol' Indices, Numerical Estimation and Applications[END_REF] in the case of the Shapley effects. This particularity makes the interpretation of the Shapley effects, and subsequently the target Shapley effects, quite delicate. A prior investigation of the correlation structure of the data, through, for instance, estimated correlation matrices or any tool dedicated to multicollinearity diagnostics such as the variance inflation factor [START_REF] Fox | Generalized collinearity diagnostics[END_REF]) is strongly advised, along with an input validation process, ensuring the absence of exogenous inputs in the TSA study. Other allocations systems, such as the proportional values [START_REF] Ortmann | The proportional value for positive cooperative games[END_REF], are purposefully designed in order to highlight causal effects [START_REF] Feldman | Relative Importance and Value[END_REF], but fall out of the scope of this document and are not developed further.

Applications

In this section, two models related to real-world phenomena which include dependent random inputs are studied in the context of TSA.

A simplified flood model

The target Shapley effects are firstly computed on a simplified model of a river flood [START_REF] Lemaitre | Analyse de sensibilité en fiabilité des structures[END_REF][START_REF] Iooss | A review on global sensitivity analysis methods[END_REF]. This model's goal is to simulate the behavior of a river's water level, and to compare it to a fixed dyke height. After a strong simplification of the one-dimensional Saint-Venant equation (with uniform and constant flow rate), the maximal annual water level h is modeled as:

h =   Q BK s Zm-Zv L   3 5 , (51) 
while the model output writes:

Y = Z v + h. (52) 
The six inputs' probabilistic structure is described in Table 1. The problem is of dimension d = 6.

Under the TSA paradigm, the variable of interest is 1 {G(X)>t} (X) with t representing the dyke's height, fixed to t = 54.5 m. The reference failure probability (see, Eq. ( 16)), computed here with a Monte Carlo sample of large size (here 10 7 samples) is equal to p Y t = 4.5 × 10 -3 . In the same fashion as in [START_REF] Chastaing | Generalized Hoeffding-Sobol decomposition for dependent variables -Application to sensitivity analysis[END_REF], three pairs of inputs are assumed to be linearly dependent: Q and K s with ρ(Q, K s ) = 0.5, Z v and Z m with ρ(Z v , Z m ) = 0.3, L and B with ρ(L, B) = 0.3. The aim of this use-case is to assess the relevance of the target Shapley effects in a complex environment. In [START_REF] Chastaing | Generalized Hoeffding-Sobol decomposition for dependent variables -Application to sensitivity analysis[END_REF], it is shown that, from a GSA standpoint (using a generalized variance decomposition for dependent variables), the two most influential inputs on the annual water level are Q, the maximal annual flow rate, and Z v , the river downstream level. An i.i.d. sample of N = 2 × 10 5 input realizations is drawn (note that the linear correlations are injected following the algorithm proposed by [START_REF] Schumann | Generating correlated uniform variates[END_REF]) which leads to N model evaluations.

Input Description

Figure 7 presents the estimated target Shapley effects on this i.i.d. sample, using the nearest-neighbor procedure depicted in Subsection 4.2 with an arbitrary number of neighbors set at N s = 2. 300 repetitions of the simulation and the estimation procedure allow for the assessment of the estimation procedure's variance (represented by boxplots in Figure 7). One can notice that Q is granted an influence of 24.3% (±1.3%), K s has 22.6% (±1.3%) and Z v around 16.7% (±1%). The other inputs are attributed a share of around 12%. Compared to results obtained by from a GSA standpoint, without correlations [START_REF] Iooss | A review on global sensitivity analysis methods[END_REF] and with correlations [START_REF] Chastaing | Generalized Hoeffding-Sobol decomposition for dependent variables -Application to sensitivity analysis[END_REF], these TSA results allow for granting a much larger share to K s and non-negligible effects to Z m , L and B. This was expected due to the interactions induced by the considered TSA variable of interest. This example illustrates the ability of the target Shapley effects to quantify the importance of input variables in a use-case involving input correlation. 

A COVID-19 epidemiological model

In 2020, the COVID-19 pandemic has raised important questions on the usefulness of epidemic modeling, especially on their ability to produce relevant insights to public policy decision makers. [START_REF] Saltelli | Five ways to ensure that models serve society: a manifesto (short comments)[END_REF] have taken this example to insist on the essential use of GSA on such models, which claim to predict the potential consequences of intervention policies. A first study has been proposed by [START_REF] Lu | Is time to intervention in the COVID-19 outbreak really important? A global sensitivity analysis approach[END_REF], in the context of COVID-19 in Italy, to assess the sensitivity of important epidemiological model outcomes, such as the number of people being either quarantined, recovering, or dead due to COVID-19. Another GSA has been performed in Da Veiga et al. (2021) in the French context of the first COVID-19 outbreak. By using data coming from this last analysis (thanks to the authors' agreement), the goal of this section is to demonstrate how TSA can help to characterize the influence of various uncertain parameters on a real-scale model.

Description of the model and its inputs

The deterministic compartmental model developed in Da [START_REF] Veiga | Basics and trends in sensitivity analysis[END_REF] (also presented in Da Veiga (2020)) is representative of the COVID-19 French epidemic (from March to May) by taking into account the asymptomatic individuals, the testing strategies, the hospitalized individuals, and people admitted to Intensive Care Unit (ICU). Using several assumptions, it is based on a system of 10 ordinary differential equations that can be fully retrieved in references Da [START_REF] Veiga | Calibration and sensitivity analysis of a COVID-19 epidemics model[END_REF] and Da [START_REF] Veiga | Basics and trends in sensitivity analysis[END_REF]. Each equation models path of individuals between different compartments (corresponding to their infectious and illness states), as shown in Figure 8. These equations involve many input parameters and model the dynamic between the different compartments. Table 2 presents the 20 continuous input parameters with their prior distribution (chosen from literature studies), which form the inputs X, assumed to be independent between each other. 

Input Description

Prior distribution p a

Conditioned on being infected, the probability of having mild symptoms or no symptoms U(0.5, 0.9) For the present study, our variable of interest, which is a particular model output, then writes

U p max = max v∈time range U v (X) (53)
where U v is the the number of hospitalized patients in ICU at time v. Note that the "p" in U p max stands for "prior" as this quantity corresponds to the variable of interest before any calibration w.r.t. the available data.

In Da [START_REF] Veiga | Basics and trends in sensitivity analysis[END_REF], after a first screening step which allows for suppressing non-influential inputs, the model is calibrated on real data by using a Bayesian calibration technique. After the analysis of this step, the selected remaining inputs are

X sel = (p a , N a , N s , R 0 , t 0 , µ, N, I - 0 ) ⊤ (54) 
and their distributions are obtained from a sample given by the calibration process. The non-influential inputs are fixed to their nominal values and the posterior variable of interest becomes

U max = max v∈time range U v (X sel ) (55) 
with U max being the maximum number of hospitalized people in ICU who need special medical care on the studied temporal range, and U v is the number of hospitalized patients in ICU at time v.

Input importance for ICU bed shortage

The central question of this study would be to determine which inputs influence the event of a country experiencing a shortage of ICU bed capacity during the time period. For that purpose, one can introduce a threshold k, which represents the total number of ICU beds in the country, which is assumed to be constant during the studied time period. The new variable of interest would then be 1 {U P max >k} (X) for the full compartmental model (preliminary study) and 1 {U max>k } (X sel ) for the model with selected inputs (post-calibration study). Two input-output samples of size n = 5000 are available.

The first one (preliminary study) includes all the inputs following their prior distribution (see Table 2) and the corresponding output U P max of the compartmental model. The second one (post-calibration study) is composed of a sample of X sel after the Bayesian calibration, and the corresponding output U max of the compartmental model with the non-selected inputs fixed to nominal values.

Five different thresholds are studied on U P max : 5 • 10 3 , 10 4 , 5 • 10 4 , 10 5 and 2 • 10 5 , with respectively 58.1%, 47.7%, 22%, 10.1% and 2.2% of the total output samples being in a failure state. This illustrates the behavior of the target Shapley effects when the failure probability decreases. The threshold of 6300 has been chosen for U max , with 10.9% of the total output samples being above this threshold. Figure 9 illustrates two different thresholds, and the corresponding estimated failure probability on the histogram of both outputs.

The target Shapley effects have been estimated using a variant of the estimation scheme presented in Subsection 4.2, with a fixed number of random permutations of 10 3 , and with a number of neighbors set to 3, following the rule of thumb guideline of [START_REF] Broto | Variance reduction for estimation of shapley effects and adaptation to unknown input distribution[END_REF], due to the sheer complexity of this estimation algorithm. Since the compartmental model is deterministic, the target Shapley effects have been forced to sum up to one. Figure 10 presents the main results for U P max , with the red dotted line being the average influence of an input, in the case of similar importance (i.e., 1 20 ). One can remark that for less restrictive thresholds (i.e., threshold for which the failure probability is high), the input N , the effective date of lockdown/social distanciation measures, seem to be the most influential, reaching more than 50% of the TSA variable of interest's variance. However, as soon as the threshold becomes more and more restrictive (i.e., the failure probability decomes lower and lower), the effect of N decreases, and the effects of the other inputs increase accordingly, in order to reach what seem to be an equilibrium at the value 1 20 . This behavior can be explained by two main reasons:

• As outlined in Subsection 3.1, the nature of a restrictive TSA variable of interest induces high interaction between the inputs;

• The Shapley allocation system, when applied to variance as a production value, redistributes the interaction effects equally between all inputs (there is no correlation between inputs in this prior study).

One can argue that, as soon as k becomes very restrictive, the combined interaction effects outweighs the effect of N itself, and since these effects are equally distributed among all the inputs, their share will tend to go towards 1 20 . For the post-calibration study, some selected inputs X sel are linearly correlated (see Figure 11 top). This is typically the case for N and µ, with an estimated correlation coefficient ρ(N, µ) = 0.69, and for R 0 and N with an estimated correlation coefficient of ρ(N, R 0 ) = -0.66. This correlation structure does not allow for interpretable Sobol' indices, as outlined in Section 2, which encourages the use of Shapley-inspired indices. The Shapley effects and the target Shapley effects of X sel for U max have been computed using the nearest-neighbor procedure, with a fixed number of neighbors of 3, and forced to sum to one because of the deterministic nature of the model.

In Figure 11 (bottom), one can remark that N a , the number of days until recovery, seem to be the most important input in explaining the number maximum number of ICU patients on the studied time range, with a Shapley effect of around 35% of the output variance. The inputs p a , N s , R 0 and N seem to present average effects, that is around 1 8 , while t 0 , µ and I - 0 seem to be less influential, with around 5% of explained variance each.

However, focusing on the occurrence of a ICU bed shortage, one can remark that the target Shapley effect of N a is lower (around 22%), with the influence of N being higher (around 15%) than their Shapley effects. Moreover, t 0 , µ and I - 0 present higher TSA effects, i.e., slightly under 10%, due to the interaction induced by the indicator function. One can also remark that the influence of N s is higher than that of R 0 in the TSA setting, which was the inverse for the Shapley effects. This would indicate that N s , the number of days until recovery for a symptomatic patient without hospitalization, has more influence on the event of a bed shortage than the basic reproducing number of the virus, R 0 . 

Conclusion

This paper proposes a set of novel indices adapted to target sensitivity analysis while being able to handle correlated inputs. The objective is to quantify the importance of inputs on the occurrence of a critical failure event of the system under study. The proposed indices are based on a cooperative Shapley procedure which aims at allocating the effects of the interaction and correlation equally between all the inputs in the same manner as the Shapley effects in global sensitivity analysis. Thus, a general class of distance-based indices is proposed, namely the (D)-target Shapley effects and some relevant properties are highlighted. Depending on the choice of the distance D, well-known preexisting indices can be used as cost functions in the Shapley formulation. Therefore, these indices allow for the allocation, among the different inputs, of shares of several dispersion statistics (e.g., mean absolute deviation for the ℓ 1 case, variance for the ℓ 2 case). These indices are easily usable in practice, as they can be interpreted as percentages of the dispersion statistic, allocated to each input. This versatile procedure produces input importance measures according to a specific metric, driven by the choice of the distance.

In particular, the (ℓ 2 )-target Shapley effects (called target Shapley effects to simplify), which represents percentages of variance, have been studied more extensively and two dedicated estimation methods have been proposed. These particular indices have then been applied, analyzed and discussed through simple Gaussian toy-cases. Finally, two real-world use-cases have been studied: the modeling of a river flood and the ICU bed shortage during the COVID-19 pandemic. These indices are revealed to be able to detect influential inputs in the context of correlated inputs. For target sensitivity analysis, such a tool is valuable and can be used as a complement of more standard procedures. The clear advantage of this method is that only one set of indices is needed in order to produce easily interpretable and meaningful insights regarding the studied phenomenon. Moreover, the proposed indices can be estimated in a given-data context which can be adapted to applications for which no computer model is available. However, the major limitations of the approach are primarily related to the target aspect of the analysis. Indeed, as soon as the event becomes increasingly rare, all the inputs tend to be influential and making a clear distinction between interactions and correlation effects becomes difficult.

To overcome these limitations, a first approach could be to improve the estimation strategies. The sampling-based method could benefit from a better sampling scheme, such as importance sampling, as described by [START_REF] Rubinstein | Simulation and the Monte Carlo method[END_REF], which could reduce the estimator's variance. Recent results from [START_REF] Sarazin | Estimation of high-order moment-independent importance measures for Shapley value analysis[END_REF] using copulas are also promising in the extent to which they show efficient estimations of the Shapley effects. Moreover, adapting recent results from [START_REF] Spagnol | Kernel-based sensitivity indices for high-dimensional optimization problems[END_REF], with a link between the target Sobol' indices and the Squared Mutual Information [START_REF] Sugiyama | Machine learning with squared-loss mutual information[END_REF], should allow for other possibilities of given-data estimation methods. Another method based on a random forest given-data procedure, explored by Elie-Dit-Cosaque (2020) in the context of quantile-oriented importance measure estimation, could also yield promising results if transposed to a reliability-oriented setting.

Even if the Shapley attribution system is a solution when dealing with input statistical dependencies, it lacks a finer decomposition allowing to quantify the origin of each effect (e.g., statistical dependence and interaction). Future work could use the recent developments in [START_REF] Rabitti | A Shapley-owen index for interaction quantification[END_REF] in order to quantify interaction effects, by transposition of these results to the target sensitivity analysis setting.

Finally, it has been shown in [START_REF] Soofi | A Framework for Measuring the Importance of Variables with Applications to Management Research and Decision Models*[END_REF] that the Shapley attribution system is equivalent to a maximum entropy distribution (e.g., uniform) over all possible orderings of inputs (the Shapley weights). Developments towards other forms of data-driven allocation systems could also open a path for further improvements. where {-j} = {1, . . . , d}\j. One can additionally remark that φ j (val) is a linear operator, meaning that for some constant c ∈ R, φ j (c × val) = c × φ j (val). S@6T Ualue V@W@X@TY@ Ualue ± 5`6Ta6Xa b@viation S@6T Ualue V@W@X@TY@ Ualue ± 5`6Ta6Xa b@viation S@6T Ualue V@W@X@TY@ Ualue ± 5`6Ta6Xa b@viation 

Figure 1 :

 1 Figure 1: Inspired from Clouvel (2019). Illustration scheme of the effect of two inputs X 1 and X 2 on an output variable Y when they are: uncorrelated (left) or correlated (right).

  represents the probability density function (pdf) of Y , along with four different threshold values, corresponding to four different failure probability levels. The right plot of Figure 2 presents the different values of T-S A , w.r.t. the threshold t.

Figure 2 :

 2 Figure 2: Probability density function of the output with four different threshold values (left) and the related target Sobol' indices (right) for Y being the sum of three independent Gaussian random variables.
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 3 Figure 3: Target Shapley effects (left) and target Sobol' indices (right) for the linear model with standard independent multivariate Gaussian inputs, w.r.t. t.

0Figure 4 :

 4 Figure 4: Evolution, w.r.t. ρ and for various threshold values, of the target Shapley effects of correlated Gaussian standard inputs in a linear model.

Figure 5 :

 5 Figure 5: Variance of 1 Ft (X) w.r.t. ρ and t for correlated Gaussian standard inputs with a linear model.

Figure 6 :

 6 Figure 6: Target Shapley effects for the Gaussian Linear model with an exogenous input, w.r.t. ρ.

Figure 7 :

 7 Figure 7: Estimated target Shapley effects for the flood case.

Figure 8 :

 8 Figure 8: Overview of the COVID-19 compartmental model. The different compartments contain the following individuals: susceptible (S), undetected infected (I -), unhospitalized detected infected (I + ), recovered undetected (R -), recovered unhospitalized detected (R +I ), hospitalized in severe illness (H), hospitalized in intensive care (U), recovered hospitalized (R +H ) and dead (D).
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 9 Figure 9: Illustration of thresholds on the histograms of U P max (left) and Umax (right).

Figure 10 :

 10 Figure 10: Shapley effects (top) and target Shapley effects for different thresholds (bottom) for U P max .

Figure 11 :

 11 Figure 11: Input correlation matrix (top), Shapley effects for Umax and target Shapley effects (bottom) for 1 {Umax>t} (X sel ). The 95% confidence intervals have been computed by uniformly selecting 80% of the observations, for 100 repetitions, without replacement.
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  Figure Appendix A.1: Sobol' indices (left) and closed Sobol' indices (right).

  Additivity) If val and val ′ have Shapley Values φ and φ ′ respectively, then the game with cost function val + val ′ has Shapley values φ j + φ ′ j for j ∈ {1, . . . , d}. These four axioms guarantee a cooperative allocation of val({1, . . . , d}). The unique attribution method that satisfies these four axioms are the Shapley values Osborne and Rubinstein (1994A ∪ {j})val(A)), j = 1, . . . , d (B.1)

Figure

  Figure Appendix E.1: Empirical convergence of the Monte Carlo estimation procedure with respect to the sample size.

Figure

  Figure Appendix E.2: Empirical convergence of the nearest-neighbor estimation with respect to the sample size.

  Algorithm 1: Target Shapley effects estimation by a Monte Carlo procedure. Input: G, t, d, N, N v , N p , simJoint, simMarginal, simConditional Output: ( T-Sh j,MC ) j=1,...,d

		/* Sample from the joint distribution	*/
	1 (X (1) , . . . , X (N ) ) ← sim joint(N ) /* Estimate the failure probability	*/
	2 p Y t ← 1 N /* For every subsets of inputs N i=1 1 {G(X (i) )>t} (X (i) )	*/
	3 for A ∈ P d do /* Sample from the marginal distribution	*/
	4	(X /* For every element of the marginal distribution sample (1) A , . . . , X (Nv) A ) ← simMarginal(A, N v )	*/
	5	for i = 1, . . . , N v do
		/* Sample from the conditional distribution given the element of the marginal distribution
	6	( X	*/ (1) i , . . . , X	(Np) i

Table 1 :

 1 Input variables and distributions for the flood model.

	Unit	Distribution

Table 2 :

 2 Model inputs and their prior distribution. H is the number of hospitalized individuals with severe symptoms. U is the number of hospitalized individuals in ICU.

https://gitlab.com/milidris/review l2tse

Acknowledgments

We are grateful to the three anonymous referees as well as Jérôme Morio, François Bachoc and Julien Demange-Chryst for their helpful remarks. We also thank Sébastien Da Veiga, Clémentine Prieur and Fabrice Gamboa for interesting discussions and for having provided the dataset on the COVID-19 model. Finally, we would like to thank Victoria Stanford for her help in proofreading this work.

Appendix A. ANOVA and Sobol' indices

In the general non-linear case, as for the ANOVA of the linear model case (see Subsection 2.1), the idea is to find a general decomposition of the output variance. This can be done through the decomposition of a function with finite variance (L 2 mathematical property), called the Hoeffding decomposition [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF], which allows to rewrite G(X) as a sum of centered components related to each possible subset of inputs. For example, in the case of a model with three inputs X = (X 1 , X 2 , X 3 ), G(X) can be decomposed into four components:

Moreover, if the inputs are assumed to be independent, each term is orthogonal to one another and writes

where A ∈ P d is a subset of indices and P d the set of all possible subsets of {1, . . . , d}, |A| is the cardinal of A and X A denotes the subset of inputs, selected by the indices in A (X A = (X i ) i∈A ).

Then, the Hoeffding decomposition is unique and leads to a variance decomposition called "functional ANOVA":

This leads to the definition of the Sobol' indices [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]:

3)

The sum of the Sobol' indices over all subset on inputs A ∈ P d being equal to one, they can be directly interpreted as the percentage of the output variance due to each subset of input [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF]; [START_REF] Saltelli | Global Sensitivity Analysis. The Primer[END_REF]. The Sobol' indices of higher orders than one can be interpreted as a means of quantifying the share of variance due to the interaction effects induced by the structure of the model G(•) between the selected subset of inputs.

Another useful sensitivity index is the closed Sobol' index [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] which writes

In the independent setting, it can be interpreted as the percentage of variability induced by all the variables in a selected subset and their interactions. 

Appendix B. Axioms of Shapley values

Consider a game with d players, and let val(A) ∈ R be the cost function quantifying the production value of a coalition (i.e., set of players) A ∈ P d , under the assumption that val(∅) = 0. The Shapley value φ j = φ j (val), j = 1, . . . , d attributed to each player can be defined by the following set of axioms:

1. (Efficiency) d j=1 φ j = val({1 . . . , d}), meaning that the sum of the allocated values have to be equal to the value produced by the cooperation of all the players. 2. (Symmetry) If val(A ∪ {i}) = val(A ∪ {j}) for all A ∈ P d , then φ i = φ j , meaning that if two players allow for the same contribution to every coalition, their attribution should be the same.

3. (Dummy) If val(A ∪ {i}) = val(A) for all A ∈ P d , then φ i = 0, meaning that if a player does not contribute the the production of resources for all coalition, he should not be attributed any Appendix C.1. Positivity of the (ℓ 1 )-target Shapley effects

Let A ⊆ {1, . . . , d} \ {j}, for j ∈ {1, . . . , d}. In order to show that the (ℓ 1 )-target Shapley effects are positive, one needs to prove that:

In [START_REF] Cui | Moment-independent importance measure of basic random variable and its probability density evolution solution[END_REF], it was shown that the following property holds:

with η A being defined in Eq. ( 19). From the definition of T-S

one gets immediately the property C.1.

Appendix C.2. Positivity of the (ℓ 2 )-target Shapley effects

Let X = (X 1 , . . . , X d ) ∈ R d , be a real-valued random vector admitting a probability measure P X on the usual real measurable space. Let L 2 (P X ) be the functional space such that, for a measurable

be the studied numerical model, and denote the random variable Y = G(X) be the model output (or Y = 1 G(X)>t (X) the TSA variable of interest, without loss of generality). Let A ⊆ {1, . . . , d} \ {j} be the indices of the subset of inputs X A and j ∈ {1, . . . , d}. In order to show that T-Sh j ≥ 0, one needs to prove that:

From the Pythagorean theorem, one has:

By removing E Y 2 to both sides of the equality, one obtains:

Finally, from Eq. (C.8) and Eq. (C.9), we obtain

which concludes the proof. Listing 2: Minimal R code example for the nearest-neighbor estimation.

Appendix E.1. Empirical convergence of the Monte Carlo estimation procedure

In order to illustrate the Monte Carlo estimation procedure of the target Shapley effects (see, Section 4.1), the following model is considered:

where the considered TSA variable of interest is 1 Y >3 (X). This represents a failure probability p Y t ≃ 0.071. The empirical rate of convergence is studied on 100 repetitions, with respect to several values of N v , with fixed sample sizes N = 10